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Deterministic di�erential equations are useful tools for mathematical modelling. �e consideration of uncertainty into their
formulation leads to random di�erential equations. Solving a random di�erential equation means computing not only its solution
stochastic process but also its main statistical functions such as the expectation and standard deviation. �e determination of its
	rst probability density function provides a more complete probabilistic description of the solution stochastic process in each time
instant. In this paper, one presents a comprehensive study to determinate the 	rst probability density function to the solution of
linear random initial value problems taking advantage of the so-called random variable transformation method. For the sake of
clarity, the study has been split into thirteen cases depending on the way that randomness enters into the linear model. In most
cases, the analysis includes the speci	cation of the domain of the 	rst probability density function of the solution stochastic process
whose determination is a delicate issue. A strong point of the study is the presentation of a wide range of examples, at least one of
each of the thirteen casuistries, where both standard and nonstandard probabilistic distributions are considered.

1. Introduction and Motivation

Over the last few decades, random di�erential equations
(RDEs) have been demonstrated to be powerful tools to
model numerous problems appearing in many di�erent areas
such as physics, engineering, economics, epidemiology, and
hydrology. �e consideration of randomness into their for-
mulation through initial/boundary conditions, source terms,
and/or coe
cients adapts better than their deterministic
counterpart to model the uncertainty associate to the experi-
mental measurement required to set the above inputs as well
as the inherent complexity involved in many real modelling
problems. �is approach leads to face new and exciting
questions di�erent from the corresponding ones appearing in
the deterministic scenario. Indeed, instead of obtaining just
the solution stochastic process (SP) of RDEs, the theory is
also concerned with its probabilistic properties, mainly the
computations of the expectation and variance functions. �e
computation of the 	rst probability density function (1-PDF)

of the solution SP, say �(�), is much more desirable since,
from it, one can compute the previous statistical functions
as simple particular cases and, in addition, it provides a
comprehensive probabilistic description of the solution SP for
each time instant �. However, the computation of the 1-PDF
constitutes a major challenge that can been achieved in only
a few cases.

�e aim of this paper is to determine the 1-PDF, �1(�, �),
of the solution SP �(�) to the linear random initial value
problem (IVP):

�̇ (�) = �� (�) + 	, � > �0,� (�0) = �0, (1)

where the data �0, 	 and � are assumed to be continuous
random variables (continuous RVs) de	ned on a common
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probability space (Ω,F,P), whose domains are assumed to
be �0 = {�0 = �0 (�) , � ∈ Ω : �0,1 ≤ �0 ≤ �0,2} ,� = {� = 	 (�) , � ∈ Ω : �1 ≤ � ≤ �2} ,� = {� = � (�) , � ∈ Ω : �1 ≤ � ≤ �2} , (2)

respectively. Hereina�er, in order to avoid cumbersome
notation, wewill hide the� sample dependence whenwriting
domains of continuous RVs. In this way, for instance, the
domain �0 will be written as �0 = {�0 : �0,1 ≤ �0 ≤ �0,2}
rather than the 	rst expression in (2). �e same can be said
for �, �, and the domain of any other RV throughout
this paper. We allow the le� (right) endpoint of each interval
of the domain takes the value −∞ (+∞); that is, we also
consider unbounded continuous RVs.�roughout the paper,
we will denote by ��0(�0), ��(�), and ��(�) the PDFs of the
continuous RVs�0,	, and�, respectively.�e case where�0,	 and � are pairwise dependent continuous RVs will also be
treated. In such case, ��0,�(�0, �), ��0,�(�0, �), and ��,�(�, �)
will denote the joint PDFs of the random vectors: (�0, 	),(�0, �), and (	, �), respectively. Finally, wewill also deal with
the case where �0, 	, and � are dependent continuous RVs,
then��0,�,�(�0, �, �)will represent their joint PDF.Notice that
the domains of these two- and three-dimensional PDFs o�en
can be written directly as products of the sets �0 , �, and� given by (2).

In order to compute the 1-PDF �1(�, �), random variable
transformation (RVT) method will be applied. RVT is a
probability technique that allows us to calculate the PDF��(�) of a RV � resulting a�er the algebraic transformation
of another RV, say �, whose PDF, ��(�), is known. In its
simplest scalar formulation, the method reads as follows: if� is a continuous RV lying on the domain or support � ={� : �1 ≤ � ≤ �2}, whose PDF is ��(�) > 0 and � = �(�)
being � : � ⊆ R → R a monotone mapping on�, then�� (�) = �� (� (�)) ���������d� (�)d� ��������� , � = {� : �1 ≤ � ≤ �2} ,

(3)

where �(�) = � is the inverse function of � on �, which
is assumed to have a continuous derivative on � and|d�(�)/d�| denotes the modulus of the derivative of �(�). In
the particular case that � increases (decreases) on �, the
domain � of � = �(�) is determined by � = {� : �1 =�(�1) ≤ � ≤ �(�2) = �2} (� = {� : �1 = �(�2) ≤ � ≤ �(�1) =�2}).

Notice that we are interested in computing the 1-PDF�1(�, �) to the solution �(�) of (1) which is a SP rather
than a RV, whereas RVT technique is mainly designed to
handle (transformations of) continuous RVs. In order to take
advantage of RVT, we 	rst will 	x �̂ : �̂ > �0 and then
we will apply RVT to the (transformed) RV �(�̂). �erefore,
we can say that RVT technique provides a time-transversal
description of the 1-PDF �1(�, �).

Some of the earliest applications of RVTmethod to RDEs
can be found in [1, ch.6] where this technique is applied to

study a linear oscillator assuming randomness just in the
two initial conditions related to the position and velocity.
Most of the subsequent contributions have focused on the
study of particular equations assuming speci	c probabilistic
distributions for the involved uncertainty which facilitates
the analysis. Here, we point out some recent contributions
that illustrate quite well the current trends of RVTmethod in
dealing with RDEs. In [2], authors solve the radiative transfer
equation in a semi-in	nite continuous stochastic medium
with Rayleigh scattering. RVTmethod is applied to obtain the
1-PDF of the solution when the optical depth space variable
is assumed to be a RV belonging to the following particular
distributions: exponential and Gaussian. Higher order sta-
tistical moments of the solution stochastic process are also
computed. An analogous study on the stochastic transport
equation of neutral particles with anisotropic scattering can
be found in [3]. In [4, 5], authors apply RVT technique to
develop a stochastic 	nite element method for solving some
stochastic problems with random excitation.

�e application of RVT technique to the exact determi-
nation of the 1-PDF of the solution SP of RDEs requires
the previous computation of the exact solution of the RDE
under study. However, in the outstanding contribution [6],
author takes advantage of RVTmethod togetherwith classical
numerical techniques to illustrate, through a wide range of
examples, the potentiality of this method to approximate the
1-PDF for the solution SP of some RDEs.

As it has been announced previously, in this paper, we
will compute the 1-PDF of the IVP (1) whose exact solution
is available. For the sake of clarity, in the presentation, we
will divide the study in the three main IVPs (I)–(III) listed
in Table 1. In Case (I), we consider the homogeneous (H)
problem whereas Cases (II) and (III) deal with the nonho-
mogeneous (NH) cases. Within each case, we distinguish, in
a systematic manner, the di�erent possibilities regarding the
randomness of each of the involved parameters �0, 	, and�.
�ese casuistries include the situations where the parameters
are statistically dependent. In this context, and as it has been
pointed out previously, if for example�0 and	 are statistically
dependent, then ��0,�(�0, �) will denote the joint PDF of the
randomvector (�0, 	), and the same can be said for the rest of
the possibilities.�e IVPs (I) and (II) can be seen as particular
cases of the IVP (III) when P[{� ∈ Ω : 	(�) = 0}] = 1 and
P[{� ∈ Ω : �(�) = 0}] = 1, respectively. When uncertainty
can only be attributted to �0 and 	, and the parameter �
can be set in a deterministic way, it is more realistic and
convenient to assume that the joint PDF��0 ,�(�0, �) is known
rather than ��0,�,�(�0, �, �). Notice that the construction of
the joint PDF of only two continuous RVs from measured
data can become a di
cult problem which accuracy can
deteriorate severely if one includes a new and inappropriate
RV into its formulation [7]. �e most accuracy of the PDF
of the random input parameter, the best approximation of
the 1-PDF of the solution SP of the IVP (1). �erefore, the
consideration of all the thirteen separate cases listed in Table 1
turns out more recommendable from a practical point of
view.

For the sake of clarity in the development of all the cases
listed in Table 1, throughout this paper, the input parameters,
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Table 1: List of the thirteen di�erent cases considered to perform the full study depending on whether the IVP is homogeneous (H) or non-
homogeneous (NH) and the form that uncertainty is considered into the problem: just through one RV:�0, 	, or� (Cases I-II-III.1, I-II-III.2,
and III.3), two RVs: (�0, 	), (�0, �), or (	,�) (Cases I-II.3 and III.4-5-6), and the three involved RVs: (�0, 	, �) (Case III.7).
Type IVP Case

H
�̇ (�) = �� (�)� (�0) = �0

(I)

Case I.1 �0 is a random variable

Case I.2 � is a random variable

Case I.3 (�0, �) is a random vector

NH

�̇ (�) = 	� (�0) = �0
(II)

Case II.1 �0 is a random variable

Case II.2 	 is a random variable

Case II.3 (�0, 	) is a random vector

�̇ (�) = �� (�) + 	� (�0) = �0
(III)

Case III.1 �0 is a random variable

Case III.2 	 is a random variable

Case III.3 � is a random variable

Case III.4 (�0, 	) is a random vector

Case III.5 (�0, �) is a random vector

Case III.6 (	,�) is a random vector

Case III.7 (�0, 	, �) is a random vector

which are assumed to be continuous RVs, will be denoted by
upper cases, while deterministic magnitudes will be written
by lower cases. More precisely, for instance, in Case III.4,
we will denote by �0 and 	 the random inputs, while the
multiplicative coe
cient in the RDE will be denoted by �
rather than �.

�e paper is organized as follows. In Section 2 we sum-
marize the main results concerned with RVT that will be
applied throughout the paper. We particularly state di�erent
versions of this useful technique including its application to
di�erent transformations that will facilitate the presentation
of the results. Sections 3, 4, and 5 provide a detailed study
where the 1-PDF of the solution SP, �(�), corresponding to
the IVPs (I), (II), and (III) listed in Table 1, respectively, is
computed. For each one of the thirteen casuistries, the study
shows, at least, an illustrative example.�e choice of the PDFs
considered in the examples has beenmade to show the ability
of the method to deal with both standard and non-standard
dependent probability distributions. In Section 6 we include
some considerations related to the application and better
understanding of RVT method that we found particularly
useful. Conclusions are drawn in the closing section.

2. Preliminaries

Below, we state several versions of the RVT technique as well
as some related results emerging from its applications that
will play a relevant role in our subsequent developments.
Most of these results can be found in [8, 9] or they are a direct
consequence of them.

�eorem 1 (RVT technique: scalar version). Let � be a
continuous RV with PDF ��(�) and domain � = {� :��(�) > 0}. Let� = �(�) be a newRV generated by themap � :
R → R which is assumed to be continuously di�erentiable on� and such that ��(�) ̸= 0 except at a �nite number of points.

Let one suppose that, for each � ∈ R, there exist  (�) ≥ 1
points: �1(�), �2(�), . . . , ��(	)(�) ∈ � such that� (�
 (�)) = �, �� (�
 (�)) ̸= 0, " = 1, 2, . . . ,  (�) . (4)
�en�� (�) = {{{{{

�(	)∑
�=1
�� (�
 (�)) �������(�
(�))�����−1 *�  (�) > 0,0 *�  (�) = 0.

