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A data analysis procedure has been developed to estimate the contact area in an elasto-

plastic indentation of a thin film bonded to a substrate. The procedure can be used to

derive the elastic modulus and hardness of the film from the indentation load,

displacement, and contact stiffness data at indentation depths that are a significant

fraction of the film thickness. The analysis is based on Yu’s elastic solution for the

contact of a rigid conical punch on a layered half-space and uses an approach similar to

the Oliver-Pharr method for bulk materials. The methodology is demonstrated for both

compliant films on stiff substrates and the reverse combination and shows improved

accuracy over previous methods.

I. INTRODUCTION

Since 1992, the analysis method proposed by Oliver

and Pharr1 has been established as the standard proce-

dure for determining the hardness and elastic modulus

from the indentation load-displacement curves for bulk

materials. In the Oliver-Pharr method, the projected con-

tact area between indenter tip and material is estimated

using the equations for the elastic contact of an indenter

of arbitrary shape on a uniform and isotropic half space.2

The indentation modulus and hardness of the material

can thus be calculated without the necessity of imaging

the indentation after the experiment. The Oliver-Pharr

method was initially developed for analyzing indenta-

tions in bulk materials, not for films on substrates, and

no information about a possible substrate is included in

the analysis. The Oliver-Pharr method is, however, fre-

quently used by researchers to interpret indentations per-

formed on thin films in an attempt to obtain approximate

film properties regardless of the effect of substrate prop-

erties on the measurement. The accuracy of such a mea-

surement depends on the film and substrate properties

and on the indentation depth as a fraction of the total

film thickness. In general, the error due to the substrate

effect increases with increasing indentation depth and

with increasing elastic mismatch between film and sub-

strate.3–7 To minimize the effect of the substrate on the

measurement, the indentation depth is often limited to

less than 10% of the film thickness.5 This empirical rule

is not always reliable, especially if the elastic mismatch

between film and substrate is large. The 10% rule is also

not useful for thin films when experimental issues make

it difficult to obtain accurate results for shallow indenta-

tions. Evidently there exists a need for a method that can

be used to analyze thin-film indentation data for inden-

tation depths where the substrate effect cannot be

ignored.

A number of studies with several different approaches

to modeling the substrate effect have been reported.7–13

King used numerical techniques to model the elastic

indentation of a layered half space with flat-ended punches

of various cross sections.8 The depth dependence of the

effective indentation modulus of the composite system

Meff was represented numerically as a function of the

punch size a normalized by the film thickness t using the

following phenomenological formula

1

Meff

¼ 1� n2f
Ef

1� e�c t
a

� �

þ 1� n2s
Es

� e�c t
a

� �

; ð1Þ

where the subscripts f and s refer to the film and sub-

strate, respectively. E represents Young’s modulus and n
Poisson’s ratio. The contribution of the substrate to the

effective modulus is through the exponential terms on

the right-hand side of Eq. (1). The empirical parameter c
is a function of a/t only, and needs to be calculated

numerically.

Gao et al. studied a similar elastic indentation problem

using an approximate first-order perturbation method.9

The effective indentation modulus of the film/substrate

system was determined in closed form as the weighted

average of the indentation moduli of the film and the

substrate. Gao’s approximation becomes increasingly in-

accurate as the elastic mismatch between the film and

the substrate increases.11 Xu and Pharr later showed that

the accuracy of Gao’s expression for the effective inden-

tation modulus could be improved by a slight modifica-

tion of the formula.13
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Yu et al. solved the elastic contact problem of an

axisymmetric indenter—flat, conical, or spherical in

shape—on a layered half space by first reducing the

mixed boundary value problem to a Fredholm integral

equation of the second kind using the Papkovich-Neuber

potentials, and then solving the integral equation numer-

ically.10,14 Yu’s solution can be regarded as a generali-

zation of Sneddon’s solution for a film/substrate

composite and can be used to calculate the relations

among indentation load, depth, and contact stiffness for

any combination of film and substrate. For the special

case where the film has the same properties as the sub-

strate, Yu’s solution reduces to Sneddon’s solution.

Saha and Nix adopted King’s results to analyze elasto-

plastic indentations performed with a Berkovich punch.7

In their analysis, the film thickness in King’s solution

was replaced by the film thickness minus the instanta-

neous indentation depth. This is equivalent to assuming

that the elastic recovery during unloading from an

elasto-plastic indentation with a Berkovich indenter can

be modeled by an elastic indentation with a flat-ended

punch located at the tip of the Berkovich indenter. This

assumption overestimates the substrate effect at relati-

vely deep indentation depths.7,12

Chen and Vlassak11 modeled the elasto-plastic inden-

tation of a film on a substrate using finite elements.

They demonstrated that the elastic unloading process in

an elasto-plastic indentation was well approximated by

Yu’s elastic contact solution, which provided a unique

relationship between the contact stiffness and contact

area even in the presence of significant pileup. This

relationship was later adopted by Han et al.12 to deter-

mine the hardness of a thin film on an elastically mis-

matched substrate. Instead of using finite elements, Han

et al. derived the relationship between contact stiffness

and area from Yu’s analysis. Using Han’s method, the

instantaneous projected contact area can be estimated

from the contact stiffness. Han’s method cannot, how-

ever, be used to measure the indentation modulus of the

film a priori. Instead, the method requires that the elastic

properties of the film and substrate be known before-

hand. Moreover, the precise definition of film thickness

to be used in Yu’s solution for the analysis of an elasto-

plastic indentation is not clear: the local film thickness is

not uniform and keeps changing as the indentation pro-

ceeds as a result of plastic deformation.

