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1 Introduction

The switching regression model (Quandt, 1958) and its univariate counterpart,

the threshold autoregressive (TAR) model (Tong, 1978) are popular nonlinear

models. The TAR model in particular has generated a wide range of papers

covering both theoretical and empirical issues. An overview can be found in

Tong (1990); see also, for example, Caner and Hansen (2001), Hansen (1996,

1999a, 2000), Kapetanios (2003), Koop and Potter (1999), Medeiros et al. (2002),

among others.

In most economic applications of the TAR model, economic theory is not

specific about the complete structure of the model. In particular, most often

the number of regimes in the model cannot be assumed known a priori. Further-

more, the switch variable or, in the TAR case, the delay determining the threshold

variable is often unknown as well. Some work exists on how to select the num-

ber of regimes in TAR models. Tsay (1989) suggested a graphical approach for

locating the values of thresholds. He used scatterplots of standardized predictive

residuals (in arranged autoregression) and recursive t-ratios of an AR coefficient

versus the threshold variable to detect the number and locations of the thresh-

olds. Hansen (1996) considered inference and testing for linearity in situations

when a nuisance parameter1 is not identified under the null hypothesis. He pro-

vided a general framework using weighted average and supremum LM tests and

gave the asymptotic theory for inference. Hansen (1999a) suggested a sequential

testing approach to the regime selection problem. This meant starting with a

linear model and adding thresholds until the first acceptance of a null hypothesis.

A statistical complication is that the parameters of the TAR model are only iden-

tified under the alternative, that is, when the larger model is true. He suggested

a likelihood ratio-type test and showed how inference can be conducted using an

empirical null distribution of the test statistic generated by the bootstrap. We

shall investigate how such a sequential procedure works in practice.

More recently, Gonzalo and Pitarakis (2002), henceforth GP, suggested choos-

ing the number of regimes or thresholds sequentially starting from a linear model

(a single regime) and using model selection criteria for choosing between models

with m and m + 1 thresholds. Their argument was that the procedure is easy

to use, and as opposed to statistical tests, there is no need to choose significance

levels. The work of Gonzalo and Pitarakis was inspired by the results in Bai (1997)

1The threshold parameters constitute the nuisance parameters in the TAR case.
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and Bai and Perron (1998) who showed that one can estimate break-points in a

multiple break model consistently even when the number of breaks estimated is

smaller than the actual number of breaks.

Applying model selection criteria or sequential likelihood ratio testing to the

present problem requires estimation of models with both m and m+1 thresholds.

This may not be considered desirable because the larger model is not identified

when the smaller model is true. Another potential difficulty with the approach

based on information criterion is that implied significance level of the test of

testing the model with m against one with m + 1 thresholds (a comparison with

two nested models using a model selection criterion is equivalent to a likelihood

ratio test) may vary substantially with the size of the smaller model. On the

other hand, the user of sequential likelihood ratio tests is, at least in theory, in

full control of the significance level of each test in the sequence. A potential

disadvantage of Hansen’s tests compared to the GP approach is that they require

a substantial computational effort. Besides, GP argue that it is not clear whether

or not the sequential approach using these tests can be extended to models with

more than two regimes. Some simulation results in this paper illustrate this

concern.

The purpose of this paper is to propose a sequential model selection procedure

consisting of a sequence of misspecification tests in which a model with m thres-

holds is tested against one with m + 1 thresholds. Important features of this

method are that standard statistical inference is used in the sequential selection of

the number of thresholds and that the modeller has a reasonable if not full control

of the significance level of each test. If the true model is a switching regression

or a threshold autoregressive one, no claims about asymptotic properties of our

tests can be made. Nevertheless, we do claim to have an approximate idea of

what the significance levels of the tests in finite samples are. Assuming that the

switching regression or threshold autoregressive model under consideration has

a fixed number of thresholds, the model selection problem at hand is a finite-

sample problem. Therefore, it is sufficient to require that the procedure works in

a satisfactory fashion in small and moderate samples. Our simulation experiments

suggest that this is indeed the case. Another advantage of our procedure is that it

is computationally simple and, as a by-product, yields accurate estimates of the

threshold parameters of the TAR model. At each stage only the smaller model is

estimated, so that the complication of estimating at least one model that is too

large is minimized.

2



The paper is organized as follows. Section 2 provides the motivation for our

procedure and contains a brief overview of smooth transition regression (STR)

models on which our technique is based. The technique itself is presented in

Section 3. Section 4 contains a simulation study in which our procedure is com-

pared both with the approach of Hansen (1999a) and the one in GP. An empirical

application based on the sunspots numbers series can be found in Section 5, and

Section 6 contains final remarks.

2 Smooth transition regression model

The general idea underlying our procedure is quite old. Goldfeld and Quandt

(1972, pp. 263–264; 1973) considered the estimation of parameters in the switch-

ing regression model and pointed out that discontinuity of the log-likelihood com-

plicates the estimation. Their suggestion was to replace the sudden switch or

threshold by a smooth transition. This removes the discontinuity, and the para-

meters of the resulting smooth transition regression model can be estimated by

conditional maximum likelihood, using an appropriate iterative algorithm.

In this paper we will apply the same idea - approximation of sudden switches

by smooth transitions - to the regime selection problem. That allows us to use

standard inference in determining the number of regimes in a TAR model.

