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ABSTRACT 

Many clustering and segmentation algorithms both suffer from the limitation that the number of clusters/segments are 

specified by a human user.  It is often impractical to expect a human with sufficient domain knowledge to be available 

to select the number of clusters/segments to return.  In this paper, we investigate techniques to determine the number of 

clusters or segments to return from hierarchical clustering and segmentation algorithms.  We propose an efficient 

algorithm, the L method, that finds the “knee” in a ‘# of clusters vs. clustering evaluation metric’ graph.  Using the 

knee is well-known, but is not a particularly well-understood method to determine the number of clusters. We explore 

the feasibility of this method, and attempt to determine in which situations it will and will not work.  We also compare 

the L method to existing methods based on the accuracy of the number of clusters that are determined and efficiency.  

Our results show favorable performance for these criteria compared to the existing methods that were evaluated. 

Keywords:  clustering, cluster validation, segmentation, hierarchical clustering, time series. 

1. INTRODUCTION 

While clustering and segmentation algorithms are unsupervised learning processes, users are usually required to set 

some parameters for these algorithms.  These parameters vary from one algorithm to another, but most 

clustering/segmentation algorithms require a parameter that either directly or indirectly specifies the number of 

clusters/segments.  This parameter is typically either k, the number of clusters/segments to return, or some other parameter 

that indirectly controls the number of clusters to return, such as an error threshold.  Setting these parameters requires either 

detailed pre-existing knowledge of the data, or time-consuming trial and error.  The latter case still requires that the user has 

sufficient domain knowledge to know what a good clustering “looks” like.  However, if the data set is very large or is multi-

dimensional, human verification could become difficult.  To find a reasonable number of clusters, many existing methods 

must be run repeatedly with different parameters, and are impractical for real-world data sets that are often quite large. 

We desire an algorithm that can efficiently determine a reasonable number of clusters/segments to return from any 

hierarchical clustering/segmentation algorithm.  In order to identify the correct number of clusters to return from a 

hierarchical clustering/segmentation algorithm, we introduce the L method.  The definition of a “cluster” is not well-defined, 

and measuring cluster quality is subjective.  Thus, there are many clustering algorithms with unique evaluation functions and 

correspondingly unique notions of what a good cluster “looks” like.  The L method makes use of the same evaluation function 

that is used by a hierarchical algorithm during clustering or segmentation to construct an evaluation graph where the x-axis is 



 

the number of clusters and the y-axis is the value of the evaluation function at x clusters.  The knee, or the point of maximum 

curvature of this graph, is used as the number of clusters to return.  The knee is determined by finding the area between the 

two lines that most closely fit the curve.  The L method only requires the clustering/segmentation algorithm to be run once, 

and the overhead of determining the number of clusters is trivial compared to the runtime of the clustering/segmentation 

algorithm. 

Our main contributions are:  (1) we demonstrate a method to efficiently determine a reasonable number of clusters to 

return from any hierarchical clustering or segmentation algorithm; (2) we introduce a novel method to find the knee of a 

curve; (3) we explore the feasibility of using the “knee” of a curve to determine the number of clusters to return by evaluating 

its performance on several different algorithms and data sets; (4) we compare our method with two existing techniques: the 

Gap statistic and Permutation tests based on the accuracy of the number of clusters returned and efficiency. 

The next section gives an overview of related work.  Section 3 provides a detailed explanation of our L method, 

which is able to efficiently and accurately determine a good number of clusters to return from hierarchical 

clustering/segmentation algorithms.  Section 4 discusses experimental evaluations of the L method and two existing methods 

using several clustering and segmentation algorithms, and Section 5 summarizes our study. 

2. RELATED WORK 

Clustering Algorithms.  Clustering is an unsupervised machine learning process that creates clusters such that data points 

inside a cluster are close to each other, and also far apart from data points in other clusters.  There are four main categories of 

clustering algorithms:  partitioning, density-based, grid-based, and hierarchical.  Partitioning algorithms, such as K-means and 

PAM [14], iteratively refine a set of k clusters and do not scale well for larger data sets.  Density-based algorithms, e.g., 

DBSCAN [3] and DENCLUE [9], are able to efficiently produce clusters of arbitrary shape, and are also able to handle 

outliers.  If the density of a region is above a specified threshold, those points are assigned to a cluster; otherwise they are 

considered to be noise.  Grid-based algorithms, such as WaveCluster [17], reduce the clustering space into a grid of cells, 

enabling efficient clustering of very large datasets.  Hierarchical algorithms can be either agglomerative or divisive.  The 

agglomerative (bottom-up) approach repeatedly merges two clusters, while the divisive (top-down) approach repeatedly splits 

a cluster into two.  CURE [6] and Chameleon [10] are examples of two hierarchical clustering algorithms.  Hierarchical 

algorithms differ chiefly in the criteria that they use to determine similarity between clusters. 



 

Segmentation Algorithms.  Segmentation algorithms take time series data as input and produce a Piecewise Linear 

Approximation (PLA) as output.  A PLA is a set of consecutive line segments that approximate the original time series.  

