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Abstract. Two images of a single scene/object are related by the epipolar geometry, which can be
described by a 3x3 singular matrix called the essential matrix if images’ internal parameters are known,
or the fundamental matrix otherwise. It captures all geometric information contained in two images, and
its determination is very important in many applications such as scene modeling and vehicle navigation.
This paper gives an introduction to the epipolar geometry, and provides a complete review of the current
techniques for estimating the fundamental matrix and its uncertainty. A well-founded measure is proposed
to compare these techniques. Projective reconstruction is also reviewed. The software which we have
developed for this review is available on the Internet.
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1. Introduction

Two perspective images of a single rigid ob-
ject/scene are related by the so-called epipolar ge-
ometry, which can be described by a 3 × 3 sin-
gular matrix. If the internal (intrinsic) parame-
ters of the images (e.g., the focal length, the co-
ordinates of the principal point, etc) are known,
we can work with the normalized image coordi-
nates (Faugeras 1993), and the matrix is known
as the essential matrix (Longuet-Higgins 1981);
otherwise, we have to work with the pixel image
coordinates, and the matrix is known as the fun-
damental matrix (Luong 1992, Faugeras 1995, Lu-
ong and Faugeras 1996). It contains all geomet-
ric information that is necessary for establishing
correspondences between two images, from which
three-dimensional structure of the perceived scene
can be inferred. In a stereovision system where
the camera geometry is calibrated, it is possi-
ble to calculate such a matrix from the camera
perspective projection matrices through calibra-
tion (Ayache 1991, Faugeras 1993). When the
intrinsic parameters are known but the extrinsic
ones (the rotation and translation between the

two images) are not, the problem is known as
motion and structure from motion, and has been
extensively studied in Computer Vision; two ex-
cellent reviews are already available in this do-
main (Aggarwal and Nandhakumar 1988, Huang
and Netravali 1994). We are interested here in dif-
ferent techniques for estimating the fundamental
matrix from two uncalibrated images, i.e., the case
where both the intrinsic and extrinsic parameters
of the images are unknown. From this matrix, we
can reconstruct a projective structure of the scene,
defined up to a 4 × 4 matrix transformation.

The study of uncalibrated images has many im-
portant applications. The reader may wonder the
usefulness of such a projective structure. We can-
not obtain any metric information from a projec-
tive structure: measurements of lengths and an-
gles do not make sense. However, a projective
structure still contains rich information, such as
coplanarity, collinearity, and cross ratios (ratio
of ratios of distances), which is sometimes suffi-
cient for artificial systems, such as robots, to per-
form tasks such as navigation and object recog-
nition (Shashua 1994a, Zeller and Faugeras 1994,
Beardsley, Zisserman and Murray 1994).

In many applications such as the reconstruc-
tion of the environment from a sequence of video
images where the parameters of the video lens
is submitted to continuous modification, camera
calibration in the classical sense is not possible.
We cannot extract any metric information, but
a projective structure is still possible if the cam-
era can be considered as a pinhole. Further-
more, if we can introduce some knowledge of the
scene into the projective structure, we can ob-
tain more specific structure of the scene. For
example, by specifying a plane at infinity (in
practice, we need only to specify a plane suffi-
ciently far away), an affine structure can be com-
puted, which preserves parallelism and ratios of
distances (Quan 1993, Faugeras 1995). Hart-
ley, Gupta and Chang (1992) first reconstruct a
projective structure, and then use 8 ground ref-
erence points to obtain the Euclidean structure
and the camera parameters. Mohr, Boufama and
Brand (1993) embed constraints such as location
of points, parallelism and vertical planes (e.g.,
walls) directly into a minimization procedure to
determine a Euclidean structure. Robert and
Faugeras (1993) show that the 3D convex hull of
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an object can be computed from a pair of images

whose epipolar geometry is known.

If we assume that the camera parameters do

not change between successive views, the pro-

jective invariants can even be used to cali-

brate the cameras in the classical sense with-

out using any calibration apparatus (known as

self-calibration) (Maybank and Faugeras 1992,

Faugeras, Luong and Maybank 1992, Luong 1992,

Zhang, Luong and Faugeras 1996, Enciso 1995).

Recently, we have shown (Zhang 1996a) that

even in the case where images are calibrated, more

reliable results can be obtained if we use the con-

straints arising from uncalibrated images as an in-

termediate step.

This paper gives an introduction to the epipolar

geometry, provides a new formula of the funda-

mental matrix which is valid for both perspective

and affine cameras, and reviews different methods

reported in the literature for estimating the funda-

mental matrix. Furthermore, a new method is de-

scribed to compare two estimations of the funda-

mental matrix. It is based on a measure obtained

through sampling the whole visible 3D space. Pro-

jective reconstruction is also reviewed. The soft-

ware called FMatrix which implements the re-

viewed methods and the software called Fdiff

which computes the difference between two funda-

mental matrices are both available from my home

page:

http://www.inria.fr/robotvis/personnel/

zzhang/zzhang-eng.html

FMatrix detects false matches, computes the fun-

damental matrix and its uncertainty, and per-

forms the projective reconstruction of the points

as well. Although not reviewed, a software

AffineF which computes the affine fundamental

matrix (see Sect. 5.3) is also made available.

2. Epipolar Geometry and Problem State-

ment

2.1. Notation

A camera is described by the widely used pin-

hole model. The coordinates of a 3D point M =

[x, y, z]T in a world coordinate system and its reti-

nal image coordinates m = [u, v]T are related by

s



u
v
1


 = P




x
y
z
1


 ,

where s is an arbitrary scale, and P is a 3 × 4
matrix, called the perspective projection matrix.
Denoting the homogeneous coordinates of a vector
x = [x, y, · · · ]T by x̃, i.e., x̃ = [x, y, · · · , 1]T , we
have sm̃ = PM̃.

The matrix P can be decomposed as

P = A [R t] ,

where A is a 3 × 3 matrix, mapping the normal-
ized image coordinates to the retinal image coordi-
nates, and (R, t) is the 3D displacement (rotation
and translation) from the world coordinate system
to the camera coordinate system.

The quantities related to the second camera is
indicated by ′. For example, ifmi is a point in the
first image, m′

i denotes its corresponding point in
the second image.

A line l in the image passing through pointm =
[u, v]T is described by equation au+bv+c = 0. Let
l = [a, b, c]T , then the equation can be rewritten as
lT m̃ = 0 or m̃T l = 0. Multiplying l by any non-
zero scalar will define the same 2D line. Thus, a
2D line is represented by a homogeneous 3D vec-
tor. The distance from point m0 = [u0, v0]

T to
line l = [a, b, c]T is given by

d(m0, l) =
au0 + bv0 + c√

a2 + b2
.

Note that we here use the signed distance.
Finally, we use a concise notation A−T =

(A−1)T = (AT )−1 for any invertible square ma-
trix A.

2.2. Epipolar Geometry and Fundamental Ma-
trix

The epipolar geometry exists between any two
camera systems. Consider the case of two cam-
eras as shown in Fig. 1. Let C and C ′ be the
optical centers of the first and second cameras, re-
spectively. Given a point m in the first image, its
corresponding point in the second image is con-
strained to lie on a line called the epipolar line of
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Fig. 1. The epipolar geometry

m, denoted by l′m. The line l′m is the intersection
of the plane Π, defined bym, C and C ′ (known as
the epipolar plane), with the second image plane
I ′. This is because image pointmmay correspond
to an arbitrary point on the semi-line CM (M may
be at infinity) and that the projection of CM on
I ′ is the line l′m. Furthermore, one observes that
all epipolar lines of the points in the first image
pass through a common point e′, which is called
the epipole. Epipole e′ is the intersection of the
line CC ′ with the image plane I ′. This can be
easily understood as follows. For each point mk

in the first image I, its epipolar line l′mk
in I ′ is

the intersection of the plane Πk, defined bymk, C
and C ′, with image plane I ′. All epipolar planes
Πk thus form a pencil of planes containing the line
CC ′. They must intersect I ′ at a common point,
which is e′. Finally, one can easily see the symme-
try of the epipolar geometry. The corresponding
point in the first image of each point m′

k lying
on l′mk

must lie on the epipolar line lm′

k
, which

is the intersection of the same plane Πk with the
first image plane I. All epipolar lines form a pen-
cil containing the epipole e, which is the intersec-
tion of the line CC ′ with the image plane I. The
symmetry leads to the following observation. If
m (a point in I) and m′ (a point in I ′) corre-
spond to a single physical point M in space, then
m, m′, C and C ′ must lie in a single plane. This
is the well-known co-planarity constraint in solv-
ing motion and structure from motion problems
when the intrinsic parameters of the cameras are
known (Longuet-Higgins 1981).

The computational significance in matching dif-
ferent views is that for a point in the first image,

its correspondence in the second image must lie
on the epipolar line in the second image, and then
the search space for a correspondence is reduced
from 2 dimensions to 1 dimension. This is called
the epipolar constraint. Algebraically, in order for
m in the first image and m′ in the second im-
age to be matched, the following equation must
be satisfied:

m̃′TFm̃ = 0 with F = A′−T [t]×RA
−1 , (1)

where (R, t) is the rigid transformation (rotation
and translation) which brings points expressed in
the first camera coordinate system to the second
one, and [t]× is the antisymmetric matrix defined
by t such that [t]×x = t × x for all 3D vector x.
This equation can be derived as follows. With-
out loss of generality, we assume that the world
coordinate system coincides with the first camera
coordinate system. From the pinhole model, we
have

sm̃ = A [I 0] M̃ and s′m̃′ = A′ [R t] M̃ .

Eliminating M̃, s and s′ in the above two equa-
tions, we obtain equation (1). Geometrically, Fm̃
defines the epipolar line l′m of point m in the sec-
ond image. Equation (1) says no more than that
the correspondence in the second image of pointm
lies on the corresponding epipolar line l′m. Trans-
posing (1) yields the symmetric relation from the
second image to the first image: m̃TFT m̃′ = 0.

The 3 × 3 matrix F is called the fundamental
matrix. Since det([t]×) = 0,

det(F) = 0 . (2)

F is of rank 2. Besides, it is only defined up to
a scalar factor, because if F is multiplied by an
arbitrary scalar, equation (1) still holds. There-
fore, a fundamental matrix has only seven degrees
of freedom. There are only 7 independent param-
eters among the 9 elements of the fundamental
matrix.

Convention note: We use the first camera co-
ordinate system as the world coordinate system.
In (Faugeras 1993, Xu and Zhang 1996), the sec-
ond camera coordinate system is chosen as the
world one. In this case, (1) becomes m̃TF′m̃′ = 0
with F′ = A−T [t′]×R

′A′−1, where (R′, t′) trans-
forms points from the second camera coordinate
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system to the first. The relation between (R, t)
and (R′, t′) is given by R′ = RT , and t′ = −RT t.
The reader can easily verify that F = F′T .

2.3. A General Form of Epipolar Equation for
Any Projection Model

In this section we will derive a general form of
epipolar equation which does not assume whether
the cameras follow the perspective or affine pro-
jection model (Xu and Zhang 1996).

A point m in the first image is matched to a
point m′ in the second image. From the cam-
era projection model (orthographic, weak perspec-
tive, affine, or full perspective), we have sm̃ =
PM̃ and s′m̃′ = P′M̃ , where P and P′ are 3×4
matrices. An image point m defines actually an
optical ray, on which every space point M̃ projects
on the first image at m̃. This optical ray can be
written in parametric form as

M̃ = sP+m̃+ p⊥ , (3)

where P+ is the pseudo-inverse of matrix P:

P+ = PT (PPT )−1 , (4)

and p⊥ is any 4-vector that is perpendicular to all
the row vectors of P, i.e.,

Pp⊥ = 0 .

Thus, p⊥ is a null vector of P. As a matter of fact,
p⊥ indicates the position of the optical center (to
which all optical rays converge). We show later
how to determine p⊥. For a particular value s,
equation (3) corresponds to a point on the optical
ray defined by m. Equation (3) is easily justified
by projecting M onto the first image, which indeed
gives m.

Similarly, an image point m′ in the second im-
age defines also an optical ray. Requiring that
the two rays to intersect in space implies that a
point M corresponding to a particular s in (3) must
project onto the second image at m′, that is

s′m̃′ = sP′P+m̃+P′p⊥ .

Performing a cross product with P′p⊥ yields

s′(P′p⊥) × m̃′ = s(P′p⊥) × (P′P+m̃) .

Eliminating s and s′ by multiplying m̃′T from the
left (equivalent to a dot product), we have

m̃′TFm̃ = 0 , (5)

where F is a 3×3 matrix, called fundamental ma-
trix :

F = [P′p⊥]×P
′P+ . (6)

Since p⊥ is the optical center of the first cam-
era, P′p⊥ is actually the epipole in the second
image. It can also be shown that this expression
is equivalent to (1) for the full perspective pro-
jection (see Xu and Zhang 1996), but it is more
general. Indeed, (1) assumes that the first 3 × 3
sub-matrix ofP is invertible, and thus is only valid
for full perspective projection but not for affine
cameras (see Sect. 5.3), while (6) makes use of the
pseudoinverse of the projection matrix, which is
valid for both full perspective projection as well
as affine cameras. Therefore the equation does
not depend on any specific knowledge of projec-
tion model. Replacing the projection matrix in
the equation by specific projection matrix for each
specific projection model (e.g., orthographic, weak
perspective, affine or full perspective) produces
the epipolar equation for that specific projection
model. See (Xu and Zhang 1996) for more details.

The vector p⊥ still needs to be determined. We
first note that such a vector must exist because
the difference between the row dimension and the
column dimension is one, and that the row vec-
tors are generally independent from each other.
Indeed, one way to obtain p⊥ is

p⊥ = (I−P+P)ω , (7)

where ω is an arbitrary 4-vector. To show that
p⊥ is perpendicular to each row of P, we mul-
tiply p⊥ by P from the left: Pp⊥ = (P −
PPT (PPT )−1P)ω = 0 , which is indeed a zero
vector. The action of I−P+P is to transform an
arbitrary vector to a vector that is perpendicular
to every row vector of P. If P is of rank 3 (which is
the case for both perspective and affine cameras),
then p⊥ is unique up to a scale factor.

