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Abstract

We develop a new consistent and simple to compute estimator of the
number of factors in the approximate factor models of Chamberlain and
Rothchild (1983). Our setting requires both time series and cross-sectional
dimensions of the data to be large. The main theoretical advantage of our
estimator relative to the previously proposed ones is that it works well even
in the situation when the portion of the observed variance attributed to
the factors is small relative to the variance due to the idiosyncratic term.
This advantage arises because the estimator is based on a Law-of-Large-
Numbers type regularity for the idiosyncratic components of the data,
as opposed to the estimators based on the assumption that a significant
portion of the variance is explained by the systematic part. Extensive
Monte Carlo analysis shows that our estimator outperforms the recently
proposed Bai and Ng (2002) estimators in finite samples when the “signal-
to-noise” ratio is relatively small. We apply the new estimation procedure
to determine the number of pervasive factors driving stock returns for the
companies traded on NYSE, AMEX, and NASDAQ in the period from
1983 to 2003. Our estimate is equal to 8.

1 Introduction
Factor models with large cross-section and time-series dimensions have recently
attracted an increasing amount of attention from researchers in finance and
macroeconomics. Approximate factor models (Chamberlain and Rothchild (1983)
and Ingersol (1984)), where the idiosyncratic components may be weakly corre-
lated and the common factors non-trivially affect a large number of the cross-
sectional units are particularly useful in applications. In finance, such models
are at the heart of the arbitrage pricing theory of Ross (1976). In macroeco-
nomics, the models are used to identify economy-wide and global shocks, to
construct coincident indexes, to forecast individual macroeconomic time series,
to study relationship between microeconomic and aggregated macroeconomic
dynamics, and to augment information in the VAR models used for monetary
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policy analysis (see, for example, Forni and Reichlin (1998), Forni, Hallin, Lippi,
and Reichlin (2000), Stock and Watson (1999), Forni and Lippi (1999), and
Bernanke, Boivin, and Eliasz (2004)).
An important question to be addressed by researchers using the approximate

factor models is how many factors are there. This question is directly related to
the behavior of the eigenvalues of the data’s covariance matrix as the number of
the cross-sectional units tends to infinity. By definition of the approximate factor
models, the eigenvalues of the covariance matrix of the systematic components
of the data must increase without bound. At the same time, the eigenvalues of
the covariance matrix of the idiosyncratic components must stay bounded. For
the data’s covariance matrix this translates into the first r eigenvalues, where r is
the number of factors, increasing without bound and the rest of the eigenvalues
staying bounded. Unfortunately, as has been noted by Trzcinka (1986) and
Luedecke (1984) among many others, testing whether some eigenvalues increase
unboundedly whereas the other remain bounded is not a well-posed problem
with a finite number of data points. Forni et al (2000 p.547) describe the problem
particularly clearly: “there is no way a slowly diverging sequence (divergence
under the model can be arbitrarily slow) can be told from an eventually bounded
sequence (for which the bound can be arbitrarily large)”.
The rout taken by many studies, including Connor and Korajczyk (1993),

Stock and Watson (1999), and Bai and Ng (2002), is, therefore, to restrict
the approximate factor model so that the eigenvalues “corresponding” to the
factors increase fast, i.e. proportionately to the number of the cross-sectional
units. Even with this assumption, when the coefficient of proportionality is
small and the bound on “idiosyncratic” eigenvalues is large, it will be difficult
to tell the growing and the bounded sequences apart. This intuition suggests
that for the fast growth asymptotics to be useful for the inference in samples
of moderate size, such as for example the sample of all world’s countries, the
average effect of the factors over the cross-sectional units must be comparable
in magnitude to the variation due to the idiosyncratic components. This may
or may not be so in applications. It is conceivable, for example, that the effect
of a global productivity shock on each particular country can be marred in the
idiosyncratic noise. Although the cumulative economic effect of such a shock
will be large, it will not necessarily overwhelmingly dominate the effects of some
local shocks. In general, potential existence of pervasive factors which have weak
average effect relative to the idiosyncratic component undermines usefulness of
the fast growth assumption in finite samples.
This paper considers an alternative restriction on the approximate factor

model that helps to distinguish the diverging sequence from the bounded se-
quence. Instead of requiring the divergence rate to be fast, we impose some
structure on the idiosyncratic component. Precisely, we assume that the vec-
tor of the idiosyncratic terms is a linear transformation of a vector with i.i.d.
components. The linear transformation is left relatively unconstrained so that
a relatively arbitrary heteroskedasticity and cross-sectional serial correlation of
the idiosyncratic terms is allowed. Using this assumption and recent results from
the large dimensional random matrix literature (see Z. Bai (1999) for a review),
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the paper shows how to estimate an upper bound on the eigenvalues of the “id-
iosyncratic part” of the sample covariance matrix. Counting the eigenvalues of
the sample covariance matrix that are above the bound gives our estimator of
the number of the factors.
In more detail, the central fact underlying our estimator is that the empirical

distribution of eigenvalues of the sample covariance matrix converges to a non-
random distribution when both the time series and cross-sectional dimensions
of the data grow. The limiting distribution has bounded support and known
functional form in the vicinity of the upper boundary u of the support. We show
that, asymptotically, the first r eigenvalues of the sample covariance matrix are
almost surely larger than u, where r is the true number of factors. However, the
r + 1-th eigenvalue almost surely converges to u. To estimate u, we choose the
parameters of the known functional form of the limiting distribution so that it
fits a small rightmost portion of the empirical distribution of eigenvalues of the
sample covariance matrix well. Finally, we count the number of eigenvalues of
the sample covariance matrix that lie above our estimate of u.
We show that this estimator is consistent and use numerical simulations

to demonstrate that it has good finite sample properties in many empirically-
relevant situations. We find that our estimator substantially outperforms Bai
and Ng (2002) estimators in the situations when the portion of the observed
variance attributed to the factors is small relative to the variance due to the
idiosyncratic component.
Our approach is explicitly based on the investigation of behavior of the eigen-

values of the data’s covariance matrix and, thus, is related to the earlier litera-
ture exploiting the information contained in the eigenvalues. Trzcinka (1986) in-
vestigates the question of the number of factors in Chamberlain and Rothchild’s
(1983) extension of the arbitrage pricing theory by inspecting growth patterns
of the eigenvalues of the sample covariance matrix as the number of assets in the
data set increases. According to the theory, the eigenvalues of the covariance
matrix that correspond to the systematic component of the data should grow
without limit whereas the rest of the eigenvalues should be bounded. Trzcinka’s
informal analysis has been criticized from several perspectives. Brown (1989)
points out that in an economy with r equally important factors the largest
eigenvalue of the covariance matrix will grow much faster than the other r − 1
eigenvalues creating a “single factor illusion”. Connor and Korajczyk (1993)
explain that although the eigenvalues corresponding to the idiosyncratic com-
ponent of the population covariance matrix should be bounded, all eigenvalues
of the sample covariance matrix will grow without limit as the number of cross-
sectional units grow faster than the number of observations across time.
Since our estimate of the number of factors does not rely on visual inspection

of any graphs, Brown’s criticism does not apply. As to Connor and Korajczyk’s
argument, we assume in the paper that the ratio of the time series dimension to
the cross-sectional dimension tends to a non-zero number. Therefore, the sample
eigenvalues corresponding to the idiosyncratic part of the data remain bounded.
It is still true that the bounds on the population and sample eigenvalues will
be different, but it is the bound on the sample eigenvalues that we estimate
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in this paper. Hence, our number of factors determination procedure uses the
correct bound. As Monte Carlo simulations show, our estimate of the number
of factors remains good even for small ratio of the time series to cross-sectional
dimensions, a situation particularly relevant for applications.
There has been at least one recent study of the number of factors deter-

mination exploiting ideas from the large dimensional random matrix theory.
Kapetanios (2004) proposes a consistent criterion based on the explicit cal-
culation of the bound for the eigenvalues corresponding to the idiosyncratic
component of the data. Kapetanios’ bound depends only on the ratio of the
time series to cross-sectional dimension of the data. Unfortunately, the bound’s
validity requires relatively restrictive assumption on the cross-sectional serial
correlation of the idiosyncratic terms, which significantly narrows the range of
applications of the method. In contrast, we estimate our bound from the data.
The bound can vary from application to application and allows for relatively
unrestricted form of the heteroskedasticity and cross-sectional correlation of the
idiosyncratic terms.
We apply the newly developed estimation procedure to estimate the number

of factors in the arbitrage pricing theory. We find evidence that there exist eight
pervasive factors. Bai and Ng’s (2002) estimators suggest the existence of 3 to
6 pervasive factors for our data set. One possible explanation of the difference
is that some important factors do not have sufficiently widespread influence on
the returns or have widespread but weak influence, which makes the Bai-Ng
method relegate them to the idiosyncratic component.
The rest of the paper is organized as follows. In section 2 we describe the

approximate factor model. Section 3 develops the new method of the number of
factors determination. In section 4 we do Monte Carlo simulations to compare
the performance of our method with those of Bai and Ng (2002). Section 5
uses the new method to estimate the number of factors in the arbitrage pricing
theory. Section 6 concludes.