In this paper, we present a new data analysis procedure

based on Yu’s elastic solution to derive the projected con-

tact area in an elasto-plastic indentation and to extract the

elastic modulus and hardness of a film on a substrate. The

procedure is in concept very similar to the classical Oliver-

Pharr analysis except that it is based on Yu’s elastic solu-

tion rather than Sneddon’s solution. The data analysis

procedure differs from Han’s method in that it requires

no prior knowledge of the film stiffness. The paper is

organized as follows. We begin with a brief review of the

Oliver-Pharr method. This section is followed by a sum-

mary of Yu’s analysis and some relevant exact results for

the elastic indentation of a film on a substrate. We then

present a procedure for analyzing elasto-plastic indenta-

tion data and discuss the basic assumptions inherent to the

procedure. Finally, the effectiveness of the new procedure

is demonstrated experimentally for both compliant films

on stiff substrates and vice versa.

II. THEORY

A. A brief review of the Oliver-Pharr method

In the Oliver-Pharr method, Sneddon’s elastic solution

for the indentation of an isotropic half space2 is used to

relate the contact stiffness S and the projected contact

area A between indenter and half space to the indentation

modulus M of a homogeneous material:

M ¼
ffiffiffi

p
p

2
� S
ffiffiffi

A
p ; ð2Þ

where the indenter tip is assumed to be rigid. Equation

(2) is valid independent of the precise shape of the in-

denter, as long as it is smooth and axisymmetric.15 If the

indenter is not axisymmetric, a correction factor b is

needed in Eq. (2).8,16 For an isotropic material, the

indentation modulus M, so defined, is equal to the

plane-strain modulus E= 1� n2ð Þ. If the tip is not rigid,

a reduced modulus, Mr, should be used in Eq. (2) to

compensate for the finite compliance of the tip,1 that is,

Mr¼
ffiffiffi

p
p

2
� S
ffiffiffi

A
p ; with Mr¼ M�1þM�1

tip

� ��1

: ð20Þ

In an elasto-plastic indentation, S is measured as the

derivative of the indentation load P with respect to the

elastic displacement on unloading. Pharr later pointed out

that the elastic unloading from a plastic impression is

equivalent to the elastic indentation of a flat surface by an

effective punch, the shape of which is determined by the

plastic properties of the material.17 Since Eq. (2) does not

depend on the precise shape of the punch, it can indeed be

used in conditions where the physical surface is perturbed

by a hardness impression. To determine the projected con-

tact area A, one needs to determine the contact depth, hc,
that is, the depth over which the indenter makes contact

with the material. The contact depth can be estimated as

hc ¼ h� hs ; ð3Þ
where h is the total indentation displacement, and hs is
the elastic deflection of the surface, which can be calcu-

lated from the elastic contact problem using

hs ¼ E
P

S
: ð4Þ

In Eq. (4), P is the indentation load and E is a constant
that depends only on the shape of the indenter; E = 0.72
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for a conical tip and 0.75 for a paraboloid tip.1 Once hc
has been calculated, the projected contact area, A, can be

determined from the shape of the indenter, that is,

A ¼ f hcð Þ, where f is the area function of the indenter,

which describes the cross-sectional area of the indenter

as a function of the distance to the indenter tip. Once the

contact area is known, the indentation modulus and

hardness of the material are readily calculated.

B. Yu’s analysis: Elastic indentation problem

and solution

As mentioned in the introduction, the elastic indenta-

tion of a layered half-space is mathematically a mixed

boundary value problem that can be reduced to a Fred-

holm integral equation of the second kind10:

H tð Þ�1

p

Z

1

0

½K yþtð ÞþK y�tð Þ�H yð Þdy¼F0 tð Þ : ð5Þ

The solution of the contact problem is given in terms of

a function H tð Þ that can be regarded as a normalized

map of the pressure distribution within the contact region.

The kernel of the integral equation, K uð Þ, is given by10,12

K uð Þ ¼ a

t

Z

1

0

1� A�2wþB�cosh 2wð ÞþC�sinh 2wð Þ
DþC�cosh 2wð ÞþB�sinh 2wð Þ�A�2w2

 !

�cos uw
a

t

 !

dw ; ð6Þ

where

A ¼ 1�Mf 1� nfð Þ
Ms 1� nsð Þ

 !

� 4
Mf 1� nfð Þ
Ms 1� nsð Þ ns � 3

Mf 1� nfð Þ
Ms 1� nsð Þ � 1

 !

;

B ¼ 8
Mf 1� nfð Þ
Ms 1� nsð Þ nf � 1ð Þ ns � 1ð Þ ;

C ¼ 3� 4nf þ
Mf 1� nfð Þ
Ms 1� nsð Þ 2þ 3

Mf 1� nfð Þ
Ms 1� nsð Þ

"

�4nf � 4ns 1þMf 1� nfð Þ
Ms 1� nsð Þ

 

� 2nfÞ
#

;

D ¼ Mf 1� nfð Þ
Ms 1� nsð Þ

" #2

4ns � 3ð Þ � 2
Mf 1� nfð Þ
Ms 1� nsð Þ 2nf � 1ð Þ

� 2ns � 1ð Þ þ 4nf 2nf � 3ð Þ þ 5 : ð7Þ

In these expressions, Mf and Ms are the indentation

moduli of the film and the substrate respectively; vf and
ns are the respective Poisson’s ratios. The right-hand

