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Abstract

Forward-backward filtering is a common tool in off-line filtering. Filtering
first forwards and then backwards and the other way around do not give the
same result generally. Here we propose a method to choose the initial state in
the filter to eliminate this discrepancy. The objectives are to obtain uniqueness

and to remove transients in both ends.

1 Introduction

In batchwise signal processing one has the possibility not only to filter a signal forwards
in time as usual, but also apply a filter backwards on the filtered signal. Forward-
backward filtering is needed in the following applications for example:

e Zero-phase filtering using IR filters.
e Implementation of non-causal Wiener filters or other filters with poles both inside

and outside the unit circle.

The first trick to obtain zero-phase filters is used in many software packages, see for
instance the function filtfilt in Matlab [2], although it is not much discussed in
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standard text books. The design of non-causal Wiener filters leads to a filter with one
stable part and one unstable one as discussed in for instance [1]. The unstable part
must be implemented using backward filtering. In both cases, there might be a problem
with transients when applied to finite signals.

A filter G(q) becomes all-pass, or zero phase, when applied first forwards, y¢(t) =
G(q)u(t), and then backwards on the reversed filtered signal, yf;(t) = G(q)yf(t), and
finally the output is reversed again. The superindex R stands for reversed sequences,
the indexes f for forward and b for backward and ¢ denotes the shift operator qu(t) =
u(t+1). We can also first filter backwards and then forwards and obtain y;(¢). In both
cases, the total effect is a zero phase filter with transfer function |G(e*)[>. However,
we have ys(t) # yps(t) generally due to unknown initial conditions, and this is not
satisfactory from the logical point of view. Besides, the FB (forward-backward) filtered
sequence has visible transients in the end and the BF filtered sequence at the beginning.

One way to obtain symmetry is to implement a filter with poles both inside and outside
the unit circle by using the partial fractions of the stable poles and unstable poles
respectively. This is the standard way in non-causal Wiener filtering. The stable filter
is applied forwards on the input and the unstable filter backwards and the filter output
is the sum of these terms. Since both filters are applied to the input, the result is of
course independent of the order of computations. However, there still is a problem with
transients, this time in both ends, due to unknown initial conditions.

We will here determine the initial conditions that makes y,7(t) = y(¢) and at the same
time removes the transients. That is, the initial condition of one filter is chosen to match
the end of the other filter. Instead of solving the system of equations arising from the
condition y,r(t) = ys(t), we will work in a least squares framework, which immediately
gives a feasible implementation. The method is illustrated on filtered white noise. The
improvement for short data records or long filter impulse responses is obvious.

2 Determining the initial state

A linear filter can always be expressed as
Y =HU + Oxy,

where Y = (yo, y1,-,yn_1)" is the vector of outputs, U = (ug, uy, .., uy_1)" is the vector
of inputs to the filter and x, its initial state. # is a Toeplitz matrix of impulse response



coefficients

ho 0 0
b he 0

H=| 0 (1)
hN—l e hl hO

where N is the number of inputs, and O is an “observability” matrix. If the filter is
written in state space form

z(t+1) = Fz(t) + Gu(t)
y(t) = Hx(t) + Du(t)
then

HG D 0

HFN=2G ... HG D
H

HF
o= " (3)

HF;N—I

We introduce the row and column reversing operators R and C with the following easily
checked properties:

A = BC=
AR = BEC
AY = BC*¢
BC? = B¢C

(BCRC)RC —  pRCE
ARG = AT if A Toeplitz
The forward and backward filters are characterized by the pairs (H s, O) and (Hy, Op).

Using the notation xy and xy_; for the initial conditions for forward and backward
filters, the result of forward-backward and backward-forward filtering can be written as

be — (%beR + ObfL'N_l)R
= HEHU + Opa0) + Off oy
= %5%}{[] + Hf@?mo + Ofofl
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and
Yip = HY+ O
= fo(erUR + Obe,l)R + Ofib‘g
HH U + HpOpwn—1 + Oy
respectively. Note that H{HF # HEH .
It turns out that there always is a solution to Yy, — Y,y = 0. We will not prove this

statement. Instead we formulate the problem as minimizing ||Y}, — Y,||3, which turns
out to be easier to solve. We have

Yip =Yy = (HyHF —HSH))U + (HFOF — Op)ao + (I — Hy)Ofwy

Since this is a linear expression in zy and xy_1, the minimizing arguments are given by
the least squares estimate

x #
( xN01 ) = [(HFOF - 0p), (1 =Hp)OF|" (HEHT — HEHS) U

Here # denotes pseudo-inverse. By substituting these estimated initial states into the
FB and BF filters we get

Yo = HIHFU + [HPOF, Of] [(Hiof —0)), (1-H f)o,?]# (Hymf - HSHS ) U
Vi = HYHCU +[0f, H;08) [(HEOF - 0) , (1= H)OF)" (MiHE - HGHS ) U

The expressions given above are not useful for implementation, since N x N matrices
are involved. Next we seek a feasible implementation without computing H explicitely.

3 Fast implementation

In this section we describe how Y7, without proof claimed to be the same as Y}, can
be computed efficiently. First an exact method is detailed, where the initial states are
computed with linear in time complexity, and then a constant complexity approximation

is proposed.