(5)

Although�eorem 1 uni	es the treatment of the di�erent
cases that one can present to compute the PDF, ��(�), in
practice, it is easier to determine ��(�) by dividing the
domain of RV � into subintervals where the mapping � is
monotone and then applying formula (3) on each subinterval.
�e process to compute ��(�) on the whole domain of� is completed by adding the corresponding expressions
calculated previously for each subinterval.

In the simplest but signi	cant case where the map � is
linear, �eorem 1 reads as follows.

Proposition 2 (RVT technique: linear transformation). Let� be a continuous RV with domain � = {� : �1 ≤� ≤ �2} and PDF ��(�). �en, the PDF ��(�) of the linear
transformation � = -� + 3, - ̸= 0 is given by�� (�) = 1|-|�� (� − 3- ) ,
6ℎ8�8 {�1 = -�1 + 3 ≤ � ≤ -�2 + 3 = �2 *� - > 0,�1 = -�2 + 3 ≤ � ≤ -�1 + 3 = �2 *� - < 0. (6)

If - = 0, then � = 3 w.p. 1 stands for with probability 1 and�� (�) = ; (� − 3) , −∞ < � < ∞, (7)

where ;(⋅) denotes the Dirac delta distribution.
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�e following result is a direct application of �eorem 1
in the case that �(�) = - exp(3�) + @.
Proposition 3 (RVT technique: exponential transformation).
Let � be a continuous RV with domain � = {� : �1 ≤ � ≤�2} and PDF ��(�). �en the PDF ��(�) of the exponential
transformation � = - exp(3�) + @, with -3 ̸= 0, is given by�� (�) = 1����3 (� − @)������ ( 13 ln(� − @- )) ,
6ℎ8�8 {�1 = -e�1 + @ ≤ � ≤ -e�2 + @ = �2 *� -3 > 0,�1 = -e�2 + @ ≤ � ≤ -e�1 + @ = �2 *� -3 < 0.

(8)

If - = 0 or 3 = 0, then � = - + @ with probability 1 and�� (�) = ; (� − (- + @)) , −∞ < � < ∞. (9)

�e computation of the joint PDF of two or more contin-
uous RVs using the RVT method can also be performed by
using the following generalization of formula (3).

�eorem 4 (RVT technique: multidimensional version). Let
X = (�1, . . . , ��) be a random vector of dimension Cwith joint
PDF �X(x). Let r : R� → R

� be a one-to-one deterministic
map which is assumed to be continuous with respect to each
one of its arguments and with continuous partial derivatives.
�en, the joint PDF �Y(y) of the random vector Y = r(X) is
given by �Y (y) = �X (s (y)) ����D����� , (10)

where s(y) is the inverse transformation of r(x): x = r−1(y) =
s(y) and D� is the Jacobian of the transformation; that is,

D� = det(ExEy) = det(E�1E�1 ⋅ ⋅ ⋅ E��E�1
... d

...E�1E�� ⋅ ⋅ ⋅ E��E��), (11)

which is assumed to be di�erent from zero.

As we will see later, the analysis of Cases I-3, II-3, and
III-3-6 requires the computation of the PDF of the sum
and product of two continuous RVs which turns out by
the application of �eorem 4 in its two-dimensional version.
�us, for the sake of clarity in the exposition, we specialize
�eorem 4 in this signi	cant case.

�eorem 5 (RVT technique: two-dimensional version). Let
X = (�1, �2) be a two-dimensional RV with joint PDF��1,�2(�1, �2). Let �1 = �1 (�1, �2) ,�2 = �2 (�1, �2) , (12)

be a one-to-one deterministic map fromR
2 toR2; that is, there

exists its inverse transformation:�1 = �1 (�1, �2) ,�2 = �2 (�1, �2) , (13)

on the range of the map (12). Let one assume that both maps
(12) and (13) are continuous. Let further assume that the
following partial derivativesE�1E�1 , E�1E�2 , E�2E�1 , E�2E�2 , (14)

exist and are continuous and the Jacobian D2 of the inverse map
satis�es

D2 = det(E�1E�1 E�2E�1E�1E�2 E�2E�2) ̸= 0, (15)

on the range of the transformation (12). �en, the joint PDF��1,�2(�1, �2) of the two-dimensional RV Y = (�1, �2) =(�1(�1, �2), �2(�1, �2)) is given by��1,�2 (�1, �2) = ��1,�2 (�1 (�1, �2) , �2 (�1, �2)) ����D2���� . (16)

Next, we apply �eorem 5 in the particular case that
transformation �1 only depends on variable �1 and �2 only
depends on variable �2. As it will be seen later, this result will
be crucial in further applications.

Proposition 6. Let X = (�1, �2) be a two-dimensional RV
with joint PDF ��1,�2(�1, �2). Let�1 = �1 (�1) ,�2 = �2 (�2) , (17)

be a one-to-one deterministic map fromR
2 toR2; that is, there

exists its inverse transformation:�1 = �1 (�1) ,�2 = �2 (�2) , (18)

on the range of the map (17). Let one assume that both maps
(17) and (18) are continuous and the two following derivatives
that exist are continuous and satisfyJ�1J�1 J�2J�2 ̸= 0, (19)

on the range of the transformation (17). �en, the joint PDF��1,�2(�1, �2) of the two-dimensional RV Y = (�1, �2) =(�1(�1), �2(�2)) is given by��1,�2 (�1, �2) = ��1,�2 (�1 (�1) , �2 (�2)) ��������J�1J�1 J�2J�2 �������� . (20)
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On the other hand, applying �eorem 5 to �1(�1, �2) =�1 + �2 and �2(�1, �2) = �1 (or �2(�1, �2) = �2) and�1(�1, �2) = �1�2 and �2(�1, �2) = �1 (or �2(�1, �2) = �2),
we obtain the PDF of the sum and product of two continuous
RVs, respectively. We state both results in the two following
propositions.

Proposition 7 (RVT technique: sum of two continuous RVs).
Let (�1, �2) be a continuous random vector with joint PDF��1,�2(�1, �2) and respective domains�1 = {�1 : �1,1 ≤ �1 ≤�1,2} and �2 = {�2 : �2,1 ≤ �2 ≤ �2,2}. �en the PDF ��1(�1)
of their sum �1 = �1 + �2 is given by��1 (�1) = ∫1,2

1,1
��1 ,�2 (�1, �1 − �1) J�1,�1,1 = �1,1 + �2,1 ≤ �1 ≤ �1,2 + �2,2 = �1,2, (21)

or, equivalent, by��1 (�1) = ∫2,2

2,1
��1 ,�2 (�1 − �2, �2) J�2,�1,1 = �1,1 + �2,1 ≤ �1 ≤ �1,2 + �2,2 = �1,2. (22)

If �1 and �2 are independent continuous RVs, since��1,�2(�1, �2) = ��1(�1)��2(�2), where ���(��) denotes the
PDF of��, * = 1, 2, (21) and (22) inform one that the PDF of the
sum of two independent continuous RVs is just the convolution
of their respective PDFs:��1 (�1) = ∫1,2

1,1
��1 (�1) ��2 (�1 − �1) J�1,L� ��1 (�1) = ∫2,2

2,1
��1 (�1 − �2) ��2 (�2) J�2. (23)

Proposition 8 (RVT technique: product of two continuous
RVs). Let (�1, �2) be a continuous random vector with joint
PDF ��1,�2(�1, �2) with respective domains �1 = {�1 ̸= 0 :�1,1 ≤ �1 ≤ �1,2} and �2 = {�2 : �2,1 ≤ �2 ≤ �2,2}. �en the
PDF ��1(�1) of their product �1 = �1�2 is given by��1 (�1) = ∫1,2

1,1
��1,�2 (�1, �1�1) 1�����1����J�1. (24)

Equivalently, if �1 = {�1 : �1,1 ≤ �1 ≤ �1,2} and �2 ={�2 ̸= 0 : �2,1 ≤ �2 ≤ �2,2}, then��1 (�1) = ∫2,2

2,1
��1,�2 (�1�2 , �2) 1�����2����J�2. (25)

If �1 and �2 are independent continuous RVs with PDF’s��1(�1) and ��2(�2), respectively, then (24) and (25) become��1 (�1) = ∫1,2

1,1
��1 (�1) ��2 (�1�1) 1�����1����J�1,L� ��1 (�1) = ∫2,2

2,1
��1 (�1�2)��2 (�2) 1�����2����J�2, (26)

respectively.

As usual we have not speci	ed the domain of variation of�1 in (24) and (25) since it is cumbersome. However, later we
will detail it in some illustrative cases where it appears (see
for instance Case III.6).

We close this section by extending Proposition 7 for the
case of three terms since it will be required to deal with
Case III.7. �is result comes directly from the application of
�eorem 4.

Proposition 9 (RVT technique: sum of three continuous
RVs). Let (�1, �2, �3) be a continuous random vector with
joint PDF ��1,�2 ,�3(�1, �2, �3) and respective domains �1 ={�1 : �1,1 ≤ �1 ≤ �1,2}, �2 = {�2 : �2,1 ≤ �2 ≤ �2,2}, and�3 = {�3 : �3,1 ≤ �3 ≤ �3,2}. �en the PDF ��1(�1) of their
sum �1 = �1 + �2 + �3 is given by��1 (�1) = ∫3,2

3,1
∫2,2

2,1
��1,�2,�3 (�1 − �2 − �3, �2, �3) J�2J�3,�1,1 = �1,1 + �2,1 + �3,1 ≤ �1 ≤ �1,2 + �2,2 + �3,2 = �1,2,

(27)

or, equivalent, by��1 (�1) = ∫3,2

3,1
∫1,2

1,1
��1,�2 ,�3 (�1, �1 − �1 − �3, �3) J�1J�3,

(28)

or��1 (�1) = ∫2,2

2,1
∫1,2

1,1
��1,�2 ,�3 (�1, �2, �1 − �1 − �2) J�1J�2.

(29)

3. Case Study: Initial Value Problem (I)

�is section is devoted to obtain the 1-PDF �1(�, �) of the
solution SP�(�) to the IVP (I) in each of the three cases listed
in Table 1. Notice that �(�) has the following expression:� (�) = �0e

�(�−�0), � ≥ �0. (30)

3.1. Case I.1: �0 Is a Random Variable. As we pointed out
previously for the sake of clarity in the presentation, we
rewrite (30) by distinguishing the deterministic character of
parameter � (which is written with a lower case letter):� (�) = �0e

�(�−�0), � ≥ �0. (31)

Next, we 	rst 	x � : � ≥ �0 and denote � = �(�). �en we
apply Proposition 2 to- = e�(�−�0) > 0, 3 = 0, � = �0, � = �. (32)

�en, taking into account that the domain of RV �0 is given
by (2), one gets�1 (�, �) = e−�(�−�0)��0 (�e−�(�−�0)) , �1 ≤ � ≤ �2, � ≥ �0,

(33)
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Figure 1: Plot of �1(�, �) given by (35) in Example 10 at di�erent
values of � = {0, 0.25, 0.5, 0.75, . . . , 2} (corresponding to the solid
lines) in the case that �0 ∼ R(S = 0; U2 = 1), �0 = 0, and � = −1.
where �1 = �0,1e�(�−�0), �2 = �0,2e�(�−�0). (34)

We illustrate the previous development in the following
example where �0 is assumed to be a standard continuous
RV, although further distributions, not necessarily standard,
could be considered.