side of Eq. (5) is determined by the shape of the indent-

er. For a conical punch, for instance,

F0 tð Þ ¼ 1� gt ; ð8aÞ
while for a spherical punch of radius R,

F0 tð Þ ¼ 1� gt� ln 1þ trð Þ � ln 1� trð Þ
ln 1þ r=gð Þ � ln 1� r=gð Þ : ð8bÞ

In these equations, r ¼ a=R and g is the ratio of the

contact radius for an indentation in a film on a substrate

to the contact radius for an indentation of the same depth

in a homogenous half space with the same properties as

the film, that is,

g ¼ a=aH : ð9Þ
The relationship between the contact radius aH and the

indentation depth h for an elastic indention in a homoge-

nous half space depends on the indenter shape.18 For a

conical punch with half included angle y, one finds that

h ¼ paH

2tan yð Þ ; ð10aÞ

while for a spherical punch of radius R

h ¼ aH

2
ln
1þ aH=R

1� aH=R

� �

: ð10bÞ

The integral equation in Eq. (5) can be solved numeri-

cally in the form of a Chebyshev series using El-Gendi’s

method.10,14 For conical and spherical indenters, the

boundary condition of vanishing pressure at the contact

periphery is expressed as

H 1ð Þ ¼ 0 : ð11Þ
The value of g is iterated until the solution satisfies

Eq. (11). The basic solution to the contact problem

includes the function H tð Þ and the corresponding value

of g. The general form of the indentation load P required

for an indenter to penetrate to a depth h is then

P ¼ 4Gfah

1� nfð Þ

Z

1

0

H tð Þdt : ð12Þ

By using Eqs. (9), (10), and (12), P can be determined

as a function of h for a given indenter shape. The contact

stiffness is then the derivative of P with respect to h.

C. Some useful results from Yu’s solution

In an elastic indentation of a homogeneous half-space,

the elastic deflection of the surface hs is related to the

indentation load and the contact stiffness through

Eq. (4). For a film on a substrate, hs also depends on the

elastic mismatch between the film and the substrate,

necessitating a dimensionless correction factor x in the

expression for the surface deflection
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hs ¼ x a=t;Mf=Ms; nf ; nsð ÞeP
S

: ð13Þ

The elastic deflection of the surface is also related to

the contact radius through the indenter geometry. For a

conical punch with half included angle y, one has

hs ¼ h� hc ¼ h� a=tany : ð14Þ
Using Eqs. (9) through (14), x can be calculated as a

function of a/t and for different levels of elastic mismatch

between film and substrate. Results for a conical indenter

are shown in Fig. 1(a). When the film has the same elastic

properties as the substrate, x is obviously equal to one. As
a=t ! 0, the curves also satisfy the condition x ! 1

independent of the elastic mismatch between film and

substrate. This extreme case corresponds to an indenta-

tion in the homogeneous film material, for which x should
be equal to one. A similar trend is observed for large

contact areas, where the effect of the film is negligible

and the indenter is effectively probing the substrate. It is

further evident from Fig. 1(a) that Poisson’s ratio of the

film has a relatively minor effect on the value of x, espe-
cially if the film is stiffer than the substrate. Figure 1(b)

shows x as a function of a/t for several conical indenters
with different half included angles (y¼ 60�, 70�, 80�) and
for a spherical indenter (R/t ¼ 30). Evidently there is a

small difference between conical and spherical indenters,

but for conical indenters x does not depend on the apex

angle of the indenter.

Analysis of nanoindentation data requires the relation-

ship between the contact stiffness and the contact radius.

We have calculated the contact stiffness S as a function

of the contact radius for a series of film/substrate combi-

nations for a conical indenter with a half included angle

of 70�. The results are shown on a logarithmic scale in

Fig. 2(a). It is clear that for small contact radii, the

contact stiffness changes linearly with contact radius

and conforms to Sneddon’s equation for homogeneous

materials. As the contact radius grows, the effect of the

substrate becomes evident and the slopes of the curves

gradually deviate from unity: the slopes increase for stiff

films on compliant substrates and decrease for compliant

films on stiff substrates. At large contact radii, all curves

again approach Sneddon’s equation as the effect of the

film fades.

For a given contact area, the contact stiffness of an

indenter on a homogeneous and isotropic half space

is independent of the precise indenter shape as long as

the indenter is axisymmetric and the profile of the punch

can be approximated by a half-space—that is, the apex

angle y should be close to 180� for a conical punch, or

a=R�1 for a spherical punch.15 Consequently, the con-

tact stiffness of an arbitrary axisymmetric indenter on an

elastic half space is equal to that for a flat-ended indenter

with radius equal to the contact radius. The same conclu-

sion holds true for the indentation of a film on a substrate:

In Fig. 2(b), we show the S-a relationship calculated from
Yu’s solution for a given film-on-substrate assembly

(Mf=Ms ¼ 0:5,nf ¼ ns ¼ 0:25) indented by several coni-

cal (y ¼ 60�, 70�, 80�) and spherical indenters (R/t ¼ 10,

30). All curves overlap perfectly, confirming that for

films on substrates the contact stiffness is also indepen-

dent of the indenter shape, at least within the context of

linear elastic contact mechanics. This observation is easi-

ly rationalized based on Hill’s cumulative superposition

argument19 and is the foundation of the new analysis

method. When analyzing the elastic unloading process

after an elasto-plastic indentation in a thin film, the rela-

tionship between contact stiffness and contact radius can

be calculated without knowledge of the precise shape of

the indentation, that is, without knowledge of the plastic

properties of the film.

D. Application of the elastic indentation solution

to the analysis of elasto-plastic indentations:

The effective film thickness

The idea of using an elastic solution in the interpreta-

tion of elasto-plastic indentation data is based on the fact

FIG. 1. The dimensionless correction factor x for an elastic indenta-

tion as a function of normalized contact radius for (a) different elastic

mismatch and a conical indenter, and for (b) various indenter shapes.
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that the displacement during the unloading segment of an

indentation is elastic even if the material has undergone

significant plastic deformation on loading—at least in the

absence of time-dependent deformation or a strong

Bauschinger effect.1,8,17 The entire unloading process can

be modeled as the elastic contact between a flat surface

and an effective indenter, the shape of which depends

on the elastic and plastic properties of the indented

material.17 After the discussion in the previous section, it

is clear that this approach is also valid for the elasto-

plastic indentation of a film on a substrate, as long as the

presence of the substrate is taken into account in the

elastic analysis.