A classical logistic STR (LSTR) model for yt is defined as follows:

yt = x′

tβ0 + x′

tβ1G1t + εt , t = 1, . . . , T, (1)

where xt = (1, x1t, x2t, . . . , xkt)
′ = (1, x̃t)

′ is a ((k + 1) × 1) vector of explanatory

variables, β0 and β1 are ((k +1)× 1) parameter vectors and {εt} is a sequence of

independent, identically distributed normal errors with zero mean and variance

σ2. The transition function G1t in (1) is defined as follows:

G1t = G1(st; γ1, c1) = (1 + exp{−γ1(st − c1)})
−1 , γ1 > 0. (2)

As γ1 → ∞ in (2) , the logistic G1t function approaches the indicator function

I[st > c1] and the LSTR model becomes a switching regression (SR) or, in the

univariate case, a TAR model with two regimes. The parameter c1 is then the

switch or threshold parameter. Thus the STR model (1) with (2) is a reasonable

approximation to the SR model when γ1 is sufficiently large.

Analogously, we can approximate a multiple-threshold model with a Multiple

LSTR (MLSTR) model. For example, an MLSTR model with two transitions has
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the form

yt = x′

tβ
∗

0 + x′

tβ
∗

1G1t + x′

tβ
∗

2G2t + εt, (3)

where the transition function G2t = G2(st; γ2, c2) is again defined as in (2). For

the purposes of this paper we set γ1 = γ2 = γ.

To illustrate how MLSTR model (3) mimics the three-regime TAR model, we

reparameterize (3) as follows:

yt = x′

tβ1(1 − G1t) + x′

tβ2(G1t − G2t) + x′

tβ3G2t + εt. (4)

Letting γ → ∞ we get a piecewise linear form. Figure 1 depicts the three regimes

created by G1t and G2t in (4), when γ = 200, c1 = 0.3, c2 = 0.6 and st = t/T .

Figure 1: Three regimes

Rearranging the terms in (4) we obtain

yt = x′

tβ1 + x′

t (β2 − β1) G1t + x′

t (β3 − β2) G2t + εt, (5)

or more generally, in case of (m + 1) regimes:

yt = x′

tβ1 +
m+1∑

j=2

x′

t

(
βj − βj−1

)
Gj−1,t + εt

= x′

tβ1 (1 − G1t) +
m∑

j=2

x′

tβj (Gj−1,t − Gjt) + x′

tβm+1Gmt + εt.

Suppose now that the true model is a TAR model with two thresholds. We

can approximate this model by the STAR model (5) where γ is large and known.

Suppose, however, that we estimate (1) with γ large and known using maximum
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likelihood. How does this misspecification affect our threshold parameter esti-

mate? Analogously to GP we argue that underspecification of the number of

regimes affects the estimates of slope coefficients βi, but hardly those of ci. In

other words, in our three-regime example c1 can be estimated reasonably accu-

rately even when the number of regimes is misspecified by ignoring G2t in (5).

In the Appendix we show that the average Hessian used as an estimate of the

covariance matrix of the average score function, is nearly block-diagonal when

γ is large. This means that location parameters can be estimated practically

independently of each other, which is necessary for our procedure to work. We

also provide simulation evidence from three different three-regime TAR models,

showing that when estimating only a two-regime model, the c1 estimate will be

(very close to) one of the true thresholds.

3 Smooth transition approach

In this section we follow GP and consider the univariate TAR model. Our strategy

is, however, applicable to switching regression models as well. The starting-point

is that the true model is either a linear model or a TAR model (but possibly with

just one threshold), so the first choice is between m = 0 (linearity) and m = 1

(two regimes). As a whole, the procedure works as follows:

1. Test linearity of (1) (i.e γ = 0 in G1t(yt−d; γ, c1)), where xt = (1, x̃t)
′ =

(1, yt−1, . . . , yt−k)
′. In order to circumvent the identification problem ap-

proximate the transition function by its Taylor expansion around γ = 0.

The first-order approximation can be written as T1 = δ0 +δ1st +R1(γ, c; st),

where R1 is the remainder and δ0 and δ1 are constants. Substituting T1 for

G1 in (1) and reparameterizing yields

yt = x′

tθ0 + (xtst)
′θ1 + ε∗t , (6)

where ε∗t = εt + (x′

tβ1)R1(γ, c; st). The parameter vector θ1 = γθ̃1, where

θ̃1 6= 0, and thus our null hypothesis of linearity in (1) implies H′

0 : θ1 = 0 in

(6). Under H′

0 : ε∗t = εt. For further discussion of the test, see, for example,

Luukkonen, Saikkonen, and Teräsvirta (1988) or Teräsvirta (1998). The

resulting test has power against STAR but also against TAR (γ → ∞)

models. Under the null hypothesis and the assumption Ey4
t < ∞, the test

statistic has an asymptotic χ2-distribution with k + 1 degrees of freedom,
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and following the suggestions in earlier papers an F -approximation to it is

recommended. The test can be carried out in three stages using just linear

regressions:

(a) Regress yt on xt and compute the residual sum of squares

SSR0 =
1

T

T∑

t=1

ε̂ 2
t .

(b) Regress ε̂t (or yt) on xt and x̃tst, and compute the residual sum of

squares SSR1 =
1

T

T∑

t=1

v̂ 2
t .

(c) Compute

F =
(SSR0 − SSR1)/k

SSR1/(T − 2k − 1)

that is approximately Fk, T−2k−1 distributed under the null of linearity.

2. If the null hypothesis is rejected at a predetermined significance level α,

estimate the parameters of (1) by nonlinear least squares fixing γ at a suf-

ficiently high but finite value. Then the STAR model approximates a TAR

model with m = 1 and threshold value c1 while the transition function

still retains its smooth character (as a result the likelihood function is well-

behaved).

3. If LSTAR model (1) with fixed γ is accepted, test it against a Multiple

LSTAR model (5) with transition function G2t. This is done by making

use of the first-order Taylor expansion of the transition function G2t, see,

for example, Eitrheim and Teräsvirta (1996) or Teräsvirta (1998). Accept

(5) if the null hypothesis is rejected at significance level τα, 0 < τ < 1.