2.4. Problem Statement

The problem considered in the sequel is the esti-
mation of F from a sufficiently large set of point
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correspondences: {(mi,m
′
i) | i = 1, . . . , n}, where

n ≥ 7. The point correspondences between two
images can be established by a technique such as
that described in (Zhang, Deriche, Faugeras and
Luong 1995). We allow, however, that a fraction
of the matches may be incorrectly paired, and thus
the estimation techniques should be robust.

3. Techniques for Estimating the Funda-

mental Matrix

Let a point mi = [ui, vi]
T in the first image be

matched to a point m′
i = [u′

i, v
′
i]

T in the second
image. They must satisfy the epipolar equation
(1), i.e., m̃′T

i Fm̃i = 0. This equation can be writ-
ten as a linear and homogeneous equation in the
9 unknown coefficients of matrix F:

uT
i f = 0 , (8)

where

ui = [uiu
′
i, viu

′
i, u

′
i, uiv

′
i, viv

′
i, v

′
i, ui, vi, 1]

T

f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
T .

Fij is the element of F at row i and column j.
If we are given n point matches, by stacking (8),

we have the following linear system to solve:

Unf = 0 ,

where

Un = [u1, · · · ,un]
T .

This set of linear homogeneous equations, to-
gether with the rank constraint of the matrix F,
allow us to estimate the epipolar geometry.

3.1. Exact Solution with 7 Point Matches

As described in Sect. 2.2, a fundamental matrix
F has only 7 degrees of freedom. Thus, 7 is the
minimum number of point matches required for
having a solution of the epipolar geometry.

In this case, n = 7 and rank(U7) = 7. Through
singular value decomposition, we obtain vectors
f1 and f2 which span the null space of U7. The
null space is a linear combination of f1 and f2,
which correspond to matrices F1 and F2, respec-
tively. Because of its homogeneity, the fundamen-
tal matrix is a one-parameter family of matrices
αF1+(1−α)F2. Since the determinant of F must

be null, i.e.,

det[αF1 + (1 − α)F2] = 0 ,

we obtain a cubic polynomial in α. The maximum
number of real solutions is 3. For each solution α,
the fundamental matrix is then given by

F = αF1 + (1 − α)F2 .

Actually, this technique has already been used
in estimating the essential matrix when 7 point
matches in normalized coordinates are avail-
able (Huang and Netravali 1994). It is also used
in (Hartley 1994, Torr, Beardsley and Murray
1994) for estimating the fundamental matrix.

As a matter of fact, the result that there may
have three solutions given 7 matches has been
known since 1800’s (Hesse 1863, Sturm 1869).
Sturm’s algorithm (Sturm 1869) computes the
epipoles and the epipolar transformation (see
Sect. 2.2) from 7 point matches. It is based on
the observation that the epipolar lines in the two
images are related by a homography, and thus
the cross-ratios of four epipolar lines is invariant.
In each image, the 7 points define 7 lines going
through the unknown epipole, thus providing 4
independent cross-ratios. Since these cross-ratios
should remain the same in the two images, one
obtains 4 cubic polynomial equations in the co-
ordinates of the epipoles (4 independent parame-
ters). It is shown that there may exist up to three
solutions for the epipoles.

3.2. Analytic Method with 8 or More Point
Matches

In practice, we are given more than 7 matches.
If we ignore the rank-2 constraint, we can use a
least-squares method to solve

min
F

∑

i

(m̃′T
i Fm̃i)

2 , (9)

which can be rewritten as:

min
f

‖Unf‖2 . (10)

The vector f is only defined up to an unknown
scale factor. The trivial solution f to the above
problem is f = 0, which is not what we want. To
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avoid it, we need to impose some constraint on
the coefficients of the fundamental matrix. Sev-
eral methods are possible and are presented below.
We will call them the 8-point algorithm, although
more than 8 point matches can be used.

3.2.1. Linear Least-Squares Technique The first
method sets one of the coefficients of F to 1, and
then solves the above problem using linear least-
squares techniques. Without loss of generality,
we assume that the last element of vector f (i.e.,
f9 = F33) is not equal to zero, and thus we can
set f9 = −1. This gives

‖Unf‖2 = ‖U′
nf

′ − c9‖2

= f ′TU′T
n U

′
nf

′ − 2cT
9U

′
nf

′ + cT
9 c9 ,

where U′
n is the n × 8 matrix composed of the

first 8 columns of Un, and c9 is the ninth column
of Un. The solution is obtained by requiring the
first derivative to be zero, i.e.,

∂‖Unf‖2

∂f ′
= 0 .

By definition of vector derivatives, ∂(aTx)/∂x =
a, for all vector a. We thus have

2U′T
n U

′
nf

′ − 2U′T
n c9 = 0 ,

or f ′ =
(
U′T

n U
′
n

)−1
U′T

n c9 .

The problem with this method is that we do not
know a priori which coefficient is not zero. If we
set an element to 1 which is actually zero or much
smaller than the other elements, the result will be
catastrophic. A remedy is to try all nine possibil-
ities by setting one of the nine coefficients of F to
1 and retain the best estimation.

3.2.2. Eigen Analysis The second method con-
sists in imposing a constraint on the norm of f ,
and in particular we can set ‖f‖ = 1 . Compared
to the previous method, no coefficient of F pre-
vails over the others. In this case, the problem
(10) becomes a classical one:

min
f

‖Unf‖2 subject to ‖f‖ = 1 . (11)

It can be transformed into an unconstrained min-
imization problem through Lagrange multipliers:

min
f

F(f , λ) , (12)

where

F(f , λ) = ‖Unf‖2 + λ(1 − ‖f‖2) (13)

and λ is the Lagrange multiplier. By requiring the
first derivative of F(f , λ) with respect to f to be
zero, we have

UT
nUnf = λf .

Thus, the solution f must be a unit eigenvector of
the 9×9 matrixUT

nUn and λ is the corresponding
eigenvalue. Since matrix UT

nUn is symmetric and
positive semi-definite, all its eigenvalues are real
and positive or zero. Without loss of generality,
we assume the nine eigenvalues of UT

nUn are in
non-increasing order:

λ1 ≥ · · · ≥ λi ≥ · · · ≥ λ9 ≥ 0 .

We therefore have 9 potential solutions: λ = λi

for i = 1, . . . , 9. Back substituting the solution to
(13) gives

F(f , λi) = λi .

Since we are seeking to minimize F(f , λ), the so-
lution to (11) is evidently the unit eigenvector of
matrix UT

nUn associated to the smallest eigen-
value, i.e., λ9.

3.2.3. Imposing the Rank-2 Constraint The ad-
vantage of the linear criterion is that it yields an
analytic solution. However, we have found that it
is quite sensitive to noise, even with a large set
of data points. One reason is that the rank-2
constraint (i.e., detF = 0) is not satisfied. We
can impose this constraint a posteriori. The most
convenient way is to replace the matrix F esti-
mated with any of the above methods by the ma-
trix F̂ which minimizes the Frobenius norm (see
Sect. A.3.3) of F − F̂ subject to the constraint
det F̂ = 0. Let

F = USVT

be the singular value decomposition of matrix F,
where S = diag (σ1, σ2, σ3) is a diagonal matrix
satisfying σ1 ≥ σ2 ≥ σ3 (σi is the ith singular
value), and U and V are orthogonal matrices. It
can be shown that

F̂ = UŜVT
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with Ŝ = diag (σ1, σ2, 0) minimizes the Frobenius
norm of F−F̂ (see the appendix Sect. A.3.3 for the
proof). This method was used by Tsai and Huang
(1984) in estimating the essential matrix and by
Hartley (1995) in estimating the fundamental ma-
trix.

3.2.4. Geometric Interpretation of the Linear
Criterion Another problem with the linear cri-
terion is that the quantity we are minimizing is
not physically meaningful. A physically mean-
ingful quantity should be something measured in
the image plane, because the available information
(2D points) are extracted from images. One such
quantity is the distance from a pointm′

i to its cor-
responding epipolar line l′i = Fm̃i ≡ [l′1, l

′
2, l

′
3]

T ,
which is given by (see Sect. 2.1)

d(m′
i, l

′
i) =

m̃′T
i l

′
i√

l′21 + l′22
=

1

c′i
m̃′T

i Fm̃i , (14)

where c′i =
√
l′21 + l′22 . Thus, the criterion (9) can

be rewritten as

min
F

n∑

i=1

c′2i d
2(m′

i, l
′
i) .

This means that we are minimizing not only a
physical quantity d(m′

i, l
′
i), but also c′i which is not

physically meaningful. Luong (1992) shows that
the linear criterion introduces a bias and tends to
bring the epipoles towards the image center.

3.2.5. Normalizing Input Data Hartley (1995)
has analyzed, from a numerical computation point
of view, the high instability of this linear method if
pixel coordinates are directly used, and proposed
to perform a simple normalization of input data
prior to running the 8-point algorithm. This tech-
nique indeed produces much better results, and is
summarized below.

Suppose that coordinates mi in one image are
replaced by m̂i = Tm̃i, and coordinatesm′

i in the
other image are replaced by m̂′

i = T′m̃′
i, where T

and T′ are any 3 × 3 matrices. Substituting in
the equation m̃′T

i Fm̃i = 0, we derive the equa-
tion m̂′T

i T
′−TFT−1m̂i = 0. This relation implies

that T′−TFT−1 is the fundamental matrix corre-
sponding to the point correspondences m̂i ↔ m̂′

i.
Thus, an alternative method of finding the funda-
mental matrix is as follows:

1. Transform the image coordinates according to

transformations m̂i = Tm̃i and m̂′
i = T′m̃′

i.

2. Find the fundamental matrix F̂ corresponding

to the matches m̂i ↔ m̂′
i.

3. Retrieve the original fundamental matrix as

F = T′T F̂T.

The question now is how to choose the transfor-

mations T and T′.

Hartley (1995) has analyzed the problem with

the 8-point algorithm, which shows that its poor

performance is due mainly to the poor condition-

ing of the problem when the pixel image coor-

dinates are directly used (see Appendix A.3.3).

Based on this, he has proposed an isotropic scal-

ing of the input data:

1. As a first step, the points are translated so

that their centroid is at the origin.

2. Then, the coordinates are scaled, so that on

the average a point m̃i is of the form m̃i =

[1, 1, 1]T . Such a point will lie at a distance√
2 from the origin. Rather than choosing dif-

ferent scale factors for u and v coordinates, we

choose to scale the points isotropically so that

the average distance from the origin to these

points is equal to
√

2.

Such a transformation is applied to each of the

two images independently.

An alternative to the isotropic scaling is an

affine transformation so that the two principal mo-

ments of the set of points are both equal to unity.

However, Hartley (1995) found that the results

obtained were little different from those obtained

using the isotropic scaling method.

Beardsley et al. (1994) mention a normalization

scheme which assumes some knowledge of camera

parameters. Actually, if approximate intrinsic pa-

rameters (i.e., the intrinsic matrix A) of a cam-

era are available, we can apply the transformation

T = A−1 to obtain a “quasi-Euclidean” frame.

Boufama and Mohr (1995) use implicitly data

normalization by selecting 4 points, which are

largely spread in the image (i.e., most distant from

each other), to form a projective basis.
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3.3. Analytic Method with Rank-2 Constraint

The method described in this section is due to
Faugeras (1995) which imposes the rank-2 con-
straint during the minimization but still yields an
analytic solution. Without loss of generality, let
f = [gT , f8, f9]

T , where g is a vector containing
the first seven components of f . Let c8 and c9 be
the last two column vectors of Un, and B be the
n× 7 matrix composed of the first seven columns
of Un. From Unf = 0, we have

Bg = −f8c8 − f9c9 .

Assume that the rank of B is 7, we can solve for
g by least-squares as

g = −f8(BTB)−1BT c8 − f9(BTB)−1BT c9 .

The solution depends on two free parameters f8
and f9. As in Sect. 3.1, we can use the constraint
det(F) = 0, which gives a third-degree homoge-
neous equation in f8 and f9, and we can solve for
their ratio. Because a third-degree equation has
at least one real root, we are guaranteed to obtain
at least one solution for F. This solution is de-
fined up to a scale factor, and we can normalize
f such that its vector norm is equal to 1. If there
are three real roots, we choose the one that mini-
mizes the vector norm of Unf subject to ‖f‖ = 1.
In fact, we can do the same computation for any
of the 36 choices of pairs of coordinates of f and
choose, among the possibly 108 solutions, the one
that minimizes the previous vector norm.

The difference between this method and those
described in Sect. 3.2 is that the latter impose the
rank-2 constraint after application of the linear
least-squares. We have experimented this method
with a limited number of data sets, and found the
results comparable with those obtained by the pre-
vious one.

3.4. Nonlinear Method Minimizing Distances of
Points to Epipolar Lines

As discussed in Sect. 3.2.4, the linear method (10)
does not minimize a physically meaningful quan-
tity. A natural idea is then to minimize the
distances between points and their correspond-
ing epipolar lines: minF

∑
i d

2(m̃′
i,Fm̃i) , where

d(·, ·) is given by (14). However, unlike the case

of the linear criterion, the two images do not play
a symmetric role. This is because the above cri-
terion determines only the epipolar lines in the
second image. As we have seen in Sect. 2.2, by
exchanging the role of the two images, the fun-
damental matrix is changed to its transpose. To
avoid the inconsistency of the epipolar geometry
between the two images, we minimize the follow-
ing criterion

min
F

∑

i

(
d2(m̃′

i,Fm̃i) + d2(m̃i,F
T m̃′

i)
)
, (15)

which operates simultaneously in the two images.
Let l′i = Fm̃i ≡ [l′1, l

′
2, l

′
3]

T and li =
FT m̃′

i ≡ [l1, l2, l3]
T . Using (14) and the fact that

m̃′T
i Fm̃i = m̃T

i F
T m̃′

i, the criterion (15) can be
rewritten as:

min
F

∑

i

w2
i (m̃

′T
i Fm̃i)

2 , (16)

where

wi =

(
1

l21 + l22
+

1

l′21 + l′22

)1/2

=

(
l21 + l22 + l′21 + l′22
(l21 + l22)(l

′2
1 + l′22 )

)1/2

.