There is, however, one added complication: Film

thickness is well defined in an elastic indentation, but not

so in an elasto-plastic indention, where the film between

the indenter and the substrate has been thinned as a result

of plastic flow. To apply Yu’s solution for the indentation

of a film on a substrate it is necessary to define and use an

effective film thickness, teff, that captures this local thin-
ning effect. Generally, teff is a function of the elastic and

plastic properties of both film and substrate. Dimensional

analysis shows that for a given indenter shape

teff

t
¼ f

sf
y

Ef

;
ss
y

Es

; nf ; ns;
h

t

 !

; ð15Þ

where sy refers to the flow stress of the film or the

substrate depending on the superscript. We simplify this

equation as follows

teff

t
¼ 1� Z

sf
y

Ef

;
ss
y

Es

; nf ; ns

 !

h

t
; ð16Þ

in the spirit that the effective thickness is equal to the

actual film thickness for zero indentation depth and

decreases monotonously with increasing depth. The

dimensionless function Z quantifies the local thinning

of the film as a result of plastic deformation of the film.

The function depends on the mechanical properties of

film and substrate and on the precise indenter shape. In

general, it is necessary to know Z to use Yu’s solution in

the analysis of elasto-plastic indentations in thin films.

One option is to calculate Z numerically using a finite

element model. We will demonstrate below that it is

possible to experimentally determine Z for a given

materials system by performing a nanoindentation

measurement.

Given Yu’s solution, it is now possible to calculate the

instantaneous contact radius during an indentation in one

of two ways. First, the contact radius can be calculated

directly from the instantaneous contact stiffness using

the S-a relationship shown in Fig. 2(a), if values for Z
and the indentation modulus of the film, Mf, are as-

sumed. We refer to the value of a calculated using this

approach as the theoretical value of a.
Second, the contact radius can also be determined

using a procedure similar to the Oliver-Pharr method.1

Specifically, it is assumed that the elastic deflection of

the contact periphery is the same for an elasto-plastic

indentation as it is for an elastic indentation. Replacing

the film thickness in Eq. (13) with the effective thick-

ness, one finds the following expression for the elastic

deflection in an elasto-plastic indentation

hs ¼ x
a

t� Z�hð Þ ;
Mf

Ms

� �

e
P

S
; ð17Þ

where the dependence on the Poisson’s ratios of film

and substrate is not written explicitly. Consequently

the instantaneous contact radius a needs to satisfy

the following implicit equation with a as the only

unknown,

a ¼ h� x
a

t� Z�hð Þ ;
Mf

Ms

� �

e
P

S

� �

tanðyÞ : ð18Þ

In a real experiment, the indenter is of course not a

perfect cone and it may be necessary to determine the

instantaneous contact radius from

FIG. 2. Normalized contact stiffness versus contact radius calculated

from Yu’s solution for (a) different elastic mismatches, and (b) vari-

ous conical and spherical punches.
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a ¼
ffiffiffi

A

p

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f h� hsð Þ
p

r

; ð19Þ

where f is the known area function of the indenter. As

can be seen in Fig. 1(b), the error in the correction factor

x as a result of the imperfect tip shape is expected to be

small. Equation (18) or Eq. (19) can be solved numeri-

cally if Z and the indentation modulus of the film are

known (or assumed), and this provides another measure

for the instantaneous contact radius. We refer to this

value of the contact radius as the experimental value

of a.
If the contact stiffness is known at each point of the

indentation loading curve (e.g., from a continuous stiff-

ness measurement) then the two measures of the a can

be calculated at every point of the indentation loading

curve resulting in two continuous S-a curves. If the as-

sumed values of Z and the indentation modulus Mf are

correct, both curves overlap. In actual practice, Mf and Z
can be treated as free parameters that need to be varied

to achieve the best possible overlap between the two S-a
curves (i.e., to minimize the mean square error between

the two curves). Once Mf and Z have been determined,

the contact radius a can be calculated and the hardness is

found as H ¼ P=pa2. A detailed step-by-step outline to

implement all these procedures is included in the Appen-

dix; a software package that performs the necessary

calculations is available at the archival website www.
iMechanica.org (“iMechanica” is a website hosted at

the Harvard School of Engineering and Applied

Sciences dedicated to enhance communication and dis-

cussion among mechanicians).20 The method described

here reduces to the standard Oliver-Pharr method1 if the

film has the same properties as the substrate. In this

special case, Eq. (13) reduces to Eq. (4) and the contact

stiffness is linearly proportional to the contact radius

through Eq. (2).

III. EXPERIMENTAL

A. Materials

The method described in the previous section was

used to analyze indentations in a number of thin films.

Table I summarizes the various materials that were used

for this purpose; in all cases, the substrate was (100)

silicon. The indentation modulus of the silicon substrate

was determined from a nanoindentation experiment us-

ing the Oliver-Pharr method. The SiO2 film was a 300

nm thermally grown oxide purchased from Silicon Quest

International (Santa Clara, CA). The silicon nitride film

was a stoichiometric amorphous nitride deposited onto a

silicon substrate using an industrial low-pressure chemi-

cal vapor deposition process. The porous organosilicate

glass (OSG) coatings were deposited using an industrial

plasma-enhanced chemical vapor deposition (PECVD)

process with diethoxymethylsilane as a precursor along

with a proprietary aromatic-organic porogen precursor.

By varying the porogen loading during the film deposi-

tion process, OSG coatings with two different levels of

porosity were deposited: OSG-1 with a porosity of 27%

and OSG-2 with a porosity of 20%. OSG coatings with

two different thicknesses were deposited. The thicknesses

of all films were measured after the deposition process

with a Woollam WVASE32 spectroscopic ellipsometry

system (made by J.A. Woollam Co., Inc., Lincoln, NE).