2 Approximate factor model
In this paper, we study approximate, in the sense of Chamberlain and Rothschild
(1983), factor models of the form

Xt = ΛFt + et, (1)

where Xt is an n × 1 vector of the cross-sectional observations at time period
t and ΛFt and et are unobserved systematic and idiosyncratic components of
this vector respectively. The systematic part is a product of an n× r matrix of
factor loadings Λ and an r × 1 vector of factors Ft, which are common for all
cross-sectional units but may change over time. We are interested in estimating
the unknown number of factors r in (1).
Our baseline case is when the unknown number of factors is fixed, that is it

does not change with the dimensionality of the data. In macroeconomic applica-
tions, the pervasive factors, arguably, should correspond to some economy-wide
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structural shocks. It is tempting to think that such structural shocks can be
traced down to a few important sources of fluctuations. From this perspective,
the requirement that the number of factors is fixed does not seems too restrictive.
Recall that in the approximate factor models, the idiosyncratic components of
the data can be correlated. If one is willing to model the idiosyncratic compo-
nents using a traditional factor model, the number of factors in such a model
is free to rise with the dimensionality of data. It is only the number of the
pervasive factors, dim(Ft), that we want to bound. Anyway, after getting the
results for the baseline case, we extend our analysis to the case of the slowly
growing number of pervasive factors. For both cases, we assume that the true
number of factors is capped by rmax = min (nα, Tα) , where 0 < α < 1.
We assume that both cross-sectional (n) and time-series (T ) dimension of

the data available for the estimation is large. Precisely, we make the following

Assumption 1. n and T tend to infinity so that n
T → c, where c ∈ (0,∞).

The assumption differs from those made in the previous literature. Connor
and Korajczyk (1993) develop their number of factors estimation method using
sequential limit asymptotics when first n tends to infinity and then T tends to
infinity. Stock and Watson (1999) assume that

√
n/T goes to infinity and Bai

and Ng (2002) allow n and T to go to infinity simultaneously and without any
restrictions on the relative growth rates. Assumption 1 is however standard in
the statistical literature on large dimensional random matrices and we adopt it
here. Note that the limit c may be any positive number, so the asymptotics is
consistent with a variety of empirically relevant finite sample situations.
In contrast to the exact factor models (see Anderson 1984), the covariance

matrix of the idiosyncratic vector et does not need to be diagonal. The iden-
tification of the systematic part of the data is based on the assumption that
the largest eigenvalue of the covariance matrix for the idiosyncratic vector is
bounded, whereas all eigenvalues of the covariance matrix of the systematic
part ΛFt tend to infinity. For the systematic part of the data, we assume

Assumption 2. min eval (Λ0Λ) → ∞, B1 < eval

µ
1
T

XT

t=1
FtF

0
t

¶
< B2

almost surely for some fixed 0 < B1 ≤ B2 <∞
Intuitively, this assumption implies that factors Ft non-trivially affect an increas-
ing number of cross-sectional units. We therefore will call the factors pervasive.
Note that we do not require stationarity of Ft and do not impose any conver-

gence restrictions so that 1
nΛ

0Λ and 1
T

XT

t=1
FtF

0
t do not need to converge to

any limits. Connor and Korajczyk (1993), Stock and Watson (1999), and Bai
and Ng (2002) make stronger assumptions on the factors and factor loadings.
In particular, their assumptions imply that min eval (Λ0Λ) > an, for some a > 0
and large enough n. Loosely speaking, we allow for weaker pervasive factors
than Connor and Korajczyk, Stock and Watson, and Bai and Ng do.
Relaxing the Stock-Watson and Bai-Ng assumptions on factor loadings has a

practical value. As discussed in the introduction, the “weaker” pervasive factors
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can be a good approximation to the finite sample situations when the portion of
the variation in the data explained by the factors is low relative to the variation
due to the idiosyncratic term. In addition, the “weaker” pervasive factors may
be important for the approximate asset pricing formula of Chamberlain and
Rothschild (1983). Indeed, the formula includes betas corresponding to i-th
factors with min eval (Λ0iΛi) increasing to infinity not necessarily as fast as n.
The flip side of our flexibility in definition of the systematic part of the data

is more stringent restrictions on the idiosyncratic part. In this paper we assume
that the idiosyncratic vector et is a linear transformation of an n× 1 vector εt
with i.i.d. components. Precisely, our next assumption is:

Assumption 3. There exists an n× n matrix Sn, such that

et = Snεt, (2)

where εt = (ε1t, ..., εnt)
0, Eεit = 0, Eε2it = 1, Eε

4
it < ∞, and εit are i.i.d. for

1 ≤ i ≤ n, 1 ≤ t ≤ T.

The assumption implies that the covariance matrix of et is equal to SnS0n, which
does not need to be diagonal. Therefore, we allow for cross-sectional serial cor-
relation and heteroskedasticity in the idiosyncratic terms. However, we require
et to have no serial correlation over the time dimension. This requirement is
technical and is likely not necessary for the consistency of the estimator pro-
posed below. In the conclusion section, when describing our plans for future
work, we outline a possible way to relax the requirement.
Without any restrictions on Sn, the covariance matrix of et may have un-

bounded eigenvalues and thus disagree with the definition of the idiosyncratic
component. We, therefore, will assume that the eigenvalues of SnS0n are bounded.
Moreover, we will require the distribution of the eigenvalues to converge in the
following sense. Let λ1 ≥ ... ≥ λn be the eigenvalues of a generic n× n positive
semi-definite matrix A. We define the eigenvalue distribution function for A, or
as we will call it the spectral distribution of A, as

FA(x) = 1− 1
n
# {i ≤ n : λi > x} , (3)

where # {·} denotes the number of elements in the set indicated. Note that
FA(x) is a valid cumulative probability distribution function (cdf). Further, for
a generic probability distribution having a bounded support and cdf G(x), let
u(G) be the upper bound of the support, that is

u(G) = min {x : G(x) = 1} .
We will make the following

Assumption 4. i) FS0nSn → H almost surely, where H is a fixed cumula-
tive distribution function with bounded support and the convergence is the weak
convergence of distributions;
ii) u(FS0nSn)→ u(H) almost surely;
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iii) c
Z

t2dH(t)

(u(H)− t)
2 > 1 if the integral exists

Part i) of the assumption is needed to insure convergence of the spectral dis-

tribution of the sample covariance matrix of the idiosyncratic term 1
T

XT

t=1
ete

0
t

to a distribution with a bounded support. The idea is to estimate the upper
bound of this support and use it as a threshold above which the eigenvalues of

the data’s sample covariance matrix 1
T

XT

t=1
XtX

0
t correspond to the system-

atic part of the data. Of course, the weak convergence of a distribution to a
distribution with bounded support does not imply the supports converge. For
example, N(0, 1/n) converges to a mass at zero, but has an unbounded support.
That is why we need part ii) of the assumption. It guarantees that for large

n the largest eigenvalue of 1
T

XT

t=1
ete

0
t will converge to the upper bound of

the limiting spectral distribution. Finally, assumption iii) does not like limiting
spectral distributions with thin tail.1 Indeed, for inequality in iii) to be violated
the limiting spectral distribution must have density and the first derivative of
this density vanishing at u(H). Intuitively, this can be the case when a hand-
ful of linear combinations of εt explain a disproportionately large part of the
variation in the idiosyncratic term, which makes these combinations look very
much like common factors for the components of Xt. Our estimation method
will break down in this case.
In our opinion, assumption 4 is not very restrictive. For example, a common

way to model a vector of serially correlated observations et is to assume that et =
Snεt, where Sn is a symmetric matrix constant along the diagonals (a Hermitian
Toeplitz matrix). It can be shown (see, for example, Bottcher and Silbermann,
1998, pp.138-143) that the spectral distribution of Hermitian Toeplitz matrices
converges to a distribution with bounded support as the size of the matrix
increases. Moreover, the density of the limiting distribution will actually explode
near the boundary of the support. For purely heteroskedastic series, parts i)
and ii) of our assumption will be guaranteed if the variances of the observations
are drawn from the limiting spectral distribution, which does not seem to be
counterintuitive. As to part iii), it should be viewed as a basic identification
assumption. Without this part, we are back to the problem of not being able to
separate slowly increasing sequences from eventually bounded sequences with
an arbitrary large bound.