Reducing the significance level compared to the preceding test favours par-

simonious models. Choosing τ is left to the modeller: in the simulations we

set τ = 1/2. Starting-values for the estimation may be obtained by using

the estimates of β1, (β2 − β1) and c1. The starting-value for c2 is obtained

by a one-dimensional grid search over a possible set of candidates. This

also yields an initial value for β3. The estimated model is then tested for

another regime. The sequential estimation and testing is continued until

the first acceptance of a null hypothesis. This yields the specification for

the final model.
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4. Estimate consistently the parameters of the final TAR model by conditional

least squares (Chan, 1993) or using a dynamic programming algorithm,

see Bai and Perron (2003), to estimate the thresholds consistently before

estimating the remaining parameters by least squares.

The test can also be constructed using the third-order Taylor approximation of

Git. That variant of the test should be more powerful in cases where the process

is returning back to its original level after the second threshold, for example.

For our STAR-approximation procedure to work in the univariate case we need

to assume that εt are iid, the transition variable is weakly stationary, and the

2(n + 1)-th moment, where n is the order of Taylor expansion, of yt exist. It may

also be mentioned that the tests can be robustified against heteroskedasticity

following Wooldridge (1990).

It should be noted that when a TAR model with m thresholds is tested against

one with m + 1 thresholds, m ≥ 1, using our test, the asymptotic significance

level of the test is unknown. This is the case because the null model is a smooth

transition approximation to the null threshold autoregressive model. In testing

linearity, however, the asymptotic significance level is known because in that case

the null model is not an approximation.

Lack of asymptotic inference may be viewed as a disadvantage, but then,

the model selection problem is always a finite-sample problem. Finite sample

properties of our technique will be investigated by simulation. The advantages of

the STAR-approach are that the tests are computationally simple and that one

obtains remarkably accurate values for the threshold parameters even when some

of them lie near the smallest or largest observation in the sample.

4 Simulation study

In this section, the small sample performance of the three strategies will be com-

pared by simulation. Choosing between two nested models using an appropriate

model selection criterion is equivalent to carrying out the likelihood ratio test,

and in some situations the significance level of the model selection criterion based

test can be worked out; see, for instance, Teräsvirta and Mellin (1986). In the

present case that is not possible even asymptotically because of the identification

problem previously mentioned. It is, however, possible to obtain an idea of the

empirical size of these tests by simulation. In what follows we shall investigate
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both the size of these procedures and their success in finding the correct number

of regimes.

In all experiments the true (maximum) lag length of the TAR model is assumed

known. In practice one would have to determine the appropriate lag length either

simultaneously or before determining the number of regimes. Quite often the lag

length is selected prior to building a nonlinear model, using a suitable information

criterion.

4.1 Estimating the empirical size

Following GP we simulate univariate autoregressive models, so the alternative to

the linear model is a TAR model. We adopt the AR(1) model considered in GP

that has the form

yt = ρyt−1 + εt (7)

with ρ = (0.5, 0.7, 0.9, 1.0), where {εt} ∼ nid (0, 1). In order to check the effect

of the number of lags on the empirical size of the model selection criteria we also

simulate a number of AR(4) models

εt = (1 − ρL)(1 − 0.2L)(1 − 0.25L)(1 − 0.34L)yt

= (1 − ρL)(1 − 0.79L + 0.203L2 − 0.017L3)yt
(8)

with ρ = (0.5, 0.7, 0.9, 1.0), where {εt} ∼ nid(0, 1) and L is the lag operator. The

idea with (8) is to vary the value of the dominant root and, in particular, see

what happens when it approaches unity. For ρ = 1, the asymptotic distribution

theory for testing θ1 = 0 in (6) is no longer valid.

In the following tables AIC, BIC, BIC2 and BIC3 refer, as in GP, to the model

selection criteria

QT (m) = max
c1,...,cm

log

[
σ̂2

σ̂2(c1, . . . , cm)

]
−

λT

T
Km (9)

with penalty terms λT = 2, λT = log(T ), λT = 2 log(T ) and λT = 3 log(T ),

respectively. In (9), σ̂2 is the residual variance in the linear model, σ̂2(c1, . . . , cm)

the residual variance of the TAR model with m thresholds, T is the operative

number of observations and K is the number of parameters in every regime.

We use, following GP, three different sample sizes (T = 200, 400, 600)2, and

2For every sample size we actually generate T + 200 + k observations and discard the first
200 observations from each sample to minimize the impact of starting-values, and use the k

extra observations to construct the autoregressive lags of yt.
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GP STAR BOOTSTRAP
AIC BIC BIC2 BIC3 10% 5% 1% 10% 5% 1%

T=200
ρ = 0.5 80.6 8.75 0.10 0.00 8.75 4.20 0.90 10.00 4.75 0.95
ρ = 0.7 81.3 9.15 0.05 0.00 7.65 3.35 0.75 10.10 5.10 1.30
ρ = 0.9 80.9 9.50 0.15 0.00 5.00 2.25 0.25 9.60 4.90 0.95
ρ = 1.0 88.8 16.35 0.45 1.05 5.65 2.20 0.30 12.30 6.65 1.60
T = 400
ρ = 0.5 83.1 4.70 0.00 0.00 9.35 3.85 0.70 9.25 4.20 0.75
ρ = 0.7 82.4 5.60 0.05 0.00 8.00 3.65 0.55 9.80 4.95 1.00
ρ = 0.9 81.8 6.35 0.00 0.00 6.60 3.20 0.10 10.35 5.05 1.00
ρ = 1.0 89.8 9.55 0.20 0.00 5.20 2.45 0.45 10.75 5.15 0.95
T = 600
ρ = 0.5 83.8 4.15 0.00 0.00 9.50 4.80 0.85 9.75 4.75 0.85
ρ = 0.7 83.3 3.80 0.00 0.00 8.90 4.00 0.70 10.35 4.35 0.75
ρ = 0.9 83.8 4.65 0.00 0.00 7.40 3.60 0.40 10.75 5.15 0.90
ρ = 1.0 89.4 8.35 0.10 0.00 5.25 2.15 0.25 12.10 5.90 1.40

Table 1: GP-procedure, STAR-approach and Hansen’s bootstrap: The empirical
size in per cent based on 2000 replications from model (7), using 2000 model-based
bootstrap replications in Hansen’s procedure.

three different nominal sizes α = 0.1, 0.05 and 0.01, respectively. For each DGP

and for every sample size, 2000 Monte Carlo replications are carried out.