Example 10. Let us assume that �0 has a Gaussian distribu-
tion, �0 ∼ R(S; U2), S ∈ R, and U2 > 0. �erefore, according
to (33)-(34), the 1-PDF of �(�) is given by�1 (�, �) = 1√2WU2 e−(�(�−�0)+(1/2�2)(�e−�(�−�0)−�)2),− ∞ < � < +∞, � ≥ �0. (35)

For each � ≥ �0, the domain of � has been determined taking
into account in (34) that in this case �0,1 = −∞ and �0,2 =+∞. It can be checked that �1(�, �) is a PDF for each � ≥ �0.
Figure 1 shows �1(�, �) at di�erent values of � in the particular
case that �0 = 0, � = −1 and�0 ∼ R(0; 1), so S = 0 and U = 1.
3.2. Case I.2: � Is a Random Variable. First, we rewrite
(30) by highlighting the deterministic character of the initial
condition �0: � (�) = �0e�(�−�0), � ≥ �0. (36)

Next, we 	x � : � > �0 and denote � = �(�). In the
	rst analysis, we will assume that �0 ̸= 0. �en we apply
Proposition 3 to- = �0 ̸= 0, 3 = � − �0, � = �,@ = 0, � = �. (37)

�en, taking into account that �/�0 = e�(�−�0) > 0 and the
domain of RV � is given by (2), one gets�1 (�, �) = 1(� − �0) |�|�� ( 1� − �0 ln( ��0)) ,�1 ≤ � ≤ �2, � > �0, (38)

where�1 = �0e�1(�−�0), �2 = �0e�2(�−�0), if �0 > 0,�1 = �0e�2(�−�0), �2 = �0e�1(�−�0), if �0 < 0. (39)

According to (2), if �0 = 0, then�1 (�, �) = ; (�) , −∞ < � < ∞, ∀� > �0. (40)

For � = �0, from (36) �(�) = �(�0) = �0, which is a
deterministic initial condition.�en its 1-PDF can be written
through the Dirac delta function as follows:�1 (�, �0) = ; (� − �0) , −∞ < � < ∞. (41)

In the example below, we illustrate the previous develop-
ment in the case where �0 > 0.
Example 11. Let us assume that� has a beta distribution,� ∼
Be(-; 3), -, 3 > 0, and �0 > 0. �erefore, according to (38)-
(39), the 1-PDF of �(�) is given by�1 (�, �) = 1	 (-, 3) |�| ( 1� − �0)� (ln( ��0))�−1

× (1 − 1� − �0 ln( ��0))�−1,�0 ≤ � ≤ �0e�−�0 , � > �0,
(42)

where	(-, 3)denotes the beta deterministic special function.

Since � = �0e�(�−�0) and 0 ≤ � ≤ 1, it is guaranteed that 0 ≤(1/(� − �0)) ln(�/�0) ≤ 1. As a consequence, �1(�, �) given by
(42) is well de	ned. For each � > �0, the domain of � has been
determined taking into account in (39) that in this case �1 = 0
and �2 = 1. It can be checked that �1(�, �) is a PDF for each� > �0. Figure 2 shows �1(�, �) at di�erent values of � in the
particular case that � ∼ Be(2; 3), �0 = 0, and �0 = 1. For� = 0, according to (41), �1(�, 0) = ;(� − 1), −∞ < � < ∞.

3.3. Case I.3: (�0, �) Is a Random Vector. Let us denote by��0 ,�(�0, �) the joint PDF of the random vector (�0, �). Now,
we rewrite (30) in the following equivalent form:� (�) = �1 (�) �2 (�) , where {�1 (�) = �0,�2 (�) = e�(�−�0). (43)

In order to apply RVT, we 	x � : � > �0 and denote�1 = �1(�),�2 = �2(�), and� = �1 �2 = �(�). To compute the PDF of�,
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Figure 2: Plot of �1(�, �) given by (42) in Example 11 at di�erent
values of � = {0.1, 0.2, 0.3, . . . , 1} (corresponding to the solid lines)
in the case that � ∼ Be(2; 3), �0 = 0, and �0 = 1.
	rst we will determine the joint PDF of�1 and�2 by applying
Proposition 6 to�1 = �0, �2 = �, �1 (�0) = �0,�2 (�) = e�(�−�0), �1 = �1, �2 = �2,�1 (�1) = �1, �2 (�2) = ln (�2)� − �0 . (44)

�en taking into account

d�1 (�1)
d�1 d�2 (�2)

d�2 = 1�2 (� − �0) > 0, (45)

one gets��1,�2 (�1, �2) = 1�2 (� − �0)��0,�(�1, ln (�2)� − �0 ) ,�0,1 ≤ �1 ≤ �0,2, e�1(�−�0) ≤ �2 ≤ e�2(�−�0). (46)

Once the joint PDF of (�1, �2) has been determined, the
computation of the PDF of � = �1 �2 follows directly by

applying Proposition 8. Indeed, as �2 = e�(�−�0) ̸= 0, we will
apply formula (25) to �1 = �1 = �0, �2 = �2 = e�(�−�0) > 0
and �1 = � = �1 �2. �is yields�1 (�, �) = �� (�) = ∫�2,2

�2,1
��1 ,�2 ( ��2 , �2) 1�2 d�2, (47)

or equivalently by using (46):�1 (�, �) = ∫�2,2

�2,1
��0 ,�( ��2 , ln (�2)� − �0 ) 1(�2)2 (� − �0) d�2,�1 ≤ � ≤ �2, � > �0,

(48)

where �2,1 = e�1(�−�0), �2,2 = e�2(�−�0), (49)�1 = �0,1e�1(�−�0), �2 = �0,2e�2(�−�0), if �0,1 > 0,�1 = �0,1e�2(�−�0), �2 = �0,2e�2(�−�0), if �0,1�0,2 ≤ 0,�1 = �0,1e�2(�−�0), �2 = �0,2e�1(�−�0), if �0,2 < 0. (50)

Notice that if � = �0, then �(�) = �(�0) = �0 and �1(�, �)
is just the PDF of RV �0, which is easily obtained from the
datum ��0 ,�(�0, �) as the following marginal distribution:�1 (�0, �0) = ��0 (�0)= ∫�2

�1
��0 ,� (�0, �) d�, �0,1 ≤ �0 ≤ �0,2. (51)

Example 12. Let (�0, �) be a two-dimensional RVwhose PDF
is de	ned by

��0,� (�0, �) = {4��0 if 0 < �0, � < 1,0 otherwise. (52)

Notice that we are implicitly assuming independence
between �0 and � since the joint PDF ��0 ,�(�0, �) factorizes
as the product of the marginal PDFs ��0(�0) = 2�0,0 < �0 < 1, and ��(�) = 2�, 0 < � < 1. �en, taking into
account (48)–(50) and (52), the 1-PDF of �(�) is given by�1 (�, �)
= {{{{{{{{{{{

4�(� − �0)2 ∫e�−�0

1

ln (�2)(�2)3 d�2 if 0 ≤ � ≤ 1,4�(� − �0)2 ∫e�−�0

�

ln (�2)(�2)3 d�2 if 1 ≤ � ≤ e�−�0 , � > �0.
(53)

For the sake of clarity in the graphical representation of�1(�, �), Figure 3 shows two equivalent plots of �1(�, �) in the
case that �0 = 0. Notice that the plot on the le� side is
the resultant surface where some 1-PDF �1(�, �) have been
highlighted for di�erent 	xed times, whereas these 1-PDFs
have been represented in these 	xed times on the right side.
As the two integrals appearing into the expression (53) can be
computed explicitly, an equivalent expression to �1(�, �) with�0 = 0 is given by�1 (�, �)
= {{{{{

��2 e−2� (−1 + e2� − 2�) if 0 ≤ � ≤ 1,��2 (−e−2� (1 + 2�) + 1 + 2 ln (�)�2 ) if 1 ≤ � ≤ e�, � > 0.
(54)



8 Abstract and Applied Analysis

0.0

0.5

1.0

1.5 0

1

2

3

4

0.0

0.5

1.0

1.5

t

z

f
1
(z
,t
)

(a)

0.0

0.5

1.0

1.5 0

1

2

3

4

0.0

0.5

1.0

1.5

t

z

f
1
(z
,t
)

(b)

Figure 3: Plots of �1(�, �) given by (54) in Example 12 at di�erent values of � = {0.1, 0.2, 0.3, . . . , 1.5} (corresponding to the solid lines in both
plots) in the case that (�0, �) is a two-dimensional RV whose PDF is given by (52) and �0 = 0.
For � = 0,�1 (�0, 0) = ��0 (�0)= ∫1

0
4� �0 d� = 2�0, �0,1 = 0 < � < 1 = �0,2.

(55)

4. Case Study: Initial Value Problem (II)

�is section is addressed to determine the 1-PDF �1(�, �) of
the solution SP �(�) to the IVP (II) in each of the three cases
listed in Table 1. Notice that�(�) has the following expression:� (�) = �0 + 	 (� − �0) , � ≥ �0. (56)

4.1. Case II.1: �0 Is a Random Variable. As we did in Case
I.1, for the sake of clarity in the presentation, we rewrite (56)
by emphasizing the deterministic character of parameter �
(which is written with a lower case letter):� (�) = �0 + � (� − �0) , � ≥ �0. (57)

Next, we 	x � : � ≥ �0 and denote � = �(�). �en we apply
Proposition 2 to- = 1 > 0, 3 = � (� − �0) , � = �0, � = �.

(58)

Taking into account that the domain of RV�0 is given by (2),
one gets�1 (�, �) = ��0 (� − � (� − �0)) , �1 ≤ � ≤ �2, � ≥ �0,

(59)

where�1 = �0,1 + � (� − �0) , �2 = �0,2 + � (� − �0) . (60)
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Figure 4: Plot of �1(�, �) given by (61) in Example 13 at di�erent
values of � = {0, 0.25, 0.5, . . . , 2} (corresponding to the solid lines)
in the case that Ga(2; 1), � = 1, and �0 = 0.
Example 13. Let us assume that�0 has a gamma distribution,�0 ∼ Ga(-; 3), -, 3 > 0. �erefore, according to (59)-(60),
the 1-PDF of �(�) is given by:�1 (�, �) = 13�Γ (-)(� − � (� − �0))�−1e−(�−�(�−�0))/�,� (� − �0) ≤ � < +∞, � ≥ �0,

(61)

where Γ(-) denotes the deterministic gamma special func-
tion. For each � ≥ �0, the domain of � has been determined
taking into account in (60) that, in this case, �0,1 = 0 and�0,2 = +∞. It can be checked that �1(�, �) is a PDF for each� ≥ �0. Figure 4 shows �1(�, �) at di�erent values of � in the
particular case that �0 ∼ Ga(2; 1), � = 1, and �0 = 0.
4.2. Case II.2: 	 Is a Random Variable. First, we rewrite
(56) by highlighting the deterministic character of the initial
condition �0: � (�) = �0 + 	 (� − �0) , � ≥ �0. (62)



Abstract and Applied Analysis 9

0.2
0.4

0.6
0.8

1.0

t
1.0

1.5

2.0

2.5

3.0

z
0.0
0.5
1.0
1.5
2.0

f
1
(z
,t
)

Figure 5: Plot of �1(�, �) given by (67) in Example 14 at di�erent
values of � = {0.1, 0.2, 0.3, . . . , 1} (corresponding to the solid lines)
in the case that 	 ∼ `2(3), �0 = 0, and �0 = 1.
Next, we 	x � : � > �0 and denote � = �(�). �en we apply
Proposition 2 to- = � − �0 > 0, 3 = �0, � = 	, � = �. (63)

�is yields�1 (�, �) = 1(� − �0)�� (� − �0� − �0 ) , �1 ≤ � ≤ �2, � > �0,
(64)

where�1 = �0 + �1 (� − �0) , �2 = �0 + �2 (� − �0) . (65)

For � = �0, as it also occurred in Case I.2, �(�) = �(�0) = �0
and therefore�1 (�, �0) = ; (� − �0) , −∞ < � < ∞. (66)

Example 14. Let us assume that 	 has a `2-distribution with

] degrees of freedom, 	 ∼ `2(]), and ] > 0. �erefore,
according to (64)-(65), the 1-PDF of �(�) is given by�1 (�, �) = 1(� − �0) 12]/2 1Γ (]/2)(� − �0� − �0 )(]/2)−1

× e−(�−�0)/2(�−�0), �0 ≤ � < ∞, � > �0. (67)

For each � : � > �0, the domain of � has been determined
taking into account in (65) that in this case �1 = 0 and �2 = ∞.
It can be checked that �1(�, �) is a PDF for each � > �0. Figure
5 shows �1(�, �) at di�erent values of � in the particular case

that 	 ∼ `2 (3), �0 = 0, and �0 = 1. For � = 0, according to
(66), �1(�, 0) = ;(� − 1), −∞ < � < ∞.