Segmentation algorithms are related to clustering algorithms in that each segment can be though of as a cluster.  However, 

segmentation algorithms typically create a finer grain partitioning than clustering algorithms.  There are three approaches to 

time series segmentation [11].  First, in the sliding window approach, a segment is grown until the error of the line is above a 

specified threshold, then a new segment is started.  Second, in the top-down approach, a segment representing the entire time 

series is repeatedly split until the desired number of segments or an error threshold is reached.  Third, the bottom-up approach 

typically starts off with n/2 segments, and the two most similar adjacent segments are merged until the desired number of 

segments or the error threshold is reached.  Gecko [16] is a bottom-up segmentation algorithm that merges segments based on 

slope and creates an initial fine-grain approximation by first performing a top-down pass. 

Determining the Number of Clusters/Segments.  Five common approaches to estimating the dimension of a model (such as 

the number of clusters or segments) are:  cross-validation, penalized likelihood estimation, permutation tests, resampling, and 

finding the knee of an error curve. 

Cross-validation techniques create models that attempt to fit the data as accurately as possible.  Monte Carlo cross-

validation [18][17] has been successfully used to prevent over-fitting (too many clusters/segments).  Penalized likelihood 

estimation also attempts to find a model that fits the data as accurately as possible, but also minimizes the complexity of the 

model.  Specific methods to penalize models based on their complexity are:  MML [1], MDL [8], BIC [5], AIC, and SIC [19].  

Permutation tests [22] attempt to prevent the creation of a PLA that over-fits the data by comparing the relative change in 

approximation error to the relative change of a ‘random’ time series.  If the errors are changing at a similar rate, then more 

segments would fit noise and not the underlying structure of the time series.  Resampling [15] and Consensus Clustering [13] 

attempt to find the correct number of clusters by clustering many samples of the data set, and determining the number of 

clusters where clusterings of the various samples are the most “stable.” 

Locating the “knee” of an error curve, in order to determine an appropriate number of clusters or segments, is well 

known, but it is not a particularly well-studied method.  There are methods that statistically evaluate each point in the error 

curve, and use the point that either minimizes or maximizes some function as the number of clusters/segments to return.  Such 

methods include the Gap statistic [21] and prediction strength [20].  These methods generally (with the exception of 

hierarchical algorithms) require the entire clustering or segmentation algorithm to be run for each potential value of k.   



 

The majority of these methods to determine the best number of clusters/segments may not work very well in practice.  

Model-based methods, such as cross-validation and penalized likelihood estimation, are computationally expensive and often 

require the clustering/segmentation algorithm to be run several times.  Permutation tests and resampling are extremely 

inefficient, since they require the entire clustering algorithm to be re-run hundreds or even thousands of times.  The majority 

of existing methods to find the knee of an error curve require the clustering algorithm to be re-run for every potential value of 

k.  Even worse, many of the evaluation functions that are used to evaluate a set of clusters run in O(N2
) time.  This means that 

it may take longer just to evaluate a set of clusters than it does to generate them.  Most methods that find the knee of a curve 

also only work well when the clusters are well separated.  

A few existing clustering algorithms have built-in mechanisms for determining the number of clusters.  The TURN* 

[4][2] algorithm locates the knee of a curve by location the point where the 2
nd

 derivative increases above a user specified 

threshold.  A variant [2] of the BIRCH [23] algorithm uses a mixture of the Bayesian Information Criterion (BIC) and the 

ratio-change between inter-cluster distance and the number of clusters. 

Finding the Knee of a Curve.  The knee of a curve is loosely defined as the point of maximum curvature.  The knee in a “# 

of clusters vs. evaluation metric” graph can be used to determine the number of clusters to return.  Various methods to find 

the knee of a curve are: 

1. The largest magnitude difference between two points. 

2. The largest ratio difference between two points [2]. 

3. The first data point with a second derivative above some threshold value [3][4]. 

4. The data point with the largest second derivative [7]. 

5. The point on the curve that is furthest from a line fitted to the entire curve. 

6. Our L-method, which finds the boundary between the pair of straight lines that most closely fit the curve. 

This list is ordered from the methods that make a decision about the knee locally, to the methods that locate the knee 

globally by considering more points of the curve.  The first two methods use only single pairs of adjacent points to determine 

where the knee is located.  The third and fourth methods use more than one pair of points, but still only consider local trends 

in the graph.  The last two methods consider all data points at the same time.  Local methods may work well for smooth, 

monotonically increasing/decreasing curves.  However, they are very sensitive to outliers and local trends, which may not be 

globally significant.  The fifth method takes every point into account, but only works well for continuous functions, and not 



 

curves where the knee is a sharp jump.  Our L method considers all points to keep local trends or outliers from preventing the 

true knee to be located, and is able to find knees that exist as sharp jumps in the curve. 

3. APPROACH 

Our L method attempts to determine an appropriate number of clusters/segments to return, by finding the knee in an 

evaluation graph.  The next section describes evaluation graphs, followed by sections that describe the L method and 

refinements to it. 