The results for the AR(1) model (7) appear in Table 1. The threshold or

transition variable is assumed to be yt−1. In (7) the intercept is zero, but in

practice one would most probably at least tentatively include an intercept in the

model. For this reason we assume the intercept to be unknown and a parameter to

be estimated from the data. BIC seems to be the only model selection criterion

that selects the linear model 4 − 10% of the time, except when T = 200 and

ρ = 1. Both BIC2 and BIC3 point to the correct (linear) model with an empirical

probability very close to one and thus have an empirical size close to zero. AIC, as

GP also stress, does not work well in this set-up, but its performance is reported

here for the sake of comparison.

On the contrary, the STAR-approach3 has reasonable size properties in the

3Throughout Sections 4 and 5 we report the results for test sequences where the test sta-
tistics are based on the first-order Taylor approximation. For DGP-s used in this study the
discrepancies between the first-order and third-order Taylor approximation approaches were
minor.
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GP STAR BOOTSTRAP
AIC BIC BIC2 BIC3 10% 5% 1% 10% 5% 1%

T=200
ρ = 0.5 61.3 0.15 0.00 0.00 8.55 4.25 0.75 9.60 4.30 0.80
ρ = 0.7 57.3 0.20 0.00 0.00 7.80 4.05 1.20 11.00 5.40 1.05
ρ = 0.9 59.9 0.30 0.00 0.00 6.80 3.10 0.60 10.05 4.55 1.10
ρ = 1.0 66.9 0.20 0.05 0.00 7.00 3.55 0.85 11.75 5.95 1.25
T = 400
ρ = 0.5 60.7 0.05 0.00 0.00 8.70 4.95 0.85 11.15 5.80 1.35
ρ = 0.7 59.9 0.00 0.00 0.00 9.10 4.50 0.90 10.80 5.10 0.85
ρ = 0.9 61.8 0.01 0.00 0.00 7.90 3.80 0.85 10.60 5.60 0.95
ρ = 1.0 67.6 0.10 0.00 0.00 7.35 3.30 0.60 12.00 6.00 1.35
T = 600
ρ = 0.5 62.0 0.05 0.00 0.00 10.00 4.85 0.70 10.30 5.30 1.05
ρ = 0.7 62.4 0.05 0.00 0.00 9.60 4.60 0.75 10.35 5.30 1.20
ρ = 0.9 62.8 0.00 0.00 0.00 9.25 4.30 0.95 10.85 5.45 1.00
ρ = 1.0 69.0 0.00 0.00 0.00 6.55 2.70 0.50 12.05 6.50 1.00

Table 2: GP-procedure, STAR-approach and Hansen’s bootstrap: The empirical
size in per cent based on 2000 replications from AR(4), using 2000 model-based
bootstrap replications.

sense that the empirical sizes are rather close to the ones determined from the

F -distribution unless the root of the lag polynomial is close to unity. The linear-

ity test as a whole is seen to be somewhat conservative in small samples. The

asymptotic distribution theory of the test is not valid if the AR process is non-

stationary, (ρ = 1), which explains the increasing size distortion when ρ → 1.

Hansen’s bootstrap-based test has good size properties already at T = 200. Even

when the AR process contains a unit root, the empirical size of the test is not

too far from the nominal one. The results for the AR(4) model using yt−1 as the

threshold variable4 in Table 2 are very different from the ones in Table 1 when

the BIC-type model selection criteria are concerned. The increase in the penalty

term due to the increased lag length has a remarkable effect on the empirical

size. It is practically zero already at T = 200. From this we can conjecture that

the empirical size of the GP procedure for any AR model with an even longer lag

would be practically zero for these criteria at the sample sizes GP considered. AIC

is still heavily oversized. The linearity test based on the STAR approximation

4The results using any other lag yt−d, d = 2, 3, 4, as the threshold variable are very similar
to the ones reported here.
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tends to be slightly undersized, but at some parameter combinations it competes

with Hansen’s bootstrap-based method that is well-sized already in small samples.

4.2 Simulating TAR models

In order to consider the performance of the three procedures when the true model

is a genuine TAR model we simulate two models also included in the simulation

study of GP. One of them has two regimes (m = 1) and the other one three

(m = 2). Furthermore, we complete the experiment with yet another TAR model

with m = 1. This is done to better demonstrate differences among properties of

the three regime-selection procedures. These experiments could be called power

simulations except for the fact that the empirical sizes of the three procedures

differ substantially from each other.

The error terms in these simulations are constructed to be standard normal

variates. We use three different sample sizes (T = 200, 400, 800), and three dif-

ferent nominal test size sequences (α, ατ, ατ 2, . . .), where α = 0.1, 0.05 and 0.01,

respectively, and τ = 1/2. Our method seems to be robust5 with respect to

the choice of τ . For each DGP and for every sample size, 2000 Monte Carlo

replications are carried out.

We begin our STAR-based procedure by testing linearity against (1), assuming

the transition variable to be known6. If linearity is rejected we proceed to estimate

an LSTAR model, fixing the slope parameter γ = 200. The approach is robust

to the choice of γ7, as long as the logistic function does not deviate much from a

step function and the log-likelihood is still well-behaved.