4.3. Case II.3: (�0,	) Is a Random Vector. We will denote by��0 ,�(�0, �) the joint PDF of continuous RVs �0 and 	. Let us
rewrite (56) in the following equivalent form:� (�) = �1 (�) + �2 (�) , where {�1 (�) = �0,�2 (�) = 	 (� − �0) .

(68)

In order to compute the 1-PDF of �(�), �1(�, �), we 	rst 	x� : � > �0 and consider the continuous RVs �1 = �1(�),�2 = �2(�), and � = �1 + �2 = �(�). �en, we will apply
Propositions 6 and 7. Indeed, in a 	rst step we compute the
joint PDF ��1,�2(�1, �2) by applying Proposition 6 to�1 = �0, �2 = 	, �1 (�0) = �0,�2 (�) = � (� − �0) , �1 = �1, �2 = �2,�1 (�1) = �1, �2 (�2) = �2� − �0 . (69)

Taking into account that

d�1 (�1)
d�1 = 1 > 0, d�2 (�2)

d�2 = 1� − �0 > 0, (70)

one gets ��1 ,�2 (�1, �2) = 1� − �0��0,� (�1, �2� − �0) , (71)

where �1 and �2 lie on�1,1 = �0,1 ≤ �1 ≤ �0,2 = �1,2,�2,1 = �1 (� − �0) ≤ �2 ≤ �2 (� − �0) = �2,2. (72)

Finally, we apply Proposition 7 using the following identi	ca-
tion:�1 = �1,�2 = �2, and �1 = �. �is yields�1 (�, �) = ∫�1,2

�1,1
��1,�2 (�1, � − �1) d�1, (73)

or more explicitly, using that �1 = �0 and (71),�1 (�, �) = 1� − �0 ∫�0,2

�0,1
��0,� (�0, � − �0� − �0 ) d�0,�1 ≤ � ≤ �2, � > �0, (74)

where�1 = �0,1 + �1 (� − �0) ≤ � ≤ �0,2 + �2 (� − �0) = �2. (75)

If � = �0, then �(�) = �(�0) = �0 and, similar to Case I.3,�1(�, �) is just the PDF of RV�0, which is easily obtained from
the datum ��0,�(�0, �) as the following marginal distribution:�1 (�0, �0) = ��0 (�0)= ∫�2

�1
��0 ,� (�0, �) d�, �0,1 ≤ �0 ≤ �0,2. (76)

Example 15. Let (�0, 	) be a two-dimensional vector whose
joint PDF is given by��0,� (�0, �)= {{{14 + 14(�0)3� − 14�0�3 if − 1 < �0 < 1, −1 < � < 1,0 otherwise.

(77)
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Figure 6: Plot of �1(�, �) given by (79)-(80) in Example 15 at di�erent values of � = {0, 0.1, 0.2, . . . , 1.5} (corresponding to the solid lines in
both plots) in the case that (�0, 	) is a two-dimensional RV whose PDF is given by (77) and �0 = 0.
�en, carrying out the involved computations according to
(74)-(75), the 1-PDF of �(�) is given by

�1 (�, �) = 1� − �0 ∫min{1,�+�}

max{�−�,−1}
(14 + 14(�0)3 (� − �0� − �0 )− 14�0(� − �0� − �0 )3) d�0,− 1 − � ≤ � ≤ 1 + �.

(78)

Taking into account that �0 = 0, the value of this integral is
�1 (�, �) =

{{{{{{{{{{{{{{{{{{{
�1� (�, �) if � ≤ 1, −1 − � ≤ � ≤ −1 + �,�1� (�, �) if � ≤ 1, −1 + � ≤ � ≤ 1 − �,�1� (�, �) if � ≤ 1, 1 − � ≤ � ≤ 1 + �,�1� (�, �) if � ≥ 1, −1 − � ≤ � ≤ 1 − �,�1e (�, �) if � ≥ 1, 1 − � ≤ � ≤ −1 + �,�1� (�, �) if � ≥ 1, −1 + � ≤ � ≤ 1 + �,

(79)

where�1� (�, �)= (�3 + �4 + �3� + 120 (4�5 + 5�4� − (−4 + �) (1 + �)4)+ 120�2 (−4 − 5� − (4� − �) (� + �)4))× (4�4)−1,�1� (�, �) = 12 + �10 − �310 − ��22 ,

�1� (�, �)= (�3 + �4 − �3� + 120 (4�5 − 5�4� + (−1 + �)4 (4 + �))+ 120�2 (−4 + 5� − (� − �)4 (4� + �)))× (4�4)−1,�1� (�, �)= (�3 + �4 + �3� + 120 (4�5 + 5�4� − (−4 + �) (1 + �)4)+ 120�2 (−4 − 5� − (4� − �) (� + �)4))× (4�4)−1,�1e (�, �) = 110�4 − 110�2 + 12� + �22�4 ,�1� (�, �)= (�3 + �4 − �3� + 120 (4�5 − 5�4� + (−1 + �)4 (4 + �))+ 120�2 (−4 + 5� − (� − �)4 (4� + �)))× (4�4)−1.
(80)

As we did in the example of Case I.3 (see Figure 3), for the
sake of clarity, Figure 6 shows two equivalent plots of �1(�, �)
given by (79)-(80).

5. Case Study: Initial Value Problem (III)

�is section deals with the computation of the 1-PDF �1(�, �)
of the solution SP �(�) to the IVP (III) in each of the seven
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cases listed in Table 1. Notice that �(�) has the following
expression:� (�) = (�0 + 	�) e�(�−�0) − 	�, � ≥ �0. (81)

�roughout the sequent analysis depending on whether � is
considered to be a RV (Cases III.3, III.5, III.6, and III.7) or a
deterministic constant (Cases III.1, III.2, and III.4), see Table
1; we will assume that P[{� ∈ Ω : �(�) ̸= 0}] = 1 or � ̸= 0,
respectively.

5.1. Case III.1: �0 Is a Random Variable. In order to take
advantage of the RVT method and to study this case, it is
convenient to rewrite (81) in the equivalent form:� (�) = e�(�−�0)�0 + �� (e�(�−�0) − 1) , � ≥ �0. (82)

Next, we 	rst 	x � : � ≥ �0 and denote � = �(�). �en we
apply Proposition 2 to- = e�(�−�0) > 0, 3 = �� (e�(�−�0) − 1) ,� = �0, � = �. (83)

�en, taking into account that the domain of RV �0 is given
by (2), one gets�1 (�, �) = e−�(�−�0)��0 (e−�(�−�0) (� + ��) − ��) ,�1 ≤ � ≤ �2, � ≥ �0, (84)

where �1 = �0,1e�(�−�0) + �� (e�(�−�0) − 1) ,�2 = �0,2e�(�−�0) + �� (e�(�−�0) − 1) . (85)

Example 16. Let �0 be an exponential RV, �0 ∼ Exp(a), and
let a > 0. �en, according to (84)-(85), the 1-PDF of �(�) is
given by �1 (�, �) = ae−(�(�−�0)+�((�+(�/�))e−�(�−�0)−(�/�))),�� (e�(�−�0) − 1) ≤ � < +∞, � ≥ �0, (86)

where the domain of � has been determined taking into
account in (85) that in this case �0,1 = 0 and �0,2 = +∞.
Again, it can be checked that �1(�, �) is a PDF for each � ≥ �0.
Figure 7 shows �1(�, �) at di�erent values of � in the case thata = 1, �0 = 0, � = −1, and � = 1.

Before closing this case, we provide an example where the
usefulness of the 1-PDF �1(�, �) to determine the statistical
moments of the solution �(�) and to compute the probability
of sets of interest is shown. To illustrate these applications,
we will choose the context of Example 16, although it could
be applied to any example throughout this paper.

Example 17. Let us consider the context of Example 16 where
the 1-PDF of�(�),�1(�, �), has been computed (see expression
(86)). �en, the statistical moment of order C of �(�) with
respect to the origin can be computed directly in terms of�1(�, �) as follows:
 � (�, C) = b [(� (�))�] = ∫+∞

�/�(e�(�−�0)−1) ���1 (�, �) d�,C = 0, 1, 2, . . . .
(87)

As a consequence, the following expressions for themean and
the variance of �(�) are obtained:

E [� (�)] =  � (�, 1) = −�a + e�(�−�0) (� + �a)a� ,
Var [� (�)] =  � (�, 2) − ( �(�, 1))2 = e2�(�−�0)a2 .

(88)

Figure 8 shows the expectation and variance of �(�) for the
same values of a, �0, �, and � considered in Example 16.

�e computation of probabilities also can be performed
directly through the 1-PDF. For instance, it may be of interest
to compute the probability that the solution lies between two
	xed values, say, V1 = 2 and V2 = 3:

P [2 ≤ � ≤ 3] = ∫3

2
�1 (�, �) d�

= {{{{{{{{{{{
−e(�/�)(�−(3�+�)e�(−�+�0)) + e(�/�)(�−e�(−�+�0)(�+�Max[2,�(−1+e�(�−�0))/�])) if

�� (e�(�−�0) − 1) < 3,0 if
�� (e�(�−�0) − 1) ≥ 3.

