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Abstract Anthracycline-induced cardiotoxicity (ACT) is a key limiting factor in setting optimal

chemotherapy regimes, with almost half of patients expected to develop congestive heart failure

given high doses. However, the genetic basis of sensitivity to anthracyclines remains unclear. We

created a panel of iPSC-derived cardiomyocytes from 45 individuals and performed RNA-seq after

24 hr exposure to varying doxorubicin dosages. The transcriptomic response is substantial: the

majority of genes are differentially expressed and over 6000 genes show evidence of differential

splicing, the later driven by reduced splicing fidelity in the presence of doxorubicin. We show that

inter-individual variation in transcriptional response is predictive of in vitro cell damage, which in

turn is associated with in vivo ACT risk. We detect 447 response-expression quantitative trait loci

(QTLs) and 42 response-splicing QTLs, which are enriched in lower ACT GWAS p-values, supporting

the in vivo relevance of our map of genetic regulation of cellular response to anthracyclines.

DOI: https://doi.org/10.7554/eLife.33480.001

Introduction
Anthracyclines, including the prototypical doxorubicin, continue to be used as chemotherapeutic

agents treating a wide range of cancers, particularly leukemia, lymphoma, multiple myeloma, breast

cancer, and sarcoma. A well-known side-effect of doxorubicin treatment is anthracycline-induced

cardiotoxicity (ACT). For some patients ACT manifests as an asymptomatic reduction in cardiac func-

tion, as measured by left ventricular ejection fraction (LVEF), but in more extreme cases ACT can

lead to congestive heart failure (CHF). The risk of CHF is dosage-dependent: an early study

(Von Hoff et al., 1979) estimated 3% of patients at 400 mg/m2, 7% of patients at 550 mg/m2, and

18% of patients at 700 mg/m2 develop CHF, where a more recent study puts these numbers at 5%,

26% and 48% respectively (Swain et al., 2003). Reduced LVEF shows a similar dosage-dependent

pattern, but is not fully predictive of CHF.
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Perhaps most daunting for patients is that CHF can occur years after treatment: out of 1807 can-

cer survivors followed for 7 years in a recent survey a third died of heart diseases compared to 51%

of cancer recurrence (Vejpongsa and Yeh, 2014).

Various candidate gene studies have attempted to find genetic determinants of ACT, but are

plagued by small sample sizes and unclear endpoint definitions, resulting in limited replication

between studies. Two ACT genome-wide association studies (GWAS) have been published

(Aminkeng et al., 2015; Schneider et al., 2017). While neither found genome-wide significant asso-

ciations using their discovery cohorts, both found one variant that they were able to replicate in

independent cohorts.

A nonsynonymous coding variant, rs2229774, in RARG (retinoic acid receptor g) was found to be

associated with pediatric ACT using a Canadian European discovery cohort of 280 patients

(Aminkeng et al., 2015), and replicated in both a European (p ¼ 0:004) and non-European cohort

(p ¼ 1� 10
�4). Modest signal (p ¼ 0:076) supporting rs2229774’s association with ACT was also

reported in a recent study primarily focused on trastuzumab-related cardiotoxicity (Serie et al.,

2017). RARG negative cell lines have reduced retinoic acid response element (RAREs) activity and

reduced suppression of Top2b (Aminkeng et al., 2015), which has been proposed as a mediator of

ACT.

In a different study, a GWAS in 845 patients with European-ancestry from a large adjuvant breast

cancer clinical trial, 51 of whom developed CHF, found no variants at genome-wide significance lev-

els (Schneider et al., 2017). However, one of the most promising variants, rs28714259 (p ¼ 9� 10
�6

in discovery cohort), was genotyped in two further cohorts and showed modest replication

(p ¼ 0:04; 0:018). rs28714259 falls in a glucocorticoid receptor protein binding peak, which may play

a role in cardiac development.

An exciting approach to studying complex phenotypes, including disease, in human is to use

induced pluripotent stem cells (iPSC) and derived differentiated cells as in vitro model systems.

Work by us and others has demonstrated that iPSCs and iPSC-derived cell-types are powerful model

systems for understanding cell-type specific genetic regulation of transcription (Thomas et al.,

eLife digest Many cancers, including leukaemia, lymphoma and breast cancer, are treated with

potent chemotherapy drugs such as anthracyclines. However, anthracyclines have strong side effects

known as anthracycline cardiotoxicity, which affect the health of the heart. Almost half of the

patients given high doses of anthracyclines develop chronic heart failure.

While anthracycline cardiotoxicity is very common, people’s genes may contribute to how

sensitive they are to these drugs but it is not understood which genes can cause this effect. Previous

studies using only a small number of participants have not been able to pin down the genetic factors

that make some patients respond well to anthracyclines, and others prone to developing heart

failure when taking these drugs.

To find out which genes affect anthracycline cardiotoxicity, Knowles, Burrows et al. transformed

blood cells from 45 individuals into stem cells, which were then developed into heart muscle cells.

Then, the activity of genes was analyzed by measuring the amount of RNA (the template molecules

used to make proteins) produced by those genes.

After the cells had been exposed for 24 hours to the anthracycline drug doxorubicin, hundreds of

gene activity differences could be found in the heart muscle cells between individuals. Some of

these differences were linked to poorer health of the cells after treatment with the drug. As a result,

a number of genetic variants that could predispose patients to the side effects of doxorubicin were

discovered. The experiments also revealed how doxorubicin disrupts an important process that

separates ‘junk’ parts of the RNA from the parts that are used as a template for proteins.

Being able to predict who is likely to be sensitive to drugs such as doxorubicin could help doctors

to tailor chemotherapy treatments more effectively, minimising the risk of heart failure. In future,

larger studies could lead to accurate predictions of a patient’s response to a particular

chemotherapy drug to personalize their cancer treatment.

DOI: https://doi.org/10.7554/eLife.33480.002
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2015; Burrows et al., 2016; Banovich et al., 2018; Kilpinen et al., 2017; Alasoo et al., 2017), but

it is less established whether these systems can be used to model the interplay of genetic and envi-

ronmental factors in disease progression. Encouragingly, the response of iPSC-derived cardiomyo-

cytes (ICs) to doxorubicin was recently extensively characterized (Burridge et al., 2016). ICs derived

from four individuals who developed ACT after doxorubicin treatment (‘DOXTOX’ group) and four

who did not (‘DOX’ group), showed clear differences in viability (via apoptosis), metabolism, DNA

damage, oxidative stress and mitochondrial function when exposed to doxorubicin. These observa-

tions suggest that ICs recapitulate in vivo inter-individual differences in doxorubicin sensitivity. Gene

expression response differences between the DOX and DOXTOX groups were found using RNA-

sequencing data, but the sample size was insufficient (RNA-seq was generated for only three individ-

uals in each group) to attempt mapping of genetic variants that might explain the observed func-

tional differences between individuals.

Here we used a panel of iPSC-derived cardiomyocytes from 45 individuals, exposed to five differ-

ent drug concentrations, to map the genetic basis of inter-individual differences in doxorubicin-sensi-

tivity. We find hundreds of genetics variants that modulate the transcriptomic response, including 42

that act on alternative splicing. We show that the IC transcriptomic response predicts cardiac tropo-

nin levels in culture (indicative of cell lysis) in these cell-lines, and that troponin level is itself predic-

tive of ACT. Finally we demonstrate that the mapped genetic variants show significant enrichment in

lower ACT GWAS p-values.