Choosing good starting-values for the optimization algorithm is crucial. We

therefore run a grid search over the [.1,.9] interquantile range of the transition vari-

able. This accords with the notion that each regime should contain at least 10% of

the total number of observations (see Hansen (1996), Bai and Perron (1998) and

GP). After estimating the LSTAR model we look for the second threshold, that

is, we test (1) against (5) as discussed in Section 3. If the presence of only a single

5We let τ change between 0.1, . . . , 1.0. The power loss with respect to the highest-power
case was about 0.5 − 1 percentage points and never greater than 2.8 percentage points (two
thresholds, T = 200).

6It is also possible to define a set of potential transition variables, test against each of them
and choose the one giving the strongest rejection (lowest p-value) of linearity.

7We let γ = 100, 200, . . . , 1000. The largest power loss relative to the maximum, about 2%,
occurred at T = 800, γ = 100. On the average the loss was about 0.6%.

11



threshold is rejected, we run another grid search to find a good starting-value for

the second location parameter, estimate the corresponding MLSTAR model, and

proceed until the first acceptance of null hypothesis.

The GP procedure is applied as in the original paper. The required regime

size is 10% of the whole sample and thresholds are estimated sequentially, using

the Bai (1997) repartition technique. That means re-estimating the threshold

parameters conditionally on the initially estimated ones so that each refined esti-

mate is obtained without an underlying neglected regime. In two threshold case,

for instance, the first threshold r(1) is re-estimated taking the second threshold

estimate r̂(2) as given and r̂(2) re-estimated taking the refined estimate of r(1) as

given.

When using Hansen’s bootstrap-based method we reduce the significance level

α as in the STAR-based procedure. Because simulating the likelihood ratio sta-

tistics in the sequence can be computationally rather burdensome, we use only

199 model-based bootstrap replications in the application of Hansen’s technique.

For finding out the power loss that this implies, we refer to Davidson and MacK-

innon (2000) who considered the problem of choosing the number of bootstrap

replications in bootstrap-based tests. For the test at the 0.10 level the implied

power loss should be less than 1%, for a test at 0.01 level the loss should not be

greater than 2.5% − 3%.

4.2.1 DGP1: a single threshold model

We begin by considering a TAR model with a single threshold. The data are

generated from the following model in GP:

yt =

{
−3 + 0.5yt−1 − 0.9yt−2 + εt yt−2 ≤ 1.5

2 + 0.3yt−1 + 0.2yt−2 + εt yt−2 > 1.5 .
(10)

In Table 3 we report the selection frequencies for DGP1 using GP-procedure,

i.e. adjusted numbers for Table 6 in GP (page 340). The high frequency for

choosing a three-regime model instead of a two-regime model in their original

table is due to a slight error in their computer code related to applying the 10%

minimum regime size rule mentioned above. The second threshold is often found

so close to the first one that there are not sufficiently many observations within

the thresholds to make a genuine regime. When the 10% rule is properly applied,

the results improve, and in large samples a correct decision is made in over 97%

of the occasions.
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T = 200 m̂ = 0 m̂ = 1 m̂ ≥ 2
BIC 7.75 90.70 1.55
BIC2 9.60 90.40 0.00
BIC3 10.40 89.60 0.00
T = 400
BIC 1.30 97.95 0.75
BIC2 1.75 98.25 0.00
BIC3 2.30 97.70 0.00
T = 800
BIC 0.00 99.70 0.30
BIC2 0.05 99.95 0.00
BIC3 0.05 99.95 0.00

Table 3: Adjusted (10% rule applied properly) Table 6 of GP: Selection frequen-
cies for DGP1, m = 1.

Results for DGP1 using Hansen’s bootstrap and STAR-approach are reported

in Table 4. The bootstrap procedure performs about as well as the information

criterion based ones. The results for STAR-approach show that the linear model

is chosen surprisingly often, about 9% of the time even for T = 400.

STAR BOOTSTRAP
T = 200 m̂ = 0 m̂ = 1 m̂ ≥ 2 m̂ = 0 m̂ = 1 m̂ ≥ 2
α =0.10 21.10 76.30 2.60 6.80 86.75 6.45
α =0.05 22.00 76.65 1.35 7.65 88.55 3.80
α =0.01 23.50 76.05 0.45 8.55 90.10 1.35
T = 400
α =0.10 8.65 89.25 2.10 1.00 93.90 5.10
α =0.05 8.80 90.25 0.95 1.15 96.25 2.60
α =0.01 9.10 90.75 0.15 1.35 98.05 0.60
T = 800
α =0.10 1.20 97.70 1.10 0.00 95.90 4.10
α =0.05 1.20 98.30 0.50 0.00 98.10 1.90
α =0.01 1.20 98.75 0.05 0.05 99.75 0.20

Table 4: STAR-approach and Hansen’s bootstrap: Selection frequencies for
DGP1, m = 1.

The reason is that the ĉ1 obtained by numerical optimization sometimes falls

outside the [.1, .9] interquantile range and is ignored. Picking a “good” starting-

value inside this range does not help when the actual true threshold value lies out
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in either of the tails of the empirical density of the threshold variable.

This situation is worth a further comment. GP remarked that DGP1 gen-

erates realizations that on the average have approximately the same number of

observations in each regime. The true threshold value in our experiment is indeed

close to the median of the samples (the average quantile of the threshold value

over the replications for any of the three sample sizes is about 0.53). At the same

time, in a single sample the true threshold value 1.5 can be very far out in the

tails of the empirical distribution, in small samples in particular. Figure 2 shows

the frequencies with which the observed deciles of the empirical distribution cover

the true threshold value. Decile “0” contains the cases where 1.5 is less than the

value of the smallest observation in the sample and decile “11” the cases where

the true threshold value exceeds the largest observed value in the sample.