We now present two methods for solving this prob-
lem.

3.4.1. Iterative Linear Method The similarity
between (16) and (9) leads us to solve the above
problem by a weighted linear least-squares tech-
nique. Indeed, if we can compute the weight wi for
each point match, the corresponding linear equa-
tion can be multiplied by wi (which is equivalent
to replacing ui in (8) by wiui), and exactly the
same 8-point algorithm can be run to estimate the
fundamental matrix, which minimizes (16).

The problem is that the weights wi depends
themselves on the fundamental matrix. To over-
come this difficulty, we apply an iterative linear
method. We first assume that all wi = 1 and run
the 8-point algorithm to obtain an initial estima-
tion of the fundamental matrix. The weights wi

are then computed from this initial solution. The
weighted linear least-squares is then run for an im-
proved solution. This procedure can be repeated
several times.

Although this algorithm is simple to implement
and minimizes a physical quantity, our experience
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shows that there is no significant improvement
compared to the original linear method. The main
reason is that the rank-2 constraint of the funda-
mental matrix is not taken into account.

3.4.2. Nonlinear Minimization in Parameter
Space From the above discussions, it is clear that
the right thing to do is to search for a matrix
among the 3 × 3 matrices of rank 2 which mini-
mizes (16). There are several possible parameteri-
zations for the fundamental matrix (Luong 1992),
e.g., we can express one row (or column) of the
fundamental matrix as the linear combination of
the other two rows (or columns). The param-
eterization described below is based directly on
the parameters of the epipolar transformation (see
Sect. 2.2).

Parameterization of fundamental matrix. Let us
denote the columns of F by the vectors c1, c2 and
c3. The rank-2 constraint on F is equivalent to
the following two conditions:

∃λ1, λ2 such that cj0 + λ1cj1 + λ2cj2 = 0 (17)

� ∃λ such that cj1 + λcj2 = 0 (18)

for j0, j1, j2 ∈ [1, 3], where λ1, λ2 and λ are scalars.
Condition (18), as a non-existence condition, can-
not be expressed by a parameterization: we shall
only keep condition (17) and so extend the pa-
rameterized set to all the 3 × 3-matrices of rank
strictly less than 3. Indeed, the rank-2 matrices
of, for example, the following forms:

[c1 c2 λc2] and [c1 03 c3] and [c1 c2 03]

do not have any parameterization if we take j0 =
1. A parameterization of F is then given by
(cj1 , cj2 , λ1, λ2). This parameterization implies to
divide the parameterized set among three maps,
corresponding to j0 = 1, j0 = 2 and j0 = 3.

If we construct a 3-vector such that λ1 and λ2

are the j1
th and j2

th coordinates and 1 is the j0
th

coordinate, then it is obvious that this vector is
the eigenvector of F, and is thus the epipole in
the case of the fundamental matrix. Using such a
parameterization implies to compute directly the
epipole which is often a useful quantity, instead of
the matrix itself.

To make the problem symmetrical and since the
epipole in the other image is also worth being com-

puted, the same decomposition as for the columns
is used for the rows, which now divides the pa-
rameterized set into 9 maps, corresponding to the
choice of a column and a row as linear combina-
tions of the two columns and two rows left. A
parameterization of the matrix is then formed by
the two coordinates x and y of the first epipole,
the two coordinates x′ and y′ of the second epipole
and the four elements a, b, c and d left by ci1 , ci2 ,
lj1 and lj2 , which in turn parameterize the epipo-
lar transformation mapping an epipolar line of the
second image to its corresponding epipolar line in
the first image. In that way, the matrix is written,
for example, for i0 = 3 and j0 = 3:

F =




a b −ax− by
c d −cx− dy

−ax′ − cy′ −bx′ − dy′ F33


 (19)

with F33 = (ax+ by)x′ + (cx+ dy)y′ .

At last, to take into account the fact that the
fundamental matrix is defined only up to a scale
factor, the matrix is normalized by dividing the
four elements (a, b, c, d) by the largest in absolute
value. We have thus in total 36 maps to parame-
terize the fundamental matrix.

Choosing the best map. Giving a matrix F and
the epipoles, or an approximation to it, we must
be able to choose, among the different maps of the
parameterization, the most suitable for F. Denot-
ing by fi0j0 the vector of the elements of F once
decomposed as in equation (19), i0 and j0 are cho-
sen in order to maximize the rank of the 9 × 8
Jacobian matrix:

J =
dfi0j0

dp
where p = [x, y, x′, y′, a, b, c, d]T .

(20)

This is done by maximizing the norm of the vec-
tor whose coordinates are the determinants of the
nine 8 × 8 submatrices of J. An easy calculation
shows that this norm is equal to

(ad− bc)2
√
x2 + y2 + 1

√
x′2 + y′2 + 1 .

At the expense of dealing with different maps,
the above parameterization works equally well
whether the epipoles are at infinity or not. This
is not the case with the original proposition
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in (Luong 1992). More details can be found

in (Csurka, Zeller, Zhang and Faugeras 1996).

Minimization. The minimization of (16) can

now be performed by any minimization proce-

dure. The Levenberg-Marquardt method (as im-

plemented in MINPACK from NETLIB (More 1977)

and in the Numeric Recipes in C (Press, Flannery,

Teukolsky and Vetterling 1988)) is used in our pro-

gram. During the process of minimization, the

parameterization of F can change: The parame-

terization chosen for the matrix at the beginning

of the process is not necessarily the most suitable

for the final matrix. The nonlinear minimization

method demands an initial estimate of the funda-

mental matrix, which is obtained by running the

8-point algorithm.

3.5. Gradient-Based Technique

Let fi = m̃′T
i Fm̃i. Minimizing

∑
i f

2
i does not

yield a good estimation of the fundamental ma-

trix, because the variance of each fi is not the

same. The least-squares technique produces an

optimal solution if each term has the same vari-

ance. Therefore, we can minimize the following

weighted sum of squares:

min
F

∑

i

f2
i /σ

2
fi
, (21)

where σ2
fi

is the variance of fi, and its compu-

tation will be given shortly. This criterion now

has the desirable property: fi/σfi
follows, under

the first order approximation, the standard Gaus-

sian distribution. In particular, all fi/σfi
have

the same variance, equal to 1. The same param-

eterization of the fundamental matrix as that de-

scribed in the previous section is used.

Because points are extracted independently by

the same algorithm, we make a reasonable as-

sumption that the image points are corrupted by

independent and identically distributed Gaussian

noise, i.e., their covariance matrices are given by

Λmi
= Λm′

i
= σ2 diag (1, 1) ,

where σ is the noise level, which may be not

known. Under the first order approximation, the

variance of fi is then given by

σ2
fi

=
∂fi

∂mi

T

Λmi

∂fi

∂mi
+
∂fi

∂m′
i

T

Λm′

i

∂fi

∂m′
i

= σ2[l21 + l22 + l′21 + l′22 ] ,

where l′i = Fm̃i ≡ [l′1, l
′
2, l

′
3]

T and li = FT m̃′
i ≡

[l1, l2, l3]
T . Since multiplying each term by a con-

stant does not affect the minimization, the prob-
lem (21) becomes

min
F

∑

i

(m̃′T
i Fm̃i)

2/g2i ,

where gi =
√
l21 + l22 + l′21 + l′22 is simply the gra-

dient of fi. Note that gi depends on F.
It is shown (Luong 1992) that fi/gi is a first

order approximation of the orthogonal distance
from (mi,m

′
i) to the quadratic surface defined by

m̃′TFm̃ = 0.

3.6. Nonlinear Method Minimizing Distances
Between Observation and Reprojection

If we can assume that the coordinates of the ob-
served points are corrupted by additive noise and
that the noises in different points are independent
but with equal standard deviation (the same as-
sumption as that used in the previous technique),
then the maximum likelihood estimation of the
fundamental matrix is obtained by minimizing the
following criterion:

F(f , M)=
∑

i

(‖mi−h(f , Mi)‖2+‖m′
i−h′(f , Mi)‖2),

(22)

where f represents the parameter vector of the
fundamental matrix such as the one described in
Sect. 3.4, M = [MT

1 , . . . , M
T
n ]T are the structure pa-

rameters of the n points in space, while h(f , Mi)
and h′(f , Mi) are the projection functions in the
first and second image for a given space coordi-
nates Mi and a given fundamental matrix between
the two images represented by vector f . Simply
speaking, F(f , M) is the sum of squared distances
between observed points and the reprojections of
the corresponding points in space. This implies
that we estimate not only the fundamental matrix
but also the structure parameters of the points in
space. The estimation of the structure param-
eters, or 3D reconstruction, in the uncalibrated
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case is an important subject and needs a sepa-

rate section to describe it in sufficient details (see

Sect. 5.5). In the remaining subsection, we assume

that there is a procedure available for 3D recon-

struction.

A generalization to (22) is to take into account

different uncertainties, if available, in the image

points. If a point mi is assumed to be corrupted

by a Gaussian noise with mean zero and covari-

ance matrix Λmi
(a 2 × 2 symmetric positive-

definite matrix), then the maximum likelihood es-

timation of the fundamental matrix is obtained by

minimizing the following criterion:

F(f , M) =
∑

i

(
∆mT

i Λ
−1
mi

∆mi + ∆m′T
i Λ

−1
m′

i
∆m′

i

)

with

∆mi =mi − h(f , Mi) and ∆m′
i =m′

i − h′(f , Mi) .

Here we still assume that the noises in different
points are independent, which is quite reasonable.

When the number of points n is large, the non-
linear minimization of F(f , M) should be carried
out in a huge parameter space (3n + 7 dimen-
sions because each space point has 3 degrees of
freedom), and the computation is very expensive.
As a matter of fact, the structure of each point
can be estimated independently given an estimate
of the fundamental matrix. We thus conduct the
optimization of the structure parameters in each
optimization iteration for the parameters of the
fundamental matrix, that is:

min
f

{
∑

i

min
Mi

(
‖mi − h(f , Mi)‖2 + ‖m′

i − h′(f , Mi)‖2
)
}
. (23)

Therefore, a problem of minimization over (3n+

7)-D space (22) becomes a problem of minimiza-

tion over 7-D space, in the latter each iteration

contains n independent optimizations of 3 struc-

ture parameters. The computation is thus consid-

erably reduced. As will be seen in Sect. 5.5, the

optimization of structure parameters is nonlinear.

In order to speed up still more the computation,

it can be approximated by an analytic method;

when this optimization procedure converges, we

then restart it with the nonlinear optimization

method.

The idea underlying this method is already

well known in motion and structure from mo-

tion (Faugeras 1993, Zhang 1995) and camera cal-

ibration (Faugeras 1993). Similar techniques have

also been reported for uncalibrated images (Mohr,

Veillon and Quan 1993, Hartley 1993). Because of

the independence of the structure estimation (see

last paragraph), the Jacobian matrix has a sim-

ple block structure in the Levenberg-Marquardt

algorithm. Hartley (1993) exploits this property

to simplify the computation of the pseudo-inverse

of the Jacobian.

3.7. Robust Methods

Up to now, we assume that point matches are
given. They can be obtained by techniques such
as correlation and relaxation (Zhang, Deriche,
Faugeras and Luong 1995). They all exploit some
heuristics in one form or another, for example,
intensity similarity or rigid/affine transformation
in image plane, which are not applicable to most
cases. Among the matches established, we may
find two types of outliers due to

bad locations. In the estimation of the funda-
mental matrix, the location error of a point
of interest is assumed to exhibit Gaussian be-
havior. This assumption is reasonable since
the error in localization for most points of in-
terest is small (within one or two pixels), but
a few points are possibly incorrectly localized
(more than three pixels). The latter points
will severely degrade the accuracy of the esti-
mation.

false matches. In the establishment of corre-
spondences, only heuristics have been used.
Because the only geometric constraint, i.e.,
the epipolar constraint in terms of the fun-
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damental matrix , is not yet available, many
matches are possibly false. These will com-
pletely spoil the estimation process, and the
final estimate of the fundamental matrix will
be useless.

The outliers will severely affect the precision of the
fundamental matrix if we directly apply the meth-
ods described above, which are all least-squares
techniques.

Least-squares estimators assume that the noise
corrupting the data is of zero mean, which yields
an unbiased parameter estimate. If the noise vari-
ance is known, a minimum-variance parameter es-
timate can be obtained by choosing appropriate
weights on the data. Furthermore, least-squares
estimators implicitly assume that the entire set of
data can be interpreted by only one parameter vec-
tor of a given model. Numerous studies have been
conducted, which clearly show that least-squares
estimators are vulnerable to the violation of these
assumptions. Sometimes even when the data con-
tains only one bad datum, least-squares estimates
may be completely perturbed. During the last
three decades, many robust techniques have been
proposed, which are not very sensitive to depar-
ture from the assumptions on which they depend.

Recently, computer vision researchers have paid
much attention to the robustness of vision al-
gorithms because the data are unavoidably er-
ror prone (Haralick 1986, Zhuang, Wang and
Zhang 1992). Many the so-called robust regression
methods have been proposed that are not so easily
affected by outliers (Huber 1981, Rousseeuw and
Leroy 1987). The reader is referred to (Rousseeuw
and Leroy 1987, Chap. 1) for a review of differ-
ent robust methods. The two most popular ro-
bust methods are the M-estimators and the least-
median-of-squares (LMedS) method, which will be
presented below. More details together with a de-
scription of other parameter estimation techniques
commonly used in computer vision are provided
in (Zhang 1996c). Recent works on the appli-
cation of robust techniques to motion segmenta-
tion include (Torr and Murray 1993, Odobez and
Bouthemy 1994, Ayer, Schroeter and Bigün 1994),
and those on the recovery of the epipolar geome-
try include (Olsen 1992, Shapiro and Brady 1995,
Torr 1995)

3.7.1. M-Estimators Let ri be the residual of
the ith datum, i.e., the difference between the ith

observation and its fitted value. The standard
least-squares method tries to minimize

∑
i r2i ,

which is unstable if there are outliers present in
the data. Outlying data give an effect so strong
in the minimization that the parameters thus esti-
mated are distorted. The M-estimators try to re-
duce the effect of outliers by replacing the squared
residuals r2i by another function of the residuals,
yielding

min
∑

i

ρ(ri) , (24)

where ρ is a symmetric, positive-definite function
with a unique minimum at zero, and is chosen to
be less increasing than square. Instead of solving
directly this problem, we can implement it as an
iterated reweighted least-squares one. Now let us
see how.