Results

Measuring transcriptomic response to doxorubicin exposure
We generated iPSC-derived cardiomyocytes (ICs) for 45 Hutterite individuals (Figure 1a). iPSC qual-

ity was confirmed using qPCR (Figure 1—figure supplement 1), global gene expression profiling

(Figure 1—figure supplement 2), the embryoid body test (Supplementary Data), and EBV

integration analysis (Figure 1—figure supplement 3, Figure 1—figure supplement 4). Cardiomyo-

cyte identity was confirmed by FACS for cardiac troponin I and T, with mean purity (72 ±12)% (Fig-

ure 1—figure supplement 5). We exposed all 45 IC lines to doxorubicin at five different

concentrations for 24 hr, after which samples were processed for RNA-sequencing. We obtained suf-

ficient read depth (10M exonic reads) for downstream analysis for 217 of the 5� 45 ¼ 225 individual-

concentration pairs, and confirmed sample identity by calling exonic SNPs (see Methods). We

observed a strong gene regulatory response to doxorubicin across all concentrations, with 98%

(12038/12317) of quantifiable genes (5% FDR) showing differential expression across the different

treatment concentrations. Our data shows excellent concordance with the smaller RNA-seq dataset

of (Burridge et al., 2016) (Figure 1—figure supplement 6). Principal component analysis (PCA,

Figure 1b) confirms that the main variation in the data is driven by doxorubicin concentration and

that the effect of concentration on gene expression is nonlinear. For some individuals the expression

data following doxorubicin treatment with 1:25�M is closer to the data from treatment with 0:625�M,

whereas for others it is closer to data from treatment with 2:5�M. This general pattern provides the

first indication in our data that that there is systematic variation in how different individuals respond

to doxorubicin exposure. Since the majority of genes appear responsive to doxorubicin we clustered

genes into six distinct response patterns using a mixture model approach (Figure 1c, see

Materials and methods). From largest to smallest, these clusters represent genes that, through the

gradient from low to high concentration treatments, are (1) down regulated (2) initially up-regulated,

then further down-regulated (3) up-regulated (4) down-regulated only at lower dosages (5) up-regu-

lated only at lower dosages (6) down-regulated then partially recover (Supplementary file 1). Gene

set enrichments (Figure 1—figure supplement 7, Supplementary file 2) for the up-regulated clus-

ter include metabolic, mitochrondrial and extracellular processes, as well as known doxorubicin

response genes in breast cancer cell lines from (Graessmann et al., 2007) (647 overlapping genes of

1090 in term, hypergeometric p ¼ 2� 10
�26). The down-regulated cluster shares genes with those

down-regulated in response to UV light, which, like doxorubicin, causes DNA-damage (413 overlap-

ping genes of 470 in term, hypergeometric p ¼ 3� 10
�48). Targets of p53, a transcription factor that

responds to DNA damage, are overrepresented in clusters 2 and 5; these clusters involve up-regula-

tion at low concentrations (0:625�M) but down-regulation at higher concentrations (486 overlapping
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genes out of 1057 in term, hypergeometric p ¼ 2� 10
�39). Promoter analysis (Figure 1—figure sup-

plement 8, Supplementary file 3) revealed 21, 45, and 6 significantly enriched transcription factor

(TF) binding motifs for clusters 1, 2 and 3 respectively (and none for cluster 4–6). Examples include

binding sites for ZNF143, a TF that promotes GPX1 activity and protects cells from oxidative dam-

age during mitochondrial respiratory dysfunction (Lu et al., 2012), which is enriched in cluster 1

(down regulation w/dox, 318 overlapping genes out of 3555 ZNF143 targets, hypergeometric

p ¼ 10
�8); RONIN, a regulator of mitochrondrial development and function (Poché et al., 2016),

which is enriched in clusters 1 and 2 (217 and 210 overlapping genes out of 2295 targets, p ¼ 10
�7

and 10
�4 respectively); and MEF2, myocyte enhancer factor 2, involved in regulating muscle develop-

ment, stress-response and p38-mediated apoptosis (Zarubin and Han, 2005), enriched in cluster 4

(32 overlapping genes out of 741 targets, hypergeometric p ¼ 10
�3).
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Figure 1. The transcriptomic response of cardiomyocytes to doxorubicin is substantial. (a) Cardiomyocytes were derived from lymphoblastoid cell lines

(LCLs) of 45 Hutterite individuals, followed by exposure to differing concentrations of doxorubicin and RNA-sequencing. (b) PCA of gene expression

levels across samples reveals that doxorubicin concentration explains more variance than inter-individual differences, and that the response is non-

linear with respect to concentration. Lines connect samples from the same individual. (c) A probabilistic mixture model uncovers six distinct patterns of

response across genes.

DOI: https://doi.org/10.7554/eLife.33480.003

The following figure supplements are available for figure 1:

Figure supplement 1. qPCR for key pluripotency genes for a subset of iPSCs.

DOI: https://doi.org/10.7554/eLife.33480.004

Figure supplement 2. Genome-wide expression analysis of iPSCs using PluriTest.

DOI: https://doi.org/10.7554/eLife.33480.005

Figure supplement 3. EBV integration analysis of iPSCs.

DOI: https://doi.org/10.7554/eLife.33480.006

Figure supplement 4. qPCR of EBNA-1 to assess EBV status in iPSCs.

DOI: https://doi.org/10.7554/eLife.33480.007

Figure supplement 5. Fluorescence activated cell sorting (FACS) purity estimates for iPSC-derived cardiomyocytes.

DOI: https://doi.org/10.7554/eLife.33480.008

Figure supplement 6. Our expression data is concordant with an existing small RNA-seqdataset (Burridge et al., 2016).

DOI: https://doi.org/10.7554/eLife.33480.009

Figure supplement 7. Gene set enrichment analysis of genes in each response cluster confirms expected patterns: metabolic, mitochrondrial and DNA

damage processes, as well as existing doxorubicin response genes.

DOI: https://doi.org/10.7554/eLife.33480.010

Figure supplement 8. Enrichment of transcription factor binding motifs for each response pattern, using HOMER.

DOI: https://doi.org/10.7554/eLife.33480.011
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Mapping variants modulating doxorubicin response
We next sought to map single nucleotide polymorphisms (SNPs) that modulate the observed inter-

individual transcriptomic response to doxorubicin, leveraging available genetic variation across the

45 individuals (Livne et al., 2015). We developed a linear mixed model approach, called suez, that

extends the PANAMA framework (Fusi et al., 2012) to account for relatedness amongst individuals,

repeat measurements, multiple conditions and latent confounding. Testing SNPs within 1 Mb of the

transcription start site (TSS), 518 genes have a variant with a detectable marginal effect on expres-

sion (5% FDR, Supplementary file 4). Using a mutual information approach (see Methods) which,

unlike a naive replication analysis (Figure 2—figure supplement 1), controls for differential power

across GTEx tissues, we find our expression quantitative trait loci (eQTLs) show stronger overlap

with the two heart tissues than any other GTEx tissue (Figure 2a, Figure 2—figure supplement 2).

Remarkably, even with our moderate number of individuals, we are able to detect many response-

eQTLs (reQTLs), i.e. variants that modulate (directly or indirectly) transcriptomic response to doxoru-

bicin. We found reQTLs for 376 genes at a nominal 5% FDR (Supplementary file 5), which we esti-

mate using a parametric bootstrap corresponds to a true FDR of 8:5% (Figure 2b). We explored

leveraging allele specific expression (ASE) extending our previous work (Knowles et al., 2017;

van de Geijn et al., 2015). We fit a beta-binomial generalized linear model (GLM) where the

response variable corresponds to alternative vs reference read counts and the independent variable

is the heterozygosity of the test regulatory eSNP. We found it impractical to directly relate effect

sizes in the total expression and ASE models so we instead combined likelihood ratios from the

beta-binomial GLM and suez likelihood into a single test statistic. This approach yielded 447 reQTLs

at 5% FDR (Supplementary file 6), an increase of 19% over using total expression alone. We hypoth-

esize that this relatively modest increase in power is due to a) suez already being reasonably well

powered in this direct perturbation setting and b) the somewhat low sequencing depth of our

samples.

To characterize the detected reQTLs we assigned the response of the major and minor allele to

one of the six clusters previously learned (Figure 1c), with heterozygotes expected to display the

average of the two homozygous responses. 172 (46%) of reQTLs result in a qualitatively distinct

response as determined by the two alleles being assigned to different clusters. The most common

transition, occurring for 33 reQTLs, is that the major allele is associated with simple down-regulation

(cluster 1) in response to doxorubicin, whereas the minor allele shows up-regulation at low concen-

tration followed by down-regulation at higher concentration (cluster 2).

We further broke-down the significant reQTLs by considering the effect of genotype on expres-

sion at each concentration (bc in Equation 6). We normalized the effect sizes relative to the bc with

the largest absolute value, i.e. we consider bc=bargmaxjbc0 j
, so that the largest genotype effect always

corresponds to a normalized value of 1. The resulting normalized effect profiles were split into nine

clusters using k-means clustering (Figure 2d). The largest cluster (cluster 1, 85 reQTLs) represents

reQTLs with a modest effect size at low concentrations (0; 0:625�M) which is amplified at higher con-

centrations (Figure 2e shows a highly significant example). Cluster two corresponds to reQTLs

whose effect size is attenuated at the 0:625�M treatment: examples of reQTLs in this cluster tend to

be associated with higher expression level at the 0:625�M treatment (e.g. rs16853200’s association

with ABCA12 response, Figure 2—figure supplement 3).