3 New Estimator
Now, we are ready to describe our estimator of the number of factors. Let X,
F, and e be the n×T, r×T and n×T matrices with t-th columns equal to Xt,
Ft and et respectively. Then (1) can be rewritten as

X = ΛF + e. (4)

1Assumption 4 iii) is used in the proof of lemma 2 below.
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Let λi be the i-th largest eigenvalue of the data’s sample covariance matrix
1
TXX 0. We define a family of estimators:

r̂δ = # {i ≤ n : λi > (1 + δ)û} , (5)

where û = wλrmax+1+(1− w)λ2rmax+1 and w = 2
2/3/

¡
22/3 − 1¢ , indexed by a

positive number δ. Below, we will prove strong consistency of the estimator for
the case when δ is fixed, and will conjecture consistency of the estimator when
δ slowly decreases to 0 as n→∞.
The estimator is based on two facts. First, as n becomes large, exactly r

eigenvalues of the data’s sample covariance matrix 1
TXX 0 will be above the

largest eigenvalue of the sample covariance matrix 1
T ee

0 of the idiosyncratic
terms. This fact follows from our assumption 2 and the singular value analog
of Weyl’s eigenvalue inequalities (see formula (8) below). Second, as shown by
Bai and Silverstein (1998), the largest eigenvalue of 1

T ee
0 will be almost surely

below any number larger than u as n→∞, where u is the upper boundary of
the limiting spectral distribution of 1

T ee
0.

The term û in the estimator is a strongly consistent estimator of u. Parameter
δ plays a role of the markup over the û, which is needed because the largest
eigenvalue of 1T ee

0 is only guaranteed to be below any number larger than u. If
δ is fixed, the strong consistency of û will imply the strong consistency of r̂δ. If
δ is decreasing with n, the consistency of r̂δ will depend on whether the rate of
convergence of û is fast enough so that (1 + δ)û almost surely becomes larger
than u as n→∞.
Our estimator of u exploits the fact, established by Silverstein and Choi

(1995), that the limiting spectral distribution of 1
T ee

0 has density f(x) of the
form a

√
u− x (1 + o(1)) , where a is some positive number. Had we observed

e, we would have been able to estimate u from the relatively large eigenvalues
of 1

T ee
0. Although the spectral distribution of 1

T ee
0 is unobservable, it is well

approximated (see proposition 1 below) by the spectral distribution of 1
TXX 0.

Therefore, our estimator û corresponds to a particular way to fit the density f(x)
to the range of the sample spectral distribution of 1TXX 0 contained in between
λ2rmax+1 and λrmax+1. Such a choice of the range insures that the eigenvalues
are in the neighborhood of u, where f(x) is well approximated by a

√
u− x.

Let us now turn to the formal proof of the strong consistency of r̂δ. We
will first show that û is strongly consistent for u. The strong consistency is a
consequence of the following proposition:

Proposition 1. Under assumptions 1-4, we have:
i) The spectral distribution of 1

T ee
0 weakly converges to a distribution G with

bounded support almost surely.
ii) The spectral distribution of 1

TXX 0 weakly converges to G almost surely.
iii) For any i > r and such that i

n → 0 as n→∞, λi → u almost surely, where
u denotes the upper boundary of the support of G.

Proof: Theorem 1.1 of Silverstein (1995) implies2 that the spectral distribu-
tion of 1T ee

0 weakly converges to a distribution G as n→∞. That G must have
2Condition a) of that theorem is implied by our assumption 3, condition b) is our assump-
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bounded support can be established using Horn’s inequality relating singular
values of two matrices with singular values of their product (see theorem 3.3.4
of Horn and Johnson, 1991). The inequality implies that the largest eigenvalue
of 1T ee

0 is smaller or equal to the product of the largest eigenvalues of SnS0n and
1
T

XT

t=1
εtε

0
t. By assumption 4 ii), the largest eigenvalue of SnS

0
n is bounded

almost surely. As to the largest eigenvalue of 1T
XT

t=1
εtε

0
t, Bai, Silverstein and

Yin (1988) showed that, under assumption 3, it converges to (1 +
√
c)
2 almost

surely. Hence, the largest eigenvalue of 1
T ee

0 is bounded almost surely and
therefore, G should not have positive mass above the bound.
To prove ii) we will use the rank inequality (see Bai 1999, Lemma 2.6) saying

that for any two n× T matrices A and B,°°°FAA0 − FBB0
°°° ≤ 1

n
rank (A−B) ,

where k·k denotes a standard supremum distance between two functions. Taking
A = 1√

T
X, B = 1√

T
e and using the rank inequality we have:°°°F 1
T XX0 − F

1
T ee

0°°° ≤ 1

n
rank (ΛF ) =

r

n
→ 0

and hence, F
1
T XX0

must converge to the same limit as F
1
T ee

0
.

Turning to the proof of iii), let us denote the j-th largest eigenvalues of
1
T ee

0 as µj , and let j be such that
j
n → 0 as n → ∞. We will first show that

for any δ > 0, u − δ < µj < u + δ almost surely as n becomes large. The
rightmost inequality is an immediate consequence of theorem 1.1 of Bai and
Silverstein (1998).3 As to the other inequality, suppose it does not hold. Then
with positive probability, for any N there exists n > N such that µj ≤ u−δ. Let
x0 ∈ (u− δ, u) be a point of continuity of G. By definition of u, we must have
G(x0) < 1. Now, choose N so large that for any n > N, F

1
T ee

0
(µj) ≡ 1 − j−1

n

is larger than 1+G(x0)
2 . Since, by statement i) of the proposition, F

1
T ee

0 → G
almost surely, we must have:¯̄̄

F
1
T ee

0
(x0)−G(x0)

¯̄̄
→ 0 (6)

as n→∞ almost surely. However, by our assumption, with positive probability,
there exist however large n, such that

F
1
T ee

0
(x0) ≥ F

1
T ee

0
(u− δ) ≥ F

1
T ee

0
(µj) >

1 +G(x0)

2

which contradicts (6).

tion 1, condition c) is implied by our assumption 4 i), and condition d) is obviously satisfied
because we require Sn to be non-random.

3Conditions a) and e) of their theorem are satisfied by our assumption 3, condition b) is
equivalent to assumption 1, conditions c) and d) follow from assumption 4 i), condition f)
follows from assumption 4 ii).
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Let us now denote the j-th largest eigenvalue of 1T ΛFF
0Λ0 as νj . According

to singular value analog of Weyl’s eigenvalue inequalities ( see theorem 3.3.16
of Horn and Johnson (1991)), for any n× T matrices A and B, we have:

σi+j−1(A+B) ≤ σi(A) + σj(B), (7)

where 1 ≤ i, j ≤ min (n, T ) and σi(A) denotes the i-th largest singular value
of matrix A, which is equivalent to say that σi(A) is a square root of the i-th
largest eigenvalue of matrix AA0. This inequality implies

λ
1/2
i ≤ µ

1/2
i−r + ν

1/2
r+1, i = r + 1, ..., n

λ
1/2
i ≥ µ

1/2
i+r − ν

1/2
r+1, i = 1, ..., n− r

where the first inequality follows by taking A = 1√
T
e and B = 1√

T
ΛF and the

second inequality follows by taking A = 1√
T
X and B = −1√

T
ΛF.