Figure 2: The frequencies with which the observed deciles of the empirical distri-
bution of the threshold variable cover the true threshold value; for T = 200,
T = 400 and T = 800.

Consider first the case T = 200. In about 4.5% of the realizations the threshold

value 1.5 lies outside the range of the simulated series. Thus, at least for these

cases a linear model should be selected. In addition to that, in 22% of the cases the

true value falls into the first or the last decile. Whenever our location estimate

ĉi (even if it happens to be close to 1.5) falls outside the [.1, .9] interquantile

range the decision has been that it does not signal a genuine threshold. The 10%

regime size rule thus explains the high frequencies for selecting m̂ = 0 with the

STAR-approach. Based on this example we can conjecture that the GP as well as

Hansen’s procedure might therefore be picking up the second or third best option

for the threshold value (from the [.1, .9] range they are restricted to), given that

TAR model is preferred to the linear specification. For T = 400, the true value

is contained in the first decile or is outside the range about 3.5% and in the last

one about 6% of the time. The results are quite similar to the previous case, as
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the STAR approximation selects the linear model in about 9% of the cases as

opposed to 2% for the model selection approach of GP.

The effect of the 10% rule is shown in Table 5 where we report the results of

the same experiment after relaxing the regime size restriction for the first thresh-

old. We thus allow its value to belong to the first or the last decile of the observed

threshold variable, but we still apply the rule to the next thresholds. Now the

linear model is chosen less frequently and the majority of the wrong decisions con-

sists of erroneously detecting a second threshold, except for the smallest sample

size. The results are now as good as the ones obtained using Hansen’s procedure

and signal another advantage of the STAR-approach: the 10% minimum regime

size requirement is not necessary when this technique is applied.

T = 200 m̂ = 0 m̂ = 1 m̂ ≥ 2
α = 0.10 8.65 87.20 4.15
α = 0.05 10.05 87.80 2.15
α = 0.01 12.05 87.35 0.60
T = 400
α = 0.10 1.75 94.20 4.05
α = 0.05 1.95 96.10 1.95
α = 0.01 2.45 97.15 0.40
T = 800
α = 0.10 0.00 96.30 3.70
α = 0.05 0.00 98.15 1.85
α = 0.01 0.05 99.45 0.50

Table 5: STAR-approach: Selection frequencies for DGP1 when not applying the
10% regime-size rule.

We should also mention a difficulty encountered in generating series by the

bootstrap for Hansen’s procedure. When the optimal threshold value is selected

from the [.1, .9] interquantile range and it is not close to the true value, the para-

meter estimates of the two AR models are (sometimes) far from their true values

as well. In that case a number of series generated from the estimated model by

bootstrap are explosive. In this experiment, such realizations were discarded and

new bootstrap samples generated until the number of valid realizations reached

199. As an example, for sample size T = 400, we needed to generate extra boot-

strap samples in 5% of the cases. The number of explosive bootstrap series varied

between 77 and 2045. We also imposed a “maximum 5000 explosive bootstraps

allowed” rule. For DGP1 this rule was flexible enough allowing us to obtain
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199 valid bootstrap replicates for every Monte Carlo replication at sample sizes

T = 200, 400. That was no longer the case for T = 800, because it was difficult

to generate long non-explosive series. There were 9 cases for which 5000 addi-

tional bootstraps were not enough and in the worst case only 24 valid bootstrap

series were generated. For these 9 cases the empirical distribution of the F sta-

tistic was completed by imputing the missing values with the average of existing

bootstrapped statistics.

This difficulty may actually be anticipated. Hansen (1999a, pp. 571), when

discussing bootstrapping the distribution for the TAR(m = 1) vs TAR(m = 2)

test statistic, writes: “We do this with some caution, because there has not yet

been a demonstration that a bootstrap procedure can properly approximate the

sampling distribution of F23 under the SETAR(2) null hypothesis.”8. In practice,

an exploding realization may be taken as a sign of something being wrong with

the null model.

4.2.2 DGP2: multiple threshold model

The second DGP, also from GP, is a TAR model with three regimes. It has the

following form:

yt =





2.7 + 0.8yt−1 − 0.2yt−2 + εt, yt−2 ≤ 5
6 + 1.9yt−1 − 1.2yt−2 + εt, 5 < yt−2 ≤ 12
1 + 0.7yt−1 − 0.3yt−2 + εt, yt−2 > 12,

(11)

where {εt} ∼ nid(0, 1). In Table 6 we report the corrected selection frequencies

of Table 7 in GP (page 341). Main tendencies are the same as before in that the

number of incorrect decisions is small. The thresholds themselves are estimated

with reasonable accuracy; see the Appendix.

The results we obtain by applying the STAR-approach to this double-threshold

case are quite similar to results from the experiment with one threshold. Power

is good even in moderate samples. It does not, however, seem to increase with

the sample size. This is due to the fact that the increasing information about the

DGP makes the STAR-approximation with a constant γ become less accurate.

This disadvantage can be remedied by making the slope parameter γ an increasing

function of the sample size.

8In Hansen’s notation SETAR(n) denotes a model with n regimes, i.e. with n−1 thresholds.
Furthermore F23 denotes the test statistic for testing a 2-regime model against a 3-regime
specification i.e. one threshold vs two thresholds.
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T = 200 m̂ ≤ 1 m̂ = 2 m̂ ≥ 3
BIC 0.00 94.20 5.80
BIC2 0.00 100.00 0.00
BIC3 0.00 100.00 0.00
T = 400
BIC 0.00 97.55 2.45
BIC2 0.00 100.00 0.00
BIC3 0.00 100.00 0.00
T = 800
BIC 0.00 98.70 1.30
BIC2 0.00 100.00 0.00
BIC3 0.00 100.00 0.00

Table 6: Adjusted (10% rule applied properly) Table 7 of GP.