A non-synonymous coding variant in RARG, rs2229774, was previously associated with ACT

(Aminkeng et al., 2015). Since RARG codes for a transcription factor we searched transcriptome-

wide for rs2229774 trans-eQTLs: genes where the expression response to doxorubicin appears to be

different for different RARG alleles. Only two of the individuals in our panel carry the alternative A

allele (as heterozygotes) with the rest being homozygous reference (GG). While this limits statistical

power, suez detects one marginal effect (RECQL) and five response trans-eQTLs (NMRK1, VMA21,

PAQR3, SGIP1 and LRRC2) at 5% FDR (Figure 2—figure supplement 4). Interestingly PAQR3, a

membrane protein localized to the Golgi apparatus, is a negative regulator of antioxidant response

through the Nrf2-Keap1 pathway (Zhang et al., 2016). LRRC2 is a mitochondrial protein whose RNA

expression level has been previous linked with heart failure (McDermott-Roe et al., 2017).
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Figure 2. Genetic variation regulates the transcriptomic response to doxorubicin exposure. (a) Marginal eQTLs show strong replication in GTEx heart

data, and lower replication in other tissues (LCL = lymphoblastoid cell line). (b) We detect 100 s of response-eQTLs (reQTLs): variants that modulate

response to doxorubicin. The false positive rate (FPR) is estimated using a parametric bootstrap. (c) We developed a statistical method to assign the

major and minor allele response to one of the six clusters from Figure 1c. The strongest 46% of detected reQTLs result in a discretely different

response, whereas the remainder only modulate the response. (d) For significant reQTLs we calculated relative genotype effect sizes by dividing the

fitted effect size at each concentration by the (signed) effect size with the largest absolute value. K-means clustering of these effect size profiles reveals

distinct patterns, the most common being a small reduction in absolute effect size from 0 to 0:625�M followed by the largest effects being at the

highest concentrations. (e) An example response-eQTL where rs112594884 regulates the response of the mitochondrial complex I chaperone

NDUFAF1. Under the major (T) allele we see moderate down-regulation at 0:625�M followed by up-regulation at higher concentrations. Under the

minor (G) allele, there is little change at 0:625�M followed by substantial down-regulation. Since the genotype effects are reduced at 0:625�M and

largest at high concentrations this reQTL is assigned to cluster 1 of panel d.

DOI: https://doi.org/10.7554/eLife.33480.012

The following figure supplements are available for figure 2:

Figure supplement 1. Using p1 statistics to assess replication is confounded by different sample size/power across GTEx tissues.

DOI: https://doi.org/10.7554/eLife.33480.013

Figure supplement 2. A mutual information approach to control for different sample sizes/power across GTEx tissues.

DOI: https://doi.org/10.7554/eLife.33480.014

Figure supplement 3. An example response expression QTL that may act through buffering at high expression levels.

DOI: https://doi.org/10.7554/eLife.33480.015

Figure supplement 4. Trans-eQTLs for rs2229774 in RARG.

DOI: https://doi.org/10.7554/eLife.33480.016
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Doxorubicin exposure reduces splicing fidelity
Oxidative stress, a major downstream consequence of doxorubicin exposure, disrupts splicing of

individual genes including HPRT, POLB (Disher and Skandalis, 2007), and SMA (Seo et al., 2016).

We queried the extent to which doxorubicin exposure disrupts splicing patterns across the transcrip-

tome using LeafCutter (Li et al., 2017). Across all samples LeafCutter detected 27769 alternative

splicing ‘clusters’ (referred to here as ‘ASCs’ to avoid confusion with k-means clusters), which corre-

spond approximately to splicing events, with a median of 3.0 splice junctions per ASC. Of 17755

ASCs with sufficient coverage to test, 10430 (59%), corresponding to 6398 unique genes, showed an

effect of doxorubicin exposure on splicing outcomes (5% FDR, Supplementary files 7–8). To charac-

terize these changes we calculated the entropy of the splicing choices made for each significant ASC

Figure 3. Doxorubicin exposure significantly impacts alternative splicing. (a) The entropy of splicing choices increases in response to doxorubicin

exposure. We measured splicing entropy at different concentrations within LeafCutter ‘Alternative Splicing Clusters’ (ACSs) and clustered these into

patterns of entropy change. (b) We separated introns differentially excised with D	>0:1 into eight clusters based on their relative excision level at each

concentration. Introns in clusters corresponding to increased excision at higher doxorubicin concentrations (e.g. cluster 2) are far more likely to use a

cryptic (unannotated) splice site at at least one end. p-values shown are for a hypergeometric test of that cluster against all others. (c) We mapped 42

ASCs with response splicing QTLs, variants that modulate the differential splicing response to doxorubicin.

DOI: https://doi.org/10.7554/eLife.33480.017

The following figure supplements are available for figure 3:

Figure supplement 1. Alternative TSS use in NDUFAF6 on doxorubicin exposure.

DOI: https://doi.org/10.7554/eLife.33480.018

Figure supplement 2. The ACT-sensitivity variant rs28714259 weakly modulates TUBGCP5’s response to doxorubicin.

DOI: https://doi.org/10.7554/eLife.33480.019
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at each concentration and used k-means clusters patterns of change in entropy (Figure 3a ). The

largest cluster has 6166 ASCs (59%), and corresponds to the null of no clear change in entropy

across concentrations. Clusters 2 (n ¼ 1136) and 5 (n ¼ 475) correspond to increasing entropy with

concentration, and clusters 3, 4, 6, 8 and 9 correspond to the maximum entropy being at different

concentrations and reaching different maximum levels. Interestingly, only the relatively small cluster

8 (n ¼ 304; 3% of ACSs) corresponds to a reduction in entropy at higher concentrations, suggesting

the dominant behavior is reduced splicing fidelity and increased alternative splicing in response to

doxorubicin.

We further tested the hypothesis that splicing fidelity decreases in the presence of doxorubicin

by comparing patterns of intronic percent excised (	) with canonical vs cryptic (unannotated) splice

site usage. We clustered the 7792 introns in significantly differentially spliced ASC, that have a

change in percent excised D	>0:1 for some pair of concentrations, into eight response patterns

based on their relative excision proportions across concentrations. For each cluster we calculated

the proportion of member introns with neither end annotated, one end unannotated, or both ends

annotated (Figure 3b). The clusters representing increased 	 with concentration (clusters 2, 4, 6 and

7) all show enrichment for cryptic splice site usage. The two most populous clusters (1 and 2) corre-

spond to 	 decreasing and increasingly continuously with doxorubicin concentration, respectively,

and the difference in levels of cryptic splicing is extremely apparent (hypergeometric p<2� 10
�16,

odds ratio for one annotated end vs two is 28:0).

We additionally used LeafCutter quantification of percentage spliced in (PSI) for each splice junc-

tion to map splicing QTLs (sQTL) and response-splicing QTLs (rsQTL) using suez. We tested SNPs

within 100 kb of either end of the splice junction. At 5% FDR we found 467 ASCs with a marginal

effect sQTL (Supplementary file 9) and 42 with a rsQTL (Supplementary file 10). An example rsQTL

is rs72922482’s association with inclusion of exon 2 of APAF1 Interacting Protein (APIP). Under the

major T allele exon skipping is extremely rare: the LeafCutter PSI for the spanning junction ranges

from 0:00059 to 0:0049 across concentrations (Figure 3c). In rs72922482 heterozygotes, however, the

exon is skipped in a significant proportion of transcripts, and this effect is most pronounced in the

data collected after treatment at 1:25�M, with approximately 50% exon inclusion, suggesting the

minor C allele results in very low inclusion of the cassette exon. Another interesting example is NDU-

FAF6, another mitochrondrial Complex I protein, where doxorubicin exposure (particularly at

0:625�M) results in increased use of an alternative downstream transcription start site (TSS) which

unmasks the influence of rs896853 on a cassette exon between the two alternative TSS (Figure 3—

figure supplement 1).