3.1 Evaluation Graphs 
The information required to determine an appropriate number of clusters/segments to return is contained in an 

evaluation graph that is created by the clustering/segmentation algorithm.  The evaluation graph is a two-dimensional plot 

where the x-axis is the number of clusters, and the y-axis is a measure of the quality or error of a clustering consisting of x 

clusters.  Since hierarchical algorithms either split or merge a pair of clusters at each step, all clusterings containing ‘1’ to ‘the 

number of clusters in the fine-grain clustering’ clusters can be produced by running the clustering algorithm only once. 

The y-axis values in the evaluation graph can be any evaluation metric, such as: distance, similarity, error, or quality.  

These metrics can be computed globally or greedily.  Global measurements compute the evaluation metric based on the entire 

clustered data set, such the sum of all pairwise distances between points in each cluster.  The greedy method computes the 

evaluation metric by evaluating only the two clusters that are involved in the current merge or split of the hierarchical 

algorithm, rather than the entire data set.   

‘External’ evaluation methods attempt to determine the number of clusters by evaluating the output of an arbitrary 

clustering algorithm.  Each evaluation method has its own notion of cluster quality.  Most external methods use pairwise-

distance functions that are heavily biased towards spherical clusters.  Such methods are unsuitable for clustering algorithms 

that have a different notion of cluster distance/similarity.  For example, Chameleon [10] uses a similarity function that can 

produce complex non-spherical clusters.  Therefore, the metric used in the evaluation graph should be the same as the metric 

used in the clustering algorithm. 



 

 

Figure 1. A sample evaluation graph. 

An example of an evaluation graph produced by the Gecko segmentation algorithm [16] is shown in Figure 1.  The 

y-axis values are the distances between the two clusters that are most similar at x clusters.  This is a greedy approach, since 

only the two clusters being merged are used to generate the values on the y-axis.  The curve in Figure 1 has three distinctive 

areas:  a flat region to the right, a sharply-sloping region to the left, and a curved transition area in the middle.   

In Figure 1, starting from the right, where the merging process begins at the initial fine grain clustering, there are 

many very similar clusters to be merged and the trend continues to the left in a rather straight line for some time.  In this 

region, many clusters are similar to each other and should be merged.  Another distinctive area of the graph is on the far left 

side where the merge distances grow very rapidly (moving right to left).  This rapid increase in distance indicates that very 

dissimilar clusters are being merged together, and that the quality of the clusters is becoming poor because clusters are no 

longer internally homogeneous.  A reasonable number of clusters is therefore in the curved area, or the “knee” of the graph.  

This knee region is between the low distance merges that form a nearly straight line on the right side of the graph, and the 

quickly increasing region on the left side.  Clusterings in this knee region contain a balance of clusters that are both highly 

homogeneous, and also dissimilar to each other.  Determining the number of clusters where this knee region exists will 

therefore give a reasonable number of clusters to return. 

Locating the exact location of the knee, and along with it the number of clusters, would seem problematic if the knee 

is a smooth curve.  In such an instance, the knee could be anywhere on this smooth curve, and thus the number of clusters to 

be returned seems imprecise.  Such an evaluation graph would be produced by a data set with clusters that are overlapping or 

not very well separated.  A time series usually represents continuous functions and are also not well separated.  In such 

instances, there is no single ‘correct’ answer and all of the values along the knee region are likely to be reasonable estimates 

of the number of clusters.  Thus, an ambiguous knee indicates that there probably is no single ‘correct’ answer, but rather a 

range of acceptable answers. 



 

3.2 Finding the Knee via the L Method 

In order to determine the location of the transition area or knee of the evaluation graph, we take advantage of a 

property that exists in these evaluation graphs.  The regions to both the right and the left of the knee (see Figure 2) are often 

approximately linear.  If a line is fitted to the right side and another line is fitted to the left side, then the area between the two 

lines will be in the same region as the knee.  The value of the x-axis at the knee can then be used as the number of clusters to 

return.  Figure 2 depicts an example. 

 

Figure 2. Finding the number of clusters using the L method. 

To create these two lines that intersect at the knee, we will find the pair of lines that most closely fit the curve.  

Figure 3 shows all possible pairs of best-fit lines for a graph that contains seven data points (eight clusters were repeatedly 

merged into a single cluster).  Each line must contain at least two points, and must start at either end of the data.  Both lines 

together cover all of the data points, so if one line is small, the other is large to cover the rest of the remaining data points.  

The lines cover sequential sets of points, so the total number of line pairs is numOfInitialClusters-4.  Of the four possible line 

pairs in Figure 3, the third pair fits their respective data points with the minimum amount of error.  

 

Figure 3. All four possible pairs of best-fit lines for a small evaluation graph. 

Consider a ‘# of clusters vs. evaluation metric' graph with values on the x axis up to x=b.  The x-axis varies from 2 to 

b, hence there are b-1 data points in the graph.  Let Lc and Rc be the left and right sequences of data points partitioned at x=c; 

that is, Lc has points with x=2...c, and Rc has points with x=c+1…b, where c=3…b-2.  Equation 1 defines the total root mean 

squared error RMSEc, when the partition of Lc and Rc is at x=c: 
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where RMSE(Lc) is the root mean squared error of the best-fit line for the sequence of points in Lc (and similarly for Rc).  The 

weights are proportional to the lengths of Lc (c-1) and Rc (b-c).  We seek the value of c, c^, such that RMSEc is minimized, 

that is: 

cc RMSEc minarg^ =                                                                                 [2] 

The location of the knee at x=c^ is used as the number of clusters to return. 