(89)



12 Abstract and Applied Analysis

0.0

0.5

1.0
1.5

2.0

t

0.0
0.5

1.0
1.5

2.0

z

0

2

4

6

0 5

1.0
1.5

.0

t

1.5

f
1
(z
,t
)

Figure 7: Plot of �1(�, �) given by (86) in Example 16 at di�erent
values of � = {0, 0.25, 0.5, . . . , 2} in the case that �0 ∼ Exp(1), �0 = 0,� = −1, and � = 1.
5.2. Case III.2: 	 Is a Random Variable. Now we assume that
only 	 is a RV in the IVP (1) and ��(�) denotes its PDF. For
convenience, in this case, we rewrite (81) as follows:� (�) = 1� (e�(�−�0) − 1) 	 + �0e�(�−�0), � ≥ �0 ≥ 0. (90)

First, we 	xed � > �0 and denote � = �(�). �en we again
apply Proposition 2 to determine the 1-PDF �1(�, �) of �(�),
taking into account that- = 1� (e�(�−�0) − 1) > 0, 3 = �0e�(�−�0),� = 	, � = �. (91)

Notice that - > 0 independently of the sign of the
deterministic parameter � ̸= 0. �en,�1 (�, �) = �

e�(�−�0) − 1��(� (� − �0e�(�−�0))e�(�−�0) − 1 ) ,�1 ≤ � ≤ �2, � > �0, (92)

where �1 = e�(�−�0) (�1� + �0) − �1� ,�2 = e�(�−�0) (�2� + �0) − �2� . (93)

For � = �0, as it also occurred in Cases I.2 and II.2, �(�) =�(�0) = �0 and therefore�1 (�, �0) = ; (� − �0) , −∞ < � < ∞. (94)

Example 18. Let us assume that 	 follows a gamma distribu-
tion of parameters -, 3 > 0; that is, 	 ∼ Ga(-; 3). �erefore,
according to (92)-(93), the 1-PDF of �(�) is given by�1 (�, �) = �(e�(�−�0) − 1) 3�Γ (-)(� (� − �0e�(�−�0))e�(�−�0) − 1 )�−1

× e−�(�−�0)e�(�−�0)/�(e�(�−�0)−1),�0e�(�−�0) < � < +∞, � > �0.
(95)

For each � > �0, the domain of � has been determined taking
into account in (93) that in this case �1 = 0 and �2 = ∞. It
can be checked that �1(�, �) is a PDF for each � > �0. Figure 9
shows�1(�, �) at di�erent values of � in the particular case that	 ∼ Ga(2; 4), �0 = 0, �0 = 1, and � = −1. For � = 0, according
to (94), �1(�, 0) = ;(� − 1), −∞ < � < ∞.

5.3. Case III.3: � Is a Random Variable. So far we have
observed that the application of RVT method to determine
the PDF of a RV, say �, generated by a transformation� = �(�), relies strongly on the feasibility of computing the
inverse of the map � = �(�). Fortunately, this has been done
exactly in the previous cases, but, in general, it is not possible
in the current case where just � is assumed to be a RV. In
fact, once � : � > �0 has been 	xed, we must isolate � in the
equation:

� = � (�) , where � (�) = �0e�(�−�0) + �� (e�(�−�0) − 1) ,
(96)

which is not possible to perform in an exact manner. To
circumvent this drawback, we will apply the Lagrange-
Bürmann formula which gives the Taylor series expansion of
the inverse of an analytic function.

�eorem 19 (Lagrange-Bürmann formula, see [10]). Suppose
that � is de�ned as a function of the variable � by an equation
of the form: � = �(�) where � is analytic about the point �0 and��(�0) ̸= 0.�en, it is possible to invert (or to solve) the equation
for � : � = �(�) on a neighbourhoodN(�(�0); ;), ; > 0 of �(�0):
� = � (�) = �0 + ∞∑

�=1
( lim�→�0

( J�−1J��−1( � − �0� (�) − � (�0))�)
× (� − � (�0))�C! ) ,� ∈N (� (�0) ; ;) , ; > 0.

(97)

Although this result permits obtaining, from a theoretical
stand point, the inverse function of �(�), in practice, o�en this
can only be achieved in an approximatemanner since the in	-
nite series (97) must be truncated to be kept computationally
feasible. Moreover, the representation (97) of the inverse is
only valid in a certain neighbourhood N(�(�0); ;), ; > 0 of�(�0), whose diameter ; > 0must be determined carefully in
each case study.

Let us apply �eorem 19 to determine the 1-PDF �1(�, �)
of �(�). Fixing � : � > �0 and denoting � = �(�), we
consider the map (96) which is analytic about any numerical
value 0 ̸= � = �(�), � ∈ Ω on the assumed domain to
the RV �. As the map (96), in general, is not monotone,we
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Figure 8: Expectation (a) and variance (b) of �(�) given by (88) in Example 17 in the case that a = 1, �0 = 0, � = −1, and � = 1.
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Figure 9: Plot of �1(�, �) given by (95) in Example 18 at di�erent
values of � = {0.05, 0.1, 0.2, 0.3, . . . , 1} in the case that 	 ∼
Ga(2; 4), �0 = 0, �0 = 1, and � = −1.
have to apply�eorem 1. In a 	rst step, we divide the domain
of the map � (or equivalently, the domain of the RV �)
into " subintervals: A1,A2, . . . ,A
 where � is monotone.
�en, we will 	x a such subinterval A� =]�ini,�, �end,�[, 1 ≤i ≤ " where the contribution to the total 1-PDF �1(�, �) is
going to be calculated. For this, we select a point �0,� ∈ A�
where condition ��(�0,�) ̸= 0 is met. By applying the Lagrange-
Bürmann formula, we construct the inverse of themap �(�) =��(�) onA� that, in the sequel, will be denoted by ��(�):�� (�) = �0,� + ∞∑

�=1
( lim�→�0,�

( d�−1

d��−1( � − �0,�� (�) − � (�0,�))�)
× (� − � (�0,�))�C! ) ,� ∈N (� (�0,�) ; ;) , ; > 0.

(98)

In practice, this in	nite series could only converge on a
subset of ]��(�ini,�), ��(�end,�)[ (if �� increases on A�) or]��(�end,�), ��(�ini,�)[ (if �� decreases on A�). In such case,

the function ��(�) can be completed on the whole interval
by taking  � another (or other, if necessary) appropriate
point(s), say �0� ,� ∈ A�, 1 ≤ l ≤  � and then repeating
the above process. In this manner, a piecewise inverse
function ��(�) onA� will be constructed.

In accordance with RVT method, besides constructing
the inverse ��(�), one requires to compute its derivative.
We again take advantage of Lagrange-Bürmann formula to
complete this computation. In fact, notice that once ��(�) has
been constructed, from (98), one gets

d�� (�)
d� = ∞∑

�=1
( lim�→�0,�

( d�−1

d��−1( � − �0,�� (�) − � (�0,�))�)
× (� − � (�0,�))�−1(C − 1)! ) ,

� ∈N (� (�0,�) ; ;) , ; > 0.
(99)

Notice that if ��(�) has been de	ned by means of a piecewise
function, then d��(�)/d�will also be de	ned in the same way.

�e process will be culminated by repeating again the
previous argument on all the subintervals A1,A2, . . . ,A
.
Following the previous development, the 1-PDF �1(�, �) of�(�) can be computed as follows:

�1 (�, �) = 
∑
�=1
�� (�� (�)) ���������d�� (�)d� ��������� , (100)

where ��(�) and d��(�)/d� are de	ned by (98) and (99),
respectively.
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O�en, the in	nite series (98) has to be truncated at the
term R� to control computational burden. In this way, we
obtain an approximation of the inverse:��,�� (�)= �0,� + ��∑

�=1
( lim�→�0,�

( d�−1

d��−1( � − �0,�� (�) − � (�0,�))�)
× (� − � (�0,�))�C! ) .

(101)

�us, an approximation of its derivative is

d��,�� (�)
d�
= ��∑

�=1
( lim�→�0,�

( d�−1

d��−1( � − �0,�� (�) − � (�0,�))�)
× (� − � (�0,�))�−1(C − 1)! ) .

(102)

�e in	nite series (98) and (99) have the same convergence
radius; however, o�en in practice, we need to handle their
corresponding truncations (101) and (102), respectively. In
this case, the selection of the appropriate �0� ,� depends also on
the quality of the approximations provided by both truncated
series.

Repeating the foregoing process on each intervalA�, 1 ≤i ≤ ", one gets the corresponding approximation of �1(�, �)
given by �1 (�, �) = 
∑

�=1
�� (��,�� (�)) ����������d��,�� (�)d� ���������� . (103)

In the following example, we illustrate the previous
development.

Example 20. Let us assume that � has a beta distribution
of parameters - = 2, 3 = 3, � ∼ Be(2; 3), �0 = 0,�0 = 1 and � = 1. Figure 10 shows the approximation of�1(�, �) at di�erent values of �. �e approximation has been
performed by (103), (101), and (102) with " = 1 being A1 =[0, 1] because of monotony of �(�). In order to carry out
the computations, A1 has been split into 7 subintervals in
accordance with the process described previously. In each
subinterval, an approximation of degree R� = 2 has been
used.

5.4. Case III.4: (�0,	) Is a RandomVector. Let us consider the
IVP (1) and suppose that both �0 and 	 are continuous RVs

with joint PDF ��0,�(�0, �). We rewrite (81) in the equivalent
form: � (�) = �1 (�) + �2 (�) ,

where
{{{�1 (�) = �0e

�(�−�0),�2 (�) = 	 (1� (e�(�−�0) − 1)) . (104)

In order to compute the 1-PDF of �(�), �1(�, �), we 	rst 	x� : � > �0 and consider the continuous RVs �1 = �1(�),�2 = �2(�), and � = �1 + �2 = �(�). �en, we will apply
Propositions 6 and 7. Indeed, in a 	rst step, we compute the
joint PDF ��1,�2(�1, �2) by applying Proposition 6 to�1 = �0, �2 = 	, �1 (�0) = �0e�(�−�0),�2 (�) = � (1� (e�(�−�0) − 1)) , �1 = �1,�2 = �2, �1 (�1) = �1e−�(�−�0),�2 (�2) = �2 �

e�(�−�0) − 1
(105)

and taking into account that

d�1 (�1)
d�1 = e−�(�−�0) > 0, d�2 (�2)

d�2 = �
e�(�−�0) − 1 > 0.

(106)

�is leads to��1,�2 (�1, �2) = ��0,� (�1e−�(�−�0), �2 �
e�(�−�0) − 1) �e−�(�−�0)e�(�−�0) − 1 ,�1,1 ≤ �1 ≤ �1,2, �2,1 ≤ �2 ≤ �2,2,

(107)

where�1,1 = �0,1e�(�−�0), �1,2 = �0,2e�(�−�0),�2,1 = �1� (e�(�−�0) − 1) , �2,2 = �2� (e�(�−�0) − 1) .
(108)

Notice that to determine the variation of �2, we have used that1/�(e�(�−�0) − 1) > 0 for each � and � : � > �0. Finally, we
apply Proposition 7 using the following identi	cation: �1 =�1,�2 = �2, and �1 = �. �is yields�1 (�, �) = ∫�1,2

�1,1
��1,�2 (�1, � − �1) d�1, (109)

or more explicitly, using (107),�1 (�, �)= ∫�1,2

�1,1
��0,� (�1e−�(�−�0), � (� − �1)e�(�−�0) − 1) �e−�(�−�0)

e�(�−�0) − 1d�1,�1,1 + �2,1 ≤ � ≤ �1,2 + �2,2, � > �0,
(110)

where �1,1, �1,2, �2,1, and �2,2 are de	ned by (108).
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Figure 10: Plot of �1(�, �) given by (96) in Example 20 at di�erent values of � = {0, 0.1, 0.2, . . . , 1} (a) and � = {0.9, 1, 1.1, . . . , 2} (b) in the case
that � ∼ Be(2; 3), �0 = 0, �0 = 1, and � = 1. In order to highlight better the shape of �1(�, �), we have split its representation into two plots.
Notice the di�erent scales in the vertical axes for each plot.

If � = �0, then �(�) = �(�0) = �0 and, similar to Cases I.3
and II.3, �1(�0, �0) is the PDF of RV �0. It is obtained as the
following marginal distribution of the ��0 ,�(�0, �):�1 (�0, �0) = ��0 (�0) = ∫�2

�1
��0 ,� (�0, �) d�,�0,1 ≤ �0 ≤ �0,2.