Transcriptional response to doxorubicin is predictive of in-vitro cardiac-
damage indicator troponin
We used the level of cardiac troponin released into the culture media by lysed cardiomyocytes (see

Methods, Supplementary file 11) to estimate damage occurring as a result of doxorubicin exposure

at different concentrations. We observed significant variation in measurable damage caused by

doxorubicin across individuals, with 13 of 45 cell lines having a significant correlation between doxo-

rubicin dose and troponin measurement (Figure 4a). We first sought to determine whether the inter-

individual variation in troponin in culture could be explained by variation in the overall gene expres-

sion response. Since we are interested in this case in inter-individual differences rather than differen-

ces between concentrations we normalized the troponin measurements to have 0 mean and

variance of 1 across samples at each doxorubicin treatment. We found 96.1% (95% credible interval

91:5%� 98:6%) or 91.5% of the variance in this normalized troponin level could be explained using

gene expression levels (we excluded the troponin genes TNNT1-3 and TNNI1-3 from the analysis) at

the corresponding doxorubicin concentrations, using a GREML-analysis (Yang et al., 2010) or leave-

out-one cross validated (LOOCV) lasso (Tibshirani, 1996) respectively. The optimal lasso model

included 118 genes (Supplementary file 12). To test whether gene expression mediates a link from

genotype to troponin level we performed a transcriptome-wide association study

(TWAS, Gamazon et al., 2015). For each gene we built an elastic-net predictor of expression at

each doxorubicin concentration using SNPs within 100 kb, with 10-fold cross-validation to choose

the regularization parameters. The fitted predictions (the ‘pre-validation’ values) represent the

genetically-determined component of expression. We used the 3840 genes with a statistically signifi-

cant genetic component (at 1% FDR) to predict troponin level using LOOCV lasso regression. 89%
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of the variance in normalized troponin level can be explained by the genetic component of 102

genes (Supplementary file 13). This analysis is analogous to two-stage least squares Mendelian ran-

domization (Angrist and Imbens, 1995) analysis and therefore suggests the existence of a causal

link from genotype through gene expression to troponin level, and highlights potential mediating

genes. However, further assumptions — in particular that the SNPs and troponin level are indepen-

dent conditional on gene expression — would be required to formally establish a causal connection.

To further explore the relationship between transcriptomic response and troponin presence in

culture, we analyzed differential expression (DE) with respect to troponin measurement at each

doxorubicin concentration separately. We found 0, 7, 78, 2984 and 2863 differentially expressed

genes (5% FDR, Supplementary file 14) at the five concentrations respectively (Figure 4b). The

most strongly DE gene (with respect to effect size) at the 5�M treatment is DUSP13, a known
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Figure 4. Transcriptomic response is predictive of doxorubicin induced damage as measured by cardiac troponin. (a) We measured media levels of

cardiac troponin, a sensitive and specific test for myocardial cell damage, in response to doxorubicin, across all cell lines. (b) We performed differential

expression analyses with respect to troponin at each concentration separately, and observed more differentially expressed genes at higher

concentrations corresponding to an increased dynamic range of troponin levels. (c) We took differentially expressed genes (5% FDR) at each

concentration and checked for ‘replication’ ðnominal p<0:05Þ) at the other concentrations. Note that no differentially expressed genes were discovered

in control condition 0�Mð Þ. (d) We summarized gene expression response by first fitting a ‘principal curve’ following increasing doxorubicin

concentration, and then measuring the rate of progression along this curve for each individual. (e) Increased transcriptomic response is associated with

reduced cardiac troponin levels, suggesting that the bulk of expression changes we observe are in fact protective against cardiac damage. (f) We

trained a model to predict ACT risk from gene expression response using available 3 v. 3 case/control data (Burridge et al., 2016) and applied this

model to our data. Predicted ACT risk correlated significantly with the slope of troponin level (Spearman � ¼ 0:38; p ¼ 0:01), supporting the in vivo

disease relevance of our IC system.

DOI: https://doi.org/10.7554/eLife.33480.020
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regulator of ASK1-mediated apoptosis (Park et al., 2010). The large number of DE genes at the

2:5�M and 5:0�M treatments are broadly shared (nominal replication rate 82 to 85%), and DE genes

at the 1:25�M treatment generally represent the most strongly DE genes at the higher concentra-

tions (Figure 4c).

To compare troponin measurements to transcriptomic response we determined an overall per-

individual level of transcriptomic response with respect to doxorubicin concentration. To this end we

fit a principal curve (Hastie and Stuetzle, 1989) through all gene expression samples, initializing the

curve to pass sequentially through the successive doxorubicin concentrations (Figure 4d). Projecting

every sample on the principal curve gives a single measure of ‘progression’ through response to

doxorubicin at increasing concentrations. We then regressed these values against concentration for

each individual to obtain a progression rate. We found the troponin measurement slope is signifi-

cantly negatively correlated (Spearman � ¼ �0:42; p ¼ 0:004, Figure 4e) with the transcriptomic

response rate, suggesting that much of the gene expression program being activated in response to

doxorubicin is in fact protective against cardiac damage.

Using previously published data (Burridge et al., 2016), we built a predictive model of ACT risk

trained on RNA-seq of ICs exposed to 1�M doxorubicin from doxorubicin-treated patients who did

(‘DOXTOX’, n ¼ 3) or did not (‘DOX’, n ¼ 3) develop ACT. Using lasso with fixed l ¼ 10
�5 the opti-

mal model included 17 genes as features (Supplementary file 15). We applied this model to our

expression data from the 0:625�M treatment (since this concentration shows excellent concordance

with the 1�M data of Burridge et al., see Figure 1—figure supplement 6) to obtain predicted log-

odds of ACT. While these log-odds are unlikely to be well-calibrated due to differences in the train-

ing and test datasets, they may still accurately represent relative risk of ACT across our 45 individu-

als. Indeed, the log-odds correlated significantly with the troponin measurement slope (Spearman

correlation p ¼ 0:01, Figure 4f), suggesting our troponin measurements, and by extension our

expression response data, recapitulate in vivo cellular response to doxorubicin.

Cardiomyocyte molecular QTLs show enrichment in ACT GWAS
To determine the disease-relevance of our molecular QTLs we obtained summary statistics for the

largest ACT GWAS to date (Schneider et al., 2017). While this GWAS was not sufficiently powered

to find genome-wide significant associations, 11 variants representing nine independent loci have

p<10�5, with the most significant (rs2184559) at p ¼ 2:8� 10
�6. Of the 8 GWAS variants with p<10�5

either tested in our eQTL mapping, or in high LD (R2>0:8) with a tested SNP, seven have a nominally

significant marginal eQTL (p<0:05, the 8th has p ¼ 0:07) and four have a reQTL with p<0:1. The one

replicated variant in this GWAS, rs28714259, was not genotyped in our data but is in high LD

(R2 ¼ 0:98) with rs11855704 which is a nominally significant marginal eQTL for tubulin gamma com-

plex associated protein 5 (TUBGCP5, Figure 3—figure supplement 2). rs4058287 (GWAS p-value

9:68� 10
�6) has a marginal effect on Alpha-Protein Kinase 2 (ALPK2, also known as ‘Heart Alpha-Pro-

tein Kinase’ since it was discovered in mouse heart (Ryazanov et al., 1999) and is expressed in few

other tissues (Melé et al., 2015)) expression (p ¼ 0:0016) as well as a weak interaction effect

(p ¼ 0:06, see Figure 5a). Interestingly, ALPK2 has been shown to upregulate DNA repair genes and

to enable caspase-3 cleavage and apoptosis in a colorectal cancer model (Yoshida et al., 2012). The

replicating variant from Aminkeng et al., 2015, rs2229774 only occurs in two individuals in our

cohort (who are heterozygous) making eQTL mapping infeasible. Additionally we find a marginal

effect eQTL (p ¼ 0:0017, Figure 5—figure supplement 1) on SLC28A3 for rs885004, which has previ-

ously been associated with ACT in a candidate gene study (Visscher et al., 2013). rs885004 is

intronic, is in LD (R2 ¼ 0:98) with another ACT implicated variant, rs7853758 (Visscher et al., 2012),

and falls in a DNase I hypersensitivity and H3K27ac peak present in numerous ENCODE cell lines

(and is open in our ICs according to ATAC-seq data, see Figure 5—figure supplement 2).

To determine whether our molecular QTLs are more useful than published QTLs for interpreting

ACT risk variants we first sought to obtain the best powered GWAS data possible. Since the

Schneider et al. GWAS was overall underpowered, we obtained additional ACT GWAS summary sta-

tistics from a more recent study (Serie et al., 2017) and performed a meta-analysis with Schneider

et al. We used this data to assess whether there was detectable enrichment of low GWAS p-values

for our regulatory QTLs. When considering eQTL with nominal p<10�5 (corresponding approxi-

mately to 5% FDR) we found no enrichment for GWAS p<0.05 for three GTEx tissues (heart, brain
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and lymphoblastoid cell lines—LCLs), our marginal effect eQTLs or baseline (no doxorubicin) only

eQTLs (Figure 5—figure supplement 3). However, considering SNPs that are either main effect or

response eQTL we see significant enrichment (one-sided hypergeometric p=6 � 10�20, OR = 1.40).