In our evaluation, the L method determined the number of clusters in only 0.00004% to 0.9% of the execution time 

required by the clustering algorithm.  The time it takes for the L method to execute directly corresponds to the number of 

points in the evaluation graph.  Since the number of points in the evaluation graph is controlled by the number of clusters at 

the finest grain clustering, the L method runs much faster for clustering algorithms that do not have an overly-fine initial 

clustering.  The L method is very general and contains no parameters or constants.  The number of points along the x-axis of 

the evaluation graph is not a parameter.  It is a result of the clustering algorithm used to generate those points.  The maximum 

x value in the evaluation graph is either the number of clusters at the initial fine grain clustering in a bottom-up algorithm, or 

the number of clusters in the final clustering in a top-down algorithm.   

3.3 Refinements to the L Method 

Many bottom-up algorithms create an initial fine-grain clustering by initially treating every data point as a cluster.  

This can cause an evaluation graph to be as large as the original data set.  In such an evaluation graph, the values representing 

merges at extremely fine-grain clusterings (large values of x) are irrelevant.  Such a large number of irrelevant data points in 

the evaluation graph can prevent an “L” shaped curve.   

 

Figure 4. Full and partial evaluation graphs created by CURE.  Only the first 100 points are shown on the right side. 

Figure 4 shows a 9,000 point evaluation graph on the left, and the first 100 data points of the same graph on the 

right.  The graph on the right is a more natural “L” shaped curve, and the L method is able to correctly identify that there are 9 

clusters in the data set.  However, in the full evaluation graph, there are so many data points to the right side of the “correct” 



 

knee, that the very few points on the left of that knee become statistically irrelevant.  The L method performs best when the 

sizes of the two lines on each side of the knee are reasonably balanced.  When there are far too many points on the right side 

of the actual knee, the knee that is located by the L method will most likely be larger than the actual knee.  In the full 

evaluation graph, containing 9,000 data points, the knee is incorrectly detected at x=359, rather than x=9.  However, when 

many of the irrelevant points are removed from the evaluation graph, such as all points greater than x=100 (see the right side 

of Figure 4), the correct knee is located at x=9.  The following algorithm iteratively refines the knee by adjusting the focus 

region and reapplying the L method (note that the clustering algorithm is NOT reapplied). 

 

This algorithm initially runs the L method on the entire evaluation graph.  The value of the knee becomes the middle 

of the next focus region and the L method becomes more accurate because the lines on each side of the true knee are 

becoming more balanced.  Since the refinement stops when the knee does not move to the left after an iteration, the focus 

region decreases in size after every iteration.  The true knee is located when the L method returns the same value as the 

previous iteration (line #10, or if the current pass returns a knee that has a roughly balanced number of points on each side of 

the knee (also line #10).  The 9,000 point evaluation graph in Figure 4 takes four iterations to correctly determine that there 

are 9 clusters in the data set (9,000�359�15�9�9).  The cutoff value is not permitted to drop below ~20 in the 

“LMethod(),” because a reasonable number of points are needed for the two fitted-lines to fit actual trends, rather than 

detecting spurious trends indicated by a small number of points in the evaluation graph.  The minimum cutoff size of 20 

performed well on all tests that have been run to date and it will most likely never need to be changed.  The minimum cutoff 

size can therefore most likely be treated as a constant rather than a parameter (keeping the L method ‘parameterless’). 

Iterative Refinement of the Knee 
 

Input: EvalGraph (a full evaluation graph)   
Output: the x-axis value location of the knee (also the 

suggested number of clusters to return)   
 
 1| int cutoff =   
 2|     lastKnee =  
 3|     currentKnee = EvalGraph.size() 
 4| 
 5| REPEAT  
 6| { 
 7|   lastKnee = currentKnee 
 8|   currentKnee = LMethod(evalGraph,cutoff) 
 9|   cutoff = currentKnee*2   
10| } UNTIL currentKnee ≥ lastKnee 
11| 
12| RETURN currentKnee 
 



 

Iteratively refining the knee does not significantly increase the execution time of the L method.  Iterative refinement 

converges on the knee in very few iterations (usually less than three), and the first iteration is run with an evaluation graph 

that is much larger than those in later iterations.  The L method is an O(N2
) algorithm with respect to the size of the evaluation 

graph.  Evaluation graphs with fewer than 1,000 points can be evaluated in less than a few seconds; however, a 9,000 point 

evaluation graph takes several minutes.  In practice, it is usually permissible to ignore points in an evaluation graph past some 

large number when it is unlikely or undesirable to have such a large number of clusters. 

Another potential problem is that sometimes the evaluation graph will reach a maximum (moving from right to left) 

and then start to decrease.  This can be seen in Figure 2, where the distance between the closest segments reaches a maximum 

at x=4.  This can prevent an “L” shaped curve from existing in the evaluation graph.  The data points to the left of the 

maximum value (the ‘worst’ merge) can be ignored.  This occurs in some algorithms that have distance functions that become 

undefined when the remaining clusters are extremely dissimilar to each other. 