Since the rank of 1T ΛFF
0Λ0 is equal to r, ν1/2r+1 must be equal to zero so that

we have:

λi ≤ µi−r, for i = r + 1, ..., n (8)

λi ≥ µi+r, for i = 1, ..., n− r (9)

Therefore, if i is such that i > r and i
n → 0, λi is sandwiched by two terms

each of which almost surely lies inside interval (u− δ, u+ δ) for large enough n.
Hence, λi → u almost surely, which completes the proof of the proposition.¤
The fact that û converges to u almost surely immediately follows from state-

ment iii) of the proposition. Indeed, since by assumption rmax = min(n
α, Tα)

caps r and α < 1 so that rmax
n → 0, λrmax+1 and λ2rmax+1 are both converging

to u almost surely as n → ∞. But û is a fixed-weight linear combination of
λrmax+1 and λ2rmax+1. Hence, û→ u almost surely as n→∞. We use this fact
to prove:

Proposition 2. Under assumptions 1-4, for any fixed δ > 0, r̂δ → r almost
surely as n→∞.

Proof: Since û→ u almost surely as n→∞, by statement iii) of proposition
1, we have λi < (1 + δ) û almost surely for large enough n and i > r. Therefore,
r̂δ = # {i ≤ n : λi > (1 + δ)û} ≤ r almost surely for large enough n. Below we
will prove that λr > (1 + δ)û almost surely for large n and, hence, that r̂δ → r.
Substituting A = 1√

T
X and B = −1√

T
e into inequality (7), we get:

λ
1
2
r ≥ ν

1
2
r − µ

1
2
1 .

Proposition 1 implies that µ
1
2
1 → u

1
2 almost surely. Hence, we only need to show

that ν
1
2
r → ∞ almost surely. According to the product inequality for singular
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values (see Theorem 3.3.16 of Horn and Johnson, 1991), for any n× r and r× r
matrices A and B

σi(AB) ≤ σi(A)σ1(B).

for i ≤ min (n, r) (that is for i ≤ r for large enough n). Let A = Λ
¡
1
T FF

0¢ 12 and
B =

¡
1
T FF

0¢− 1
2 , where 1

T FF
0 is invertible by assumption 2. Then, the above

inequality implies:

νr ≥ min eval (ΛΛ0)

max eval
³¡

1
T FF

0¢−1´ = min eval (ΛΛ0)min eval
µµ

1

T
FF 0

¶¶
→∞

almost surely as n→∞ by assumption 2.¤
Note that the above proof of the strong consistency of our estimator does

not rely on the relatively sophisticated form of û. For example, if we substitute
û by λrmax+1 in (5), we would get a simpler estimator

r̃δ = # {i ≤ n : λi > (1 + δ)λrmax+1} ,

which converges to r almost surely by virtue of proposition 1 and the proof of
proposition 2. We use the more sophisticated estimator as a mean to improve the
finite sample properties of r̃δ. In finite samples, performance of both r̃δ and r̂δ
will critically depend on the choice of δ. To reduce the underestimation risk, we
would like to have δ small. How small δ can be? Clearly, to avoid overestimation
risk, δ should be large enough to cover up the gap between λrmax+1 and u in
the case of r̃δ, and the gap between û and u in the case of r̂δ. As we conjecture
below, the latter gap will be decreasing with n much faster than the former.
Therefore, δ can be chosen much smaller for r̂δ than for r̃δ, making the finite
sample properties of r̂δ better.
As will be seen shortly, the magnitude of the gap between û and u depends

on how fast F
1
T ee

0
converges to G and how fast the largest eigenvalue of 1

T ee
0,

µ1, converges to u. At the moment, we will not take stand on these rates of
convergence, and will simply assume that

Assumption 5:
°°°F 1

T ee
0 −G

°°° = Op(n
−β), and |µ1 − u| = Op(n

−β), where
0 < β ≤ 1
Later, we will conjecture that β = 1 and will provide arguments in favor of this
conjecture.
Let us define

g(α, β) =


4
3(1− α) if 53(1− α) < β ≤ 1
β − 1

3(1− α) if 1− α < β ≤ 5
3(1− α)

2
3β if 0 < β ≤ 1− α


We will prove the following

Proposition 3: Let assumptions 1-5 hold, then
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i) r̂δ is consistent for r when δ ∼ n−γ , for any γ s.t. 0 ≤ γ < g(α, β),
ii) r̃δ is consistent for r when δ ∼ n−γ , for any γ s.t. 0 ≤ γ < 2

3 min(β, 1− α)

Remark: An immediate consequence of the proposition is that r̂δ is consis-
tent for a wider range of the δ0s rate of decrease than r̃δ.
To proof proposition 3, we will need the following two lemmas:

Lemma 1.
°°°F 1

T XX0 − F
1
T ee

0
°°° ≤ r

n

Lemma 2: Under assumptions 1,3 and 4, there exists a constant a > 0,
such that

G(x) = 1− a (u− x)
3
2 (1 +O(u− x))

as x ↑ u.
The proofs of the lemmas are in the Appendix section. Turning to the proof of

proposition 3, note that
°°°F 1

T XX0 −G
°°° ≤ °°°F 1

T XX0 − F
1
T ee

0
°°° + °°°F 1

T ee
0 −G

°°° .
Assumption 5 and lemma 1 then imply that°°°F 1

T XX0 −G
°°° = Op(n

−β) +O(n−1) = Op(n
−β), (10)

where the second equality follows from the assumption that β ≤ 1.
Further, according to lemma 2, a(u−x)

3
2 = (1−G(x)) (1+O(u− x)). This

implies that

a(u− x)
3
2 = (1−G(x))

³
1 +O

h
(1−G(x))

2
3

i´
. (11)

From (10), we have:

1−G(λrmax+1) = 1− F
1
T XX0

(λrmax+1) +Op(n
−β) =

rmax
n

+Op(n
−β).

Substituting this into (11) and rearranging, we obtain

a(u− λrmax+1)
3
2 =

rmax
n

+Op(n
−β) +Op

³
n−

5(1−α)
3

´
, (12)

where the termsOp(n
−β)Op

³¡
rmax
n

¢2/3´
, rmaxn Op

³
n−

2β
3

´
, andOp(n

−β)Op

³
n−

2β
3

´
are all subsumed by the them Op(n

−β). Similarly, we have

a(u− λ2rmax+1)
3
2 = 2

rmax
n

+Op(n
−β) +Op

³
n−

5(1−α)
3

´
(13)

Dividing (13) by (12) and taking the both sides of the resulting equality into
power 23 , we get

u− λ2rmax+1
u− λrmax+1

=

2 rmaxn +Op(n
−β) +Op

³
n−

5(1−α)
3

´
rmax
n +Op(n−β) +Op

³
n−

5(1−α)
3

´


2
3

. (14)

12



Now, consider first the case β ≤ 1−α. Then, the right hand side of (14) can
be represented in the form 2

2
3 (1 +Op(1)), and we have:

u = wλrmax+1 + (1− w)λ2rmax+1 + ζ, (15)

where w = 2
2
3 /
³
2
2
3 − 1

´
and ζ = (u− λrmax+1)Op(1). Note that, for β ≤ 1−α,

(12) implies that u− λrmax+1 = Op

³
n−

2β
3

´
and therefore ζ = Op

³
n−

2β
3

´
.

If 1 − α < β ≤ 5
3(1 − α), then the right hand side of (14) is 2

2
3 (1 +

Op(n
−β+(1−α))). In addition, (12) implies that u − λrmax+1 = Op

³
n−

2(1−α)
3

´
.

Therefore, (15) holds with ζ = Op

³
n−β+

1
3 (1−α)

´
.

Finally, if 53(1−α) < β, then the right hand side of (14) is 2
2
3

³
1 +Op

³
n−

2(1−α)
3

´´
and u− λrmax+1 = Op

³
n−

2(1−α)
3

´
. Hence, (15) holds with ζ = Op

³
n−

4
3 (1−α)

´
.