Similarly for ‘combined’ eQTL where we explicitly test for any effect of genotype (main or interaction

effect, see Methods) we see enrichment (p=5 � 10�12, OR = 1.29). Furthermore, focusing on

response eQTL we see a stronger enrichment (p=2 � 10�37, OR = 1.95, Figure 5b), suggesting that

the enrichment in combined eQTL is driven by this signal. Response eQTLs mapped using allelic-spe-

cific expression as well as total expression show the strongest enrichment (p=6 � 10�60, OR = 2.22).

When considering splicing QTLs (Figure 5—figure supplement 4) we found no enrichment for mar-

ginal sQTLs mapped in LCLs (Li et al., 2016). Interestingly, in contrast to the total expression QTLs

we found a significant enrichment (p=4 � 10�17, OR = 1.36, Figure 5c) for IC marginal sQTLs

although the enrichment in response sQTLs was still higher in absolute terms (p=2 � 10�5,

OR = 1.57). These findings are indicative that molecular response QTL mapping has potential for

understanding the molecular basis of environmentally-dependent human disease.

Finally, we attempted colocalization analysis for our response eQTLs and meta-analyzed GWAS

using coloc (Giambartolomei et al., 2014), a Bayesian method based on summary statistics. For

each region (gene in our case) coloc infers a posterior probability for each of five possibilities: (H0)

no association, (H1) association for the eQTL only, (H2) association for the GWAS only, (H3) indepen-

dent variants, or (H4) colocalization to one variant. Out of 43 genes with a SNP with a reQTL at
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Figure 5. Cardiomyocyte molecular QTLs are enriched in meta-analyzed ACT GWAS (Schneider et al., 2017; Serie et al., 2017). (a) rs4058287 has a

GWAS p-value of 9:68� 10
�6 and is a nominally significant eQTL (p ¼ 0:0016) for ALPK2, which is down-regulated in response to doxorubicin. (b) SNPs

that have a response eQTL with p<10�5 are enriched in GWAS variants with p<0:05 (hypergeometric test p ¼ 2� 10
�37). (c) SNPs with a marginal or

response splicing QTL at p<10�5 show modest enrichment in GWAS p<0:005 (hypergeometric p ¼ 0:02).

DOI: https://doi.org/10.7554/eLife.33480.021

The following figure supplements are available for figure 5:

Figure supplement 1. SLC28A3 expression may mediate the association of rs885004 with ACT-sensitivity.

DOI: https://doi.org/10.7554/eLife.33480.022

Figure supplement 2. rs885004 falls in an IC ATAC-seq peak. rs885004 (shown in red) falls in an ATAC-seq footprint in (unrelated) iPSC-derived

cardiomyocytes (unpublished data).

DOI: https://doi.org/10.7554/eLife.33480.023

Figure supplement 3. Enrichment of different classes of expression QTLs in ACT GWAS.

DOI: https://doi.org/10.7554/eLife.33480.024

Figure supplement 4. Enrichment of different classes of splicing QTLs in ACT GWAS.

DOI: https://doi.org/10.7554/eLife.33480.025

Figure supplement 5. Colocalization analysis.

DOI: https://doi.org/10.7554/eLife.33480.026
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p<10�5 and GWAS SNP at p<0.05 coloc gave maximum posterior probability to the null hypothesis

(H0, no association) for 32 genes, association only for reQTL (H1) for 9, and colocalization (H4) for

one gene, NOL10 (posterior probability of colocalization 0:54, Figure 5—figure supplement 5,

Supplementary file 16). While these results suggest our data is not sufficiently well-powered for

colocalization analysis, we note that the posterior probability of colocalization (H4) is higher than

that for independent signal (H3) in 40/43 tested genes.

Discussion
Human iPSC-derived somatic cells provide a powerful, renewable and reproducible tool for model-

ing cellular responses to external perturbation in vitro, especially for non-blood cell-types such as

cardiomyocytes which are extremely challenging to collect and even then are typically only available

post-mortem. We established a sufficiently large iPSC panel to effectively query the transcriptomic

response of differentiated cardiomyocytes to doxorubicin. We were also able to characterize the

role of genetic variation in modulating this response, both in terms of total expression and alterna-

tive splicing. There are, of course, caveats associated with using an in vitro system, which may not

accurately represent certain aspects cardiac response to doxorubicin in vivo. That said, the replica-

tion of GTEx heart eQTLs, association of troponin levels with predicted ACT-risk (Burridge et al.,

2016), and the observed GWAS enrichment, all support the notion that the IC system recapitulates

substantial elements of in vivo biology. It is challenging to quantify this agreement, and there are in

vivo factors that are certainly not represented. For example, excessive fibrosis may contribute to

ACT (Cascales et al., 2013; Zhan et al., 2016; Farhad et al., 2016; Heck et al., 2017), although is

unclear how substantial this contribution is as well as whether fibroblasts are directly activated by

doxorubicin exposure or simply respond indirectly to cardiomyocyte damage. While our FACS analy-

sis shows cardiomyocytes are the dominant cell type in our cultures, heterogeneity remains and

other cell types could be mediating some of the observed changes.

For many diseases such as ACT which involve an environmental perturbation it is reasonable to

suppose that eQTLs detected at steady-state are only tangentially relevant when attempting to

interpret disease variants. Such concerns motivated us to focus on response eQTLs, that is, variants

that that have functional consequences under specific cellular conditions because they interact,

directly or indirectly, with the treatment. We used a statistical definition of reQTLs corresponding to

cases where gene expression levels are significantly better explained using a model including an

interaction term between genotype and treatment (represented as a categorical variable), compared

to a model with only additive effects for genotype and treatment. Our characterization of the

detected reQTL demonstrates that these variants are indeed candidate drivers of differences in indi-

vidual transcriptomic response to doxorubicin. The strongest reQTL effects correspond to

completely different response patterns for the major and minor alleles, while weaker effects corre-

spond to more subtle modulation of the same response pattern. We note that it is not necessarily

the case that such reQTLs are the only functionally relevant eQTLs. eSNPs with a marginal (additive)

effect on expression of a gene responsive to doxorubicin (as most genes are) could still be important

if the relationship between expression and ACT-risk is nonlinear, for example involving thresholding

effects.

We observed a statistical enrichment of expression and (to a lesser extent) splicing QTLs in ACT

GWAS. However, with no reproducible genome-wide significant associations available, fine-mapping

of causal variants remains fraught. We anticipate our findings will be increasingly valuable as larger-

scale ACT GWAS become available.

We derived ICs from healthy individuals so we do not known which individuals would develop

ACT if they required anthracycline treatment. Mapping molecular response QTLs in larger panels of

ICs from patients treated with anthracyclines who do or do not develop ACT symptoms would allow

stronger conclusions to be drawn about the contribution of the detected (r)eQTLs to disease

etiology.

We used a panel of Hutterites individual since this homogeneous population offers unique advan-

tages for mapping genetic traits: exposure to a fairly uniform environment and less variable genetic

background, despite still representing much of European diversity (Newman et al., 2004). However,

the genetic basis of ACT susceptibility is likely complex and some relevant genetic variation may not

be well represented in this cohort.
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Finally, an interesting observation in our study is that splicing fidelity is reduced upon doxorubicin

exposure. This is not completely unexpected since a key downstream side-effect of doxorubicin is

increased oxidative stress, which has been previously associated with dysregulated splicing of spe-

cific genes (Disher and Skandalis, 2007; Seo et al., 2016). Our finding that this effect is prevalent

across the transcriptome poses further questions about what known effects of doxorubicin might, in

fact, be mediated by changes in RNA splicing.

Materials and methods

Sample collection and genotyping
Generation of lymphoblastoid cell lines (LCLs) and genome-wide genotyping of many individuals

from a multi-generational pedigree were performed previously. Briefly, lymphocytes were isolated

from whole blood samples using Ficoll-Paque and immortalized using Epstein Barr Virus (EBV)

(Cusanovich et al., 2012; Cusanovich et al., 2016). Phased genotypes were obtained by combining

pedigree information, genotypes from SNP arrays, and genotypes from whole genome sequencing

of related individuals (Livne et al., 2015).

iPSC reprogramming
We reprogrammed 75 LCLs to iPSCs using episomal plasmid vectors, containing OCT3/4, p53

shRNA, SOX2, KLF4, L-MYC, and LIN28 which avoids integrating additional transgenes (Okita et al.,

2011). Initially, the lines were generated on mouse embryonic fibroblasts (MEF), which coated the

well and served as feeder cells to create an environment supportive of pluripotent stem cells. The

colony was then mechanically passaged on MEF and tested for expression of pluripotency-associ-

ated markers by immunofluorescence staining and RT-PCR. The lines were passaged for at least 10

weeks on MEF to ensure lines had stabilized.