4. EMPIRICAL EVALUATION 

The goal of this evaluation is to demonstrate the ability of the L method to identify a reasonable number of clusters 

to return in hierarchical clustering and hierarchical segmentation algorithms.  Each algorithm will be run on a number of data 

sets and the number of clusters that the L method identifies is compared to the ‘correct’ answer.  Existing methods to 

determine the number of segments or clusters in a data set will also be evaluated on the same data sets, and their performance 

will be compared to that of our L method. 

4.1 Identifying the Number of Clusters 

4.1.1 Procedures and Criteria 

The seven diverse data sets used to evaluate the L method for clustering algorithms vary in size, number of clusters, 

separation of clusters, density, and amount of outliers.  There are some data sets that contain only spherical clusters, and some 

which contain very non-spherical clusters, including clusters within clusters.  The seven spatial data sets that were used are 

(see Figure 5): 

1. A data set with four well separated spherical clusters (4,000 pts).  

2. Nine square clusters connected at the corners (9,000 pts). 

3. Ten spherical clusters.  Five overlapping clusters similar to data set #7 (not shown), as well as five additional well 

separated clusters and a uniform distribution of outliers (5,200 pts).  

4. Ten well separated clusters of varying size and density (5,000 pts). 



 

5. A 9 cluster data set used in the Chameleon paper, but with the outliers removed.  Non-spherical clusters with clusters 

completely contained within other clusters (~9,100 pts). 

6. An 8 cluster data set containing non-spherical clusters with clusters partially enveloping other clusters (~7,600 pts). 

7. Five spherical clusters of equal size and density.  The clusters are slightly overlapping (5,000 pts, not in Figure 5). 

 

Figure 5. Data sets 1-6 for evaluating the L method in clustering algorithms (data set #7 not shown). 

The clustering algorithms used to test the L method were Chameleon and CURE.  Chameleon was implemented 

locally and was run with the parameters:  k=10 (k nearest neighbors, not k clusters), minSize=3%, and α=2.  CURE was 

implemented as specified in the CURE paper [6], with the shrinking factor set to 1/3 and the number of representative points 

for each cluster set to 10.   

CURE, Chameleon, and K-means was used to evaluate the Gap Statistic’s relative performance against that of the L 

method.  The Gap Statistic was calculated using the Gap/unf variant [21].  The Gap statistic must be run for each user-

specified potential value for the number of clusters.  The potential number of clusters evaluated by the Gap statistic were 

k={2…20}.  Both the L method and the Gap statistic were tested on CURE and Chameleon for a direct comparison.  

However, the Gap statistic was also evaluated on the K-means algorithm, because K-means was used by Tibshirani, Walther, 

and Hastie to evaluate the Gap statistic [21].  It is important to note that for every different clustering algorithm, the L 

method’s evaluation graph contains values created by the particular clustering algorithm’s evaluation function, while the Gap 

statistic uses pairwise distances to evaluate clusters regardless of the clustering algorithm that produced them.  Thus, the L 

method’s performance is more likely to be consistent over different clustering algorithms, while the Gap statistic will only 

work well for clustering algorithms that measure cluster quality similar to its own fixed method. 



 

The experimental procedure for evaluating the performance of the L method for hierarchical clustering algorithms 

consists of running the CURE and Chameleon clustering algorithms, which have been modified to determine the number of 

clusters to return through use of the L method, on seven diverse data sets (shown in Figure 5).  The number of clusters 

determined will be compared to the correct number of clusters.  The data sets are synthetic, so the correct number of clusters 

is known.  These results will also be compared to the number of clusters suggested by the existing Gap statistic for CURE, 

Chameleon, and also the K-means clustering algorithm. 

4.1.2 Results and Analysis 

The correct number of clusters was determined by the L method 6 out of 7 times for Chameleon and 4 out of 5 times 

for the CURE algorithm.  The results are contained in Table 1.  The actual number of clusters suggested for CURE on data set 

#3 was 9.  However, in the presence of outliers, CURE creates a number of very small clusters that contain only outliers.  

After removing these small clusters, only 6 true clusters remained.  Data sets #5 and #6 contain complex clusters and could 

only be properly clustered by Chameleon; “N/A” is placed in the cells of Table 1 where the number of clusters suggested was 

not evaluated because the clustering algorithm was unable to produce the correct set of clusters. 

Table 1. Results of using the L method and the Gap statistic with various clustering algorithms. 

Data set # 1 2 3 4 5 6 7 
Data Set 

Correct # of clusters 4 9 10 10 9 8 5 

Exact 
Matches 

Chameleon 4 9 11 10 9 8 5 6 of 7 Num of clusters 

predicted by L Method CURE 4 9 6 (9) 10 N/A N/A 5 4 of 5 

Chameleon 4 2 2 2 2 2 2 1 of 7 

CURE 4 2 2 2 N/A N/A 2 1 of 5 

Num of clusters 

predicted by Gap 

Statistic 
K-means 4 2 2 2 N/A N/A 2 1 of 5 

The Gap statistic was only able to determine the correct number of clusters for one of the seven data sets, regardless 

of the clustering algorithm used.  The Gap statistic performs similarly to many existing methods [21], and only works well for 

well-separated, circular clusters (only data set #1 satisfies these constraints).  The Gap statistic tended to suggest far too few 

clusters because the cluster separation was not great enough for it to consider the clusters to be distinct.  