(111)

Example 21. Let (�0, 	) be a two-dimensional Gaussian

vector, r = (�0, 	)� ∼ R(S�, Σ�), where
S� = (S�0S� ) , Σ� = ( (U�0)2 u�0 ,�U�0U�u�0 ,�U�0U� (U�)2 ),

(112)

and u�0 ,� denotes the correlation coe
cient between �0 and	. �en, according to (110) and (108), the 1-PDF of �(�) is
given by�1 (�, �) = 12W√det (Σ�)× ∫+∞

−∞
e−(1/2)( −��)

�(Σ�)−1( −��) �e−�(�−�0)
e�(�−�0) − 1d�1,

(113)

where

x = ( �1e−�(�−�0)� (� − �1)
e�(�−�0) − 1) . (114)

Notice that to determine the integration limits in (113), we
have considered in (108) that �0,1 = −∞ and �0,2 = +∞.
Figure 11 shows �1(�, �) at di�erent values of � in the case that
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Figure 11: Plot of �1(�, �) given by (113)-(114) in Example 21 at
di�erent values of � = {0, 0.25, 0.5, . . . , 2} in the case that r =(�0, 	)� ∼ R(S�, Σ�)whereS� andΣ� are given by (112)withS�0 = 1,S� = 0, U�0 = 0.1, U� = 0.1, u�0� = 0.5, �0 = 0, and � = −1.
S�0 = 1, S� = 0, U�0 = 0.1, U� = 0.1, u�0 ,� = 0.5, �0 = 0, and� = −1.

For � = 0, as the marginal distribution of a bivariate
Gaussian distribution is also a Gaussian distribution with
mean and variance of the corresponding component of the
random vector, one gets

�1 (�0, 0) = ��0 (�0) = 1√2W(U�0)2 e−(1/2)((�0−�	0 )/�	0 )2 ,− ∞ < �0 < ∞.
(115)

5.5. Case III.5: (�0,�) Is a Random Vector. Let us consider
the IVP (1) and now we assume that both �0 and � are
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continuous RVs with joint PDF ��0 ,�(�0, �). We rewrite (81)
in the following equivalent form:� (�) = �1 (�) + �2 (�) ,

where
{{{{{�1 (�) = (�0 + ��) e�(�−�0),�2 (�) = − ��. (116)

In order to apply RVT, we 	x � : � ≥ �0 and denote�1 = �1(�),�2 = �2(�), and � = �1 + �2 = �(�). To compute the PDF
of �, 	rst we will determine the joint PDF of �1 and �2 by
applying�eorem 5 to�1 = �0, �2 = �, �1 (�0, �) = (�0 + ��) e�(�−�0),�2 (�) = −�� , �1 = �1, �2 = �2,�1 (�1, �2) = �1e(�/�2)(�−�0) + �2, �2 (�2) = − ��2 .

(117)

�en taking into account E�2(�2)/E�1 = 0, the involved
Jacobian simpli	es to

����D2���� = |�|(�2)2 e�(�−�0)/�2 > 0. (118)

�erefore,

��1 ,�2 (�1, �2) = |�|(�2)2 e�(�−�0)/�2��0 ,�× (�1e(�/�2)(�−�0) + �2, − ��2) ,�1,1 ≤ �1 ≤ �1,2, �2,1 ≤ �2 ≤ �2,2,
(119)

where

if �1 �2 > 0,

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

� > 0 �⇒
{{{{{{{{{{{{{{{{{{{{{{{{{{{

�1,1 = min((�0,1 + ��2) e�1(�−�0), (�0,1 + ��2) e�2(�−�0)) ,�1,2 = max((�0,2 + ��1) e�1(�−�0), (�0,2 + ��1) e�2(�−�0)) ,�2,1 = − ��1 ,�2,2 = − ��2 ,
� < 0 �⇒

{{{{{{{{{{{{{{{{{{{{{{{
�1,1 = min((�0,1 + ��1) e�1(�−�0), (�0,1 + ��1) e�2(�−�0)) ,�1,2 = max((�0,2 + ��2) e�1(�−�0), (�0,2 + ��2) e�2(�−�0)) ,�2,1 = − ��2 ,�2,2 = − ��1 .

(120)

In the case that �1 �2 < 0, the computation of the domain of
variation of �1 and �2 in (119) is more complicated. To express
it, we 	rst introduce the numbers:�0− = sup {� = � (�) : � < 0, � ∈ Ω} ,�0+ = inf {� = � (�) : � > 0, � ∈ Ω} . (121)

�en, a�er elaborated computations, one gets

if �1�2 < 0, {{{{{{{{{
� > 0 �⇒ {�1 ∈ �+1,1 ∪ �+1,2,�2 ∈ �+2,1 ∪ �+2,2,� < 0 �⇒ {�1 ∈ �−1,1 ∪ �−1,2,�2 ∈ �−2,1 ∪ �−2,2, (122)

where�+1,1 = [min((�0,1 + ��0− ) e�1(�−�0), (�0,1 + ��0− ) e�0− (�−�0)) ,
max((�0,2 + ��1) e�1(�−�0), (�0,2 + ��1) e�0− (�−�0))] ,�+1,2 = [min((�0,1 + ��2) e�0+ (�−�0), (�0,1 + ��2) e�2(�−�0)) ,
max((�0,2 + ��0+ ) e�0+ (�−�0), (�0,2 + ��0+ ) e�2(�−�0))] ,
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�−1,1 = [min((�0,1 + ��1) e�1(�−�0), (�0,1 + ��1) e�0− (�−�0)) ,
max((�0,2 + ��0− ) e�1(�−�0), (�0,2 + ��0− ) e�0− (�−�0))] ,�−1,2 = [min((�0,1 + ��0+ ) e�0+ (�−�0), (�0,1 + ��0+ ) e�2(�−�0)) ,
max((�0,2 + ��2) e�0+ (�−�0), (�0,2 + ��2) e�2(�−�0))] ,

(123)�+2,1 = [− ��0+ , − ��2 ] , �+2,2 = [− ��1 , − ��0− ] ,�−2,1 = [− ��0− , − ��1 ] , �−2,2 = [− ��2 , − ��0+ ] . (124)

Notice that �0− and/or �0+ can become 0. In this case, the
extremes of the intervals above that depend on �0− and/or �0+
become ±∞, depending on the sign of parameter �.

Once the joint PDF of (�1, �2) has been determined, the
computation of the PDF of � = �1 + �2 follows directly by
applying Proposition 7. Indeed, as �2 = −�/� ̸= 0 (since into
Case III, � ̸= 0; otherwise wewould be in Case I), wewill apply
formula (22) to �1 = �1 = (�0 + (�/�))e�(�−�0), �2 = �2 =−�/� ̸= 0, and �1 = � = �1 + �2. �is yields�1 (�, �) = �� (�) = ∫

"
2
��1 ,�2 (� − �2, �2) d�2, (125)

where �2 denotes the domain of variation of �2 which,
according to (120)–(124), depends on both the sign of the
products �1 �2 and �. Using (119), it is equivalent to�1 (�, �)= ∫

"
2

|�|(�2)2 e�(�−�0)/�2× ��0 ,� (� e(�/�2)(�−�0) + �2 (1 − e(�/�2)(�−�0)) ,− ��2) d�2,� ∈ �, � ≥ �0.
(126)

�e range of variation of �, denoted by �, can be straight-
forwardly computed taking into account � = �1 + �2 and
the domains of �1 and �2 which have been determined
previously in (120)–(124). As its practical determination in
speci	c examples is simple from the previous exposition, in
order to avoid an unwieldy notation, we do not rewrite the
	nal general expression.

Example 22. Let (�0, �) be a two-dimensional Gaussian

vector, r = (�0, �)� ∼ R(S�, Σ�), where
S� = (S�0S�) , Σ� = ( (U�0)2 u�0 ,�U�0U�u�0 ,�U�0U� (U�)2 ),

(127)

And let u�0 ,� denotes the correlation coe
cient between �0
and�.�en, according to (126), (122), and (124) to determine
the domain of �2, the 1-PDF of �(�) is given by�1 (�, �) = |�|2W√det (Σ�) ,× ∫+∞

−∞

1(�2)2 e�(�−�0)/�2e−(1/2)( −��)�(Σ�)−1( −��)d�2,
(128)

where

x = (�e(�/�2)(�−�0) + �2 (1 − e(�/�2)(�−�0))− ��2 ). (129)

Hereina�er, we will assume that � > 0 to facilitate our
discussion through the example.We are in the case that �0,1 =−∞, �0,2 = +∞, and �1 = −∞; �2 = +∞; hence, �1�2 < 0,�0− = 0−, and �0+ = 0+; thus, �2,1 = −∞ and �2,2 = +∞,
which, according to (126), (122), and (124), determines the
limits of integration of (128). Speci	cally,�2 ∈ �+2,1 ∪ �+2,2 = [− ��0+ , − ��2 ] ∪ [− ��1 , − ��0− ]= [− �0+ , − �+∞] ∪ [− �−∞, − �0− ]= ]−∞, 0] ∪ [0, +∞[ = ]−∞, +∞[ .

(130)

Following an analogous reasoning, it is easy to check from
(121) and (123) that �+1,1 =] − ∞, +∞[ and �+1,2 =] − ∞, +∞[.
�erefore, the domain of variation to �1 is ] − ∞, +∞[. As a
consequence, in (128), � lies in −∞ ≤ � ≤ +∞.

Figure 12 shows �1(�, �) at di�erent values of � in the case
that S�0 = 1, S� = 0, U�0 = 0.1, U� = 0.1, u�0 ,� = 0.5, �0 = 0,
and � = 1.
5.6. Case III.6: (	,�) Is a Random Vector. Let us consider the
IVP (1) and let us assume that 	 and � are continuous RVs
with joint PDF ��,�(�, �). For convenience, we rewrite (81) in
the following equivalent form:� (�) = �1 (�) + �2 (�) ,

where
{{{�1 (�) = 	� (e�(�−�0) − 1) ,�2 (�) = �0e�(�−�0). (131)
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Figure 12: Plot of �1(�, �) given by (128)-(129) in Example 22 at di�erent values of � = {0, 0.1, 0.2, . . . , 2} in the case that r = (�0, �)� ∼R(S�, Σ�) where S� and Σ� are given by (127) with S�0 = 1, S� = 0, U�0 = 0.1, U� = 0.1, u�0 ,� = 0.5, �0 = 0, and � = 1.
In order to apply RVT method, we 	x � : � > �0 and denote�1 = �1(�), �2 = �2(�), and � = �1 + �2 = �(�). We 	rst
consider the case where �0 ̸= 0. To compute the PDF of�, 	rst
we will determine the joint PDF of �1 and �2 by applying
�eorem 5 to�1 = 	, �2 = �, �1 (�, �) = �� (e�(�−�0) − 1) ,�2 (�) = �0e�(�−�0), �1 = �1, �2 = �2,�1 (�1, �2) = �0 �1� − �0 ln

�����2���� − ln �����0�����2 − �0 ,
�2 (�2) = ln

�����2���� − ln �����0����� − �0 .
(132)

As E�/E�1 = 0, in order to compute the Jacobian D2, it is
enough to calculate the two following partial derivatives:E�E�1 = �0� − �0 ln

�����2���� − ln �����0�����2 − �0 ̸= 0, E�E�2 = 1�2 (� − �0) ̸= 0,
(133)

which are well de	ned since � > �0, �2 = �0e�(�−�0) ̸= 0, and �2−�0 = �0(e�(�−�0)−1) ̸= 0 due to by hypothesis �0 ̸= 0 andP[{� ∈Ω : �(�) ̸= 0}] = 1. Also notice that ln |�2| − ln |�0| = �(� −�0) ̸= 0. Moreover, taking into account that �0/�2 = e−�(�−�0) >0, one gets
��1,�2 (�1, �2)= ��,�(�0 �1� − �0 ln

�����2���� − ln �����0�����2 − �0 , ln �����2���� − ln �����0����� − �0 )
× 1(� − �0)2 �0�2 ��������� ln �����2���� − ln �����0�����2 − �0 ��������� ,�1,1 ≤ �1 ≤ �1,2, �2,1 ≤ �2 ≤ �2,2.