B. Methods

All nanoindentation tests were conducted in the

continuous-stiffness-measurement (CSM) mode using a

Nanoindenter XP system (MTS System Corporation, Oak

Ridge, TN) equipped with a diamond Berkovich indenter

tip. The indentation-loading scheme was similar for all

tests: the measurements started with an exponentially

increasing load until a specified peak displacement was

reached. The load was held constant for 10 s and then

decreased at a constant rate to 5% of the peak load. At

this point, the load was held constant for 1 min to allow

for thermal drift correction, followed by the final unload-

ing step. During the loading segment, the contact stiff-

ness was measured continuously by imposing a small

displacement oscillation at 40 Hz on the otherwise mono-

tonically increasing displacement. The CSM measure-

ment mode was ideal for the present analysis method as

it supplied a near continuous S-a curve. If the CSM mode

is not available, the method can of course also be applied

to indentations with multiple unloading cycles. At least

five indentations were made for each coating, and the

results presented here are the average of the group. The

indentations in the thick OSG films were analyzed using

the Oliver-Pharr method, while the indentations in all

other films were analyzed using the method described in

the previous section. The Poisson’s ratios used in these

analyses are summarized in Table II. The dimensionless

correction factor x used in the analysis was that for a

conical indenter.

Calibration tests for the area function of the indenter

and for the load frame compliance were performed on a

fused silica specimen to ensure measurement accuracy.

A value of 1.034 was used for the correction factor b in

Sneddon’s equation. A detection accuracy of the initial

TABLE I. Summary of materials for films and substrate investigated.

Materials Thickness (nm)

Compliant film Thermally grown SiO2 300 � 10

Stiff film LPCVD Si3N4 90 � 2

Porous OSG films OSG-1 280 � 5

2300 � 20

OSG-2 280 � 5

2300 � 20
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contact position of smaller than 1 nm was achieved by

monitoring the stiffness signal as the tip came into con-

tact with the sample surface.21 To characterize the mor-

phology of the indentations, post-indentation atomic

force microscopy (AFM) was carried out with an Asy-

lum MFP-3D Stand-Alone AFM system (Santa Barbara,

CA) in tapping mode. For all samples, negligible pileup

was detected around the indentations, making them ideal

testbeds for the present analysis method. All nanoinden-

tation results are summarized in Table II.

The elastic modulus of the Si3N4 film was also

measured independently by means of the plane-strain

bulge test.22 A rectangular Si3N4 membrane (2.0 � 0.05

mm � 10 � 0.05 mm) was microfabricated using stan-

dard lithography and anisotropic etching techniques and

deformed through application of a uniform pressure.22

The deflection of the membrane was measured using a

He-Ne interferometer and the applied pressure using a

manometer with a resolution of 0.1 kPa. The stress-strain

curve of the Si3N4 film was extracted from the load-

deflection data using the method described in Xiang

et al.22 The plane-strain modulus of the Si3N4 film was

calculated from a linear least squares fit to the stress-

strain curve.

IV. RESULTS AND DISCUSSION

A. Si3N4/Si and SiO2/Si

Figure 3 shows the indentation load-displacement

curves for the SiO2 film, the Si3N4 film, and the bare

silicon substrate. The three indentation curves are simi-

lar with only slight deviations as a result of the SiO2 and

the Si3N4 films; the indentations in the SiO2 and the

Si3N4 films penetrate well into the underlying silicon

substrate, which seems to dominate the load-displace-

ment data. To better differentiate the contributions of

the films to the indentation curves and to avoid compli-

cations by indentation-induced fracture of the films and

substrate, only indentation data for displacements less

than two thirds of the film thickness are used in the

analysis.

The experimental contact stiffness is depicted in

Fig. 4 as a function of indentation depth for the SiO2

film, the Si3N4 film, and the bare silicon substrate. As

expected, the contact stiffness for the silicon substrate

increases linearly with increasing indentation depth. The

SiO2 and Si3N4 curves have a constant slope at shallow

depths where the films dominate the response, but the

slopes start to change at intermediate depths, where

the substrate becomes increasingly important. Whether

the curves are concave or convex depends on the stiff-

ness of the film relative to that of the substrate. Figure 5

shows the best fit of the theoretical S-a relationship

derived from Yu’s solution to the experimental S-a curve
(markers) for both the SiO2 film and the Si3N4 film. The

inset shows the same data plotted as S/2a as a function of
a/t to further highlight the goodness of fit. It is evident

from both graphs that agreement between the experi-

mental and theoretical curves is good except for very

small depths. The small discrepancy between both

curves arises mainly because the initial contact between

indenter and film is purely elastic. In this case, use of the

total indentation depth h in the expression for the effec-

tive film thickness is inappropriate. If the plastic depth is

used in Eq. (16) instead of the total indentation depth,

much better agreement is obtained. Using the plastic

indentation depth indeed ensures that the method con-

verges to the exact result for elastic indentations. Esti-

mating the plastic indentation depth for each point on the

loading curve is nontrivial, however, and involves fur-

ther assumptions on the shape of the unloading curve.

Furthermore, if the initial elastic contact is not included

in the data analysis, virtually identical values for stiff-

ness and hardness are obtained. Given the additional

assumptions, the computational effort, and the very

small benefit, it is not worthwhile to account for elastic

contact in the definition of the effective depth.

The ratio of the indentation moduli for the Si3N4 film

obtained from the fit in Fig. 5 is 1.36 � 0.01, yielding an

indentation modulus of 242.5 � 0.9 GPa for the Si3N4

film. The corresponding value of Z is 0.55. The

TABLE II. Summary of the nanoindentation results for the various

thin-film systems.