The correct number of clusters was not determined by either algorithm for data set #3, which contains many outliers 

and a mixture of both well separated and overlapping clusters.  In the evaluation graph for CURE, there is a large smooth 

knee that spans approximately 200 data points.  Most merges in this region are between outliers, but there are also merges of 

the five overlapping clusters mixed in.  There is no sharp knee until after all of the five overlapping clusters have already been 



 

merged together.  The six clusters returned by the L method were the five well separated clusters, and the group of 

overlapping clusters in the center (see data set #3 in Figure 5).  Even though the L method recommends four fewer clusters 

than the ‘correct’ answer, the six recommended clusters have a more uniform separation than the ‘correct’ answer.  In this 

case, the best number of clusters is open to interpretation.  The answer given for Chameleon on data set #3 was off by one 

because the knee of the curve was not sharp enough for the L method to identify the exact number of clusters.  This is most 

likely due to a weakness in our Chameleon implementation, which does not contain a graph bisection algorithm that is as 

powerful as the one described in the Chameleon [10] paper. 

The L method determines the number of clusters to return by examining the evaluation graphs produced by each 

clustering algorithm.  Examples of evaluation graphs are shown in Figure 6, where the x-axis is the number of clusters, and the 

y-axis is the value of the clustering algorithm’s evaluation function at x clusters.  Notice that the y-axis values in CURE 

evaluation graphs increase from right to left, while the Chameleon evaluation graphs decrease from right to left.  This is 

because CURE’s evaluation metric measures distance and Chameleon’s evaluation metric measures similarity. 

Figure 6. Actual number of clusters and the correct number predicted by the L method (axes:  x= # of clusters, 

y=evaluation metric – lines:  solid lines=correct # of clusters, dashed lines=# of clusters determined by L method). 

In Figure 6, the solid line indicates the correct number of clusters, while the dashed line indicates the number of 

clusters suggested by the L method.  The lines are right next to each other in each case which indicates that the correct 

number of clusters was determined.  The best number of clusters is usually just before a large jump in the evaluation graph.  

To the left of the jump dissimilar clusters have been merged together creating inhomogeneous clusters; and to the right of the 

jump there are too many clusters that are similar to each other.  Since a ‘good’ cluster is both internally homogeneous and 

dissimilar to other clusters, the location of the jump should be a good measure of the best number of clusters.  

The L method runs more quickly for clustering algorithms that do not have an overly-fine initial clustering because 

these algorithms create smaller evaluation graphs.  Chameleon initially produces fine grain clusterings that contain fewer than 

100 clusters and the L method needs less than 0.01 seconds to determine the number of clusters.  CURE produces the finest 

initial clustering possible, which creates evaluation graphs with up to 8,999 points in our evaluation.  With CURE, the L 

method’s run-time is between 40 seconds and 4 minutes.  This execution time can be drastically reduced by only evaluating 



 

the first maxk points in the evaluation graph, where maxk is some large number guaranteed to be more than the actual number 

of clusters.  In our evaluation, the L method determined the number of clusters to return in less than 0.9% of the total 

execution time for CURE and less than 0.003% of the total execution time for Chameleon.  Runtime for the Gap statistic is 

significantly slower.  The Gap statistic must be run for each potential number of clusters, and since it calculates pairwise 

distances within a cluster, its run-time (to evaluate just a single potential number of clusters) approaches O(N2
).  In our 

evaluation, the Gap statistic took up to 28 minutes to evaluate the clusterings in the range k={2…20}, and took several times 

longer to evaluate each clustering than the clustering algorithm needed to produce it. 

4.2 Identifying the Number of Segments 

4.2.1 Procedures and Criteria 

The experimental procedure for evaluating the L method in segmentation algorithms consists of running two 

different segmentation algorithms on seven different data sets and determining if a ‘reasonable’ number of segments is 

suggested by the L method.  This number of segments suggested will then be compared to the ‘correct’ number of segments, 

and also the number suggested by the existing permutation tests method [22]. 

 

Figure 7. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in segmentation algorithms.  

The time series data sets used to evaluate the L method for hierarchical segmentation algorithms are a combination of 

both real and synthetic data.  The seven time series data sets used for this evaluation (shown in Figure 7) are: 

1. A synthetic data set consisting of 20 straight line segments (2,000 pts). 

2. The same as #1, but with a moderate amount of random noise added (2,000 pts, not in Figure 7). 

3. The same as #1, but with a substantial amount of random noise added (2,000 pts). 



 

4. An ECG of a pregnant woman from the Time Series Data Mining Archive [12].  It contains a recurring pattern (a 

heart beat) that is repeated 13 times (2,500 pts). 

5. Measurements from a sensor in an industrial dryer (from the Time Series Data Mining Archive [12]).  The time series 

appears similar to random walk data (876 pts). 

6. A data set depicting sunspot activity over time (from the Time Series Data Mining Archive [12]).  This time series 

contains 22 roughly evenly spaced sunspot cycles, however the intensity of each cycle can vary significantly (2,900 

pts). 