All iPSC lines were characterized as described previously (Gallego Romero et al., 2015). Briefly,

we initially performed qPCR using 1mg of total RNA, converted to cDNA, from all samples to confirm

the endogenous expression of pluripotency genes: OCT3/4, NANOG, and SOX2 (Figure 1—figure

supplement 1). We next confirmed pluripotency using PluriTest (Müller et al., 2011). All samples

were classified as pluripotent and had a low novelty score (Figure 1—figure supplement 2). Addi-

tionally, we confirmed the ability of all iPSC lines to differentiate into the three main germ layers

using the embryoid body (EB) assay (Supplementary Data). Finally, we tested for the presence and

expression of the EBV gene EBNA-1 using PCR (Figure 1—figure supplement 3, Figure 1—figure

supplement 4). We tested all samples for both genomic integrations and vector-based EBV. If the

cells were positive (two positive and one indeterminate case was identified), we further tested the

origin of the EBV (genomic or episomal) using primers specific to the LMP-2A gene found in EBV or

part of the sequence specific to the episomal plasmid (Figure 1—figure supplement 3). We con-

cluded that two lines still had EBV present in the genome, this was also reflected in EBNA-1 gene

expression for these individuals (Figure 1—figure supplement 4). We retained these individuals

because they passed all quality control metrics and were not outliers based on genome-wide gene

expression. It should also be noted that gene expression levels are extremely similar between iPSC

lines. This relative homogeneity further demonstrates the quality of our iPSC lines. In summary, all

iPSC lines showed expression of pluripotent genes quanti1ed by qPCR, generated EBs for all three

germ layers, and were classified as pluripotent based on PluriTest.

Cardiomyocyte differentiation
iPSC lines were transitioned to feeder-free conditions, which was necessary to prime the iPSCs for

differentiation. Next we differentiated the iPSCs to cardiomyocytes (Lian et al., 2013;

Burridge et al., 2014). iPSC lines were covered with a 1:60 dilution matrigel overlay for 24 hr. On

day 0 iPSC lines were treated with 12�M of the GSK3 inhibitor, CHIR99021, in RPMI+ B27 medium

(RPMI1640, 2 nM L-glutamine and 1x B27 supplement minus insulin) for 24 hr at which time media

was replaced with fresh RPMI + B27. 72 hr after the addition of CHIR99021 (Day 3), 2�M of the Wnt

inhibitor Wnt C-59 was added for 48 hr. Fresh RPMI + B27 was added on Days 5, 7 and 10. Beating

cells appeared between Days 8–10. These cardiomyocytes consisted of ventricular, atrial and pace-

maker-like cells. The cells formed thick layers and contract throughout the well. Metabolic selection
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was used to purify the cardiomyocytes (Tohyama et al., 2013) from Day 14 to Day 20 when glucose-

free RPMI media supplemented with the components essential for cardiomyocyte differentiation

(Burridge et al., 2014), ascorbic acid and human serum albumin, together with lactate, a substrate

uniquely metabolized by cardiomyocytes, was added to cells. Because this lactate media can only be

metabolized by cardiomyocytes, the non-cardiomyocytes in the culture were removed over the 6

day treatment. On day 20 the cardiomyocytes, now at a high cTnT purity, were replated for experi-

ments in media that contains only galactose and fatty acids as an energy source. This galactose

media forces the cardiomyocytes to undergo aerobic respiration, rather than anaerobic glycolysis

common in cultured cells.

IC purity analysis
At day 20 when ICs were plated for doxorubicin exposure, a portion of cells were collected to assess

purity. Cells were harvested from plates by incubating with TrypLE Express (Thermo Fisher Scientific,

Cat. No 12604013) for 5 min at 37˚C. Once removed, cells were manually dissociated further by

passing through a 100�m and then 40�m strainer to create a single cell suspension. Cells were then

resuspended, fixed, and permeabilized (Foxp3/Transcription Factor Staining Buffer Set; eBioscience/

Affymetrix, Cat. No 00-5523-00) according to the manufacturer’s instructions. Cells were stained

with directly conjugated antibodies to cTnI (Alexa Fluor647 Mouse Anti-Cardiac Troponin I Clone

C5; BD Biosciences, Cat. No 564409) and cTnT (PE Mouse Anti-Cardiac Troponin T Clone 13–11; BD

Biosciences, Cat. No 564767). The Zombie VioletTM Fixable Viability Kit (BioLegend, Cat. No

423113) was used to assess cell viability at the time of fixation. The following isotype controls were

used: Alexa Fluor647 Mouse IgG2b, k Isotype Control Clone 27–35 (BD Biosciences Catalog No.

558713) and PE Mouse IgG1, k Isotype Control Clone MOPC-21 (BD Biosciences Catalog No.

554680). Cells were analyzed using a FACS Canto or LSR-II flow cytometers (BD Biosciences), and

the data were analyzed with FlowJo software (v10.0.7, Tree Star). All gates were established such

that <2% of cells stained with isotype controls were positive and dead cells were excluded.

Doxorubicin exposure
We incubated the cardiomyocytes in 0, 0.625, 1.25, 2.5, or 5 �M doxorubicin. After 24 hr, we col-

lected the serum and cells from each condition. From the serum, we measured cardiac Troponin T

levels using the ABNOVA Troponin I (Human) ELISA kit (cat. no. KA0233). From the cells, we

extracted RNA for sequencing. Cells from each individual were treated separately, but batches of

experiments were performed on different days. Each treatment batch contained 1 to 4 individuals.

RNA quality was assessed with the Agilent Bioanalyzer.

RNA-sequencing
We prepared libraries using the Illumina TruSeq Library Kit and generated 50 bp single-end reads

on a HiSeq 4000 at the University of Chicago Functional Genomics Facility. We confirmed sequenc-

ing quality using FastQC and MultiQC (Ewels et al., 2016). We confirmed sample identity by (1)

comparing allelic counts (quantified using samtools mpileup [Li et al., 2009]) of exonic SNPs to the

known genotypes and (2) running verifyBamID (Jun et al., 2012).

Expression quantification
We aligned RNA-seq reads using STAR version 2.5.2a (Dobin et al., 2013) to GRCh38/GENCODE

release 24. We counted reads using feature Counts (Liao et al., 2014) and calculated counts per mil-

lion reads (cpm) using ‘cpm‘ from the ‘edgeR‘ ‘R package (version 3.18.1) (Robinson et al., 2010).

We discarded samples with <107 exonic reads and genes with median log2 cpmð Þ less than 00.

Differential expression analysis
We performed differential expression (DE) analysis across all five doxorubicin concentrations jointly,

using either a linear model on quantile normalized cpm value or Spearman correlation, followed by

Benjamini-Hochberg False Discovery Rate (FDR) control. Since the vast majority of genes showed dif-

ferential expression we did not investigate better powered DE methods such as DESeq2.

We clustered genes into ‘response patterns’ using a K-component mixture model
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p ~Dir 1=K; � � � ;1=Kð Þ

zgjp ~Discrete pð Þ

yngcjzg ¼ k; � ~N �ck;s
2ð Þ

(1)

where p is a prior probability vector over cluster assignments, Dir is the Dirichlet distribution, zg is

cluster from which gene g is generated, yngc is the expression of gene g in individual n at concentra-

tion c, �ck is the mixture parameter (mean) across concentrations for cluster k, and s2 is a shared

noise variance. We marginalize (sum) over zg and optimize with respect to p; �;s using the rstan R

package (Carpenter et al., 2016) (version 2.16.2). The hyperparameters of the Dirichlet distribution

are set such that in the limit of large K the model approximates a Dirichlet process mixture

(MacEachern and Müller, 1998) which automatically learns of an appropriate number of mixture

components to use from data.

Gene set and promoter motif enrichment were performed using HOMER v4.9.1 (Heinz et al.,

2010) using default parameters and without de novo motif search.