We first compute the nominal values of Yy, and Yj; for zero initial conditions using
standard filter routines. That is, we have

Y), = HyH{U
Vi = H{HU
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We also need arbitrary state space realizations of the filters, (Fy, Gy, Hy, Ds) and

b, Gy, Hy, Dy). e “observability” matrixes an are computed according to
Fy, Gy, Hy, Dy). The “ob bility” tri Oy and Oy ted ding t
(3). Now, we just have to compute the quantities Sy 2 Hb(’)}{ and Sy, 2 H,OF and
we can express the least squares estimate as

T #
( ’ ) = [(8f, = 05) OF = Sis]” (Vi = V}).

TN-1

Thus, we have

17 (5 - v (4)

Yo = Yh+[Sh, OF][(Sh - 0p) OF - Sy

Next is shown that Sy, can be computed without forming the N x N matrix H;. The
vectors of impulse response coefficients can be expressed in hy as

Dy

hr =
f Of(lIN—l,I)Gf

Here Of(1: N —1,:) means rows 1 to N — 1 of O;. Note that h is the first column of
M. Let Spp(t. :) denote the t’th row of Sy, and hy(t) the t'th component of h;. From
(1), (2) and (3) we have

Sp(N,:) = (hH)"OF = (h})C O = h7 O,
Si(N —1,:) = Sp(N,:)Fy, — hy(N)H,FN
Spt—1,:) = Splt,)Fy — hp(t)H,FN

Thus, Sy, can be computed by the recursion

Sfb(N,i) = h?Ob
Spt—1,:) = Splt,)Fy— hp(t)HyF)™', t=N,N—1,..,2.

and Sy is computed similarly. In this way, we do not have to compute the N x N
matrix H explicitely, but only the N x 2n matrices O and S.

4 Fixed complexity approximation

For long signals, it seems to be overkill to work with the complete impulse response h
and observability matrix O. If we assume that the impulse response is approximately
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zero for t > M a logical approximation in (4) is to replace F* by 0 if ¢ > M. This
leads to an O having non-zero elements in its first M rows only, and S having non-zero
elements in its last M rows. Thus, we are faced with a least squares problem with 20
equations and 2n unknowns, so all that is needed is to compute the pseudo-inverse of
a 2M X 2n matrix in (4).

5 Simulations

In this section, a band-pass Butterworth filter applied to a white noise sequence! will be
examined. The filter is of tenth order with (normalized) cut-off frequencies 0.2 and 0.25
and the noise sequence is of length 200. Figure 1 shows first Y, and Y} ¢ using the initial
states in Matlab’s fi1tfilt? function in the signal processing toolbox and second the
result using zero inital states zo and xy_q, i.e. Yy, = HEHEU and Vi = HEHCU.
Then follows the signals (4) using optimized initial states. Finally, the result using
partial fractions,

B(g) Ble™) _Clg) , Dla)
Alg) Ale™")  Alg)  AlgY)

is shown. As seen, the last two curves are identical showing the symmetry of the

|H(q)|* =

proposed initialization method. The 2-norms are as follows:
“Yffbﬂtfm B f};z'ltfz'lt”Z — 16
||Yf0b - Yf0b||2 = 1.0
Y = Ypll: = 8-107%
Thus, there is a significant difference depending on the order of forward and backward
filtering for the first two choices of initial conditions. The transient from the filter is

clearly visible either in the beginning or the end. The proposed method and the partial
fraction method are perfectly symmetric.

To highlight the transients due to unknown initial conditions in the partial fraction
method, a very simple zero-phase high-pass filter is used,
2

125/36 20/9
u(t) = /36 _ 20/
7+125 ¢+08

1
qg+ 0.8

y(t) = ‘

!The result can be reproduced using Matlab’s Gaussian distribution with seed 0

2Version 4.1 and earlier of Matlab has a bug. With the following definition of the initial
state zi, the function works as intended: zi = (eye(nfilt-1) + [aa(2:nfilt)’ [-eye(nfilt-2);
zeros(1,nfilt-2)11)\ (bb(2:nfilt)-bb(1)*aa(2:nfilt))’;
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Figure 1: The forward-backward and backward-forward filtered signal using first Mat-
labs filtfilt, then zero initial condition, optimized initial conditions and finally using
partial fractions.



Forward-backward filtering using optimized initial conditions
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Figure 2: The filtered signal using optimized initial conditions and partial fractions.

and a DC offset of 100 is added to the u(t) used in the previous example. The result
is shown in Figure 2. The transients for the partial fraction method are obvious. Of
course, some ad-hoc rules can be used to determine initial conditions to compensate for
the DC offset in this example. The point is, that the proposed method computes the
initial conditions for each filter to match the end of the other filter response when the
transient hopefully is gone.

6 Conclusion

We have here detailed a method to choose the initial conditions for filters to be applied
forwards and backwards to a signal. The objectives were to get the same result inde-
pendently of the order of filtering and to minimize transients due to offsets and trends
in the data. Zero initial conditions or other ad-hoc initializations can by examples eas-
ily be shown to give undesired transients at the beginning or end of the data sequence
depending on the order of application of the forward and backward filters. Transients
are also a problem when using partial fractions of the stable and unstable parts. The
proposed method gives no transients and is symmetric, which was exemplified by a
simulation.
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