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Abstract

Forward�backward �ltering is a common tool in o��line �ltering� Filtering

�rst forwards and then backwards and the other way around do not give the

same result generally� Here we propose a method to choose the initial state in

the �lter to eliminate this discrepancy� The objectives are to obtain uniqueness

and to remove transients in both ends�

� Introduction

In batchwise signal processing one has the possibility not only to �lter a signal forwards

in time as usual� but also apply a �lter backwards on the �ltered signal� Forward�

backward �ltering is needed in the following applications for example�

� Zero�phase �ltering using IIR �lters�

� Implementation of non�causal Wiener �lters or other �lters with poles both inside

and outside the unit circle�

The �rst trick to obtain zero�phase �lters is used in many software packages� see for

instance the function filtfilt in Matlab ��	� although it is not much discussed in
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standard text books� The design of non�causal Wiener �lters leads to a �lter with one

stable part and one unstable one as discussed in for instance �
	� The unstable part

must be implemented using backward �ltering� In both cases� there might be a problem

with transients when applied to �nite signals�

A �lter G�q� becomes all�pass� or zero phase� when applied �rst forwards� yf�t� 

G�q�u�t�� and then backwards on the reversed �ltered signal� yRfb�t�  G�q�yRf �t�� and

�nally the output is reversed again� The superindex R stands for reversed sequences�

the indexes f for forward and b for backward and q denotes the shift operator qu�t� 

u�t�
�� We can also �rst �lter backwards and then forwards and obtain ybf �t�� In both

cases� the total e�ect is a zero phase �lter with transfer function jG�ei��j�� However�

we have yfb�t� � ybf�t� generally due to unknown initial conditions� and this is not

satisfactory from the logical point of view� Besides� the FB �forward�backward� �ltered

sequence has visible transients in the end and the BF �ltered sequence at the beginning�

One way to obtain symmetry is to implement a �lter with poles both inside and outside

the unit circle by using the partial fractions of the stable poles and unstable poles

respectively� This is the standard way in non�causal Wiener �ltering� The stable �lter

is applied forwards on the input and the unstable �lter backwards and the �lter output

is the sum of these terms� Since both �lters are applied to the input� the result is of

course independent of the order of computations� However� there still is a problem with

transients� this time in both ends� due to unknown initial conditions�

We will here determine the initial conditions that makes ybf�t�  yfb�t� and at the same

time removes the transients� That is� the initial condition of one �lter is chosen to match

the end of the other �lter� Instead of solving the system of equations arising from the

condition ybf�t�  yfb�t�� we will work in a least squares framework� which immediately

gives a feasible implementation� The method is illustrated on �ltered white noise� The

improvement for short data records or long �lter impulse responses is obvious�

� Determining the initial state

A linear �lter can always be expressed as

Y  HU �Ox��

where Y  �y�� y�� ��� yN���
T is the vector of outputs� U  �u�� u�� ��� uN���

T is the vector

of inputs to the �lter and x� its initial state� H is a Toeplitz matrix of impulse response
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where N is the number of inputs� and O is an �observability� matrix� If the �lter is

written in state space form

x�t � 
�  Fx�t� �Gu�t�

y�t�  Hx�t� �Du�t�

then
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We introduce the row and column reversing operators R and C with the following easily

checked properties�

A  BC �

AR  BRC

AC  BCC

BCR  BCC

�BCRC�RC  BRCC

ARC  AT if A Toeplitz

The forward and backward �lters are characterized by the pairs �Hf �Of� and �Hb�Ob��

Using the notation x� and xN�� for the initial conditions for forward and backward

�lters� the result of forward�backward and backward�forward �ltering can be written as

Yfb  �HbY
R
f �ObxN���

R

 HR
b �HfU �Ofx��

R �OR
b xN��

 HR
b H

R
f U �HR

b O
R
f x� �OR

b xN��

�



and

Ybf  HfY
R
b �Ofx�

 Hf�HbU
R �ObxN���

R �Ofx�

 HC
f H

C
b U �HfO

R
b xN�� �Ofx�

respectively� Note that HR
b H

R
f � HC

f H
C
b �

It turns out that there always is a solution to Yfb � Ybf  �� We will not prove this

statement� Instead we formulate the problem as minimizing kYfb � Ybfk
�
�� which turns

out to be easier to solve� We have

Yfb � Ybf  �HR
b H

R
f �HC

f H
C
b �U � �HR

b O
R
f �Of�x� � �I �Hf�O

R
b xN��

Since this is a linear expression in x� and xN��� the minimizing arguments are given by

the least squares estimate

d�
� x�
xN��

�
A 

h
�HR

b O
R
f �Of � � �I �Hf �O

R
b

i� �
HR

b H
R
f �HC

f H
C
b

�
U

Here � denotes pseudo�inverse� By substituting these estimated initial states into the

FB and BF �lters we get

�Yfb  HR
b H

R
f U �

h
HR

b O
R
f � OR

b

i h
�HR

b O
R
f �Of � � �I �Hf�O

R
b

i� �
HR

b H
R
f �HC

f H
C
b

�
U

�Ybf  HC
f H

C
b U �

h
Of � HfO

R
b

i h
�HR

b O
R
f �Of � � �I �Hf �O

R
b

i� �
HR

b H
R
f �HC

f H
C
b

�
U

The expressions given above are not useful for implementation� since N � N matrices

are involved� Next we seek a feasible implementation without computing H explicitely�

� Fast implementation

In this section we describe how Yfb� without proof claimed to be the same as Ybf � can

be computed e�ciently� First an exact method is detailed� where the initial states are

computed with linear in time complexity� and then a constant complexity approximation

is proposed�

We �rst compute the nominal values of Yfb and Ybf for zero initial conditions using

standard �lter routines� That is� we have

Y �
fb  HR

b H
R
f U

Y �
bf  HC

f H
C
b U
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We also need arbitrary state space realizations of the �lters� �Ff � Gf � Hf � Df� and

�Fb� Gb� Hb� Db�� The �observability� matrixes Of and Of are computed according to

���� Now� we just have to compute the quantities Sbf
�

 HbO
R
f and Sfb

�

 HfO
R
b and

we can express the least squares estimate as

d�
� x�
xN��

�
A 

h
�SR

fb �Of � OR
b � Sbf

i�
�Y �

bf � Y �
fb��

Thus� we have

Yfb  Y �
fb �

h
SR
bf � O

R
b

i h
�SR

fb �Of � OR
b � Sbf

i�
�Y �

bf � Y �
fb�� ���

Next is shown that Sfb can be computed without forming the N �N matrix Hf � The

vectors of impulse response coe�cients can be expressed in hf as

hf 

�
� Df

Of �
 � N � 
� ��Gf

�
	 �

Here Of �
 � N � 
� �� means rows 
 to N � 
 of Of � Note that hf is the �rst column of

Hf � Let Sfb�t� �� denote the t�th row of Sfb and hf �t� the t�th component of hf � From

�
�� ��� and ��� we have

Sfb�N� ��  �hRf �
TOR

b  �hTf �
COR

b  hTfOb

Sfb�N � 
� ��  Sfb�N� ��Fb � hf �N�HbF
N��
b

Sfb�t� 
� ��  Sfb�t� ��Fb � hf �t�HbF
N��
b

Thus� Sfb can be computed by the recursion

Sfb�N� ��  hTfOb

Sfb�t� 
� ��  Sfb�t� ��Fb � hf �t�HbF
N��
b � t  N�N � 
� ���� ��

and Sbf is computed similarly� In this way� we do not have to compute the N � N

matrix H explicitely� but only the N � �n matrices O and S�

� Fixed complexity approximation

For long signals� it seems to be overkill to work with the complete impulse response h

and observability matrix O� If we assume that the impulse response is approximately
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zero for t � M a logical approximation in ��� is to replace F t by � if t � M � This

leads to an �O having non�zero elements in its �rst M rows only� and �S having non�zero

elements in its last M rows� Thus� we are faced with a least squares problem with �M

equations and �n unknowns� so all that is needed is to compute the pseudo�inverse of

a �M � �n matrix in ����

� Simulations

In this section� a band�pass Butterworth �lter applied to a white noise sequence� will be

examined� The �lter is of tenth order with �normalized� cut�o� frequencies ��� and ����

and the noise sequence is of length ���� Figure 
 shows �rst Yfb and Ybf using the initial

states in Matlab�s filtfilt� function in the signal processing toolbox and second the

result using zero inital states x� and xN��� i�e� Yfb  HRHRU and Ybf  HCHCU �

Then follows the signals ��� using optimized initial states� Finally� the result using

partial fractions�

jH�q�j� 
B�q�

A�q�

B�q���

A�q���

C�q�

A�q�
�

D�q�

A�q���
�

is shown� As seen� the last two curves are identical showing the symmetry of the

proposed initialization method� The ��norms are as follows�

kY filtfilt
fb � Y filtfilt

fb k�  
��

kY �
fb � Y �

fbk�  
��

k �Yfb � �Yfbk�  � � 
����

Thus� there is a signi�cant di�erence depending on the order of forward and backward

�ltering for the �rst two choices of initial conditions� The transient from the �lter is

clearly visible either in the beginning or the end� The proposed method and the partial

fraction method are perfectly symmetric�

To highlight the transients due to unknown initial conditions in the partial fraction

method� a very simple zero�phase high�pass �lter is used�

y�t� 










q � ���







�

u�t� 

�����

q � 
���
�

����

q � ���

�The result can be reproduced using Matlab	s Gaussian distribution with seed 

�Version ��� and earlier of Matlab has a bug� With the following denition of the initial

state zi� the function works as intended� zi � �eye�nfilt��� � �aa�	
nfilt�� ��eye�nfilt�	��

zeros��nfilt�	����n �bb�	
nfilt��bb����aa�	
nfilt����

�
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Forward−backward filtering using Matlab‘s filtfilt
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Figure 
� The forward�backward and backward�forward �ltered signal using �rst Mat�

labs �lt�lt� then zero initial condition� optimized initial conditions and �nally using

partial fractions�
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Figure �� The �ltered signal using optimized initial conditions and partial fractions�

and a DC o�set of 
�� is added to the u�t� used in the previous example� The result

is shown in Figure �� The transients for the partial fraction method are obvious� Of

course� some ad�hoc rules can be used to determine initial conditions to compensate for

the DC o�set in this example� The point is� that the proposed method computes the

initial conditions for each �lter to match the end of the other �lter response when the

transient hopefully is gone�

� Conclusion

We have here detailed a method to choose the initial conditions for �lters to be applied

forwards and backwards to a signal� The objectives were to get the same result inde�

pendently of the order of �ltering and to minimize transients due to o�sets and trends

in the data� Zero initial conditions or other ad�hoc initializations can by examples eas�

ily be shown to give undesired transients at the beginning or end of the data sequence

depending on the order of application of the forward and backward �lters� Transients

are also a problem when using partial fractions of the stable and unstable parts� The

proposed method gives no transients and is symmetric� which was exempli�ed by a

simulation�
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