Response eQTL mapping
We developed an extension of the PANAMA (Fusi et al., 2012) linear mixed model (LMM) frame-

work to map eQTLs and response eQTLs while accounting for latent confounding, which we call

suez. suez entails a two step procedure. Step one is used to learn latent factors from all genes, using

the model

yncg ¼
X

k

Wkgxnck þ ungþ vcgþ �ncgþ �ncg

Wkg ~Nð0;s
2

kÞ factor loadings=coefficients

ung ~Nð0;s
2

uÞ individual random effects

�~MVNð0;s2

�SÞ kinship random effect

�~MVNð0;diagðs2

� ÞÞ noise

where xnck are latent factors, vcg are per gene, per concentration fixed effects. We integrate over

W ;u; � and �, which results in a per gene multivariate normal,

y:g ~MVN Vv:g;
k

P

s2

kx:kx
T
k: þs2

uUþs2

�Sþs2

e I
� �

; (2)

where y:g refers to the vector of expression for gene g across all individuals and concentrations (i.e.

all ‘samples’ where a sample is an individual-concentration pair), V is a matrix mapping concentra-

tions to samples (i.e. Vsc ¼ 1 iff sample s is at concentration c) and U is a matrix of which samples are

for the same individual (i.e. Uss0 ¼ 1 if sample s and sample s0 come from the same individual). We

optimize x;v and the variances s2

u;s
2

k ;s
2

� ;s
2

�

n o

jointly across all genes g.

In step 2 we test individual gene-SNP pairs while accounting for confounding using the covariance

matrix

Sp ¼
k

P

s2

kx:kx
T
k:þs2

uUþs2

�S (3)

which includes both latent confounding, individual random effects and similarity due to kinship. We

consider three LMMs, all with the same parameterization of the covariance s2

pSp þs2

e I where s2

p and

s2

e are optimized along with the fixed effects to allow the extent to which each gene follows the

global covariance pattern to be adapted. The simple structure of this covariance also allows pre-

computation of the eigen-decomposition of Sp which enables linear (rather than cubic) time evalua-

tion of the likelihood and its gradient.

Model 0 involves no effect of the SNP (and can therefore be fit once for a gene) and a fixed effect

for concentration. Model 1 adds a marginal effect of the SNP genotype dosage d. Finally model 2

adds an interaction effect between concentration and genotype, which is equivalent to a concentra-

tion-specific genotype effect. In summary:

Model 0 : E½yncg� ¼ vcg (4)
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Model 1 : E½yncg� ¼ vcgþbdn (5)

Model 2 : E½yncg� ¼ vcgþbcdn (6)

We optimize s2

p, s
2

e and the regression coefficients for each of the three models separately, and

use likelihood ratio tests (LRT) to compare the models. Comparing Model 1 vs 0 (one degree of free-

dom) tests whether there is a marginal effect of the variant. Comparing Model 2 vs 1 (C� 1¼ 4

degrees of freedom, where C is the number of conditions/concentrations) tests whether there is an

interaction effect, i.e. whether the genetic effect on expression is different at different concentra-

tions (or equivalently whether the response to doxorubicin is different for different genotypes).

Finally Model 2 vs 0 (C¼ 5 degrees of freedom) tests whether there is any effect of genotype on

expression, either in terms of a marginal or concentration-specific effect (we refer to these as ‘com-

bined’ eQTL). We use the conservative approach of using Bonferroni correction across SNPs for a

gene, followed by Benjamini-Hochberg FDR control.

We quantile normalize the expression levels across all samples for each gene to a standard nor-

mal distribution so that the distributional assumptions of our linear mixed model are reasonable.

However, optimizing the variance parameters s2

p and s2

e means that the �2 distribution for the LRT

will only hold asymptotically and p-values for finite sample sizes will tend to be somewhat anti-con-

servative. To account for this for response-eQTLs, we use a parametric bootstrap since there is no

fully valid permutation strategy for testing interaction effects. This involves first fitting Model 1 and

then simulating new expression data under the fitted model. Models 1 and 2 are then (re)fit to this

data and compared using an LRT. We then perform Bonferroni correction across SNPs for each gene

to obtain an empirical null distribution of per gene p-values which we use to estimate the true FDR

for our response-eQTL results.

For significant reQTLs we assigned the response of the minor allele and major allele to the previ-

ously determined clusters using the model

yncjzA; za; �~N
1

2
dn�czA þ

1

2
2� dnð Þ�cza ;s

2

� �

;

where ync is the expression for individual n at concentration c, zA and za are the cluster assign-

ments for the major and minor allele respectively, dn 2 0;1;2f g is the genotype dosage, and � and s2

are fixed at the values learned in Equation 1. For each reQTL separately we calculate the likelihood

of y given all possible pairs of assignments zA; zað Þ and choose the maximum likelihood solution.

As for all k-means clustering in the paper, we used KMeans_rcpp function of the R package Clus-

terR v1.0.6, taking the best of 10 initializations using the k-means++ option, to cluster the normal-

ized genotype effect profiles of the significant associations. The choice of 9 clusters was determined

manually.

Using allelic expression
We (Knowles et al., 2017; van de Geijn et al., 2015) and others (Kumasaka et al., 2016) have

demonstrated that modeling allele-specific expression can improve power to detect both cis eQTLs

(van de Geijn et al., 2015; Kumasaka et al., 2016) and reQTLs (Knowles et al., 2017). Here we

employ a combination of ideas from these methods:

. We assume our computational phasing between the regulatory and exonic SNP(s) is correct,
since we have previously shown that errors in phasing reduce power but do not inflate false
positives (van de Geijn et al., 2015).

. We use a beta-binomial (denoted BB) likelihood allowing exact likelihood calculations and
straightforward maximum likelihood parameter estimation via LBFGS in Stan (Carpenter et al.,
2016). We use the parametrization BB n; p; gð Þ where n is the total count, p is the mean, and c is
the concentration. The usual pseudo-count parametrization is recovered as a ¼ pc; b ¼ 1� pð Þc.

. We model multiple exonic SNPs per gene to ease integration with the total expression signal
from suez.

Under the hypothesis that the allelic effect of the test regulatory SNP varies across concentrations

(analogous to Model 2 in Equation 6), we have
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ynkcjrnkc;fnk ~BB rnkc;s �þfnkbcð Þ;gð Þ (7)

where there are K exonic SNPs in a gene, with alternative allele counts ynkc and read coverage rnkc. s

is the logistic function. � is an intercept term to account for reference mapping bias, and g is a per-

gene concentration (reciprocal of over dispersion) parameter. We regularize g using a G 1:001;0:001ð Þ

prior. fnk 2 �1;0;þ1f g is the phased heterozygosity of the test regulatory SNP in individual n, with

fnk ¼ 0 if the regulatory SNP is homozygous (these individuals are included to help estimate � and c)

and fnk ¼ 1 or �1 if the regulatory SNP is heterozygous and in phase (1) or opposite phase (-1) with

SNP k. bc is the effect size in concentration c. The null (no interaction effect, corresponding to Model

1 in Equation 6) is that bc ¼ b for all all c.

To integrate evidence from total and allelic specific expression it is valid to add the log likelihood

ratios, which can be seen as either fitting one model with likelihood terms for the two components,

or as a result of �2 random variables being closed under addition. This approach has substantially

better power than applying Fisher’s combined probability test to p-values from testing the total and

allelic expression components separately. Twice the summed log likelihood ratio is asymptotically �2

with degrees of freedom being simply the sum of the degrees of freedom of the two components

(so usually 4þ 4 ¼ 8 in our case). In practice we only fit the total expression model if there are at

least 5 alternative alleles observed for the test regulatory SNP, and only fit the allele-specific model

if there are at least 2000 supporting allelic reads for the gene, so some regulatory SNPs are only

tested using one component or the other. In addition, for some genes whose expression is very low

for specific concentrations there may be no allelic reads for a concentration, in which case the

degrees of freedom for the allele-specific component will be reduced since no bc is learned for that

concentration.