Summarizing the three cases, we have:

u− û = Op

³
n−g(α,β)

´
, (16)

u− λrmax+1 = Op

³
n−

2
3 min(β,1−α)

´
(17)

The above formulas show the rates of convergence of our “sophisticated” esti-
mator of u and a “primitive” estimator λrmax+1.
Recall that for a fixed δ, as was shown in the proof of proposition 2, λr >

(1 + δ)û almost surely for large enough n. For δ local to zero, the inequality
holds “even stronger”. Therefore, to prove the consistency of r̂δ, we only need
to show that the probability that λr+1 < (1 + δ) û goes to 1 for large enough n.
By (8), it is enough to prove that the probability that µ1 < (1 + δ) û goes to 1
for large enough n. We have:

(1 + δ) û− µ1 = δû+ (û− u) + (u− µ1)

The second term in the above sum is Op

£
n−g(α,β)

¤
by (16), the third term is

Op(n
−β) by assumption, the first term decays as fast as δ. Note that g(α, β) < β.

Therefore, with probability going to 1, the first term will dominate the other
two as n → ∞ if δ ∼ n−γ , for any γ such that 0 ≤ γ < g(α, β), and hence
Pr (µ1 < (1 + δ) û) → 1 as n → ∞, which completes the proof of statement i)
of the proposition.
Similarly,

(1 + δ)λrmax+1 − µ1 = δλrmax+1 + (λrmax+1 − u) + (u− µ1) ,

and according to (17), with probability going to 1, the first term will dominate
the other two as n→∞ if δ ∼ n−γ , for any γ such that 0 ≤ γ < 2

3 min(β, 1−α).
Hence, Pr (µ1 < (1 + δ)λrmax+1)→ 1 and r̃δ is consistent, which completes the
proof of ii). ¤

13



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

β=5/6

4/3

2/3

2β/3

Figure 1: The negative of the exponential in the rate of convergence of û as a
function of α. β is fixed at 5/6.

Figure 1 shows the rates of convergence of û as as a function of α for a
range of 0 < β ≤ 1. As α increases from 0, the rate stays at 2

3β until 1 − α
becomes equal to β, then increases until 1− α is 35β, and finally decreases to 0

as 1− α = 0. Intuitively, our trying to fit the functional form 1− a (u− x)
3
2 to

the empirical spectral distribution of 1
TXX 0 to get a better estimate of u than

simply λrmax+1 is not productive as long as the variation of F
1
T XX0

in the range
x ∈ [λ2rmax+1, λrmax+1] (which is decreasing as rmax

n , that is with rate 1− α) is
small relative to the error of approximation of G by F

1
T XX0

(decreasing with
the rate β). Therefore, as β < 1−α, the rate of convergence of û is equal to the
rate of convergence of the “primitive” estimator λrmax+1.When α becomes such
that β > 1 − α, the variation in F

1
T XX0

becomes large enough to exploit the
functional form fitting idea. As α becomes too large, the discrepancy between
G and 1−a (u− x)

3
2 (which is small only in the neighborhood of u) starts to be

large and fitting the functional form does not produce good results any more.
Proposition 2 suggests that the optimal choice of α in rmax = min (nα, Tα) ,

in the sense that it optimizes the rate of convergence of û to u, is 1− 3
5β. Unfor-

tunately, not much is known about the true rates of convergence of
°°°F 1

T ee
0 −G

°°°
14



and |µ1 − u| . The standard conjecture (see Bai 1999, p.658-659), for the case
when Sn in (2) is equal to the identity matrix, is that β = 1. As Silverstein
(1999) points out, this conjecture is substantiated by extensive simulations and
some theoretical results. If Sn is not identity, but converges to the limiting
distribution H very fast, and if the limiting distribution does not have any pe-
culiarities, such as those eliminated by our assumption 4 iii), one may expect
that the rate of convergence should still be n−1. If β = 1, then the optimal
choice of α is 25 . Therefore, in the Monte Carlo simulations and the application
below we will use rmax = kmin

¡
n2/5, T 2/5

¢
. We choose to use k = 1.55 so

that in realistic small samples, when T is equal to 60, the maximum number of
factors is 8.
As was mentioned above, we can relax the assumption of fixed number of

factors. In fact, the proof of strong consistency of r̂δ when δ is fixed only
requires r ≤ rmax. Hence, for fixed δ, r̂δ remains consistent even if the true
number of factors is increasing as nα when n → ∞. It can be shown4 that if,
as the standard conjecture is, β = 1, and r = O(n−θ) for some θ ≤ α, then r̂δ
remains consistent as long as δ ∼ n−γ for any γ < h(α, θ), where

h(α, θ) =

½
4
3(1− α) if 0 ≤ θ < 5

3α− 2
3

1− θ − 1
3(1− α) if 53α− 2

3 ≤ θ ≤ α

¾
.

For example, for our choice of α = 2
5 , r̂δ will consistently estimate the number

of factors rising as n−θ, θ ≤ 2
5 as long as δ ∼ n−γ for some 0 ≤ γ < 4

5 − θ.
In conclusion of this section, let us note that to develop our estimator we

used regularity of the limiting spectral distribution local to the upper bound-
ary of its support. The local nature of the regularity we exploit is the price
we pay for allowing rather rich pattern of the cross-sectional serial correlation
and heteroskedasticity in the idiosyncratic term.5 Had we assumed that the
idiosyncratic terms are cross-sectionally i.i.d., the limiting spectral distribution
would have been of the so called Marčenko-Pastur form (see Bai, 1999) and we
would have been able to use the information from all the eigenvalues to estimate
u. Kapetanios (2004) explains how the i.i.d. assumption can be somewhat re-
laxed so that the limiting distribution is still of the Marčenko-Pastur form and
proposes a consistent method of the number of factors estimation based on the
implied eigenvalue threshold. However, restrictions that Kapetanios makes on
the serial correlation pattern and heteroskedasticity of the idiosyncratic com-
ponents remain very stringent. The main methodological contribution of this
paper relative to Kapetanios (2004) is that we essentially lift those restrictions.

4 Monte Carlo Analysis
In this section we use Monte Carlo simulation experiments to study empirical
performance of our estimator and compare it to the performance of Bai and Ng

4The proof of this fact is available from me upon request.
5The information about this serial correlation and heteroskedasticity can be backed out

from the observed empirical distribution of the eigenvalues.
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(2002) estimator. We replicate and extend Bai and Ng’s experiments. Their
most general setting is as follows:

Xit =
rX

k=1

ΛikFkt +
√
θeit,

where the factors matrix F and the factor loadings matrix Λ are r×T and n×r
matrices of independent N(0, 1) variables respectively and

eit = ρei,t−1 + vit +
JX

j=−J
βvi−j,t, J = min

½
N

20
, 10

¾
, vij ∼ IIDN(0, 1). (18)

In most of their exercises Bai and Ng assume that the idiosyncratic component√
θeit has the same variance as the common component

Xr

k=1
ΛikFkt, that

is θ = r. We consider less configurations of n and T than Bai and Ng do,
trying to choose the most representative ones.6 However, we experiment more
with the relative size of θ and r. Increasing the size of θ relative to r is a
particularly interesting exercise for us because large θ relative to r corresponds
to the situation when our new estimator should improve upon that of Bai and
Ng (2002).
Table 1 reports the averages of Bai-Ng estimators and three versions of

our estimator r̂δ, corresponding to δ = max
³
n−

1
2 , T−

1
2

´
, δ = 0, and δ =

max
³
n−

2
3 , T−

2
3

´
, over 1000 replications of the data generating process. The

true number of factors is assumed to be r = 1, 3, and 5.We take eit homoskedas-
tic independent N(0, 1) variables.We set rmax = 1.55min

¡
T 2/5, n2/5

¢
. Prior to

computation of the eigenvectors, each series is demeaned and standardized to
have unit variance.

Table 1
DGP: Xit =

Xr

k=1
ΛikFkt +

√
θeit, θ = r, ρ = β = 0

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂
n
−1
2

r̂0 r̂
n
−2
3

100 40 1 7 1.02 1.00 2.77 1.00 1.00 1.00 1.02 1.40 1.01
200 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.35 1.05
1000 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.19 1.00
100 100 1 10 1.00 1.00 7.32 1.00 1.00 1.11 1.06 1.57 1.23
100 40 3 7 3.00 3.00 3.62 3.00 2.99 3.00 3.00 3.03 3.00
200 60 3 8 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.03 3.00
1000 60 3 8 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.00
100 100 3 10 3.00 3.00 7.33 3.00 3.00 3.09 3.00 3.10 3.03
100 40 5 7 4.98 4.93 5.06 4.75 4.36 4.99 4.91 4.99 4.95
200 60 5 8 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
1000 60 5 8 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
100 100 5 10 5.00 5.00 7.68 5.00 4.99 5.10 5.00 5.01 5.00

6Most of Bai and Ng’s (2002) results do not change much until n and T change dramatically.