7. A time series of a space shuttle valve energizing and de-energizing (1,000 pts). 

A ‘correct’ number of segments for a data set and segmentation algorithm is obtained by running the algorithm with 

various values of k (controls the number of segments returned), and determining what particular value(s) or range of values of 

k produces a ‘reasonable’ PLA.  The PLAs that are considered ‘reasonable’ are those at a value of k, where no adjacent 

segments are very similar to each other and all segments are internally homogeneous (segments have small error).  The 

synthetic data sets have a single correct value for k.  The real sets have no single correct answer, but rather a range of 

reasonable values.  The reasonable and best numbers of segments for the real data sets may vary for each algorithm.  A single 

‘best’ number of segments cannot be used for all of the segmentation algorithms because one number that produces the best 

set of segments for one algorithm may produce a poor set of segments for another on the same data set. 

The segmentation algorithms used in this evaluation were Gecko [16] and bottom-up segmentation (BUS).  BUS 

(bottom-up segmentation) is a hierarchical algorithm that initially creates many small segments and repeatedly joins adjacent 

segments together.  More specifically, BUS evaluates every pair of adjacent segments and merges the pair that causes the 

smallest increase in error when they are merged together.  BUS was tested with the L method using two different values on the 

y-axis of the evaluation graph.  The two variants are named BUS-greedy and BUS-global.  BUS-greedy’s y-axis in the 

evaluation graph is the increase in error of the two most similar segments when they are merged, and BUS-global’s y-axis is 

the error of the entire linear approximation when there are x segments (absolute error).  The existing ‘permutation tests’ 

method was also evaluated using BUS. 

Both Gecko and BUS made use of an initial top-down pass to create the initial fine-grain segments.  The minimum 

size of each initial segment generated in the top down pass was 10.  For the permutation test algorithm, p was set to 0.05, and 

1,000 permutations were created.  The parameter p controls the percentage of permutated time series that must be increasing 

in quality faster than the original time series to stop creating more segments. 

4.2.2 Results and Analysis 

A summary of the results of the L method’s and permutation tests’ ability to determine the number of segments to 

return from segmentation algorithms is contained in Table 2.  For both Gecko and BUS, the ‘reasonable’ range of correct 



 

answers is listed.  These ranges may vary between the two algorithms because BUS and Gecko do not merge segments in 

exactly the same sequence.  However, BUS-greedy, BUS-global, and permutation tests all produce identical PLAs for k 

segments, and therefore have identical ‘reasonable’ answers.  The first three data sets are synthetic and have a single correct 

answer, but the other data sets have a range of ‘reasonable’ answers.  Data set #5 is similar to random walk data, and any 

number of segments seemed reasonable because there was no underlying structure in the time series.   

 Data Set 1 2 3 4 5 6 7 
Reasonable 

Range 
Matches 

 Reasonable # of segments 20 20 20 42-123 ? 44-57 9-20  

G
ec

k
o

 

Gecko         

w/L Method 
Num of segments Given 20 20 N/A 92 32 45 17 5 of 5 

 Reasonable # of segments 20 20 20 42-123 ? 45-53 14-21  

BUS-greedy 

w/ L method 
Num of segments Given 20 20 20 46 14 48 9 5 of 6 

BUS-global 

w/ L method 
Num of segments Given 20 20 19 106 39 39 13 3 of 6 
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BUS w/ 

permutation 

Tests 

Num of segments Given 25 34 25 2 15 6 65 0 of 6 

Table 2. Results of using the L method with three hierarchical segmentation algorithms. 

The L method worked very well for both BUS-greedy and Gecko.  It correctly identified a number of segments for 

BUS-greedy that was within the reasonable range in 5 out of the 6 applicable data sets.  Gecko, which also uses a greedy 

evaluation metric (but uses slope rather than segment error), had the L method suggest a number of segments within the 

reasonable range for all 5 applicable data sets.  Gecko was unable to correctly segment data set #3 (indicated by “N/A” in 

Table 2) because it contained too much noise.  In all but one test case (10 of 11), the L method was able to correctly 

determine that the three synthetic data sets contained exactly twenty segments.  BUS-global did not perform quite as well.  

The L method was only able to return a reasonable number of segments for BUS-global in half of its test cases, but all of its 

incorrect answers were close to being correct. 

Permutation tests did not perform well and never determined a reasonable number of segments.  The reason that 

permutation tests did poorly varied depending on the data set.  Data set #1 is synthetic and contains no noise, which allows a 

PLA to approximate it with virtually zero error. However, measuring a relative increase in error when the error is near zero 

causes unexpected results because relative increases are either very large or undefined when the error is at or near zero.  For 

data set #4 and #6, the relative change in approximation error is rather constant regardless of the number of segments.  On 



 

data set #4, the PLA between 2 and 3 segments has nearly zero relative change in error, which causes permutation tests to 

incorrectly assume that the data has been over-fitted and stop producing segments prematurely.  An example of far too many 

segments being returned occurs on data set #7, where the relative error of the time series never falls below the relative error of 

the permutations until far too many segments are produced. 