(134)

�e values �1,1, �1,2, �2,1, and �2,2 that determine the domain
of variation of �1 and �2 can be computed taking into

account that the function ℎ1(�) = (1/�)(e�(�−�0)−1) is positive
and increasing on thewhole real line in the current casewhere� − �0 > 0. �is yields

if �1�2 > 0, and
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

�1 > 0 or �1�2 < 0 �⇒ {{{{{{{
�1,1 = �1�1 (e�1(�−�0) − 1) ,�1,2 = �2�2 (e�2(�−�0) − 1) ,�2 < 0 �⇒ {{{{{{{

�1,1 = �1�2 (e�2(�−�0) − 1) ,�1,2 = �2�1 (e�1(�−�0) − 1) ,�0 > 0 �⇒ { �2,1 = �0e�1(�−�0),�2,2 = �0e�2(�−�0),�0 < 0 �⇒ { �2,1 = �0e�2(�−�0),�2,2 = �0e�1(�−�0).
(135)
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As it happened in the foregoing Case III.5, for the deter-
mination of the domains of �1 and �2, we will use the
notations �0− and �0+ introduced in (121). A�er non di
cult
but elaborated computations, one gets

if �1�2 < 0, {{{{{{{{{
�1 > 0 or �1�2 < 0 �⇒ �1 ∈ �1,1 ∪ �1,2,�2 < 0 �⇒ �1 ∈ �1,3 ∪ �1,4,�0 > 0 �⇒ �2 ∈ �+2,1 ∪ �+2,2,�0 < 0 �⇒ �2 ∈ �−2,1 ∪ �−2,2,

(136)

where�1,1 = [ �1�1 (e�1(�−�0) − 1) , �2�0− (e�0− (�−�0) − 1)] ,�1,2 = [ �1�0+ (e�0+ (�−�0) − 1) , �2�2 (e�2(�−�0) − 1)] ,�1,3 = [ �1�0− (e�0− (�−�0) − 1) , �2�1 (e�1(�−�0) − 1)] ,�1,4 = [ �1�2 (e�2(�−�0) − 1) , �2�0+ (e�0+ (�−�0) − 1)] ,
(137)

�+2,1 = [�0e�1(�−�0), �0e�0− (�−�0)] ,�+2,2 = [�0e�0+ (�−�0), �0e�2(�−�0)] , (138)

�−2,1 = [�0e�0− (�−�0), �0e�1(�−�0)] ,�−2,2 = [�0e�2(�−�0), �0e�0+ (�−�0)] . (139)

Finally, we apply Proposition 7 with the following identi-
	cations: �1 = �1, �2 = �2, and �1 = �. As the variation
of �2 given by (136), (138) and (139) is easily controlled in
terms of the data than of �1, in order to facilitate in practice
the determination of the limits of integration of the integral
which de	ne the 1-PDF �1(�, �), we will use formula (22)
rather than (21). �is yields�1 (�, �)= ∫

"
2
��,�(�0 (� − �2)� − �0 ln

�����2���� − ln �����0�����2 − �0 ,
ln
�����2���� − ln �����0����� − �0 )

× 1(� − �0)2 �0�2 ��������� ln �����2���� − ln �����0�����2 − �0 ��������� d�2,� ∈ �, � > �0,
(140)

where �2 is de	ned by (136) and (138) or (139) depending
on the signs of �0 and the product �1 �2. As in Case III.5,
we do not explicit the range of variation of �, denoted by�, since its writing is cumbersome but not di
cult from
previous exposition.

Now, we deal with the case where �0 = 0 and we keep the
assumption � > �0. For convenience, we rewrite (81) in the
following equivalent form:

� (�) = �1 (�) �2 (�) , where
{{{�1 (�) = 	�,�2 (�) = e�(�−�0) − 1.

(141)

To apply RVTmethod, we 	x � : � > �0 and denote�1 = �1(�),�2 = �2(�), and� = �1�2 = �(�). To compute the PDF of�,
	rst we will determine the joint PDF of�1 and�2 by applying
�eorem 5 to

�1 = 	, �2 = �, �1 (�, �) = �� ,�2 (�) = e�(�−�0) − 1, �1 = �1, �2 = �2,�1 (�1, �2) = �1 ln (1 + �2)� − �0 , �2 (�2) = ln (1 + �2)� − �0 .
(142)

As E�/E�1 = 0, in order to compute the Jacobian D2, it is
enough to calculate the two following partial derivatives:

E�E�1 = ln (1 + �2)� − �0 ̸= 0, E�E�2 = 1(� − �0) (1 + �2) > 0,
(143)

which are well de	ned since � > �0 and 1 + �2 = e�(�−�0) ̸= 0, 1,
due to by hypothesis P[{� ∈ Ω : �(�) ̸= 0}] = 1. �en, one
gets

��1 ,�2 (�1, �2) = ��,�(�1 ln (1 + �2)� − �0 , ln (1 + �2)� − �0 )
× ����ln (1 + �2)����1 + �2 1(� − �0)2 ,�1,1 ≤ �1 ≤ �1,2, �2,1 ≤ �2 ≤ �2,2.

(144)

Again, the values �1,1, �1,2, �2,1, and �2,2 determining the
domain of variation of�1 and�2 can be computed taking into

account that the function ℎ2(�) = e�(�−�0) − 1 is increasing on
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the whole real line in the current case where � − �0 > 0. A�er
non di
cult but elaborated computations, this yields,

if �1 > 0,
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

�1 > 0 �⇒ {{{{{{{
�1,1 = �1�2 ,�1,2 = �2�1 ,�2 < 0 �⇒ {{{{{{{
�1,1 = �1�1 ,�1,2 = �2�2 ,�1 �2 < 0 �⇒ {{{{{{{
�1,1 = �1�1 ,�1,2 = �2�1 ,�2,1 = e�1(�−�0) − 1,�2,2 = e�2(�−�0) − 1,

if �2 < 0,
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

�1 > 0 �⇒ {{{{{{{
�1,1 = �2�2 ,�1,2 = �1�1 ,�2 < 0 �⇒ {{{{{{{
�1,1 = �2�1 ,�1,2 = �1�2 ,�1 �2 < 0 �⇒ {{{{{{{
�1,1 = �2�2 ,�1,2 = �1�2 ,�2,1 = e�1(�−�0) − 1,�2,2 = e�2(�−�0) − 1,

if �1�2 < 0, {{{{{{{{{
�1 > 0 �⇒ �1 ∈ �+1,1 ∪ �+1,2,�2 < 0 �⇒ �1 ∈ �−1,1 ∪ �−1,2,�1�2 < 0 �⇒ �1 ∈ �1,1 ∪ �1,2,�2 ∈ �2,1 ∪ �2,2,

(145)

where �+1,1 = [ �2�0− , �1�1 ] , �+1,2 = [ �1�2 , �2�0+ ] ,�−1,1 = [ �2�1 , �1�0− ] , �−1,2 = [ �1�0+ , �2�2 ] ,�1,1 = [ �2�0− , �1�0− ] , �1,2 = [ �1�0+ , �2�0+ ] ,
(146)

�2,1 = [e�1(�−�0) − 1, e�0− (�−�0) − 1] ,�2,2 = [e�0+ (�−�0) − 1, e�2(�−�0) − 1] . (147)

Next, we apply Proposition 8 with the following identi	-
cations:�1 = �1,�2 = �2, and�1 = �. As the variation of�2
given by (145) and (147), which depends on the sign of �1, �2,
and �1�2, is easily controlled in terms of the data than of �1,
in order to facilitate in practice the limits of integration of

the integral de	ning the 1-PDF �1(�, �), we will use formula
(25) rather than (24). �is yields�1 (�, �) = ∫

"
2

1�����2������,�(� ln (1 + �2)�2 (� − �0) , ln (1 + �2)� − �0 )
× ����ln (1 + �2)����1 + �2 1(� − �0)2 d�2,� ∈ �, � > �0,

(148)

where �2 denotes the domain of variation of �2. Again, we
do not explicit the range of variation of �, denoted by �,
since its writing is cumbersome but simple from previous
exposition.

Finally, we consider the case � = �0 that implies �(�) =�(�0) = �0. �erefore,�1 (�, �0) = ; (� − �0) , −∞ < � < ∞. (149)

Example 23. With the aim of showing the generality of the
obtained results to deal with di�erent classes of continuous
RVs, in this example, we will consider that the joint PDF of
the input continuous RVs 	 and � is constructed by a copula
function. Let 	 and� be two uniform continuous RVs on the
interval ]0, 1[; that is, 	,� ∼ Un(]0, 1[). Using the Farlie-
Gumbel-Morgenstern copula [11], we construct the random
vector (	, �) with joint PDF

��,� (�, �) = {{{23 (2 − � − � + 2��) if 0 < � < �, 0 < � < 1,0 otherwise,
(150)

hence, 	 and� are statistically dependent. As a characteristic
of copula functions, notice that the two marginal distribu-
tions of ��,�(�, �) are just the individual distributions of 	
and �. In the following, we will consider the case previously
developed for �0 = 0 and we will take �0 = 0. First, notice that
according to (141) and taking into account that 0 < �, 	 < 1,
the domains of variation of �1 and �2 are �1 ∈]0,∞[ and�2 ∈]0, e� −1[, respectively; thus,� = �1�2 lies on � ∈]0,∞[.
However, we must re	ne the domain of integration �2 to�2 of (148), in such a way that the two arguments of the
PDF ��,�(⋅, ⋅) lie inside the interval ]0, 1[, where the input
continuous RVs 	 and � are de	ned. �us, 	xing � > 0 and� > 0, we must determine �2 such as0 < � ln (1 + �2)�2� < 1, 0 < ln (1 + �2)� < 1 (151)

hold. By (141), notice that in our context �2 = e�� − 1, with0 < � < 1; hence, second inequality in (151) is guaranteed. As�, �, �2, ln(1+�2) > 0, the 	rst inequality in (151) is equivalent
to ln(1 + �2)/�2 < �/�. �erefore, �2 in (148) is given by�2 : ]min(max(0, �∗2 ), e�−1), e�−1[, where �∗2 is the solution
of the equation ln(1 + �2)/�2 = �/�. At this point, notice that
the function ln(1 + �2)/�2 is decreasing for �2 > 0 and this
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Figure 13: Plot of �1(�, �) given by (152) in Example 23 at di�erent values of � = {0.1, 0.2, . . . , 1} (a) and � = {1, 1.1, . . . , 2} (b) in the case that�0 = 0 and �0 = 0 and the joint PDF of (	, �) is given by (150). In order to better highlight the shape of �1(�, �), we have split its representation
into two plots. Notice the di�erent scales in the vertical axes for each plot.

justi	es the consideration of the previous term: max(0, �∗2 ).
To summarize, the 1-PDF of �(�) is given by

