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Abstract:  Research into the mode of action of the essential oil of Melaleuca alternifolia

(Tea tree oil) is briefly reviewed.  Its mode of action is interpreted in terms of the 

membrane-toxicity of its monoterpenoid components and different approaches for 

determining cell membrane damage are discussed.
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Introduction

Many plant-derived essential oils are known to exhibit antimicrobial activity against a wide range of 

bacteria and fungi [1,2].  Although they usually occur as complex mixtures their activity can generally 

be accounted for in terms of their major monoterpenoid components.  Research into the antimicrobial 

actions of monoterpenes suggests that they diffuse into and damage cell membrane structures [3,4,5,6]. 

Monoterpenes are lipophilic and, by definition, will preferentially partition from an aqueous phase into 

membrane structures.  Sikkema and co-workers have shown that this causes expansion of the 

membrane, increased fluidity or disordering of the membrane structure and inhibition of membrane-

embedded enzymes [5].  

The essential oil of Melaleuca alternifolia (tea tree oil) consists largely of cyclic monoterpenes of 

which about 50% are oxygenated and about 50% are hydrocarbons.  It exhibits a broad-spectrum 

antimicrobial activity that can be principally attributed to terpinen-4-ol [7].  Here we use an 
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investigation into the mode of action of tea tree oil as an example to illustrate how the membrane 

toxicity of monoterpenes affects microbial viability and cell membrane-related physiology.  

Results and Discussion

The effects on different parameters were measured for the Gram negative (Escherichia coli AG 100) 

and Gram positive (Staphylococcus aureus NCTC 8325) bacteria and and a yeast (Candida albicans

KEM H5) after exposure to 0.5% v/v tea tree oil (Figure 1).  In each case measurements were taken 

after 60 minutes exposure, with the exception of respiration which was determined 2 minutes after tea 

tree oil addition in the case of E. coli and C. albicans and after 10 minutes for Staph. aureus.

Figure 1. Effects of 0.5% v/v tea tree oil on various physiological indicators in microorganisms.  

Cell viability counts reveal the extent to which treated cells are able to survive and reproduce to 

form colonies when removed from the presence of tea tree oil and re-cultured in a nutrient medium.  E. 

coli and C. albicans cultures were more susceptible to tea tree oil than Staph. aureus during the 60 

minute experiment (Figure 1).  A significant inhibition of respiratory oxygen consumption in cultures 

of all three organisms resulted upon exposure to tea tree oil.  The enzymes and cofactors directly 

involved in the respiratory electron transport chain span the cytoplasmic membranes of bacteria and the 

plasma and mitochondrial membranes of yeast.  Therefore, the inhibitory effects of tea tree oil are 

consistent with effects related to the partitioning of its monoterpene components into cell membranes.
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Increased propidium iodide (PI) staining and leakage of 280nm absorbing materials in all three 

microorganisms indicates that the decline in viability and the inhibition of respiration was 

accompanied by increased cell membrane permeability. PI is a fluorescent nucleic acid stain that is 

unable to penetrate the cell membrane structures of healthy cells [8].  However, cells with damaged or 

permeabilised cell membranes do not exclude PI.  Therefore, PI staining of cells indicates cytoplasmic 

membrane (bacteria) and plasma membrane (yeast) damage.  For E. coli the percentage of cells stained 

with PI after 60 minutes indicates that practically all non-viable cells had damaged cytoplasmic 

membranes.  The fact that 100% of the total cellular free K+ content (the amount released from cells 

treated with cell-lytic enzymes) had leaked out to the supernatant confirms this observation.  The

amount of 280 nm absorbing material in E. coli cell supernatants (relative to the total released upon 

complete cell lysis) was less extensive than K+ ion leakage.  This indicates that the membrane 

structural damage sustained by E. coli cells, although lethal, did not result in the release of 

macromolecular cytosolic constituents.  