Let p = [p1, . . . , pp]
T be the parameter vector

to be estimated. The M-estimator of p based on
the function ρ(ri) is the vector p which is the so-
lution of the following p equations:

∑

i

ψ(ri)
∂ri
∂pj

= 0 , for j = 1, . . . , p, (25)

where the derivative ψ(x) = dρ(x)/dx is called
the influence function. If now we define a weight
function

w(x) =
ψ(x)

x
, (26)

then Equation (25) becomes

∑

i

w(ri)ri
∂ri
∂pj

= 0 , for j = 1, . . . , p. (27)

This is exactly the system of equations that we
obtain if we solve the following iterated reweighted
least-squares problem

min
∑

i

w(r
(k−1)
i )r2i , (28)

where the superscript (k) indicates the iteration

number. The weight w(r
(k−1)
i ) should be recom-

puted after each iteration in order to be used in
the next iteration.

The influence function ψ(x) measures the influ-
ence of a datum on the value of the parameter
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estimate. For example, for the least-squares with
ρ(x) = x2/2, the influence function is ψ(x) = x,
that is, the influence of a datum on the estimate
increases linearly with the size of its error, which
confirms the non-robustness of the least-squares
estimate. When an estimator is robust, it may be
inferred that the influence of any single observa-
tion (datum) is insufficient to yield any significant
offset (Rey 1983). There are several constraints
that a robust M -estimator should meet:

• The first is of course to have a bounded influ-
ence function.

• The second is naturally the requirement of the
robust estimator to be unique. This implies
that the objective function of parameter vec-
tor p to be minimized should have a unique
minimum. This requires that the individual
ρ-function is convex in variable p. This is
necessary because only requiring a ρ-function
to have a unique minimum is not sufficient.
This is the case with maxima when consider-
ing mixture distribution; the sum of unimodal
probability distributions is very often multi-
modal. The convexity constraint is equiva-

lent to imposing that ∂2ρ(.)
∂p2 is non-negative

definite.
• The third one is a practical requirement.

Whenever ∂2ρ(.)
∂p2 is singular, the objective

should have a gradient, i.e., ∂ρ(.)
∂p

�= 0. This
avoids having to search through the complete
parameter space.

There are a number of different M-estimators pro-
posed in the literature. The reader is referred
to (Zhang 1996c) for a comprehensive review.

It seems difficult to select a ρ-function for gen-
eral use without being rather arbitrary. The result
reported in Sect. 4 uses Tukey function:

ρ(ri) =





c2

6

(
1 −

[
1 −

( ri
cσ

)2
]3

)
if |ri| ≤ cσ

(c2/6) otherwise,

where σ is some estimated standard deviation of
errors, and c = 4.6851 is the tuning constant. The
corresponding weight function is

wi =

{
[1 − (x/c)2]2 if |ri| ≤ cσ
0 otherwise.

Another commonly used function is the following
tri-weight one:

wi =





1 |ri| ≤ σ
σ/|ri| σ < |ri| ≤ 3σ

0 3σ < |ri| .

In (Olsen 1992, Luong 1992), this weight function
was used for the estimation of the epipolar geom-
etry.

Inherent in the different M-estimators is the si-
multaneous estimation of σ, the standard devia-
tion of the residual errors. If we can make a good
estimate of the standard deviation of the errors of
good data (inliers), then data whose error is larger
than a certain number of standard deviations can
be considered as outliers. Thus, the estimation
of σ itself should be robust. The results of the
M-estimators will depend on the method used to
compute it. The robust standard deviation esti-
mate is related to the median of the absolute val-
ues of the residuals, and is given by

σ̂ = 1.4826[1 + 5/(n− p)] median
i

|ri| . (29)

The constant 1.4826 is a coefficient to achieve the
same efficiency as a least-squares in the presence
of only Gaussian noise (actually, the median of
the absolute values of random numbers sampled
from the Gaussian normal distribution N(0, 1) is
equal to Φ−1( 3

4 ) ≈ 1/1.4826); 5/(n− p) (where n
is the size of the data set and p is the dimension
of the parameter vector) is to compensate the ef-
fect of a small set of data. The reader is referred
to (Rousseeuw and Leroy 1987, page 202) for the
details of these magic numbers.

Our experience shows that M-estimators are ro-
bust to outliers due to bad localization. They are,
however, not robust to false matches, because they
depend heavily on the initial guess, which is usu-
ally obtained by least-squares. This leads us to
use other more robust techniques.

3.7.2. Least Median of Squares (LMedS) The
LMedS method estimates the parameters by solv-
ing the nonlinear minimization problem:

min median
i

r2i .

That is, the estimator must yield the smallest
value for the median of squared residuals com-
puted for the entire data set. It turns out that
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this method is very robust to false matches as well
as outliers due to bad localization. Unlike the M-
estimators, however, the LMedS problem cannot
be reduced to a weighted least-squares problem. It
is probably impossible to write down a straight-
forward formula for the LMedS estimator. It must
be solved by a search in the space of possible esti-
mates generated from the data. Since this space is
too large, only a randomly chosen subset of data
can be analyzed. The algorithm which we have
implemented (the original version was described
in (Zhang, Deriche, Luong and Faugeras 1994, De-
riche, Zhang, Luong and Faugeras 1994, Zhang,
Deriche, Faugeras and Luong 1995)) for robustly
estimating the fundamental matrix follows the
one structured in (Rousseeuw and Leroy 1987,
Chap. 5), as outlined below.

Given n point correspondences: {(mi,m
′
i)|i =

1, . . . , n}, we proceed the following steps:

1. A Monte Carlo type technique is used to draw
m random subsamples of p = 7 different point
correspondences (recall that 7 is the minimum
number to determine the epipolar geometry).

2. For each subsample, indexed by J , we use the
technique described in Sect. 3.1 to compute
the fundamental matrix FJ . We may have
at most 3 solutions.

3. For each FJ , we can determine the median of
the squared residuals, denoted by MJ , with
respect to the whole set of point correspon-
dences, i.e., MJ =

median
i=1,... ,n

[d2(m̃′
i,FJm̃i) + d2(m̃i,F

T
J m̃

′
i)] .

Here, the distances between points and epipo-
lar lines are used, but we can use other error
measures.

4. Retain the estimate FJ for which MJ is min-
imal among all m MJ ’s.

The question now is: How do we determine m
? A subsample is “good” if it consists of p good
correspondences. Assuming that the whole set of
correspondences may contain up to a fraction ε of
outliers, the probability that at least one of the m
subsamples is good is given by

P = 1 − [1 − (1 − ε)p]m . (30)

By requiring that P must be near 1, one can de-
termine m for given values of p and ε:

m =
log(1 − P )

log[1 − (1 − ε)p]
.

In our implementation, we assume ε = 40% and
require P = 0.99, thus m = 163. Note that the al-
gorithm can be speeded up considerably by means
of parallel computing, because the processing for
each subsample can be done independently.

As noted in (Rousseeuw and Leroy 1987), the
LMedS efficiency is poor in the presence of Gaus-
sian noise. The efficiency of a method is defined
as the ratio between the lowest achievable vari-
ance for the estimated parameters and the actual
variance provided by the given method. To com-
pensate for this deficiency, we further carry out
a weighted least-squares procedure. The robust
standard deviation estimate is given by (29), that
is,

σ̂ = 1.4826[1 + 5/(n− p)]
√
MJ ,

where MJ is the minimal median estimated by
the LMedS. Based on σ̂, we can assign a weight
for each correspondence:

wi =

{
1 if r2i ≤ (2.5σ̂)2

0 otherwise ,

where

r2i = d2(m̃′
i,Fm̃i) + d2(m̃i,F

T m̃′
i) .

The correspondences having wi = 0 are outliers
and should not be further taken into account. We
thus conduct an additional step:

5. Refine the fundamental matrix F by solving
the weighted least-squares problem:

min
∑

i

wir
2
i .

The fundamental matrix is now robustly and ac-
curately estimated because outliers have been de-
tected and discarded by the LMedS method.

As said previously, computational efficiency of
the LMedS method can be achieved by applying a
Monte-Carlo type technique. However, the seven
points of a subsample thus generated may be very
close to each other. Such a situation should be
avoided because the estimation of the epipolar ge-
ometry from such points is highly instable and the
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Fig. 2. Illustration of a bucketing technique

result is useless. It is a waste of time to evaluate
such a subsample. In order to achieve higher sta-
bility and efficiency, we develop a regularly random
selection method based on bucketing techniques,
which works as follows. We first calculate the min
and max of the coordinates of the points in the
first image. The region is then evenly divided into
b× b buckets (see Fig. 2). In our implementation,
b = 8. To each bucket is attached a set of points,
and indirectly a set of matches, which fall in it.
The buckets having no matches attached are ex-
cluded. To generate a subsample of 7 points, we
first randomly select 7 mutually different buckets,
and then randomly choose one match in each se-
lected bucket.

One question remains: How many subsamples
are required? If we assume that bad matches are
uniformly distributed in space, and if each bucket
has the same number of matches and the random
selection is uniform, the formula (30) still holds.
However, the number of matches in one bucket
may be quite different from that in another. As
a result, a match belonging to a bucket having
fewer matches has a higher probability to be se-
lected. It is thus preferred that a bucket having
many matches has a higher probability to be se-
lected than a bucket having few matches, in order
for each match to have almost the same proba-
bility to be selected. This can be realized by the
following procedure. If we have in total l buck-
ets, we divide range [0 1] into l intervals such that
the width of the ith interval is equal to ni

/∑
i ni,

where ni is the number of matches attached to
the ith bucket (see Fig. 3). During the bucket se-

0 1 2 3 l − 1

0 1

number of matches

bucket

random

variable

Fig. 3. Interval and bucket mapping

lection procedure, a number, produced by a [0 1]
uniform random generator, falling in the ith inter-
val implies that the ith bucket is selected.

Together with the matching technique described
in (Zhang, Deriche, Faugeras and Luong 1995), we
have implemented this robust method and suc-
cessfully solved, in an automatic way, the match-
ing and epipolar geometry recovery problem for
different types of scenes such as indoor, rocks,
road, and textured dummy scenes. The cor-
responding software image-matching has been
made available on the Internet since 1994.

3.8. Characterizing the Uncertainty of Funda-
mental Matrix

Since the data points are always corrupted by
noise, and sometimes the matches are even spuri-
ous or incorrect, one should model the uncertainty
of the estimated fundamental matrix in order to
exploit its underlying geometric information cor-
rectly and effectively. For example, one can use
the covariance of the fundamental matrix to com-
pute the uncertainty of the projective reconstruc-
tion or the projective invariants, or to improve
the results of Kruppa’s equation for a better self-
calibration of a camera (Zeller 1996).

In order to quantify the uncertainty related to
the estimation of the fundamental matrix by the
method described in the previous sections, we
model the fundamental matrix as a random vec-
tor f ∈ IR7 (vector space of real 7-vectors) whose
mean is the exact value we are looking for. Each
estimation is then considered as a sample of f and
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the uncertainty is given by the covariance matrix
of f .

In the remaining of this subsection, we consider
a general random vector y ∈ IRp, where p is the
dimension of the vector space. The same discus-
sion applies, of course, directly to the fundamental
matrix. The covariance of y is defined by the pos-
itive symmetric matrix

Λy = E[(y − E[y])(y − E[y])T ] , (31)

where E[y] denotes the mean of the random vector
y.

3.8.1. The Statistical Method The statistical
method consists in using the well-known large
number law to approximate the mean: if we have
a sufficiently large number N of samples yi of a
random vector y, then E[y] can be approximated
by the sample mean

EN [yi] =
1

N

N∑

i=1

yi ,

and Λy is then approximated by

1

N − 1

N∑

i=1

[(yi − EN [yi])(yi − EN [yi])
T ] . (32)

A rule of thumb is that this method works rea-
sonable well when N > 30. It is especially useful
for simulation. For example, through simulation,
we have found that the covariance of the funda-
mental matrix estimated by the analytical method
through a first order approximation (see below)
is quite good when the noise level in data points
is moderate (the standard deviation is not larger
than one pixel) (Csurka et al. 1996).

3.8.2. The Analytical Method

The explicit case. We now consider the case that
y is computed from another random vector x of
IRm using a C1 function ϕ:

y = ϕ(x) .

Writing the first order Taylor expansion of ϕ in
the neighborhood of E[x] yields

ϕ(x) =ϕ(E[x]) +Dϕ(E[x]) · (x− E[x])

+O(x− E[x])2 , (33)

where O(x)2 denotes the terms of order 2 or higher

in x, and Dϕ(x) = ∂ϕ(x)/∂x is the Jacobian ma-

trix. Assuming that any sample of x is sufficiently

close to E[x], we can approximate ϕ by the first

order terms of (33) which yields:

E[y] ≃ ϕ(E[x]) ,

ϕ(x) − ϕ(E[x]) ≃ Dϕ(E[x]) · (x− E[x]) .

The first order approximation of the covariance

matrix of y is then given in function of the covari-

ance matrix of x by

Λy = E[(ϕ(x) − ϕ(E[x]))(ϕ(x) − ϕ(E[x]))T ]

= Dϕ(E[x])ΛxDϕ(E[x])T . (34)

The case of an implicit function. In some cases

like ours, the parameter is obtained through min-

imization. Therefore, ϕ is implicit and we have

to make use of the well-known implicit func-

tions theorem to obtain the following result (see

Faugeras 1993, chap.6).