Some of the evaluation graphs used by the L method for Gecko, BUS-greedy, and BUS-global are shown in Figure 

8.  The third evaluation graph in Figure 8 contains the L method’s evaluation graph for Gecko on data set #1, the noise-free 

synthetic data set.  The x-axis is the number of segments, and the y-axis is Gecko’s evaluation metric (distance between two 

closest adjacent segments) at x segments. The evaluation graph is created right to left as segments are meged together.  In this 

case, the correct number of segments is easily determined by the L method because there is a very large jump at x=20.  In 

evaluation graph on the right side of Figure 8 (data set #7 BUS-global), the range of reasonable answers lies between the two 

long lines.  The range is larger than for data set #1 because the segments have less ‘separation’ and there is no sharp knee.  

Instead there is a range of good answers.  However, the L method suggests a number of segmetns that just misses the 

reasonable range. 

 

Figure 8. The reasonable range for the number of segments and the number returned by the L method. (axes:  x=# of 

segments, y=evaluation metric – short dashed line=# of segments determined by the L method, long solid lines=marks 

the boundaries of the reasonable range for the # of segments. 

In the evaluation graph at the left of Figure 8 (data set #4 BUS-greedy),  the L method returned a number of 

segments that was towards the low end of the reasonable range.  Remember, that for segmentation algorithms, all data ponits 

to the left of the data point with the maximum value are ignored (discussed in the last section of 3.3).  The best number of 

segments is 42.  At 42 segments each heart beat contains approximately 3 segments.  If there are fewer than 42 segments, they 

are no longer homogeneous.  However, PLAs with significantly more segments (up to 123) are still reasonable because each 

new segment still significantly reduces the error.  However, if there are more than approximately 123 segments, adjacent 

segments start to become too similar to each other. 

The second evaluation graph shown in Figure 8 (data set #6 Gecko) also has ‘better’ PLAs when the number of 

segments is near the low end of the reasonable range (fewer segmetns).  This is common because the best set of segments is 



 

often the minimal set of segments that adequately represents the data.  Even though there is apparently no significant knee in 

this evaluation graph, a good number of segments can still be found by the L method.  This is because the knee found by the L 

method does not necessarily have to be the point of maxium curvature.  It may also be the location between the two regions 

that have relatively steady trends.  Thus, the L method is able to determine the location where there is a significant change in 

the evaluation graph and it becomes erratic (x<44).  In this case it indicates that too many segments have been merged 

together and the distance function is no longer as well-defined. 

The poorer performance of BUS-global (compared to Gecko and BUS-greedy) is due to a lack of prominence in the 

knee of the curve compared to greedy methods (see lower-right graph in Figure 8).  Greedy evaluation metrics increase more 

sharply at the knee, while global metrics have larger more ambiguous knees in their evaluation graph.  A potential problem is 

if more than one knee exists in the evaluation graph.  This is typically not a problem if one knee is significantly more 

prominent than the others.  If there are two equally prominent knees, the L method is likely to return a number of segments 

that falls somewhere between those two knees.  This is acceptable if all of the values between the two knees are reasonable.  If 

not, a poor number of segments will most likely be returned by the L method. 

The L method took approximately 0.01 seconds to determine the number of segments in every test cases and the 

segmentation algorithms took anywhere from 9 to 30 seconds to execute.  The L method never required more than 0.1% of the 

total execution time to determine the number of segments.  In stark contrast, permutation tests required up to 5 hours because 

each permutation of the original time series had to be segmented. 

5. CONCLUDING REMARKS 

We have detailed our L method, which has been shown to work reasonably well in determining the number of 

clusters or segments for hierarchical clustering/segmentation algorithms.  Hierarchical algorithms that have greedy evaluation 

metrics perform especially well.  In our evaluation, the L method was able to determine a reasonable number of segments in 

10 out of 11 instances for  greedy hierarchical segmentation algorithms, and a correct number of clusters in 10 of 12 instances 

for hierarchical clustering algorithms.  Algorithms with global evaluation metrics did not work as well with the L method 

because the knees in the evaluation graphs are not as prominent and easy to detect.  The Gap statistic and permuation tests 

were also evaluated and the L method achieved much better results in our evaluation.  The L method is also much more 

efficient than both the Gap statistic and permutation tests, typically requiring only a fraction of a second to determine the 

number of clusters rather than minutes or even many hours in the case of permutation tests. 



 

Iterative refinement of the knee is a very important part of the L method.  Without it, the L method would only be 

effective in determining the number of clusters/segments within a certain range.  The iterative refinement algorithm explained 

in this paper enables the L method to always run under optimal conditions:  balanced lines on each side of the knee no matter 

how large the evaluation graph is or where the knee is located. 

Like most existing methods, the L method is unable to determine if the entire data set is an even distribution and 

consists of only a single cluster (the null hypothesis).  However, the L method also has the limitation that it cannot determine 

if only two clusters should be returned.   

Future work will involve testing the L method with additional clustering and segmentation algorithms on additional 

data sets to help further understand the algorithm’s strengths and weaknesses.  We will also explore modifications to the L 

method that will enable it to determine when only one or two clusters should be returned.  Work will also focus on comparing 

the L method to additional methods that attempt to determine the number of clusters in a data set. 
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