The bacterial cytoplasmic membrane provides a permeability barrier to the passage of small ions 

such as H+, K+, Na+ and Ca2+.  This impermeability to small ions is maintained and even regulated by 

the structural and chemical composition of the membrane itself.  Increases in the leakage of K+ will 

indicate a disruption of this permeability barrier.  Maintaining ion homeostasis is integral to the 

maintenance of the energy status of the cell as well as membrane-coupled, energy-dependent processes 

such as solute transport, regulation of metabolism, control of turgor pressure and motility [9,10,11].

Therefore, even relatively slight changes to the structural integrity of cell membranes can detrimentally 

affect cell metabolism and lead to cell death. 

In Staph. aureus cultures the percentage of PI permeable cells and 280 nm absorbing compounds 

released after tea tree oil exposure was similar.  However, these values were significantly less than the 

percentage of non-viable cells.  On the other hand, K+ efflux and therefore, the extent of cytoplasmic 

membrane damage closely followed the effect on cell viability.  This suggests that, in the case of Staph. 

aureus, monitoring K+ efflux may be a more sensitive indicator of membrane damage than PI staining.  

In the case of C. albicans, only 54% of cells were permeable to PI after exposure to tea tree oil in 

spite of an 84% reduction in viability.  This indicates that for both C. albicans and Staph. aureus PI 

staining does not correlate completely with the onset of cell death. In spite of the increased 

permeability to PI and the rapid effect on respiration (69.6% inhibition within 2 minutes of adding tea 

tree oil), leakage of K+ from C. albicans cells exposed to tea tree oil was not detected.  This absence of 

K+ efflux is difficult to explain, although it may be possible that the inhibition of respiration in some 

way causes the yeast plasma membrane to become permeable to the influx of PI while still maintaining 

a barrier to the efflux of K+. Regardless of the explanation, these findings suggest that monoterpene-

induced cell membrane damage produces different effects in different microorganisms.  

Conclusions

The ability of tea tree oil to inhibit respiration and increase membrane permeability in microbial

cells suggests that its lethal actions are primarily the result of inhibition of membrane-located 

metabolic events and a loss of chemiosmotic control.  Differences in susceptibility between E. coli, 
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Staph. aureus and to some degree C. albicans can be explained by differences in the extent of 

monoterpene-induced cell membrane damage.  However, in the case of C. albicans the absence of tea 

tree oil stimulated K+ efflux and the presence of non-viable cells with plasma membranes that 

remained impermeable to PI indicates that the nature of membrane damage sustained may vary from 

that observed with bacteria.  

Experimental

The tea tree oil (Batch 6081, Main Camp, Ballina, NSW, Australia) used in this study conformed to 

the international standard for Oil of Melaleuca, terpinen-4-ol type [12].  Gas chromatographic analysis 

showed that its main components are terpinen-4-ol (39.8%), γ-terpinene (17.8%), α-terpinene (8.3%), 

1,8-cineole (4.5%), α-terpineol (3.4%), α-terpinolene (3.3%), p-cymene (2.3%), α-pinene (2.1%) and 

limonene (1.1%).  Its sesquiterpene fraction includes aromadendrene (1.2%), viridiflorene (1.2%), δ-

cadinene (1.5%), globulol (0.5%) and viridiflorol (0.4%).

Cells were twice passaged in Iso-sensitest Broth (ISB, Oxoid, Basingstoke, UK) in the case of E. 

coli strain AG100 and Staph. aureus NCTC 8325 and Malt extract broth (MEB, Oxoid) for C. albicans

KEM H5 at 37°C.  Cell viability was determined by serial dilution and plating onto nutrient agar [13].

Microbial respiration rates and potassium ion concentration in cell suspensions were measured 

using an oxygen electrode and a potassium ion selective electrode, respectively [6].  Propidium iodide 

uptake was measured by flow cytometric analysis [13].  The release of 280 nm absorbing compounds 

to cell supernatants was measured spectrophotometrically.  Briefly, cells suspensions were prepared as 

for K+ efflux determinations. Cell supernatants were obtained by centrifugation of 1 mL aliquots of tea 

tree oil exposed cells.  Background leakage rates (no tea tree oil added) were negligible.  The extent of 

leakage of 280 nm compounds was expressed as a percentage of values measured in supernatants from 

suspensions treated with cell-lytic enzymes [6].
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