Proposition 1. Let a criterion function C :

IRm × IRp → IR be a function of class C∞, x0 ∈
IRm be the measurement vector and y0 ∈ IRp be a

local minimum of C(x0, z). If the Hessian H of C

with respect to z is invertible at (x, z) = (x0,y0)

then there exists an open set U ′ of IRm containing

x0 and an open set U
′′

of IRpcontaining y0 and a

C∞ mapping ϕ : IRm → IRp such that for (x,y)

in U ′ × U ′′

the two relations “y is a local mini-

mum of C(x, z) with respect to z” and y = ϕ(x)

are equivalent. Furthermore, we have the follow-

ing equation:

Dϕ(x) = −H−1 ∂Φ

∂x
, (35)

where

Φ =

(
∂C

∂z

)T

and H =
∂Φ

∂z
.

Taking x0 = E[x] and y0 = E[y], equation (34)

then becomes

Λy = H−1 ∂Φ

∂x
Λx

∂Φ

∂x

T

H−T . (36)
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The case of a sum of squares of implicit functions.
Here we study the case where C is of the form:

n∑

i=1

C2
i (xi, z)

with x = [xT
1 , . . . ,x

T
i , . . . ,x

T
n ]T . Then, we have

Φ = 2
∑

i

Ci
∂Ci

∂z

T

H =
∂Φ

∂z
= 2

∑

i

∂Ci

∂z

T ∂Ci

∂z
+ 2

∑

i

Ci
∂2Ci

∂z2
.

Now, it is a usual practice to neglect the terms

Ci
∂2Ci

∂z2 with respect to the terms ∂Ci

∂z

T ∂Ci

∂z
(see

classical books of numerical analysis (Press et al.
1988)) and the numerical tests we did confirm that
we can do this because the former is much smaller
than the latter. We can then write:

H =
∂Φ

∂z
≈ 2

∑

i

∂Ci

∂z

T ∂Ci

∂z
.

In the same way we have:

∂Φ

∂x
≈ 2

∑

i

∂Ci

∂z

T ∂Ci

∂x
.

Therefore, equation (36) becomes:

Λy = 4H−1
∑

i,j

∂Ci

∂z

T ∂Ci

∂x
Λx

∂Cj

∂x

T ∂Cj

∂z
H−T .(37)

Assume that the noise in xi and that in xj

(j �= i) are independent (which is quite reasonable
because the points are extracted independently),
then Λxi,j

= E[(xi − x̄i)(xj − x̄j)
T ] = 0 and

Λx = diag (Λx1
, . . . ,Λxn

). Equation (37) can
then be written as

Λy = 4H−1
∑

i

∂Ci

∂z

T ∂Ci

∂xi
Λxi

∂Ci

∂xi

T ∂Ci

∂z
H−T .

Since ΛCi
= ∂Ci

∂xi
Λxi

∂Ci

∂xi

T
by definition (up to the

first order approximation), the above equation re-
duces to

Λy = 4H−1
∑

i

∂Ci

∂z

T

ΛCi

∂Ci

∂z
H−T . (38)

Considering that the mean of the value of Ci

at the minimum is zero and under the somewhat
strong assumption that the Ci’s are independent

and have identical distributed errors (Note: it is
under this assumption that the solution given by
the least-squares technique is optimal), we can
then approximate ΛCi

by its sample variance (see
e.g., (Anderson 1958)):

ΛCi
=

1

n− p
∑

i

C2
i =

S

n− p ,

where S is the value of the criterion C at the mini-
mum, and p is the number of parameters, i.e., the
dimension of y. Although it has little influence
when n is big, the inclusion of p in the formula
above aims at correcting the effect of a small sam-
ple set. Indeed, for n = p, we can almost always
find an estimate of y such that Ci = 0 for all i,
and it is not meaningful to estimate the variance.
Equation (38) finally becomes

Λy =
2S

n− pH
−1HH−T =

2S

n− pH
−T . (39)

The case of the fundamental matrix. As ex-
plained in Sect. 3.4, F is computed using a sum
of squares of implicit functions of n point corre-
spondences. Thus, referring to the previous para-
graph, we have p = 7, and the criterion function
C(m̂, f7) (where m̂ = [m1,m

′
1, · · · ,mn,m

′
n]

T and
f7 is the vector of the seven chosen parameters for
F) is given by (15). Λf7 is thus computed by (39)
using the Hessian obtained as a by-product of the
minimization of C(m̂, f7).

According to (34), ΛF is then computed from
Λf7 :

ΛF =
∂F(f7)

∂f7
Λf7

∂F(f7)

∂f7

T

. (40)

Here, we actually consider the fundamental matrix
F(f7) as a 9-vector composed of the 9 coefficients
which are functions of the 7 parameters f7.

The reader is referred to (Zhang and Faugeras
1992, chap.2) for a more detailed exposition on
uncertainty manipulation.

3.9. Other Techniques

To close the review section, we present two ana-
lytical techniques and one robust technique based
on RANSAC.
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3.9.1. Virtual Parallax Method If two sets of
image points are the projections of a plane in space
(see Sect. 5.2), then they are related by a homogra-
phy H. For points not on the plane, they do not
verify the homography, i.e., m̃′ �= ρHm̃, where
ρ is an arbitrary non-zero scalar. The difference
(i.e., parallax) allows us to estimate directly an
epipole if the knowledge of H is available. Indeed,
Luong and Faugeras (1996) show that the funda-
mental matrix and the homography is related by
F = [ẽ′]×H. For a point which does not belong
to the plane, l′ = m̃′ × Hm̃ defines an epipolar
line, which provides one constraint on the epipole:
ẽ′T l′ = 0. Therefore, two such points are sufficient
to estimate the epipole e′. The generate-and-test
methods, see e.g., (Faugeras and Lustman 1988),
can be used to detect the coplanar points.

The virtual parallax method proposed by Bo-
ufama and Mohr (1995) does not require the prior
identification of a plane. To simplify the compu-
tations, without loss of generality, we can perform
a change of projective coordinates in each image
such that

m̃1 = [1, 0, 0]T , m̃2 = [0, 1, 0]T , m̃3 = [0, 0, 1]T ,

m̃4 = [1, 1, 1]T ; (41)

m̃′
1 = [1, 0, 0]T , m̃′

2 = [0, 1, 0]T , m̃′
3 = [0, 0, 1]T ,

m̃′
4 = [1, 1, 1]T . (42)

These points are chosen such that no three of them
are collinear. The three first points define a plane
in space. Under such choice of coordinate systems,
the homography matrix such that m̃′

i = ρHm̃i

(i = 1, 2, 3) is diagonal, i.e.,H = diag (a, b, c), and
depends only on two parameters. Let the epipole
be ẽ′ = [e′u, e

′
v, e

′
t]

T . As we have seen in the last
paragraph, for each additional point (mi,m

′
i) (i =

4, . . . , n), we have ẽ′T (m̃′
i ×Hm̃i) = 0, i.e.,

v′
ie

′
uc− vie′ub+ uie

′
va− u′

ie
′
vc

+ u′
ivie

′
tb− v′

iuie
′
ta = 0 .

(43)

This is the basic epipolar equation based on vir-
tual parallax. Since (a, b, c) and (e′u, e

′
v, e

′
t) are de-

fined each up to a scale factor, the above equation
is polynomial of degree two in four unknowns. To
simplify the problem, we make the following repa-
rameterization. Let

x1 = e′uc, x2 = e′ub, x3 = e′va,
x4 = e′vc, x5 = e′tb, and x6 = e′ta ,

which are defined up to a common scale factor.
Equation (43) now becomes

v′
ix1 − vix2 + uix3 − u′

ix4 + u′
ivix5 − v′

iuix6 = 0 .
(44)

Unlike (43), we here have five independent vari-
ables, one more than necessary. The unknowns xi

(i = 1, . . . , 6) can be solved linearly if we have five
or more point matches. Thus, we need in total 8
point correspondences, like the eight-point algo-
rithm. The original unknowns can be computed,
for example, as

e′u = e′tx2/x5, e
′
v = e′tx3/x6,

a = cx3/x4, b = cx2/x1 .
(45)

The fundamental matrix is finally obtained as
[ẽ′]× diag (a, b, c), and the rank constraint is au-
tomatically satisfied. However, note that

• the computation (45) is not optimal, be-
cause each intermediate variable xi is not used
equally;

• the rank-2 constraint in the linear equation
(44) is not necessarily satisfied because of the
introduction of an intermediate parameter.

Therefore, the rank-2 constraint is also imposed
a posteriori, similar to the 8-point algorithm (see
Sect. 3.2).

The results obtained with this method depends
on the choice of the four basis points. The authors
indicate that a good choice is to take them largely
spread in the image.

Experiments show that this method produces
good results. Factors which contribute to this
are the fact the dimensionality of the problem has
been reduced, and the fact that the change of pro-
jective coordinates achieve a data renormalization
comparable to the one described in Sect. 3.2.5.

3.9.2. Linear Subspace Method Ponce and
Genc (1996), through a change of projective co-
ordinates, set up a set of linear constraints on
one epipole using the linear subspace method pro-
posed by Heeger and Jepson (1992). A change
of projective coordinates in each image as de-
scribed in (41) and (42) is performed. Further-
more, we choose the corresponding four scene
points Mi(i = 1, . . . , 4) and the optical center of
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each camera as a projective basis in space. We
assign to the basis points for the first camera the
following coordinates:

M̃1 = [1, 0, 0, 0]T , M̃2 = [0, 1, 0, 0]T , C̃ = [0, 0, 1, 0]T ,

M̃3 = [0, 0, 0, 1]T , M̃4 = [1, 1, 1, 1]T . (46)

The same coordinates are assigned to the basis
points for the second camera. Therefore, the cam-
era projection matrix for the first camera is given
by

P =



1 0 0 0
0 1 0 0
0 0 0 1


 . (47)

Let the coordinates of the optical center C of the
first camera be [α, β, γ, 1]T in the projective basis
of the second camera, and let the coordinates of
the four scene points remain the same in both pro-
jective bases, i.e., M′

i = Mi (i = 1, . . . , 4). Then,
the coordinate transformation H from the projec-
tive basis of the first camera to that of the second
camera is given by

H =




γ − α 0 α 0
0 γ − β β 0
0 0 γ 0
0 0 1 γ − 1


 . (48)

It is then a straightforward manner to obtain the
projection matrix of the first camera with respect
to the projective basis of the second camera:

P′ = PH =



γ − α 0 α 0

0 γ − β β 0
0 0 1 γ − 1


 . (49)

According to (6), the epipolar equation is
m̃′T

i Fm̃i = 0, while the fundamental matrix is
given by F = [P′p⊥]×P

′P+. Since

p⊥ = C =




0
0
1
0




P+ = PT (PPT )−1 =




1 0 0
0 1 0
0 0 0
0 0 1


 ,

we obtain the fundamental matrix:

F = [ẽ′]× diag (γ − α, γ − β, γ − 1) , (50)

where ẽ′ ≡ P′p⊥ = [α, β, 1]T is just the projection
of the first optical center in the second camera,
i.e., the second epipole.

Consider now the remaining point matches
{(mi,m

′
i)|i = 5, . . . , n}, where m̃i = [ui, vi, 1]

T

and m̃′
i = [u′

i, v
′
i, 1]

T . From (50), after some sim-
ple algebraic manipulation, the epipolar equation
can be rewritten as

γgT
i ẽ

′ = qT
i f ,

where f = [α, β, αβ]T , gi = m̃′
i×m̃i = [v′

i−vi, ui−
u′

i,−v′
iui + u′

ivi]
T and qi = [v′

i(1 − ui),−u′
i(1 −

vi), ui − vi]
T . Consider a linear combination of

the above equations. Let us define the coefficient
vector ξ = [ξ5, . . . , ξn]

T and the vectors τ (ξ) =∑n
i=5 ξigi and χ(ξ) =

∑n
i=5 ξiqi. It follows that

γτ (ξ)T ẽ′ = χ(ξ)T f . (51)

The idea of the linear subspace is that for any
value ξ

τ
such that τ (ξ

τ
) = 0, equation (51) pro-

vides a linear constraint on f , i.e., χ(ξ
τ
)T f = 0,

while for any value ξ
χ

such that χ(ξ
χ
) = 0, the

same equation provides a linear constraint on ẽ′,
i.e., τ (ξ

χ
)T ẽ′ = 0. Because of the particular

structure of gi and qi, it is easy to show (Ponce
and Genc 1996) that the vectors τ (ξ

χ
) and χ(ξ

τ
)

are both orthogonal to the vector [1, 1, 1]T . Since
the vectors τ (ξ

χ
) are also orthogonal to ẽ′, they

only span a one-dimensional line, and their repre-
sentative vector is denoted by τ 0 = [aτ , bτ , cτ ]

T .
Likewise, the vectors χ(ξ

τ
) span a line orthogo-

nal to both f and [1, 1, 1]T , and their represen-
tative vector is denoted by χ0 = [aχ, bχ, cχ]T .
Assume for the moment that we know τ 0 and
χ0 (their computation will be described shortly),
from [aτ , bτ ,−aτ − bτ ]T ẽ′ = 0 and [aχ, bχ,−aχ −
bχ]T f = 0, the solution to the epipole is given by

α =
bχ
aτ

aτ + bτ
aχ + bχ

, β =
aχ

bτ

aτ + bτ
aχ + bχ

. (52)

Once the epipole has been computed, the remain-
ing parameters of the fundamental matrix can be
easily computed.

We now turn to the estimation of τ 0 and
χ0. From the above discussion, we see that the
set of linear combinations

∑n
i=5 ξgi such that∑n

i=5 ξqi = 0 is one-dimensional. Construct two
3 × (n− 4) matrices:

G = [g5, . . . ,gn] and Q = [q5, . . . ,qn] .
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The set of vectors ξ such that
∑n

i=5 ξqi = 0 is

simply the null space of Q. Let Q = U1S1V
T
1

be the singular value decomposition (SVD) of Q,

then the null space is formed by the rightmost n−
4−3 = n−7 columns ofV1, which will be denoted

by V0. Then, the set of vectors
∑n

i=5 ξgi such

that
∑n

i=5 ξqi = 0 is thus the subspace spanned

by the matrix GV0, which is 3 × (n − 7). Let

GV0 = U2S2V
T
2 be the SVD. According to our

assumptions, this matrix has rank 1, thus τ 0 is

the range of GV0, which is simply the leftmost

column of U2 up to a scale factor. Vector χ0 can

be computed following the same construction by

reversing the rôles of τ and χ.