16



As can be seen from table 1, when θ = r, all estimators, except PCp3, which
substantially overestimates the true number of factors when n = T = 100, work
very well and their performance is comparable. These results confirm Bai and
Ng’s (2002) findings that they report in tables 1-3 of their paper. We see that
choosing δ equal to zero have a potential to overestimate the true number of

factors, which is consistent with the theory. Choosing δ = max
³
n−

1
2 , T−

1
2

´
and δ = max

³
n−

2
3 , T−

2
3

´
does not lead to substantially different results.

Table 2 increases the variance of the idiosyncratic term relative to the vari-
ance of the systematic component. We perform the same simulation experiment
as above, except now θ = 4r, that is the standard deviation of the idiosyncratic
component is 2 times the standard deviation of the systematic component.
Although there is no much change relative to table 1 for r = 1, the change

is very substantial for r = 5. The Bai-Ng estimators start to significantly un-
derestimate the number of factors. A particularly striking deterioration of per-
formance happens for ICp1 and ICp2, which essentially say the data generating
process does not have any factors. Note that our estimator still works very
well for T > 40. The deterioration in performance of the Bai-Ng estimators in
this situation is what we would expect, because the factors now explain much
smaller portion of the variance in the data. Since our method of estimation
relies more on the structural properties of the idiosyncratic process (which does
not change when θ is increased), its performance turns out to be less sensitive
to the increase in the idiosyncratic variance.

Table 2: θ = 4r, ρ = β = 0

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂
n
−1
2

r̂0 r̂
n
−2
3

100 40 1 7 1.00 1.00 1.98 1.00 0.99 1.00 1.01 1.37 1.07
200 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.32 1.03
1000 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.17 1.00
100 100 1 10 1.00 1.00 5.33 1.00 1.00 1.00 1.03 1.46 1.16
100 40 3 7 2.66 2.30 3.17 0.66 0.24 2.24 2.60 2.94 2.78
200 60 3 8 2.90 2.78 3.00 1.91 1.39 2.83 3.00 3.03 3.00
1000 60 3 8 2.95 2.94 2.98 2.55 2.48 2.73 3.00 3.01 3.00
100 100 3 10 2.99 2.82 5.79 2.14 1.00 3.00 3.00 3.07 3.01
100 40 5 7 2.31 1.72 3.99 0.03 0.00 1.03 2.06 3.05 2.50
200 60 5 8 2.63 2.14 3.93 0.22 0.07 1.77 4.34 4.83 4.61
1000 60 5 8 2.73 2.62 3.07 0.46 0.37 0.83 5.00 5.00 5.00
100 100 5 10 3.33 2.20 6.55 0.39 0.02 4.91 4.54 4.87 4.76

When we make θ = 9r (see table 3), the deterioration of the performance
of the Bai-Ng estimators and relative robustness of our estimators is even more
striking.
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Table 3: θ = 9r, ρ = β = 0

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂
n
−1
2

r̂0 r̂
n
−2
3

100 40 1 7 1.00 0.99 1.77 0.59 0.38 0.96 1.01 1.30 1.05
200 60 1 8 1.00 1.00 1.00 0.96 0.92 1.00 1.00 1.28 1.03
1000 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.19 1.00
100 100 1 10 1.00 1.00 4.84 0.99 0.85 1.00 1.03 1.45 1.14
100 40 3 7 1.01 0.55 2.63 0.00 0.00 0.13 1.10 2.01 1.50
200 60 3 8 0.90 0.56 1.99 0.01 0.00 0.25 2.57 2.96 2.79
1000 60 3 8 0.71 0.63 0.93 0.01 0.01 0.02 3.00 3.01 3.00
100 100 3 10 1.42 0.56 5.45 0.01 0.00 2.69 2.69 3.00 2.87
100 40 5 7 0.47 0.13 2.47 0.00 0.00 0.01 0.52 1.57 0.88
200 60 5 8 0.06 0.01 1.03 0.00 0.00 0.00 1.81 3.02 2.37
1000 60 5 8 0.01 0.00 0.02 0.00 0.00 0.00 4.41 4.96 4.78
100 100 5 10 0.41 0.02 6.01 0.00 0.00 1.96 2.16 3.13 2.65

Our next step is to introduce time series serial correlation to the idiosyncratic
terms. For this, we take ρ = 0.5 in (18). Table 4 reports our results for the cases
θ = r and θ = 4r. Interestingly, all PC estimators and ICp3 are overestimating
the number of factors now. The overestimation is not substantial (except for
ICp3) for r = 5, but it is very sizable for r = 1 and r = 3. This phenomenon
cannot be seen from Bai and Ng (2002) because they chose to analyze only the
case r = 5 when cross-sectional serial correlation was introduced. As to the
ICp1 and ICp2, we again see that their performance deteriorates dramatically
when θ = 4r. The performance of our estimators deteriorates significantly for
r = 5, but not as much for r = 3, and much less dramatically than that of ICp1

and ICp2.
To complete the series of experiments based on the Bai-Ng setup, we study

performance of the estimators in case when both cross-sectional and time series
serial correlation are introduced. Precisely, we take ρ = 0.5 and β = 0.2 in
(18). Table 5 reports our results for θ = r and θ = 4r. All estimators work
relatively poorly, except perhaps our estimators for r = 3 and θ = r. The
Bai-Ng estimators overestimate the true number of factors very substantially.
Our estimators are doing more reasonable job. When θ jumps by a factor of 4
the overestimation of the Bai-Ng estimators is still very substantial, except for
the case n = 1000, T = 60, r = 3, 5, when the IC estimators swing from the
overestimation to the underestimation extreme. For this case, when θ = 4r, our
estimators also severely underestimate the true number of factors. However,
they appear to be much more stable relative to the case θ = r.
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Table 4a: θ = r, ρ = 0.5, β = 0

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂
n
−1
2

r̂0 r̂
n
−2
3

100 40 1 7 5.42 4.59 6.98 1.21 1.02 6.82 1.37 2.18 1.67
200 60 1 8 4.49 3.61 7.16 1.00 1.00 2.76 1.09 1.62 1.26
1000 60 1 8 4.18 3.91 5.02 1.0 1.00 1.00 1.00 1.02 1.00
100 100 1 10 3.91 1.93 10.00 1.00 1.00 10.00 1.47 2.33 1.86
100 40 3 7 5.88 5.09 7.00 3.36 3.02 6.97 2.97 3.15 3.03
200 60 3 8 5.03 4.25 7.51 3.01 3.00 5.15 3.00 3.07 3.01
1000 60 3 8 4.46 4.22 5.25 3.00 3.00 3.00 3.00 3.00 3.00
100 100 3 10 4.54 3.17 10.00 3.00 3.00 10.00 3.06 3.34 3.16
100 40 5 7 6.22 5.58 7.00 4.92 3.94 6.99 3.16 3.84 3.49
200 60 5 8 5.70 5.22 7.78 4.99 4.96 6.99 4.74 4.94 4.85
1000 60 5 8 5.18 5.09 5.68 5.00 5.00 5.00 4.97 5.00 4.99
100 100 5 10 5.51 5.01 10.00 4.99 4.87 10.00 5.00 5.01 5.00