In this experiment, the problem of explosive realizations when applying the

likelihood ratio test sequentially became very severe. When T = 200, and when

two regimes were tested against three and the “maximum 5000 extra bootstraps”

rule was not applied, it took 19252 extra realizations on the average to obtain

an empirical distribution based on 199 bootstrap realizations. The maximum

number was 490710. The reason for this was that even if one of the thresholds

was estimated consistently, merging the two other regimes of the DGP into one

(the null model in Hansen’s model-based bootstrap) very often led to a highly

explosive two-regime model.

The results for T = 200 can be found in Table 7. It appears that the sequential

likelihood ratio test procedure does not perform as well as the STAR-approach.

Simulating the procedure for T > 200 is out of the question because of the amount

of computations needed to obtain sufficiently many non-explosive realizations.

As a whole, one may conclude that the sequential likelihood ratio test procedure

may run into problems when the data have been generated by a TAR model

with more than two regimes. They can be avoided by making use of the STAR-

approximation to the TAR model.
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STAR BOOTSTRAP
T = 200 m̂ ≤ 1 m̂ = 2 m̂ ≥ 3 m̂ ≤ 1 m̂ = 2 m̂ ≥ 3
α = 0.10 0.40 97.80 1.80 0.00 63.80 36.20
α = 0.05 0.90 98.05 1.05 0.00 73.80 26.20
α = 0.01 4.90 94.95 0.15 0.00 88.95 11.05
T = 400
α = 0.10 0.00 97.55 2.45
α = 0.05 0.00 99.00 1.00
α = 0.01 0.00 99.75 0.25
T = 800
α = 0.10 0.00 97.40 2.60
α = 0.05 0.00 98.45 1.55
α = 0.01 0.00 99.75 0.25

Table 7: Selection frequencies for DGP2, STAR-approach and Hansen’s boot-
strap.

4.2.3 A complementary experiment

GP conclude that overall the BIC criterion displays desirable large sample prop-

erties and a reasonably good finite sample behavior. They rightly point out,

however, that one should interpret any experimental results with caution since

the performance of the criterion depends on the data-generating process. In order

to emphasize this feature we complement the experiments in GP by a “real-world”

one. The observations are generated by the TAR(2; 10, 2) model in Tong (1990,

p. 421), estimated for Wolf’s sunspot numbers 1700 − 1979 transformed as in

Ghaddar and Tong (1981). The DGP is

yt =





1.89 + 0.86yt−1 + 0.08yt−2 − 0.32yt−3 + 0.16yt−4

−0.21yt−5 − 0.0005yt−6 + 0.19yt−7 − 0.28yt−8+

+0.20yt−9 + 0.01yt−10 + εt if yt−8 ≤ 11.93

4.53 + 1.41yt−1 − 0.78yt−2 + εt if yt−8 > 11.93,

(12)

where {εt} ∼ nid(0, 3.734). The variance is a “pooled variance”; see Tong (1990,

p. 421).

In this experiment our starting-point is an AR(10) model, which implies that

the alternative model is a TAR model with ten lags in every regime. An inter-

esting question arises: should one after rejecting the null hypothesis against the

TAR model with two regimes determine the lag length in them before proceeding
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further (see equation (12) where the second regime only contains two lags), but

it is not addressed here.

T = 200 m̂ = 0 m̂ = 1 m̂ ≥ 2
AIC 0.60 63.00 36.40
BIC 71.10 28.90 0.00
BIC2 100.00 0.00 0.00
BIC3 100.00 0.00 0.00
α = 0.10 26.90 70.00 3.10
α = 0.05 34.30 64.75 0.95
α = 0.01 51.75 48.05 0.20
αH = 0.10 14.35 80.90 4.75
αH = 0.05 17.45 80.25 2.30
αH = 0.01 26.50 73.05 0.45
T = 400
AIC 0.05 64.55 35.40
BIC 18.80 81.20 0.00
BIC2 95.80 4.20 0.00
BIC3 100.00 0.00 0.00
α = 0.10 9.15 87.05 3.80
α = 0.05 10.35 87.55 2.55
α = 0.01 14.20 85.30 0.50
αH = 0.10 1.85 93.05 5.10
αH = 0.05 2.65 95.00 2.35
αH = 0.01 4.45 94.95 0.60
T = 800
AIC 0.00 65.80 34.20
BIC 1.60 98.40 0.00
BIC2 21.05 78.95 0.00
BIC3 91.45 8.55 0.00
α = 0.10 5.00 90.70 4.30
α = 0.05 5.05 92.45 2.50
α = 0.01 5.20 94.30 0.50
αH = 0.10 0.00 94.70 5.30
αH = 0.05 0.00 97.45 2.55
αH = 0.01 0.00 99.35 0.65

Table 8: Selection frequencies for model (12), m = 1, for four information
criterion-based methods, for the STAR-based approach and for the homoskedas-
tic model-based bootstrap (denoted by subscript H), using starting-significance
levels α = 0.10, α = 0.05, α = 0.01.
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Results for all three procedures can be found in Table 8. As may be expected

from the size simulations, the BIC-type criteria BIC2 and BIC3 strongly favour

the linear AR(10) model. Even BIC does that unless the sample size is large

(T = 800). We also report the results when using AIC, for the sake of comparison

in such an extreme case. This criterion works better than any BIC for T = 200,

but a question arises: which one of these criteria should one use and when? It

can be concluded that Hansen’s procedure is the best one of the three for this

DGP. The STAR-approach is less powerful than Hansen’s technique for T ≤

400 but performs better than the model selection criteria. In this experiment it

overestimates the number of regimes less frequently than Hansen’s approach.