Assessing agreement with GTEx eQTLs
We initially compared our eQTLs to GTEx eQTLs by estimating Storey’s p1 (Storey and Tibshirani,

2003), using the q value R package v2.8.0, for GTEx nominal p-values for our significant eQTLs (at a

nominal p<10�5). While the GTEx heart tissues show higher replication than most tissues, surprising

tissues ranked higher (Figure 2—figure supplement 1). We reasoned that differential power across

the GTEx tissues due to differing sample size and noise levels confound this simple approach. We

therefore used an extension of Storey’s p1 to test for overlap between two sets of p-values. For each

GTEx tissue we fit (using LBFGS in Stan) a mixture model

pi1;pi2ð Þ~p00U pi1ð ÞU pi2ð Þþp10B pi1ja1;b1ð ÞU pi2ð Þþp01U pi1ð ÞB pi2ja2;b2ð Þþp11B pi1ja1;b1ð ÞB pi2ja2;b2ð Þ (8)

where pij is the p-value for SNP-gene pair i in tissue j, U is the uniform distribution on 0;1½ � (corre-

sponding to p-values coming from the null) and B is the beta distribution (corresponding to non-null

p-values).p00;p01;p10;p11 correspond to mixture weights are estimates of the proportion of SNP-

gene pairs that are (a) null for both tissues, (b) null for tissue one and non-null for tissue 2, (c) non-

null for tissue one and null for tissue 2, (d)non-null for both tissues. Note that p sums to 1. We con-

strain the hyperparameters aj 2 0;1½ � and bj � 1 to encode the assumption that non-null SNP-gene

pairs should have low p-values. Due to the large number of SNP-gene pairs tested, in practice we

bin p-values on a regular 100� 100 grid and use the bin counts to weight the likelihood. Finally we

estimate the mutual information between the pair of tissues as:

MI ¼ k¼ 0;1f g
X

j¼ 0;1f g

P

pkj log
pkj

pkp
0
j

(9)

where pk ¼
P

j¼ 0;1f g pkj and p0
j ¼
P

k¼ 0;1f g pkj are marginal probabilities. This approach explicitly esti-

mates the proportion of null tests in tissue 1 (p0) and tissue 2 (p0
0
) as well as the proportion of tests

that are non-null in both (p11). This approach both controls for power in both tissues and negates

the need to choose arbitrary significance thresholds.

Splicing analysis
We ran LeafCutter v0.2.6_dev (using default settings) which allows joint differential intron excision

testing across more than two conditions. For each Alternative Splicing Cluster (ASC) LeafCutter fits a
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set of PercentSplicedIn probability vectors  c, across detected splice junctions i, at each concentration

c. For ASCs determined to be significantly (5% FDR) differential spliced across concentrations, we

calculated the entropy hc ¼ �
P

i  ci log ci at each concentration c. We normalized these profiles as

~hc ¼ hc= �hc and clustered these profiles, using KMeans_rcpp as above.

To investigate the relative usage of cryptic splice sites we first determined the set of 7792 splice

junctions that (a) fell in ASCs determined to be significantly differentially spliced (5% FDR) and (b)

had maxc  ci �minc  ci>0:1. We obtained normalized intron excision rates by subtracting the per

intron mean and dividing by the per intron standard deviation. These  profiles were clustered using

KMeans_rcpp. Cryptic splice site usage was determined by considering all exons in Gencode v26

and ignoring transcript structure (i.e. a junction spanning two splice sites used but only in different

transcripts would still be considered ‘annotated’).

For (response) splicing QTL we calculated within ASC intron excision  with pseudocount of 0:5,

and set entries with 0 denominator (no reads for that ASC in that sample) to the mean across all

other samples. These values were then (1) z-score normalized across samples and (2) quantile nor-

malized to a normal across introns. QTL mapping was then performed using suez considering each

intron as a ‘gene’.

Modeling cardiac troponin level
We assessed the proportion of variance in cardiac troponin explained by gene expression response.

Let yci represent the troponin level measured in individual i at doxorubicin concentration c, normal-

ized to have 0 mean and variance 1 across individuals at each concentration. Let xcig be the expres-

sion of gene g (in individual i at concentration c), z-score normalized across samples. We consider

the linear model

yci ¼
g

P

bgxcigþ �ci (10)

where �ci ~N 0;s2

�

� �

is noise and the coefficients bg are given a prior N 0;s2

b=G
� �

where G¼ 12;317 is

the number of genes in the analysis. Integrating over bg we have

y: ~N 0;s2

b

1

G

X

g

x:gx
T
:g þs2

� I

 !

(11)

We optimize this model wrt sb and s� to obtain an estimate �¼ s2

b= s2

b þs2

�

� �

of the percent vari-

ance of y explained by x. A Bayesian credible interval for � is obtained under this model using 8000

iterations of Hamiltonian Monte Carlo (with the first 4000 discarded as burnin) implemented using

RStan (Carpenter et al., 2016) (v2.16.2).

For the transcriptome-wide association study for cardiac troponin levels we use the R package

glmnet (v2.0–13) to build elastic-net predictors of gene expression for each gene, using 10-fold

cross-validation to choose l and a ¼ 0:5 which we found gave comparable performance to higher

values. A single model was learnt per gene jointly across concentrations, including main effects for

all SNPs within 100 kb of the gene TSS, main effects for doxorubicin dosage (encoded categorically)

and interaction terms between each SNP and the dosage factor. The fitted values on the test-folds

from the cross-validation are known as the ‘prevalidation’ response. To test which genes have a sig-

nificant genetic component we tested (using analysis-of-variance) whether the observed expression

was better predicted under a linear model including the prevalidation values and the dosage vari-

able than by dosage alone. The prevalidated response for the 3840/12317 genes (1% FDR) genes

that are predictable from genotype are then used to predict troponin level, normalized as for Equa-

tion 10, using leave-out-one-cross-validated lasso regression.

Code and data availability
All the custom analysis scripts used for this project are available at https://github.com/davida-

knowles/dox (Knowles and Blischak, 2017; copy archived at https://github.com/elifesciences-publi-

cations/dox). The suez response eQTL mapping R package is available at https://github.com/

davidaknowles/suez (Knowles, 2017; copy archived at https://github.com/elifesciences-publica-

tions/suez). The following data are available as Supplementary Data: (1) differential expression
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cluster assignments, (2) significant (5% FDR) eQTLs and sQTLs, (3) differential splicing results, (4) lev-

els of cardiac troponin and the predicted transcriptomic response. In addition to the Supplementary

Data included with this paper additional results are hosted at http://web.stanford.edu/~dak33/dox/

and Dryad (doi:10.5061/dryad.r5t8d04) including (1) gene-by-sample matrix of RNA-seq quantifica-

tion (log counts per million), (2) LeafCutter intron excision quantification (3) p-values for all tested

eQTLs, reQTLs, sQTLs, and rsQTLs, (4) RARG variant response and marginal trans-eQTLs, (5) RIN,

RNA concentration and other technical covariates, (6) embryoid body imaging for all iPSC lines. The

RNA-seq FASTQ files will be added to the dbGaP database (Tryka et al., 2014) under dbGaP acces-

sion phs000185 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000185).

The genotype data files cannot be shared because releasing genotype data from a subset of individ-

uals in the pedigree would enable the reconstruction of genotypes of other members of the pedi-

gree, which would violate the original protocol approved by the research ethics board (Livne et al.,

2015). The summary statistics for the ACT GWAS were given to us by the authors of the studies

(Schneider et al., 2017; Serie et al., 2017).
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gene id. snps: number of SNPs tested. PP.H0.abf: posterior probability of no association. PP.H1.abf:
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Data availability

All the custom analysis scripts used for this project are available at https://github.com/davida-

knowles/dox (Knowles and Blischak, 2017). The suez response eQTL mapping R package is available

at https://github.com/davidaknowles/suez (Knowles, 2017). The following data are available as Sup-

plementary Data: 1) differential expression cluster assignments, 2) significant (5% FDR) eQTLs and

sQTLs, 3) differential splicing results, 4) levels of cardiac troponin and the predicted transcriptomic

response. In addition to the Supplementary Data included with this paper, further results are hosted

at Dryad (doi:10.5061/dryad.r5t8d04) including 1) gene-by-sample matrix of RNA-seq quantification

(log counts per million), 2) LeafCutter intron excision quantification 3) p-values for all tested eQTLs,

reQTLs, sQTLs, and rsQTLs, 4) RARG variant response and marginal trans-eQTLs, 5) RIN, RNA con-

centration and other technical covariates, 6) embryoid body imaging for all iPSC lines. The RNA-seq

FASTQ files will be added to the dbGaP database (Tryka et al., 2014) under dbGaP accession

phs000185 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000185). The

genotype data files cannot be shared because releasing genotype data from a subset of individuals

in the pedigree would enable the reconstruction of genotypes of other members of the pedigree,

which would violate the original protocol approved by the research ethics board (Livne et al., 2015).

The summary statistics for the ACT GWAS were given to us by the authors of the study (Schneider

et al., 2016; Serie et al. 2017).

The following datasets were generated:
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