The results obtained with this method depends

on the choice of the four basis points. The authors

show experimentally that a good result can be ob-

tained by trying 30 random basis choices and pick-

ing up the solution resulting the smallest epipolar

distance error.

Note that although unlike the virtual parallax

method, the linear subspace technique provides a

linear algorithm without introducing an extrane-

ous parameter, it is achieved in (52) by simply

dropping the estimated information in cτ and cχ.

In the presence of noise, τ 0 and χ0 computed

through singular value decomposition do not nec-

essarily satisfy τT
0 1 = 0 and χT

0 1 = 0, where

1 = [1, 1, 1]T

Experiments show that this method produces

good results. The same reasons as for the virtual

parallax method can be used here.

3.9.3. RANSAC RANSAC (random sample

consensus) (Fischler and Bolles 1981) is a

paradigm originated in the Computer Vision com-

munity for robust parameter estimation. The idea

is to find, through random sampling of a minimal

subset of data, the parameter set which is con-

sistent with a subset of data as large as possible.

The consistent check requires the user to supply a

threshold on the errors, which reflects the a priori

knowledge of the precision of the expected esti-

mation. This technique is used by Torr (1995)

to estimate the fundamental matrix. As is clear,

RANSAC is very similar to LMedS both in ideas

and in implementation, except that

• RANSAC needs a threshold to be set by
the user for consistence checking, while
the threshold is automatically computed in
LMedS;

• In step 3 of the LMedS implementation de-
scribed in Sect. 3.7.2, the size of the point
matches which are consistent with FJ is com-
puted, instead of the median of the squared
residuals.

However, LMedS cannot deal with the case where
the percentage of outliers is higher than 50%,
while RANSAC can. Torr and Murray (1993)
compared both LMedS and RANSAC. RANSAC
is usually cheaper because it can exit the random
sampling loop once a consistent solution is found.

If one knows that the number of outliers is more
than 50%, then they can easily adapt the LMedS
by using an appropriate value, say 40%, instead
of using the median. (When we do this, however,
the solution obtained may be not globally opti-
mal if the number of outliers is less than 50%.) If
there is a large set of images of the same type of
scenes to be processed, one can first apply LMedS
to one pair of the images in order to find an ap-
propriate threshold, and then apply RANSAC to
the remaining images because it is cheaper.

4. An Example of Fundamental Matrix

Estimation With Comparison

The pair of images is a pair of calibrated stereo
images (see Fig. 4). By “calibrated” is meant that
the intrinsic parameters of both cameras and the
displacement between them were computed off-
line through stereo calibration. There are 241
point matches, which are established automati-
cally by the technique described in (Zhang, De-
riche, Faugeras and Luong 1995). Outliers have
been discarded. The calibrated parameters of the
cameras are of course not used, but the fundamen-
tal matrix computed from these parameters serves
as a ground truth. This is shown in Fig. 5, where
the four epipolar lines are displayed, correspond-
ing, from the left to the right, to the point matches
1, 220, 0 and 183, respectively. The intersection of
these lines is the epipole, which is clearly very far
from the image. This is because the two cameras
are placed almost in the same plane.
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Fig. 4. Image pair used for comparing different estimation techniques of the fundamental matrix

Fig. 5. Epipolar geometry estimated through classical stereo calibration, which serves as the ground truth

The epipolar geometry estimated with the lin-

ear method is shown in Fig. 6 for the same set of

point matches. One can find that the epipole is

now in the image, which is completely different

from what we have seen with the calibrated re-

sult. If we perform a data normalization before

applying the linear method, the result is consid-

erably improved, as shown in Fig. 7. This is very

close to the calibrated one.

The nonlinear method gives even better result,

as shown in Fig. 8. A comparison with the “true”

epipolar geometry is shown in Fig. 9. There is

only a small difference in the orientation of the

epipolar lines. We have also tried the normaliza-
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Fig. 6. Epipolar geometry estimated with the linear method

Fig. 7. Epipolar geometry estimated with the linear method with prior data normalization

tion method followed by the nonlinear method,

and the same result was obtained. Other meth-

ods have also been tested, and visually almost no

difference is observed.

Quantitative results are provided in Table 1,

where the elements in the first column indicates

the methods used in estimating the fundamen-

tal matrix: they are respectively the classical

stereo calibration (Calib.), the linear method

with eigen analysis (linear), the linear method

with prior data normalization (normal.), the non-

linear method based on minimization of distances

between points and epipolar lines (nonlinear),

the nonlinear method based on minimization of
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Fig. 8. Epipolar geometry estimated with the nonlinear method

Fig. 9. Comparison between the Epipolar geometry estimated through classical stereo calibration (shown in Red/Dark
lines) and that estimated with the nonlinear method (shown in Green/Grey lines)

gradient-weighted epipolar errors (gradient), the

M-estimator with Tukey function (M-estim.),

the nonlinear method based on minimization of

distances between observed points and repro-

jected ones (reproj.), and the LMedS technique

(LMedS). The fundamental matrix of Calib is

used as a reference. The second column shows

the difference between the fundamental matrix

estimated by each method with that of Calib.
The difference is measured as the Frobenius norm:
∆F = ‖F−FCalib‖ × 100%. Since each F is nor-
malized by its Frobenius norm, ∆F is directly re-
lated to the angle between two unit vectors. It
can be seen that although we have observed that
Method normal has considerably improved the
result of the linear method, its ∆F is the largest.
It seems that ∆F is not appropriate to measure
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Table 1. Comparison of different methods for estimating the fundamental matrix

Method ∆F e e′ RMS CPU
Calib. 5138.18 −8875.85 1642.02 −2528.91 0.99
linear 5.85% 304.018 124.039 256.219 230.306 3.40 0.13s
normal. 7.20% −3920.6 7678.71 8489.07 −15393.5 0.89 0.15s
nonlinear 0.92% 8135.03 −14048.3 1896.19 −2917.11 0.87 0.38s
gradient 0.92% 8166.05 −14104.1 1897.80 −2920.12 0.87 0.40s
M-estim. 0.12% 4528.94 −7516.3 1581.19 −2313.72 0.87 1.05s
reproj. 0.92% 8165.05 −14102.3 1897.74 −2920.01 0.87 19.1s
LMedS 0.13% 3919.12 −6413.1 1500.21 −2159.65 0.75 2.40s

the difference between two fundamental matrix.

We will describe another one in the next para-

graph. The third and fourth columns show the

positions of the two epipoles. The fifth column

gives the root of the mean of squared distances

between points and their epipolar lines. We can

see that even with Calib, the RMS is as high as 1

pixel. There are two possibilities: either the stereo

system is not very well calibrated, or the points are

not well localized; and we think the latter is the

major reason because the corner detector we use

only extracts points within pixel precision. The

last column shows the approximate CPU time in

seconds when the program is run on a Sparc 20

workstation. Nonlinear, gradient and reproj

give essentially the same result (but the latter is

much more time consuming). The M-estimator

and LMedS techniques give the best results. This

is because the influence of poorly localized points

has been reduced in M-estimator or they are sim-

ply discarded in LMedS. Actually, LMedS has de-

tected five matches as outliers, which are 226, 94,

17, 78 and 100. Of course, these two methods are

more time consuming than the nonlinear method.

m
m′

F1m

F2m

FT
1m

′

FT
2m

′

d1 d′
1

Fig. 10. Definition of the difference between two funda-
mental matrices in terms of image distances

4.1. A Measure of Comparison Between Funda-
mental Matrices

From the above discussion, the Frobenius norm of
the difference between two normalized fundamen-
tal matrices is clearly not an appropriate measure
of comparison. In the following, we describe a
measure proposed by Stéphane Laveau from IN-
RIA Sophia-Antipolis, which we think character-
izes well the difference between two fundamental
matrices. Let the two given fundamental matri-
ces be F1 and F2. The measure is computed as
follows (see Fig. 10):

Step 1: Choose randomly a point m in the first
image.

Step 2: Draw the epipolar line ofm in the second
image using F1. The line is shown as a dashed
line, and is defined by F1m.

Step 3: If the epipolar line does not intersect the
second image, go to Step 1.

Step 4: Choose randomly a point m′ on the
epipolar line. Note thatm andm′ correspond
to each other exactly with respect to F1.

Step 5: Draw the epipolar line ofm in the second
image using F2, i.e., F2m, and compute the
distance, noted by d′

1, between point m′ and
line F2m.

Step 6: Draw the epipolar line of m′ in the first
image using F2, i.e., FT

2m
′, and compute the

distance, noted by d1, between point m and
line FT

2m
′.

Step 7: Conduct the same procedure from Step

2 through Step 6, but reversing the roles of
F1 and F2, and compute d2 and d′

2.
Step 8: Repeat N times Step 1 through Step 7.
Step 9: Compute the average distance of d’s,

which is the measure of difference between the
two fundamental matrices.
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Table 2. Distances between the fundamental matrices estimated by different techniques

linear normal. nonlinear gradient M-estim. reproj. LMedS

Calib. 116.4 5.97 2.66 2.66 2.27 2.66 1.33

linear 117.29 115.97 116.40 115.51 116.25 115.91
normal. 4.13 4.12 5.27 4.11 5.89
nonlinear 0.01 1.19 0.01 1.86
gradient 1.19 0.00 1.86
M-estim. 1.20 1.03
reproj. 1.88

In this procedure, a random number generator
based on uniform distribution is used. The two
fundamental matrices plays a symmetric role. The
two images plays a symmetric role too, although
it is not at first sight. The reason is that m and
m′ are chosen randomly and the epipolar lines are
symmetric (line FT

1m
′ goes through m). Clearly,

the measure computed as above, in pixels, is phys-
ically meaningful, because it is defined in the im-
age space in which we observe the surrounding
environment. Furthermore, when N tends to in-
finity, we sample uniformly the whole 3D space
visible from the given epipolar geometry. If the
image resolution is 512 × 512 and if we consider a
pixel resolution, then the visible 3D space can be
approximately sampled by 5123 points. In our ex-
periment, we set N = 50000. Using this method,
we can compute the distance between each pair of
fundamental matrices, and we obtain a symmetric
matrix.

The result is shown in Table 2, where only the
upper triangle is displayed (because of symmetry).
We arrive at the following conclusions:

• The linear method is very bad.
• The linear method with prior data normaliza-

tion gives quite a reasonable result.
• The nonlinear method based on point-line dis-

tances and that based on gradient-weighted
epipolar errors give very similar results to
those obtained based on minimization of dis-
tances between observed points and repro-
jected ones. The latter should be avoided be-
cause it is too time consuming.

• M-estimators or the LMedS method give still
better results because they try to limit or

eliminate the effect of poorly localized points.
The epipolar geometry estimated by LMedS
is closer to the one computed through stereo
calibration.

The LMedS method should be definitely used if
the given set of matches contain false matches.

4.2. Epipolar Band

Due to space limitation, the result on the uncer-
tainty of the fundamental matrix is not shown
here, and can be found in (Csurka et al. 1996), to-
gether with its use in computing the uncertainty of
the projective reconstruction and in improving the
self-calibration based on Kruppa equations. We
show in this section how to use the uncertainty to
define the epipolar band for matching.

We only consider the epipolar lines in the sec-
ond image (the same can be done for the first).
For a given point m0 = [u0, v0]

T in the first im-
age together with its covariance matrix Λm0

=[
σuu σuv
σuv σvv

]
, its epipolar line in the second image is

given by l′0 = Fm̃0. From (34), the covariance
matrix of l′ is computed by

Λl′
0
=
∂l′0
∂F
ΛF

∂l′0
∂F

T

+ F
[Λm0

02

0T
2

0

]
FT , (53)

where F in the first term of the right hand is
treated as a 9-vector, and 02 = [0, 0]T .

Any point m′ = [u′, v′]T on the epipolar line
l′0 ≡ [l′1, l

′
2, l

′
3]

T must satisfy m̃′T l′0 = l′T0 m̃
′ =

l′1u
′ + l′2v

′ + l′3 = 0 (we see the duality between
points and lines). The vector l′0 is defined up to
a scale factor. It is a projective point in the dual
space of the image plane, and is the dual of the
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parameter space of epipolar lines image planedual

Fig. 11. Duality between the image plane and the parameter space of the epipolar lines

epipolar line. We consider the vector of parame-
ters x0 = (x0, y0) = (l′1/l

′
3, l

′
2/l

′
3)

T (if l′3 = 0 we
can choose (l′1/l

′
2, l

′
3/l

′
2) or (l′2/l

′
1, l

′
3/l

′
1)). The co-

variance matrix of x0 is computed in the same
way as (34): C = (∂l′0/∂x0)Λl′

0
(∂l′0/∂x0)

T . The
uncertainty of x0 can be represented in the usual
way by an ellipse C in the dual space (denoted by
x) of the image plane:

(x− x0)
TC−1(x− x0) = k2 , (54)

where k is a confidence factor determined by the
χ2 distribution of 2 degrees of freedom. The prob-
ability that x appears at the interior of the ellipse
defined by (54) is equal to Pχ2(k, 2). Equation
(54) can be rewritten in projective form as

x̃TAx̃ = 0 with A =

[
C−1 −C−1x0

−xT
0C

−T xT
0C

−1x0 − k2

]
.

The dual of this ellipse, denoted by C∗, defines
a conic in the image plane. It is given by

m̃TA∗m̃ = 0 (55)

where A∗ is the adjoint of matrix A (i.e., A∗A =
det(A) I). Because of the duality between the
parameter space x and the image plane m (see
Fig. 11), for a point x on C, it defines an epipolar
line in the image plane, line(x), which is tangent
to conic C∗ at a point m, while the latter defines
a line in the parameter space, line(m), which is
tangent to C at x. It can be shown (Csurka 1996)
that, for a point in the interior of ellipse C, the
corresponding epipolar line lies outside of conic C∗

(i.e., it does not cut the conic). Therefore, for a
given k, the outside of this conic defines the region

in which the epipolar line should lie with proba-

bility Pχ2(k, 2). We call this region the epipolar

band. For a given point in one image, its match

should be searched in this region. Although, theo-

retically, the uncertainty conic defining the epipo-

lar band could be an ellipse or parabola, it is al-

ways an hyperbola in practice (except when ΛF is

extremely huge).