Materials Poisson’s M (GPa) Z R2

(100)-Si 0.2212 178.6 � 1.7 — —

SiO2 film 0.1922–26 65.4 � 0.7 0.50 0.9996

Si3N4 film 0.2721 242.5 � 0.9 0.55 0.9998

OSG-1 (thin) 0.25 4.45 � 0.19 1.10 0.9992

OSG-1 (thick) 0.25 4.50 � 0.20 — —

OSG-2 (thin) 0.25 7.07 � 0.46 1.20 0.9995

OSG-2 (thick) 0.25 7.35 � 0.42 — —

FIG. 3. Experimental load-displacement curves for the Si3N4 and

SiO2 films, and for the silicon substrate.
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pressure-deflection data for the Si3N4 membrane

obtained in the plane-strain bulge test are shown in

Fig. 6. The inset is the corresponding stress-strain curve,

the slope of which yields a plane-strain modulus of

257.2 � 1.5 GPa. For an isotropic material, the plane-

strain modulus obtained in the bulge test is equivalent to

the indentation modulus obtained in a nanoindentation

experiment. Evidently, the bulge test result is in good

agreement with the nanoindentation measurements on

the same film. The result also agrees well with the value

of 241 � 3 GPa reported by Vlassak and Nix for a

similar silicon nitride film.23

The fit of the experimental S-a data in Fig. 5 yields an

indentation modulus of 65.4 � 0.7 GPa for the SiO2

film. The corresponding value of Young’s modulus is

63.1 � 0.7 GPa, assuming a Poisson’s ratio of 0.19 for

the SiO2 film.24,25 Table III gives an overview of

Young’s moduli reported in the literature for SiO2 films

that were thermally grown under various conditions.

Most results are in the range of 63–72 GPa, in reason-

able agreement with our nanoindentation results. The

value of Z obtained in the analysis is 0.5, close to the

value for the Si3N4 film. The parameter Z was intro-

duced to quantify the local thinning of the film caused

by plastic deformation. A value of approximately 0.5

suggests that in this case the effective film thickness is

best approximated by the simple average of t and t�h,
rather than by t as in Han’s method12 or t�h as in Saha’s

method.7

Figure 7 compares the indentation moduli of the Si3N4

and SiO2 coatings obtained using the new method with

the values obtained from the Oliver-Pharr method as a

function of relative indentation size (a/t), with the bulge

test measurement, and with plane-strain moduli taken

from the open literature (shaded regions).1,24–28 The

Oliver-Pharr results behave as expected: at shallow

depths, the indentation moduli are equal to the true in-

dentation moduli of the films, but they change quickly

with increasing indentation depth and approach the sub-

strate indentation modulus. At small indentation depths

(a/t < 0.2), the Oliver-Pharr moduli are noisy and suffer

from a relatively large measurement uncertainty, pre-

cluding an unambiguous extrapolation to zero indenta-

tion depth. In contrast, the results obtained using the new

analysis appear more robust because indentation data

over a wide range of depths are used to determine the

FIG. 5. Experimental (markers) and theoretical (solid curves) contact

stiffness versus contact radius for the Si3N4 and SiO2 samples. The

inset presents the same data in the form of S/2a versus a/t.

FIG. 4. Curves of the experimental contact stiffness versus indenta-

tion depth for the Si3N4 film, the SiO2 film, and for the silicon

substrate.

FIG. 6. The pressure-displacement curve for a freestanding LPCVD

silicon nitride film obtained in the bulge test. The inset is the

corresponding plane-strain stress-strain curve, yielding a plane-strain

modulus of 257.2 � 1.5 GPa.
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indentation moduli and because the effect of the sub-

strate has been accounted for.

Figure 8 shows the hardness of the SiO2 film as a

function of indentation depth, calculated using both the

Oliver-Pharr analysis and the new method. Hardness

results for bulk-fused silica are also shown for compari-

son. At shallow indentation depths, all results converge.

Because of the finite tip radius, the indenter behaves

more like a sphere than a sharp cone. As expected for a

Hertzian contact, the hardness (i.e., the average contact

pressure, as defined in this study) of the SiO2 sample

starts at zero for zero depth and increases with increas-

ing indentation depth. Eventually the curves level off

and the hardness reaches a plateau value. The hardness

of the SiO2 film as determined using the new method is

in very good agreement with the hardness of fused silica,

while the hardness of the SiO2 film as determined using

the Oliver-Pharr method rises much faster. As the in-

denter tip approaches the SiO2/Si interface, the hardness

of the SiO2 film as determined using the new analysis

also starts to deviate from the fused silica hardness,

although it remains smaller than the hardness determined

using the Oliver-Pharr method. It is not clear at present

whether this deviation is caused by the constraining

effect of the silicon substrate on plastic flow in the

coating29 or because the analysis method loses accuracy

when the indenter tip depth approaches the film/sub-

strate interface.

Figure 9 shows the hardness of the Si3N4 film calcu-

lated using the Oliver-Pharr analysis and the new meth-

od, along with the hardness results for the silicon

substrate. Both Si3N4 hardness curves look qualitatively

similar, independent of which method was used to ana-

lyze the Si3N4 results: They both rise from zero hardness

for the elastic contact conditions at shallow depths and

approach the hardness of the substrate at large depths.

The details of the curves, however, are quite different.

The maximum hardness obtained using the new analysis

method is in good agreement with the hardness values of

21–23 GPa reported in the literature for similar LPCVD

Si3N4 films,23 while the hardness obtained using the

Oliver-Pharr analysis is significantly lower. As the in-

denter approaches the interface, the hardness obtained

from the new analysis drops off and reaches the silicon

hardness much more quickly than the Oliver-Pharr hard-

ness. This observation agrees with finite element simula-

tions performed by Chen and Vlassak11 for the

indentation of a hard film on a soft substrate. These

TABLE III. A survey of Young’s moduli for thermally grown SiO2 films reported in the literature.