�1 (�, �) = 23�2 ∫e�−1

�2,1

1�2 ln (1 + �2)1 + �2× {2 − ln (1 + �2)�2�2× (�� − �2� − 2� ln (1 + �2)) } d�2,�, � > 0,
(152)

where �2,1 = min(max(0, �∗2 ), e� − 1). In Figure 13, we have
plotted �1(�, �) at di�erent values of �.
5.7. Case III.7: (�0,	,�) Is a Random Vector. Finally, we
consider the IVP (1) and assume that every input is ran-
domized; that is, (�0, 	, �) is a random vector with joint
PDF ��0,�,�(�0, �, �). For convenience, we rewrite (81) in the
following equivalent form:

� (�) = �1 (�) + �2 (�) + �3 (�) ,
where

{{{{{{{{{
�1 (�) = �0e

�(�−�0),�2 (�) = 	�e�(�−�0),�3 (�) = − 	�.
(153)

In order to apply RVT method, we 	x � : � > �0 and denote�1 = �1(�), �2 = �2(�), �3 = �3(�), and � = �1 + �2 + �3 =

�(�). To compute the PDF of �, 	rst we will determine the
joint PDF of �1, �2, and �3 by applying�eorem 4 to�1 = �0, �1 = �1, �1 (�0, �) = �0e�(�−�0),�1 (�1, �2, �3) = −�1�3�2 , �2 = 	, �2 = �2

�2 (�, �) = ��e�(�−�0), �2 (�2, �3) = − �3� − �0 ln(−�2�3) ,�3 = �, �3 = �3, �3 (�, �) = −�� ,�3 (�2, �3) = 1� − �0 ln(−�2�3) .
(154)

Notice that −�2/�3 = e�(�−�0) > 0 so �2(�2, �3) and �3(�2, �3)
are well de	ned as 	 and � are continuous RVs such as
P[{� ∈ Ω : 	(�) ̸= 0}] = 1 and P[{� ∈ Ω : �(�) ̸= 0}] =1, respectively. A�er some computations, it is easy to check
that the absolute value of the Jacobian D3 required to apply
�eorem 4 is given by����D3���� = �����3����(�2)2 1(� − �0)2 ��������ln(−�2�3)�������� ̸= 0. (155)

Notice that we have used �3 ̸= 0. �erefore,��1,�2 ,�3 (�1, �2, �3)= ��0,�,� (−�1 �3�2 , − �3� − �0 ln(−�2�3) ,1� − �0 ln(−�2�3))⋅ �����3����(�2)2 1(� − �0)2 ��������ln(−�2�3)�������� , �1,1 ≤ �1 ≤ �1,2,�2,1 ≤ �2 ≤ �2,2, �3,1 ≤ �3 ≤ �3,2.
(156)
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Now, we will apply Proposition 9 with the following identi	-
cations: �1 = �1, �2 = �2, �3 = �3, and �1 = �. As the
variation of�2 and�3 is easily controlled in terms of the data
than of �1, in order to facilitate in practice the speci	cation
of the limits of integration of the integral de	ning the 1-PDF�1(�, �), we will use formula (27). �is yields�1 (�, �)= ∫

"
3
∫
"
2
��0,�,�(−(� − �2 − �3) �3�2 ,

− �3� − �0 ln(−�2�3) , 1� − �0 ln(−�2�3))× �����3����(�2)2 1(� − �0)2 ��������ln(−�2�3)�������� d�2d�3,
(157)

for � ∈ � and � > �0. As in the previous case, we do not
detail the range of variation of �,�, since it is very involved.

Finally, we consider the case � = �0. From (1), one gets�(�) = �(�0) = �0. �erefore,�1 (�0, �0)= ��0 (�0)= ∫�2

�1
∫�2

�1
��0,�,� (�0, �, �) d� d�, �0,1 ≤ �0 ≤ �0,2.

(158)

Example 24. Let (�0, 	, �) be a three-dimensional Gaussian

vector, r = (�0, 	, �)� ∼ R(S�, Σ�), where S� = (S1, S2, S3)�
is a vector in R

3 which represents the mean and Σ� is
a symmetric positive de	nite real matrix of size 3 × 3
usually referred to as the variance-covariance matrix. �en,
according to (157), the 1-PDF of �(�) is given by�1 (�, �) = 12W√2W√det (Σ�)× ∫∞

−∞
∫∞

−∞
e−(1/2)( −��)

�(Σ�)−1( −��)

× �����3����(�2)2 1(� − �0)2 ��������ln(−�2�3)�������� d�2 d�3,
(159)

where

x =(
(
−(� − �2 − �3) �3�2− �3� − �0 ln(−�2�3)1� − �0 ln(−�2�3)

)
)

. (160)

In the following, we will take �0 = 0:
S� = (111) , Σ� = 110 (4 1 11 4 11 1 2) . (161)

Now, we do not provide an explicit expression of�1(�, �) since
it is very sophisticated. Figure 14 shows �1(�, �) at di�erent
values of � (� = 0, 0.1, 1, 2).
6. Some Final Remarks

In this section, we will point out some considerations related
to the practical application of RVT method in dealing with
the computation of the 1-PDF.

Remark 25. �roughout this paper, we have determined the
1-PDF of the solution SP to IVP (1) in all the cases listed in
Table 1. It must be pointed out that it has depended heavily on
doing an appropriate choice of the involved variables when
applying the RVT method. To illustrate this statement, let
us consider the foregoing Case III.5 when �0 and � are
the only input continuous RVs. When we dealt with this
case, we 	rst decomposed the solution SP (81) in the form
given by (116) and then we applied �eorem 5 as is shown in
(117). �is decomposition was carefully chosen to guarantee
the successful application of �eorem 5. In fact, alternative
decompositions of (81) are possible; however, they could not
be adequate to achieve our goal. For example, if we rewrite
(81) in the following form:� (�) = �1 (�) + �2 (�) ,

where
{{{�1 (�) = �0e

�(�−�0),�2 (�) = �� (e�(�−�0) − 1) , (162)

then, the application of �eorem 5 to�1 = �0, �2 = �, �1 (�0, �) = �0e�(�−�0),�2 (�) = �� (e�(�−�0) − 1) , �1 = �1, �2 = �2,�1 (�1, �2) = �2 (�2) = (163)

does not lead to fruitful results since we cannot isolate�0 = �1(�1, �2) and � = �2(�1, �2) and this would ruin
our goal. In other cases, we can 	nd out that two or more
choices do not have the previous drawback and then the
best selection will be the one which facilitates the involved
computations (the easiest expression for the Jacobian, the
simplest determination of the domains, etc.).

Remark 26. Although in this paper we have concentrated
on the determination of the 1-PDF �1(�, �), which describes
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Figure 14: Plots of �1(�, �) given by (159) in Example 24 at di�erent values of � with �0 = 0 in the case that (�0, 	, �) is a three-dimensional
Gaussian vector with mean and variance-covariance matrix given by (161).

the probabilistic behaviour of the solution SP �(�) at each
time instant �, it must be pointed out that the computation
of higher PDFs is also possible and desirable. In fact, for
instance, the 2-PDF, say, �2(�1, �1; �2, �2) provides a whole
probabilistic information of �(�) in two time instants �1 and�2. �erefore, from it, we can calculate relevant probabilistic
properties such as the correlation function

Γ� (�1, �2) = ∫∞

−∞
∫∞

−∞
�1�2�2 (�1, �1; �2, �2) d�1 d�2.

(164)

As it can be guested, from the previous development, the
computation of �2(�1, �1; �2, �2) follows in broad outline that�1(�, �). In Example 27, we compute the 2-PDF within the
framework of foregoing Case II.3 including the correlation
function.

Example 27. Let us 	x �1, �2 such as �2 > �1 ≥ �0 and denote�1 = �(�1) and �2 = �(�2). We want to determine the

joint PDF of continuous RVs �1 and �2. For it, we will apply
�eorem 5 to�1 = �0, �2 = 	, �1 (�0, �) = �0 + � (�1 − �0) ,�2 (�0, �) = �0 + � (�2 − �0) , �1 = �1, �2 = �2,�1 (�1, �2) = �1 (�2 − �0) − �2 (�1 − �0)�2 − �1 ,�2 (�1, �2) = �2 − �1�2 − �1 ,

(165)

where the expression of the solution SP given by (56) has been
considered. Now, taking into account that

d�1 (�1, �2)
d�1 = �2 − �0�2 − �1 , d�1 (�1, �2)

d�2 = �1 − �0�2 − �1 ,
d�2 (�1, �2)

d�1 = − 1�2 − �1 , d�2 (�1, �2)
d�2 = 1�2 − �1 , (166)

then, the involved Jacobian is given by����D2���� = 1�2 − �1 > 0. (167)
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�is leads to�2 (�1, �1; �2, �2)= ��1,�2 (�1, �2)= ��0,� (�1 (�2 − �0) − �2 (�1 − �0)�2 − �1 , �2 − �1�2 − �1 )× 1�2 − �1 , �1,1 ≤ �1 ≤ �1,2, �2,1 ≤ �2 ≤ �2,2,
(168)

where�1,1 = �0,1 + �1 (�1 − �0) , �1,2 = �0,2 + �2 (�1 − �0) ,�2,1 = �0,1 + �1 (�2 − �0) , �2,2 = �0,2 + �2 (�2 − �0) .
(169)

In spite of having computed the 2-PDF in the previous
example, it must be noticed that, in general, its determina-
tion to problem (1) becomes very di
cult even prohibitive,
particularly the speci	cation of the associated domains.

Remark 28. In some situations, the determination of the
1-PDF provides the full probabilistic information of the
solution SP; hence, the computation of higher PDFs is not
necessary. �is is illustrated in the following example.

Example 29. Let the IVP be considered in Case III.1 where
the only random input is the initial condition �0. We know
that � (�) = (�0 + ��) e�(�−�0) − �� . (170)

Its 1-PDF is given by (84). From it, we can compute any
probabilistic information for every time instant, say �1. Let us
consider another time instant, say �2. Notice that, in this case,
the solution SP at �2 can be represented as follows:

� (�2) = (�0 + ��) e�(�2−�0) − ��= e�(�2−�1) (�0 + ��) e�(�1−�0) − ��= e�(�2−�1) (� (�1) + ��) − ��= e�(�2−�1)� (�1) + �� (e�(�2−�1) − 1) .
(171)

From this expression, we see that the behaviour of the solu-
tion�(�) at the time instant �2 is deterministically given by (a
linear transformation of) �(�1). �erefore, the computation
of the 2-PDF is not required. �is can be con	rmed from
another point of view. Let us assumewithout loss of generality

that the expectation of the initial condition is zero: b[�0] = 0
and its variance is U2�0 > 0. From (170), it is easy to check thatb [� (��)] = ��e�(��−�0) − �� , * = 1, 2,U2�(��) = U2�0e2�(��−�0), * = 1, 2,b [� (�1) � (�2)] = U2�0e�(�2+�1−2�0)+ (��)2 (e�(�2+�1−2�0) − e�(�2−�0)−e�(�1−�0) + 1) .

(172)

�en, the correlation coe
cient function is given byu�(�1),�(�2) = b [� (�1) � (�2)] − b [� (�1)] b [� (�2)]U�(�1)U�(�2) = 1.
(173)

7. Conclusions

In this paper, we have determined the 	rst probability
density function (1-PDF) of the solution stochastic process of
the linear random di�erential equation taking advantage of
random variable transformation (RVT) method. �e study
has been made in a systematic way in order to facilitate
and clarify the development and exposition of the results
as well as to facilitate their practical use. �e wide range
of the exhibited examples, that include both standard and
non-standard probabilistic distributions, show the ability of
RVT technique to deal with the computation of the 1-PDF
to models based on linear random di�erential equations.
Notice that throughout the paper no independence among
the random parameters has been assumed in order to achieve
general results.
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