We have estimated the uncertainty of the funda-

mental matrix for the image pair shown in Fig. 4.

In Fig. 12, we show the epipolar bands of matches

1, 220, 0 and 183 in the second images, computed

as described above. The displayed hyperbolas cor-

respond to a probability of 70% (k = 2.41) with

image point uncertainty of σuu = σvv = 0.52 and

σuv = 0. We have also shown in Fig. 12 the epipo-

lar lines drawn in dashed lines and the matched

points indicated in +. An interesting thing is that

the matched points are located in the area where

the two sections of hyperbolas are closest to each

other. This suggests that the covariance matrix

of the fundamental matrix actually captures, to

some extent, the matching information (disparity

in stereo terminology). Such areas should be first

examined in searching for point matches. This

may, however, not be true if a significant depth

discontinuity presents in the scene and if the point

matches used in computing the fundamental ma-

trix do not represent sufficiently enough the depth

variation.
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Fig. 12. Epipolar bands for several point matches

5. Discussion

In this paper, we have reviewed a number of tech-

niques for estimating the epipolar geometry be-

tween two images. Point matches are assumed to

be given, but some of them may have been incor-

rectly paired. How to establish point matches is

the topic of the paper (Zhang, Deriche, Faugeras

and Luong 1995).

5.1. Summary

For two uncalibrated images under full perspec-

tive projection, at least 7 point matches are nec-

essary to determine the epipolar geometry. When

only 7 matches are available, there are possibly

three solutions, which can be obtained by solving

a cubic equation. If more data are available, then

the solution is in general unique and several lin-

ear techniques have been developed. The linear

techniques are usually sensitive to noise and not

very stable, because they ignore the constraints
on the nine coefficients of the fundamental ma-
trix and the criterion they are minimizing is not
physically meaningful. The results, however, can
be considerably improved by first normalizing the
data points, instead of using pixel coordinates di-
rectly, such that their new coordinates are on the
average equal to unity. Even better results can be
obtained under nonlinear optimization framework
by

• using an appropriate parameterization of fun-
damental matrix to take into account explic-
itly the rank-2 constraint, and

• minimizing a physically meaningful criterion.

Three choices are available for the latter: the
distances between points and their corresponding
epipolar lines, the gradient-weighted epipolar er-
rors, and the distances between points and the
reprojections of their corresponding points recon-
structed in space. Experiments show that the re-
sults given by the optimization based on the first
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criterion are slightly worse than the last two which
give essentially the same results. However, the
third is much more time consuming, and is there-
fore not recommended, although it is statistically
optimal under certain conditions. One can, how-
ever, use it as the last step to refine the results
obtained with the first or second technique. To
summarize, we recommend the second criterion
(gradient-weighted epipolar errors), which is actu-
ally a very good approximation to the third one.

Point matches are obtained by using some
heuristic techniques such as correlation and re-
laxation, and they usually contain false matches.
Also, due to the limited performance of a cor-
ner detector or low contrast of an image, a few
points are possibly poorly localized. These out-
liers (sometimes even one) will severely affect the
precision of the fundamental matrix if we di-
rectly apply the methods described above, which
are all least-squares techniques. We have thus
presented in detail two commonly used robust
techniques: M-Estimators and Least Median of
Squares (LMedS). M-estimators try to reduce the
effect of outliers by replacing the squared resid-
uals by another function of the residuals which
is less increasing than square. They can be im-
plemented as an iterated reweighted least-squares.
Experiments show that they are robust to outliers
due to bad localization, but not robust to false
matches. This is because they depend tightly on
the initial estimation of the fundamental matrix.
The LMedS method solves a nonlinear minimiza-
tion problem which yields the smallest value for
the median of squared residuals computed for the
entire data set. It turns out that this method is
very robust to false matches as well as to outliers
due to bad localization. Unfortunately, there is no
straightforward formula for the LMedS estimator.
It must be solved by a search in the space of possi-
ble estimates generated from the data. Since this
space is too large, only a randomly chosen sub-
set of data can be analyzed. We have proposed a
regularly random selection method to improve the
efficiency.

Since the data points are always corrupted by
noise, one should model the uncertainty of the es-
timated fundamental matrix in order to exploit its
underlying geometric information correctly and ef-
fectively. We have modeled the fundamental ma-

trix as a random vector in its parameterization
space and described methods to estimate the co-
variance matrix of this vector under the first or-
der approximation. This uncertainty measure can
be used to define the epipolar band for match-
ing, as shown in Sect. 4.2. In (Csurka et al. 1996),
we also show how it can be used to compute the
uncertainty of the projective reconstruction and
to improve the self-calibration based on Kruppa
equations.

Techniques for projective reconstruction will be
reviewed in Appendix 5.5. Although we cannot
obtain any metric information from a projective
structure (measurements of lengths and angles do
not make sense), it still contains rich information,
such as coplanarity, collinearity, and ratios, which
is sometimes sufficient for artificial systems, such
as robots, to perform tasks such as navigation and
object recognition.

5.2. Degenerate configurations

Up to now, we have only considered the situations
where no ambiguity arises in interpreting a set of
point matches (i.e., they determine a unique fun-
damental matrix), except for the case of 7 point
matches where three solutions may exist. Some-
times, however, even with a large set of point
matches, there exist many solutions for the fun-
damental matrix which explain the data equally
well, and we call such situations degenerate for
the determination of the fundamental matrix.

Maybank (Maybank 1992) has thoroughly stud-
ied the degenerate configurations:

• 3D points lie on a quadric surface pass-
ing through the two optical centers (called
the critical surface, or maybank quadric by
Longuet-Higgins). We may have three differ-
ent fundamental matrices compatible with the
data. The two sets of image points are related
by a quadratic transformation:

m′ = F1m× F2m ,

where F1 and F2 are two of the fundamental
matrices.

• The two sets of image points are related by a
homography:

m̃′ = ρHm̃ ,
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where ρ is an arbitrary non-zero scalar, and
H is a 3 × 3 matrix defined up to a scale fac-
tor. This is a degenerate case of the previous
situation. It arises when 3D points lie on a
plane or when the camera undergoes a pure
rotation around the optical center (equivalent
to the case when all points lie on a plane at
infinity).

• 3D points are in even more special position,
for example on a line.

The stability of the fundamental matrix re-
lated to the degenerate configurations is ana-
lyzed in (Luong and Faugeras 1996). A tech-
nique which automatically detects the degener-
acy based on χ2 test when the noise level of the
data points is known is reported in (Torr, Zis-
serman and Maybank 1995, Torr, Zisserman and
Maybank 1996).

5.3. Affine cameras

So far, we have only considered images under per-
spective projection, which is a nonlinear map-
ping from 3D space to 2D. This makes many vi-
sion problems difficult to solve, and more impor-
tantly, they can become ill-conditioned when the
perspective effects are small. Sometimes, if cer-
tain conditions are satisfied, for example, when
the camera field of view is small and the ob-
ject size is small enough with respect to the dis-
tance from the camera to the object, the pro-
jection can be approximated by a linear map-
ping (Aloimonos 1990). The affine camera intro-
duced in (Mundy and Zisserman 1992) is a gen-
eration of the orthographic and weak perspective
models. Its projection matrix has the following
special form:

PA =



P11 P12 P13 P14

P21 P22 P23 P24

0 0 0 P34




defined up to a scale factor. The epipolar con-
straint (5) is still valid, but the fundamental ma-
trix (6) will be of the following simple form (Xu
and Zhang 1996):

FA =




0 0 a13
0 0 a23
a31 a32 a33


 .

This is known as the affine fundamental ma-
trix (Zisserman 1992, Shapiro, Zisserman and
Brady 1994). Thus, the epipolar equation is lin-
ear in the image coordinates under affine cameras,
and the determination of the epipolar geometry is
much easier. This has been thoroughly studied by
Oxford group (Shapiro 1993, Shapiro et al. 1994)
(see also (Xu and Zhang 1996)), and thus is not
addressed here. A software called AffineF is
available from my Web home page.

5.4. Cameras with Lens Distortion

With the current formulation of the epipolar ge-
ometry (under either full perspective or affine pro-
jection), the homogeneous coordinates of a 3D
point and those of the image point are related by a
3×4 matrix. That is, the lens distortion is not ad-
dressed. This statement does not imply, though,
that lens distortion has never been accounted for
in the previous work. Indeed, distortion has usu-
ally been corrected off-line using classical meth-
ods by observing for example straight lines, if it is
not weak enough to be neglected. A preliminary
investigation has been conducted (Zhang 1996b),
which considers lens distortion as an integral part
of a camera. In this case, for a point in one image,
its corresponding point does not lie on a line any-
more. As a matter of fact, it lies on the so-called
epipolar curve. Preliminary results show that the
distortion can be corrected on-line if cameras have
a strong lens distortion. More work still needs to
be done to understand better the epipolar geom-
etry with lens distortion.

5.5. Multiple cameras

The study of the epipolar geometry is natu-
rally extended to more images. When 3 im-
ages are considered, trilinear constraints exist be-
tween point/line correspondences (Spetsakis and
Aloimonos 1989). “Trilinear” means that the con-
straints are linear in the point/line coordinates
of each image, and the epipolar constraint (5)
is a bilinear relation. The trilinear constraints
have been rediscovered in (Shashua 1994b) in
the context of uncalibrated images. Similar to
the fundamental matrix for two images, the con-
straints between three images can be described
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by a 3 × 3 × 3 matrix defined up to a scale fac-

tor (Spetsakis and Aloimonos 1989, Hartley 1994).

There exist at most 4 linear independent con-

straints in the elements of the above matrix, and

7 point matches are required to have a linear so-

lution (Shashua 1994b). However, the 27 ele-

ments are not algebraically independent. There

are only 18 parameters to describe the geome-

try between three uncalibrated images (Faugeras

and Robert 1994), and we have three algebraically

independent constraints. Therefore, we need at

least 6 point matches to determine the geometry

of three images (Quan 1995).

When more images are considered, quadri-

linear relations arising when four-tuples of im-

ages are considered, which are, however, alge-

braically dependent of the trilinear and bilinear

ones (Faugeras and Mourrain 1995). That is, they

do not bring in any new information. Recently,

quite a lot of efforts have been directed towards

the study of the geometry ofN images (see (Luong

and Viéville 1994, Carlsson 1994, Triggs 1995,

Weinshall, Werman and Shashua 1995, Viéville,

Faugeras and Luong 1996, Laveau 96) to name a

few). A complete review of the work on multiple

cameras is beyond the scope of this paper.

Appendix A

Projective Reconstruction

We show in this section how to estimate the posi-

tion of a point in space, given its projections in two

images whose epipolar geometry is known. The

problem is known as 3D reconstruction in general,

and triangulation in particular. In the calibrated

case, the relative position (i.e., the rotation and

translation) of the two cameras is known, and 3D

reconstruction has already been extensively stud-

ied in stereo (Ayache 1991). In the uncalibrated

case, like the one considered here, we assume that

the fundamental matrix between the two images

is known (e.g., computed with the methods de-

scribed in Sect. 3), and we say that they are weakly

calibrated.

A.1. Projective Structure from Two Un-

calibrated Images

In the calibrated case, a 3D structure can be re-
covered from two images only up to a rigid trans-
formation and an unknown scale factor (this trans-
formation is also known as a similarity), because
we can choose an arbitrary coordinate system as
a world coordinate system (although one usu-
ally chooses it to coincide with one of the cam-
era coordinate systems). Similarly, in the un-
calibrated case, a 3D structure can only be per-
formed up to a projective transformation of the
3D space (Maybank 1992, Faugeras 1992, Hartley
et al. 1992, Faugeras 1995).

At this point, we have to introduce a few no-
tations from Projective Geometry (a good intro-
duction can be found in the appendix of (Mundy
and Zisserman 1992) or (Faugeras 1995)). For a
3D point M = [X,Y, Z]T , its homogeneous coordi-
nates are x̃ = [U, V,W, S]T = λM̃ where λ is any
nonzero scalar and M̃ = [X,Y, Z, 1]T . This implies:
U/S = X, V/S = Y , W/S = Z. If we include the
possibility that S = 0, then x̃ = [U, V,W, S]T are
called the projective coordinates of the 3D point
M, which are not all equal to zero and defined up
to a scale factor. Therefore, x̃ and λx̃ (λ �= 0)
represent the same projective point. When S �= 0,
x̃ = SM̃. When S = 0, we say that the point is
at infinity. A 4 × 4 nonsingular matrix H defines
a linear transformation from one projective point
to another, and is called the projective transfor-
mation. The matrix H, of course, is also defined
up to a nonzero scale factor, and we write

ρỹ = Hx̃ , (1)

if x̃ is mapped to ỹ by H. Here ρ is a nonzero
scale factor.

Proposition 2. Given two (perspective) im-
ages with unknown intrinsic parameters of a
scene, the 3D structure of the scene can be re-
constructed up to an unknown projective trans-
formation as soon as the epipolar geometry (i.e.,
the fundamental matrix) between the two images
is known.

Assume that the true camera projection matri-
ces are P and P′. From (6), we have the following
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relation

F = [P′p⊥]×P
′P+ ,

where F is the known fundamental matrix. The
3D structure thus reconstructed is M. The propo-
sition says that the 3D structure H−1M̃, where H
is any projective transformation of the 3D space,
is still consistent with the observed image points
and the fundamental matrix. Following the pin-
hole model, the camera projection matrices corre-
sponding to the new structure H−1M̃ are

P̂ = PH and P̂′ = P′H ,

respectively. In order to show the above proposi-
tion, we only need to prove

[P̂′p̂⊥]×P̂
′P̂+ = λF ≡ λ[P′p⊥]×P

′P+ , (2)

where p̂⊥ = (I−P̂+P̂)ω̂ with ω̂ any 4-vector, and
λ is a scalar since F is defined up to a scale factor.
The above result has been known for several years.
In (Xu and Zhang 1996), we provide a simple proof
through pure linear algebra.