Film processing Thickness (nm) Method Young’s modulus (GPa)

Thermally grown below 1000 �C (present work) 300 � 10 Nanoindentation 63.1 � 0.7

Thermally grown at 875–1200 �C22 200–2000 Bulge test 65.2a

Thermally grown at 960 �C23 80 Micro-beam resonance 67

Thermally grown24 325 Electrically activated membrane 69 � 14

Thermally grown at 1200 �C25 650 Cantilever beam technique using x-ray diffraction 51.3a

Thermally grown at 1000 �C26 1000 Brillouin light scattering technique 72

Bulk-fused silica1 – Nanoindentation 69.3

aAssume n = 0.19.

FIG. 7. The indentation modulus obtained with the Oliver-Pharr

method as a function of contact radius normalized by film thickness,

compared with the results obtained using the new method. The shaded

regions represent the ranges of the SiO2 and Si3N4 indentation moduli

reported in the literature.

FIG. 8. The hardness of the SiO2 film as a function of indentation

depth calculated using several methods. The hardness of bulk fused

quartz is included for comparison.
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simulations indeed show that the hardness decreases rap-

idly as the indenter approaches the film/substrate inter-

face because of extensive plastic deformation in the

softer substrate.

B. OSG/Si

Figure 10 shows the indentation load-displacement

curves for the OSG-1 and OSG-2 films. Results are

shown for two different film thicknesses. For either ma-

terial, the response of the 2300 nm film is close to that of

the 280 nm film as long as the indentation depth is small

and the influence of the substrate is negligible. At larger

depths, the substrate effect becomes obvious and the

thinner films require a larger load for the indenter to

penetrate to a given depth than the thicker films. At a

depth of approximately 200 nm, kinks can be observed

in the indentation curves for the thinner films. These

kinks are associated with delamination of the OSG films

from the substrate. Consequently only data obtained for

depths smaller than 200 nm are used in the analysis.

Figure 11 shows the best fit of the experimental S-a data

(hollow symbols) with the theoretical relation based on

Yu’s solution (solid curves) for the 280 nm OSG films.

The corresponding indentation moduli are 4.45 � 0.19

GPa (Z = 1.1) and 7.07 � 0.46 GPa (Z = 1.2) for the

OSG-1 and OSG-2 films, respectively. As illustrated in

the inset, small deviations can be observed in the fit for

shallow depths when the results are plotted as S/2a ver-

sus a/t. We again attribute these deviations to the use of

the total indentation depth in the definition of the effec-

tive film depth—they have little or no effect on the

calculated film modulus.

For the 2300 nm OSG films, the indentation moduli

calculated using the Oliver-Pharr method are highly

repeatable and remain nearly constant over a depth range

of 50 to 200 nm. Evidently, the substrate effect is negli-

gible over this range, consistent with previous

experimental and FEM studies.7,11 The average value of

the indentation modulus in the plateau region is 4.50 �
0.20 GPa for the OSG-1 film and 7.35 � 0.42 GPa for

the OSG-2 film, in good agreement with the results

obtained for the thinner films over the same range of

indentation depths using the new analysis.

Figure 11 also demonstrates the importance of using

the effective film thickness in the analysis. The dashed

curves are theoretical predictions based on Yu’s solution

using the same indentation moduli as for the solid

curves, but assuming a constant thickness that is equal

to the total film thickness (i.e., Z = 0). It is evident that

the results are nearly independent of Z for shallow

indentations—the plastic displacements are small and

the effect of the substrate is insignificant. This is no

longer the case for larger indentations, however, and

local plastic deformation has to be accounted for to

obtain an accurate estimation of the contact radius. In-

deed, if Z is set equal to zero and only the film modulus

FIG. 10. Load-displacement curves for the two OSG films of the

same properties but different thicknesses on silicon substrate, interfa-

cial delamination at position circled.

FIG. 11. Experimental and theoretical contact stiffness as a function

of contact radius for the various OSG films. The inset presents the

same data in the form of S/2a versus a/t.

FIG. 9. The hardness of the Si3N4 film as a function of indentation

depth calculated using several methods. The hardness for the silicon

substrate is included for comparison.
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is allowed to vary, no good fit to the experimental data

can be obtained.

The fact that Z > 1 for the OSG films stands in contrast

with the values obtained for the SiO2 and Si3N4 films (Z	
0.5). This result indicates that nanoindentation experi-

ments on OSG films are much more sensitive to substrate

effects than experiments on SiO2 or Si3N4 films. We sug-

gest here that this difference arises because of the porosity

of the OSG coatings. The stress state under an indenter is

highly hydrostatic and causes porous materials like OSG

to densify during the indentation process. This densifica-

tion leads to a local increase in the stiffness of the OSG.

Chen and Vlassak30 studied the effect of densification on

nanoindentation for bulk porous materials. Using finite

element simulations, they demonstrated that a porous ma-

terial densifies in a small region below the indenter. Even

though the stiffness of the material increased locally as a

result of the densification, it was shown that the effect on

the overall contact stiffness was not significant because

the densified region was small compared to the overall

volume of porous material contributing to the elastic dis-

placement field. While this argument may be valid for

porous solids in bulk form, it may be less so for the

indentation of thin porous films on hard substrates. For

the latter, the densified region constitutes a bigger fraction

of the total film volume contributing to the elastic dis-

placement field. Furthermore, a hard substrate may en-

hance densification underneath the indenter and thus lead

to a larger region of increased stiffness. A detailed study of

the interactions between the substrate effect and densifica-

tion of porous coatings is beyond the scope of this study.