Table 4b: θ = 4r, ρ = 0.5, β = 0
n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂

n
−1
2

r̂0 r̂
n
−2
3

100 40 1 7 5.16 4.29 6.97 1.08 0.98 6.64 1.25 2.01 1.53
200 60 1 8 4.12 3.26 6.95 1.00 1.00 1.88 1.05 1.53 1.18
1000 60 1 8 3.96 3.66 4.83 1.00 1.00 1.00 1.00 1.01 1.00
100 100 1 10 3.14 1.36 10.00 1.00 1.00 10.00 1.40 2.25 1.78
100 40 3 7 5.26 4.38 6.99 0.57 0.15 6.73 1.14 2.08 1.50
200 60 3 8 4.51 3.79 7.16 1.35 0.79 3.75 1.81 2.51 2.12
1000 60 3 8 4.16 3.91 4.93 2.03 1.89 2.39 1.84 2.48 2.17
100 100 3 10 3.87 2.88 10.00 1.35 0.28 10.00 2.79 3.17 2.97
100 40 5 7 4.92 3.98 6.95 0.10 0.01 6.21 0.72 1.72 1.13
200 60 5 8 4.25 3.46 6.99 0.10 0.01 2.50 0.80 1.76 1.19
1000 60 5 8 4.16 3.96 4.81 0.13 0.10 0.35 0.52 1.44 0.93
100 100 5 10 4.12 2.50 10.00 0.09 0.00 10.00 2.18 3.05 2.63
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Table 5a: θ = r, ρ = 0.5, β = 0.2

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂
n
−1
2

r̂0 r̂
n
−2
3

100 40 1 7 6.98 6.79 7.00 6.85 5.67 7.00 2.35 3.11 2.66
200 60 1 8 8.00 8.00 8.00 8.00 8.00 8.00 2.69 3.42 3.05
1000 60 1 8 6.92 6.71 7.46 2.66 2.24 4.55 1.21 1.94 1.48
100 100 1 10 9.96 9.07 10.00 9.83 6.63 10.00 3.93 4.71 4.34
100 40 3 7 6.99 6.90 7.00 6.96 6.45 7.00 2.66 3.32 2.94
200 60 3 8 8.00 8.00 8.00 8.00 8.00 8.00 2.63 3.40 2.99
1000 60 3 8 7.35 7.19 7.76 5.06 4.64 6.66 2.99 3.15 3.04
100 100 3 10 10.00 9.58 10.00 9.98 8.25 10.00 3.95 4.58 4.26
100 40 5 7 7.00 6.92 7.00 6.93 6.00 7.00 1.72 2.61 2.10
200 60 5 8 8.00 8.00 8.00 8.00 8.00 8.00 1.37 2.25 1.77
1000 60 5 8 7.62 7.48 7.89 6.48 6.10 7.45 2.64 3.52 3.05
100 100 5 10 10.00 9.77 10.00 10.00 8.69 10.00 3.45 4.17 3.82

Table 5b: θ = 4r, ρ = 0.5, β = 0.2
n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂

n
−1
2

r̂0 r̂
n
−2
3

100 40 1 7 6.96 6.69 7.00 6.72 5.00 7.00 2.17 2.96 2.49
200 60 1 8 8.00 8.00 8.00 8.00 7.99 8.00 2.50 3.29 2.91
1000 60 1 8 6.86 6.67 7.39 2.42 2.01 4.38 1.21 1.91 1.46
100 100 1 10 9.94 8.94 10.00 9.74 6.17 10.00 3.88 4.67 4.29
100 40 3 7 6.93 6.47 7.00 6.09 2.95 7.00 1.58 2.50 1.98
200 60 3 8 8.00 8.00 8.00 8.00 7.95 8.00 2.09 2.89 2.46
1000 60 3 8 6.64 6.45 7.23 0.97 0.71 2.60 0.46 1.44 0.85
100 100 3 10 9.94 8.86 10.00 9.69 3.57 10.00 2.83 3.73 3.30
100 40 5 7 6.78 6.17 7.00 5.01 2.03 7.00 1.70 2.58 2.07
200 60 5 8 8.00 7.95 8.00 7.98 7.75 8.00 2.44 3.30 2.85
1000 60 5 8 5.99 5.79 6.62 0.37 0.25 1.07 0.45 1.45 0.85
100 100 5 10 9.71 8.18 10.00 8.55 2.13 10.00 2.92 3.77 3.36

5 Application to Stock Returns
We apply the newly developed technique to estimate the number of factors in
the approximate factor model of the stock returns. Chamberlain and Rothchild
(1983) show that if the data can be described by such a model, the mean returns
on different stocks are approximately linear functions of the factor loadings. The
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factors in the approximate factor model are defined to have pervasive effect,
which means that the sum of squared loadings for a given factor, the sum being
taken over all stocks in the sample, increases without limit when the size of the
sample rises. However, the rate of this increase can be slow. In particular, it is
possible that the variance of the data explained by the factors is small relative to
the variance due to the idiosyncratic component. In such a circumstance, as was
shown above, our estimator works better than Bai and Ng’s (2002) estimators.
We, therefore, hope to improve upon the estimate r = 2, reported in their paper.
Our data consists of monthly returns on 1148 stocks traded on the NYSE,

AMEX, and NASDAQ during the period from January 1983 to December 2003.
Hence, the time dimension of our data is 21*12=252 and rmax = [1.55∗2522/5]+
1 = 15.We obtained the data from CRSP data base. Our criterion for inclusion
of a stock in the data set was that the stock was traded during the whole sample
period.
Our estimators corresponding to the three different choices of δ investigated

in the previous section, all estimate the number of pervasive factors to be 8. The
PCp1, PCp2, ICp1, ICp2 estimators that Bai and Ng (2002) describe as their
preferred ones, estimate the number to be 6, 5, 4, and 3 respectively. These
differ from the estimate r = 2, obtained by Bai and Ng (2002) for their data set.
Perhaps, the difference is due to our including much more time periods (252 vs.
60) in our sample.
Connor and Korajcyk (1993) find evidence for between one and six perva-

sive factors in the stock returns. Trzcinka (1986) finds some support to the
existence of 5 pervasive factors. Five seems also to be a preferred number for
Roll and Ross (1980) and Reinganum (1981). A study by Brown and Weinstein
(1983) also suggested that the number of factors is unlikely to be greater than
5.7 Huang and Jo (1995) identify only 2 common factors. The common feature
of all these studies, is that they try to find the number of common components
that significantly help explaining variation in the data. Therefore, the estima-
tion procedures that these studies use may work poorly in the situations when
the signal-to-noise ratio is relatively small. On the contrary, our estimation
procedure exploits Law-of-Large-Numbers type regularity for the idiosyncratic
terms to determine the upper limit on variation that can be attributed to the
idiosyncratic terms. Components that explain just a little more variation are
classified as the pervasive factors. Hence, we can expect our approach reveal
“less pervasive” or “weaker” factors that can be difficult to detect using the
other approaches.

6 Conclusion
In this paper we develop a new consistent estimator for the number of factors
in the approximate factor models. The main advantage of the new estimator

7Dhrymes, Friend, and Gultekin (1984) find that the estimated number of factors grows
with the sample size. However, their setting was the classical factor model as opposed to the
approximate factor mode.
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relative to the previously proposed ones is that it works well in the situation
when the systematic component of the data represented by the factors explain
only a small portion of the variation. This advantage arises because the esti-
mator is based on a Law-of-Large-Numbers type regularity for the idiosyncratic
components of the data, as opposed to the estimators based on the assump-
tion that a significant proportion of the variance is explained by the systematic
part. In contrast to the majority of the previous studies, we do not require the
eigenvalues of the covariance matrix of the systematic part of the data to rise
proportionately to the sample size.
Monte Carlo simulations show that our estimator indeed works better than

the information criteria estimators proposed by Bai and Ng (2002) when the
variance of the idiosyncratic component of the data is large relative to the vari-
ance of the systematic component. This finding is robust across several empir-
ically relevant sample size situations and different patterns of serial correlation
in the idiosyncratic term. The better workings of our estimator does not come
at the expense of the more complicated structure. The proposed estimator is
a simple function of the eigenvalues of the sample covariance matrix and it is
very easy to compute.
Our appeal to the Law-of-Large-Numbers type regularity for the idiosyn-

cratic terms is based on a restrictive assumption about these terms. Precisely,
we assume that the vector of the idiosyncratic components at a particular point
in time is a relatively general linear transformation of an i.i.d. vector of the
same size. The idiosyncratic components are assumed to be independent across
time. Monte Carlo analysis and some theoretical results suggest, however, that
the latter assumption is not essential for the good performance of the estimator.
In the future work, we plan to relax the assumption of the independence

across time. One way to do this is to represent the matrix of idiosyncratic
components e as a sum of two matrices:

e = Z + ε,

where matrix ε would consist of the cross-sectionally and time-series indepen-
dent terms, possibly representing measurement errors, and Z would be a matrix
of the cross-sectionally and time-series dependent components. It is likely that,
using recent results in Silverstein and Dozier (2004), one can show that our esti-
mator remains consistent in this case as long as the spectral distribution of ZZ0

converges to a probability distribution with bounded support. This convergence
is likely to be present for mild cross-section and time-series correlation of the
components in Z. Establishing conditions under which such convergence exists
is our immediate plan.
The Large Dimensional Random Matrix theory is a terrain relatively un-

known by econometricians. It is likely that many existing findings in this area
can be put to an immediate use by the profession. Recently, some second order
results were obtained for the largest eigenvalues of large random matrices (see
Johnstone, 2000). We conjecture that the results may be relevant for designing
statistical tests for the number of factors in approximate factor models.
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7 Appendix
Proof of Lemma 1: We will consider only the case when n > T. The proof in
the other case is similar. If n > T, then n− T eigenvalues of 1