A.2. Computing Camera Projection Ma-

trices

The projective reconstruction is very similar to the
3D reconstruction when cameras are calibrated.
First, we need to compute the camera projection
matrices from the fundamental matrix F with re-
spect to a projective basis, which can be arbitrary
because of Proposition 2.

A.2.1. Factorization Method

Let F be the fundamental matrix for the two cam-
eras. There are an infinite number of projec-
tive bases which all satisfy the epipolar geome-
try. One possibility is to factor F as a product
of an antisymmetric matrix [e′]× (e′ is in fact the
epipole in the second image) and a matrixM, i.e.,
F = [e′]×M. A canonical representation can then
be used:

P = [I 0] and P′ = [M e′] .

It is easy to verify that the above P and P′ do
yield the fundamental matrix.

The factorization of F into [e′]×M is in general
not unique, because if M is a solution then M +
e′vT is also a solution for any vector v (indeed,
we have always [e′]×e

′vT = 0). One way to do
the factorization is as follow (Luong and Viéville
1994). Since FTe′ = 0, the epipole in the second
image is given by the eigenvector of matrix FFT

associated to the smallest eigenvalue. Once we
have e′, using the relation

‖v‖2I3 = vvT − [v]2× ∀v ,
we have

F =
1

‖e′‖2
(e′e′T − [e′]2×)F

=
1

‖e′‖2
e′e′TF︸ ︷︷ ︸

0

+[e′]×

(
− [e′]×

‖e′‖2
F

)

︸ ︷︷ ︸
M

.

The first term on the right hand is equal to 0 be-
cause FTe′ = 0. We can thus define theM matrix
as

M = − 1

‖e′‖2
[e′]×F .

This decomposition is used in (Beardsley et al.
1994). Numerically, better results of 3D recon-
struction are obtained when the epipole e is nor-
malized such that ‖e‖ = 1.

A.2.2. Choosing a Projective Basis

Another possibility is to choose effectively five
pairs of points, each of four points not being copla-
nar, between the two cameras as a projective ba-
sis. We can of course choose five corresponding
points we have identified. However, the precision
of the final projective reconstruction will depend
heavily upon the precision of the pairs of points.
In order to overcome this problem, we have chosen
in (Zhang, Faugeras and Deriche 1995) the follow-
ing solution. We first choose five arbitrary points
in the first image, noted by mi (i = 1, . . . , 5).
Although they could be chosen arbitrarily, they
are chosen such that they are well distributed in
the image to have a good numerical stability. For
each point mi, its corresponding epipolar line in
the second image is given by l′i = Fmi. We can
now choose an arbitrary point on l′i as m′

i, the
corresponding point of mi. Finally, we should
verify that none of four points is coplanar, which
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can be easily done using the fundamental ma-
trix (Faugeras 1992, credited to Roger Mohr). The
advantage of this method is that the five pairs of
points satisfy exactly the epipolar constraint.

Once we have five pairs of points (mi,m
′
i),

(i = 1, . . . , 5), we can compute the camera pro-
jection matrices as described in (Faugeras 1992).
Assigning the projective coordinates (somewhat
arbitrarily) to the five reference points, we have
five image points and space points in correspon-
dence, which provides 10 constraints on each cam-
era projection matrix, leaving only one unknown
parameter. This unknown can then be solved us-
ing the known fundamental matrix.

A.3. Reconstruction Techniques

Now that the camera projection matrices of the
two images with respect to a projective basis are
available, we can reconstruct 3D structures with
respect to that projective basis from point matches.

A.3.1. Linear Methods

Given a pair of points in correspondence: m =
[u, v]T and m′ = [u′, v′]T . Let x̃ = [x, y, z, t]T be
the corresponding 3D point in space with respect
to the projective basis chosen before. Following
the pinhole model, we have:

s [u, v, 1]
T

= P [x, y, z, t]
T
, (3)

s′ [u′, v′, 1] = P′ [x, y, z, t]
T
, (4)

where s and s′ are two arbitrary scalars. Let pi

and p′
i be the vectors corresponding to the ith row

of P and P′, respectively. The two scalars can
then be computed as: s = pT

3 x̃ , s′ = p′
3
T
x̃ .

Eliminating s and s′ from (3) and (4) yields the
following equation:

Ax̃ = 0 , (5)

where A is a 4 × 4 matrix given by

[p1 − up3, p2 − vp3, p
′
1 − u′p′

3, p
′
2 − v′p′

3]
T
.

As the projective coordinates x̃ are defined up to
a scale factor, we can impose ‖x̃‖ = 1, then the so-
lution to (5) is well known (see also the description

in Sect. 3.2.2) to be the eigenvector of the matrix
ATA associated to the smallest eigenvalue.

If we assume that no point is at infinity, then
we can impose t = 1, and the projective recon-
struction can be done exactly in the same way as
for the Euclidean reconstruction. The set of ho-
mogeneous equations, Ax̃ = 0, is reduced to a set
of 4 non-homogeneous equations in 3 unknowns
(x, y, z). A linear least-squares technique can be
used to solve this problem.

A.3.2. Iterative Linear Methods

The previous approach has the advantage of pro-
viding a closed-form solution, but it has the dis-
advantage that the criterion that is minimized
does not have a good physical interpretation. Let
us consider the first of the equations (5). In
general, the point x̃ found will not satisfy this
equation exactly; rather, there will be an error
ǫ1 = pT

1 x̃ − upT
3 x̃. What we really want to min-

imize is the difference between the measured im-
age coordinate u and the projection of x̃, which is
given by pT

1 x̃/p
T
3 x̃. That is, we want to minimize

ǫ′1 = pT
1 x̃/p

T
3 x̃− u = ǫ1/p

T
3 x̃ .

This means that if the equation had been weighted
by the factor 1/w1 where w1 = pT

3 x̃, then the re-
sulting error would have been precisely what we
wanted to minimize. Similarly, the weight for the
second equation of (5) would be 1/w2 = 1/w1,
while the weight for the third and fourth equa-
tion would be 1/w3 = 1/w4 = 1/p′T

3 x̃. Finally,
the solution could be found by applying exactly
the same method described in the last subsection
(either eigenvector computation or linear least-
squares).

Like the method for estimating the fundamental
matrix described in Sect. 3.4, the problem is that
the weights wi depends themselves on the solu-
tion x̃. To overcome this difficulty, we apply an
iterative linear method. We first assume that all
wi = 1 and run a linear algorithm to obtain an
initial estimation of x̃. The weights wi are then
computed from this initial solution. The weighted
linear least-squares is then run for an improved
solution. This procedure can be repeated several
times until convergence (either the solution or the
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weight does not change between successive itera-

tions). Two iterations are usually sufficient.

A.3.3. Nonlinear Methods

As said in the last paragraph, the quantity we

want to minimize is the error measured in the im-

age plane between the observation and the projec-

tion of the reconstruction, that is

(u− pT
1 x̃

pT
3 x̃

)2 + (v − pT
2 x̃

pT
3 x̃

)2

+ (u′ − p′
1
T
x̃

p′
3
T
x̃
)2 + (v′ − p′

2
T
x̃

p′
3
T
x̃
)2 .

However, there does not exist any closed-form so-

lution, and we must use any standard iterative

minimization technique, such as the Levenberg-

Marquardt. The initial estimate of x̃ can be ob-

tained by using any linear technique described be-

fore.

Hartley and Sturm (1994) reformulates the

above criterion in terms of the distance between a

point and its corresponding epipolar line defined

by the ideal space point being sought. By parame-

terizing the pencil of epipolar lines in one image by

a parameter t (which defines also the correspond-

ing epipolar line in the other image by using the

fundamental matrix), they are able to transform

the minimization problem to the resolution of a

polynomial of degree 6 in t. There may exist up

to 6 real roots, and the global minimum can be

found by evaluating the minimization function for

each real root.

More projective reconstruction techniques can

be found in (Hartley and Sturm 1994, Rothwell,

Csurka and Faugeras 1995), but it seems to us that

the iterative linear or the nonlinear techniques

based on the image errors are the best that one

can recommend.

Appendix B

Approximate Estimation of Fundamental

Matrix from a General Matrix

We first introduce the Frobenius norm of a matrix

A = [aij ] (i = 1, . . . ,m; j = 1, . . . , n), which is

defined by

‖A‖ =

√√√√
m∑

i=1

n∑

j=1

a2ij . (1)

It is easy to show that for all orthogonal matrices
U and V of appropriate dimensions, we have

‖UAVT ‖ = ‖A‖ .

Proposition 3. We are given a 3 × 3 matrix
F, whose singular value decomposition (SVD) is

F = USVT ,

where S = diag (σ1, σ2, σ3) and σi (i = 1, 2, 3) are
singular values satisfying σ1 ≥ σ2 ≥ σ3 ≥ 0. Let
Ŝ = diag (σ1, σ2, 0), then

F̂ = UŜVT

is the closest matrix to F that has rank 2. Here,
“closest” is quantified by the Frobenius norm of
F− F̂, i.e., ‖F− F̂‖.

Proof: We show this in two parts.
First, the Frobenius norm of F− F̂ is given by

‖F− F̂‖ = ‖UT (F− F̂)V‖
= ‖diag (0, 0, σ3)‖ = σ3 .

Second, for some 3 × 3 matrix G of rank 2, we
can always find an orthogonal vector z such that
Gz = 0, i.e., z is the null vector of matrix G.
Since

Fz =

3∑

i=1

σi(v
T
i z)ui ,

where ui and vi are the ith column vectors of U
and V, we have

‖F−G‖2 ≥ ‖(F−G)z‖2 = ‖Fz‖2

=

3∑

i=1

σ2
i (v

T
i z)

2 ≥ σ2
3 .

This implies that F̂ is indeed the closest to F,
which completes the proof.

In the above derivation, we have used the follow-
ing inequality which relates the Frobenius norm to
the vector norm:

‖A‖ ≥ max
‖z‖=1

‖Az‖ ≥ ‖Az‖ with ‖z‖ = 1.
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The reader is referred to (Golub and van Loan
1989) for more details.

Appendix C

Image Coordinates and Numerical Condi-

tioning of Linear Least-Squares

This section describes the relation between the nu-
merical conditioning of linear least-squares prob-
lems and the image coordinates, based on the
analysis given in (Hartley 1995).

Consider the method described in Sect. 3.2.2,
which consists in finding the eigenvector of the
9×9 matrixUT

nUn associated with the least eigen-
value (for simplicity, this vector is called the least
eigenvector in the sequel). This matrix can be ex-
pressed as UT

nUn = UDUT , where U is orthog-
onal and D is diagonal whose diagonal entries λi

(i = 1, . . . , 9) are assumed to be in non-increasing
order. In this case, the least eigenvector of UT

nUn

is the last column of U. The ratio λ1/λ8, de-
noted by κ, is the condition number of the matrix
UT

nUn (because λ9 is expected to be 0). This pa-
rameter is well known to be an important factor in
the analysis of stability of linear problems (Golub
and van Loan 1989). If κ is large, then very small
changes to the data can cause large changes to the
solution. The sensitivity of invariant subspaces is
discussed in detail in (Golub and van Loan 1989,
p.413).

The major reason for the poor condition of the
matrix UT

nUn ≡ X is the lack of homogeneity
in the image coordinates. In an image of di-
mension 200 × 200, a typical image point will
be of the form (100, 100, 1). If both m̃i and m̃′

i

are of this form, then ui will be of the form
[104, 104, 102, 104, 104, 102, 102, 102, 1]T . The con-
tribution to the matrix X is of the form uiu

T
i ,

which will contain entries ranging between 108

and 1. The diagonal entries of X will be of
the form [108, 108, 104, 108, 108, 104, 104, 104, 1]T .
Summing over all point matches will result in
a matrix X whose diagonal entries are approx-
imately in this proportion. We denote by Xr

the trailing r × r principal submatrix (that is the
last r columns and rows) of X, and by λi(Xr)
its ith largest eigenvalue. Thus X9 = X =
UT

nUn and κ = λ1(X9)/λ8(X9). First, we con-

sider the eigenvalues of X2. Since the sum of

the two eigenvalues is equal to the trace, we see

that λ1(X2) + λ2(X2) = trace(X2) = 104 + 1.

Since eigenvalues are non-negative, we know that

λ1(X2) ≤ 104 + 1. From the interlacing prop-

erty (Golub and van Loan 1989, p.411), we arrive

that

λ8(X9) ≤ λ7(X8) ≤ · · · ≤ λ1(X2) ≤ 104 + 1 .

On the other hand, also from the interlacing

property, we know that the largest eigenvalue

of X is not less than the largest diagonal en-

try, i.e., λ1(X9) ≥ 108. Therefore, the ratio

κ = λ1(X9)/λ8(X9) ≥ 108/(104 + 1). In fact,

λ8(X9) will usually be much smaller than 104 + 1

and the condition number will be far greater. This

analysis shows that scaling the coordinates so that

they are on the average equal to unity will improve

the condition of the matrix UT
nUn.

Now consider the effect of translation. A usual

practice is to fix the origin of the image coor-

dinates at the top left hand corner of the im-

age, so that all the image coordinates are posi-

tive. In this case, an improvement in the condi-

tion of the matrix may be achieved by translating

the points so that the centroid of the points is at

the origin. Informally, if the first image coordi-

nates (the u-coordinates) of a set of points are

{101.5, 102.3, 98.7, . . . }, then the significant val-

ues of the coordinates are obscured by the coor-

dinate offset of 100. By translating by 100, these

numbers are changed to {1.5, 2.3,−1.3, . . . }. The

significant values become now prominent.

Thus, the conditioning of the linear least-

squares process will be considerably improved by

translating and scaling the image coordinates, as

described in Sect. 3.2.5.
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École Polytechnique.



Determining the Epipolar Geometry and its Uncertainty: A Review 197

Longuet-Higgins, H.: 1981, A computer algorithm for re-
constructing a scene from two projections, Nature
293, 133–135.

Luong, Q.-T.: 1992, Matrice Fondamentale et Calibration
Visuelle sur l’Environnement-Vers une plus grande
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