Even so, it is evident from the measurements that the

proposed analysis method gives accurate results when the

coatings are porous: with reference to Table II, the experi-

mental values obtained for thin films using the new meth-

od are in good agreement with the values obtained for the

thick films using the Oliver-Pharr technique. This agree-

ment also indicates that densification does not have a

significant effect on the experimental indentation moduli.

The values reported in this study are therefore representa-

tive of the as-deposited porous OSG coatings, not the

densified material.

C. A few additional considerations

The extraction of the indentation modulus of the film

relies on a fit of the experimental S-a relationship with

the theoretical result derived from Yu’s solution using

Mf and Z as fitting parameters. One may wonder if two

or more distinct combinations of Mf and Z could give a

comparable quality of fit. Indeed, for the special case of

a compliant film on a stiff substrate, one might expect a

combination of a smaller Mf and a larger Z (or vice

versa) than the actual values to also give a reasonable

fit to the experimental stiffness data. Figure 12 shows a

contour plot of the sum of the fit residues squared (= w2)
for the SiO2 film, where the fitting parameters have been

varied over a wide range. The plot shows a clear mini-

mum corresponding to the optimum combination of Mf

and Z, even though the contour lines are somewhat elon-

gated as anticipated on the basis of physical arguments.

Evidently, the optimum fitting parameters are well de-

fined and unique over the range of parameters shown in

Fig. 12. Similar results are also found for the Si3N4

and OSG coatings. We expect the analysis method to be

robust for a wide range of coating and/or substrate

properties.

One limitation of the current analysis method is that it

requires knowledge of the Poisson’s ratio of the film.

Poisson’s ratio of a thin film is difficult to measure and

is hardly ever known with any accuracy. The extraction

of the indentation modulus of the film is, however, fairly

insensitive to the precise value of Poisson’s ratio and a

rough estimate is usually sufficient to perform the analy-

sis. For example, Fig. 13 shows a graph of the

FIG. 12. Contour plot of log10 w
2ð Þ as a function of Mf=Ms and Z for

the SiO2/Si sample, with minimum falling within the highlighted

region. The unit of w2 is in nm2.

FIG. 13. Indentation moduli of the SiO2 and Si3N4 films as a function

of the value of Poisson’s ratio assumed in the data analysis.
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indentation moduli of the SiO2 and Si3N4 films as a

function of the value of Poisson’s ratio assumed in the

analysis. Evidently, a rough estimate of Poisson’s ratio is

more than adequate to determine the indentation modu-

lus.

It has been reported that the residual stress can

affect the overall indentation response of a material and

hence the measured hardness and modulus.31 In our

analysis, the effect of plasticity is modeled phenomeno-

logically through use of the effective film thickness and

the parameter Z. We therefore expect that different

levels of residual stress in a film may well lead to differ-

ent values of Z. The current analysis method, however,

does not account for plastic pileup around the indenter.

Consequently, any changes in pileup behavior may lead

to systematic errors in the analysis, as is also the case

with the standard Oliver-Pharr technique.

V. CONCLUSIONS

A new method for the analysis of nanoindentation of

thin films on substrates is presented. The method is simi-

lar to the Oliver-Pharr analysis method, but makes use of

Yu’s solution for the elastic contact of an indenter on a

coated half space instead of Sneddon’s solution for a

homogeneous half space. This modification of the analy-

sis procedure makes the new method applicable to thin

films on substrates over a much larger range of indenta-

tion depths: While the Oliver-Pharr analysis is applicable

only in the limit of vanishing indentation depths, the new

method is valid for indentation depths that are a signifi-

cant fraction of the total film thickness. As such, the new

method is ideal for the analysis of indentation experi-

ments in very thin films where the minimum indentation

depth is set by equipment limitations. The new method is

demonstrated experimentally for both compliant films on

stiff substrates and the reverse combination, yielding in-

dentation moduli in good agreement with independent

measurements and literature values.
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APPENDIX: STEP-BY-STEP INSTRUCTIONS TO

IMPLEMENT THE PROPOSED METHOD

I. STEPS TO GET THE EXPERIMENTAL a-S

RELATION AS A FUNCTION OF MF AND h

(i) Assume initial values of Mf and Z.
(ii) Calculate the effective thickness teff for a

given point on the indentation loading curve using

Eq. (16).

(iii) Obtain the experimental value of the contact

radius at this loading point by solving the following

implicit equation numerically:

aexp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where f is the area function of the indenter tip and x is

obtained from Yu’s solution.

(iv) Calculate the reduced stiffness to remove the

compliance of the indenter tip using

Sr ¼
1

S
� 1

Stip

� ��1

; ðA2Þ

where Stip ¼ 2aexpMtip and Mtip = 1146.6 GPa for a

diamond indenter.

(v) Repeat steps (ii)–(iv)for every point of the indenta-

tion loading curve to obtain the experimental Sr; aexp

 �

relation for the values ofMf and Z assumed in step (i).

II. STEPS TO GET THE THEORETICAL a-S

RELATION AS A FUNCTION OF FILM

MODULUS AND h

(vi) Assume the same initial values of Mf and Z as in

step (i).

(vii) Calculate the effective thickness teff for a given

point on the indentation loading curve using Eq. (16).

(viii) Calculate the elastic S-a relation directly from

Yu’s solution by using Eqs. (9)–(14).

(ix) Calculate the theoretical contact area a* where

the contact stiffness equals Sr [as from step (iv)], from

the elastic S-a relation.

(x) Repeat step (vi)–(ix) for every point of the inden-

tation loading curve to obtain the theoretical Sr; a

½ � rela-

tion for the values of Mf and Z assumed in step (i).

III. STEPS TO EXTRACT UNKNOWN

FILM MODULUS

(xi) Compute the w2, sum of residues squared, using

the following formula:

w
2 ¼

X

aexp � a

� 
2

(xii) Find the values of Mf and Z that minimize

w2 using a standard optimization algorithm.
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