TXX 0 and 1
T ee

0

are equal to zero and the rest of eigenvalues are almost surely distinct and not
equal to zero. If x ≤ λn = ... = λT+1 = 0, then F

1
T XX0

(x) = F
1
T ee

0
(x) and in

particular ¯̄̄
F

1
T XX0

(x)− F
1
T ee

0
(x)
¯̄̄
≤ r

n
(19)

Let λi+1 ≤ x < λi for some i = 0, ..., n, where we define λ0 = +∞ for
convenience. Then,

F
1
T XX0

(x) = F
1
T XX0

(λi+1) = 1− i

n
(20)

by definition of the spectral distribution function (3).
Consider, first, the case when 0 ≤ i < r + 1. Then, by (9)8, x ≥ µi+r+1 and

F
1
T ee

0
(x) ≥ F

1
T ee

0
(µi+r+1) = 1− i+r

n . This inequality together with (20) implies
(19).
Now, let T − r < i ≤ T. Then, by (8), x < µi−r and

n−T
n = F

1
T ee

0
(0) ≤

F
1
T ee

0
(x) ≤ F

1
T ee

0
(µi−r)− 1

n = 1− i−r
n , which, coupled with (20), implies (19).

Finally, let r + 1 ≤ i ≤ T − r. Then µi+r+1 ≤ x < µi−r and 1 − i+r
n ≤

F
1
T ee

0
(x) ≤ 1− i−r

n . Again, taking into account (20), we get (19).¤
Proof of Lemma 2: First, note that, since the spectra of 1T ee

0 and 1
T e

0e dif-
fer only by |n− T | zero eigenvalues, the distribution G is related to the limiting
distribution of F

1
T e

0e, which we denote as P, by equation

P = (1− c)I[0,∞) + cG.

In particular, P and G have the same upper boundaries of their supports, and
their densities (where they exist) are proportional. Therefore, it is enough to
establish lemma 2 for P. For G, it will follow from the above equality.
Silverstein (1995) established the fact that, under assumptions equivalent

to our assumption 1,3, and 4 i), F
1
T e

0e converges to a limiting distribution P ,
whose Stieltjes transform m, defined as

mP (z) ≡
Z

1

λ− z
dP (λ), z ∈ C+ ≡ {z ∈ C : Im z > 0} ,

is the unique solution in C+ to

m = −
µ
z − c

Z
τdH(τ)

1 + τm

¶−1
. (21)

Silverstein and Choi (1995) study properties of distributions with the Stielt-
jes transforms satisfying the above equation. They show that P has continuous

8Here we implicitly assumed that 2r < n, which will hold for large enough n.
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density p(x), which has form (see formula (5.3) of Silverstein and Choi (1995)):

p(x) = a (u− x)
1
2 (1 + o(1)) (22)

in the neighborhood of u, the upper boundary of P ’s support. We would like to
strengthen this formula by establishing that

p(x) = a (u− x)
1
2 (1 +O (u− x)) .

Silverstein and Choi prove (22) under the assumption that −m−1u , where
mu is defined as limz∈C+→umP (z), is strictly larger than the upper boundary
of support of H (see the discussion at p.307 of their paper). They point out
that this assumption would not hold only if −m−1u is the upper boundary of H’s

support and, in addition, limm↓mu

Z
λ2dH(λ)

(1 + λm)2
exists, and 1

m2−c
Z

λ2dH(λ)

(1 + λm)2

is positive on (mu,mu + δ] for some δ > 0. It is straightforward to verify that
our assumption 4 iii) rules out such a possibility.
To prove (22), Silverstein and Choi, first, show (their theorem 1.1) that the

limit limz∈C+→xmP (z) ≡ m1(x) + im2(x) (here i denotes the imaginary unit)
exists, that p(x) = 1

πm2(x), and that m1(x) and m2(x) are analytic in the
neighborhood of any x such that m2(x) > 0. Moreover, for these x, m1(x) and
m2(x) constitute the unique solution (subject to the requirement m2(x) > 0) of
the system:

x = c

Z
λdH(λ)

(1 + λm1)2 + λ2m2
2

(23)

0 =
1

m2
1 +m2

2

− c

Z
λ2dH(λ)

(1 + λm1)2 + λ2m2
2

. (24)

Implicitly differentiating the above two equations with respect to x, Silverstein
and Choi find that

m2m
0
2 =

m1A2 + (m
2
1 −m2

2)A3
(A2 +A3m1)2 +A23m

2
2

for x ∈ (u− ε, u) for some ε > 0, where Aj = 2c
R λjdH(λ)

((1+λm1)
2+λ2m2

2)
2 . Using this

formula, they show that 2m2(x)m
0
2(x) tends to a finite negative number when

x ↑ u. Formula (22) then follows from a simple observation that 2m2(x)m
0
2(x) =

d
dxm

2
2(x) and the fact (following from the continuity of m2(x)) that m2(u) = 0.
We now show that not only 2m2(x)m

0
2(x) tends to a finite negative number

when x ↑ u, but also the derivative of this function is bounded on x ∈ (u−ε, u).
This is equivalent to saying that

¡
m2
2(x)

¢0
is well approximated by a linear

function with finite slope on x ∈ (u − ε, u), which in turn is equivalent to the
statement of our lemma.
Let us first show that m0

1(x), A
0
2(x) and A

0
3(x) are bounded on x ∈ (u−ε, u)

for some ε > 0. Indeed, differentiating (23) implicitly with respect to x and
rearranging, we get

m0
1 =
−1−A3m2m

0
2

A2 +A3m1
.
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It is easy to see that the denominator A2 +A3m1 = 2c
R λ2(1+λm1)dH(λ)

((1+λm1)
2+λ2m2

2)
2 is a

continuous function of x. Moreover, since by assumption 4 iii) m1(u) = mu lies
outside the support of H, the denominator is not equal to zero for x = u. Let
us choose ε so small that it stays away from zero for x ∈ (u− ε, u). Then, since
as shown by Silverstein and Choi m2m

0
2 is bounded on x ∈ (u− ε, u), m0

1 must
be bounded on x ∈ (u− ε, u).
For A2 and A3 we have

A0j = −4c
Z

λj
¡
2λm0

1 + 2λ
2 (m1m

0
1 +m2m

0
2)
¢
dH(λ)³

(1 + λm1)
2
+ λ2m2

2

´3
which is bounded on x ∈ (u− ε, u) because m2m

0
2 and m0

1 are bounded.
Finally,

(m2m
0
2)
0
=

x

[(A2 +A3m1)2 +A23m
2
2]
2 ,

where

x =
£
A02m1 +A2m

0
1 + 2m1m

0
1A3 − 2m2m

0
2A3 +

¡
m2
1 −m2

2

¢
A03
¤ ·

· £(A2 +A3m1)
2 +A23m

2
2

¤− £A2m1 +
¡
m2
1 −m2

2

¢
A3
¤ ·

· £2 (A2 +A3m1) (A
0
2 +A03m1 +A3m

0
1) + 2A3A

0
3m

2
2 + 2A

2
3m2m

0
2

¤
.

The boundedness of m0
1, A

0
2, A

0
3, and m2m

0
2 on x ∈ (u−ε, u) implies the bound-

edness of x. As to the denominator
£
(A2 +A3m1)

2 +A23m
2
2

¤2
, it stays away

from zero since A2 +A3m1 stays away from zero for x ∈ (u− ε, u).¤
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