5 Application

As an empirical example we consider the original time series of Wolf’s sunspot

numbers from 1700 − 1979, transformed as in Ghaddar and Tong (1981). The

series with 280 observations is depicted in Figure 3 and exhibits asymmetric

cyclical behaviour. It is a very clear-cut example of a nonlinear time series.

Figure 3: Wolf’s sunspot numbers 1700 − 1979.

When building a TAR model for the series, the autoregressive lag length k

for every regime is unknown. It is selected from the linear autoregressive model

such that there is no error autocorrelation left in the residuals. We apply the

Breusch-Godfrey LM test sequentially: k is increased until the null hypothesis of

no error autocorrelation can no longer be rejected at the 5% significance level.

This results in k̂ = 10.

Using the STAR-approximation we test linearity of the AR(10) model against

all ten lags one at a time. Linearity is rejected in eight cases out of ten at 1%

level and the lag 8 as the transition variable gives the strongest rejection. From
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Table 9 it is seen that the sequential procedure suggested in Section 3 leads to

one threshold. Using Hansen’s procedure with 2000 bootstrap replications we find

one or two thresholds, depending on the initial significance level9. To apply the

information criterion-based procedure of GP we use delay d = 8 found previously.

The two information criteria with largest penalty terms, BIC2 and BIC3, prefer

the linear model, and only BIC1 is able to detect one threshold.

We also consider lagged first differences of yt, ∆yt−d, d = 1, . . . , 10, as possible

threshold variables. All methods choose ∆yt−1 to be the threshold variable. The

results of selecting the number of regimes can be found in Table 9. One threshold

is found to be present, with the exception that BIC2 and BIC3 favour a linear

model. All estimation methods yield a threshold value close to zero (ĉ1 ≈ 0.8),

which suggests separate regimes for years with positive and ones with negative

growth in sunspot intensity.

yt−d ∆yt−d

d̂ m̂ d̂ m̂
BIC1 8∗ 1 1∗ 1
BIC2 8∗ 0 1∗ 0
BIC3 8∗ 0 1∗ 0
α = 0.10 8 1 1 1
α = 0.05 8 1 1 1
α = 0.01 8 1 1 1
αH = 0.10 8 2 1 1
αH = 0.05 8 2 1 1
αH = 0.01 8 1 1 1

Table 9: Results of sequential model selection procedures. Here d̂ denotes the
estimated delay defining the threshold variable and m̂ is the estimated number
of thresholds. Asterisk (∗) indicates the cases where the threshold variable was
assumed known in advance.

9From Hansen (1999a) it is known that with a homoskedastic model-based bootstrap one
would reject the null of a two-regime model, and with a heteroskedastic bootstrap one would
not do that.
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6 Final remarks

In this paper we have developed a simple and computationally feasible method

for selecting the number of regimes in a switching regression or threshold autore-

gressive model.

As already pointed out the tests in the STAR-approach can be robustified

against heteroskedasticity and thus we only have to assume the independence of

errors for the procedure to work. In order to apply Hansen’s technique εt has to

be assumed a uniformly square-integrable martingale difference sequence with re-

spect to the natural filtration, the Borel sigma-field It−1 = σ(yt−1, yt−2, yt−3, . . .),

and Eε2
t < ∞. For the bootstrap one also has to assume that the errors are inde-

pendent. Gonzalo and Pitarakis make quite general assumptions, requiring εt to

be a real-valued martingale difference sequence with respect to some increasing

sequence of sigma fields Ft generated by {(xj+1, zj+1, εj), j ≤ t}, where z is the

threshold variable, and with E|εt|
4r < ∞ for some r > 1. To obtain the limiting

distributions of the estimators they make some additional high-level (LLN and

FCLT-type) assumptions that exclude integrated processes. GP note that T times

the first component in the right-hand side of (9) is the likelihood ratio statistic

for testing linearity against a model with m thresholds. Thus their method can,

in principle, accommodate the presence of heteroskedasticity through the use of

heteroskedasticity-robust versions of this LR or Wald-type statistic. Obviously

the method can be generalized such that it will simultaneously allow for selecting

the threshold variable as well.

An obvious conclusion from our simulation experiments is that the results of

the sequential approach based on model selection criteria are crucially dependent

on the number of lags in the TAR model. Admittedly, the users of this approach

do not have to choose significance levels for their tests. But then, they face an

equivalent problem in the case of GP, which is the one of choosing an appropriate

information criterion.

Hansen’s bootstrap-based LR-type test can be recommended if it is known that

the true number of regimes in the TAR or switching regression model does not

exceed two and if computational resources are not a problem. If the existence of

more than two regimes cannot be excluded a priori, the sequential likelihood ratio

test approach may not always work properly. Although the threshold parameters

in the model are estimated accurately even when the number of regimes is assumed

too small, the estimates of the other parameters in such a model may, due to this
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misspecification, cause difficulties when it comes to constructing the empirical

distribution of the next test statistic by bootstrap.

The STAR-approach works well in comparison with the other two approaches.

It is somewhat conservative, but its performance in selecting the correct TAR

model can be deemed acceptable also when the sequential likelihood ratio test

procedure excels, that is, when the true model is either linear or has two regimes.

The technique is computationally simple, and it performs remarkably well even

when a true threshold lies outside the [.1, .9] interquantile range of the observed

series. One can relax the minimum regime-size requirement and still estimate the

threshold parameters quite accurately.

The discussion in this paper has been restricted to the univariate TAR model,

but our technique can also be applied to switching regression models. Besides, it

appears that it can be used for determining the number of regimes in the panel

threshold regression (PTR) model of Hansen (1999b). This would be done by

approximating Hansen’s model by the panel smooth transition regression model

introduced in González, Teräsvirta, and van Dijk (2004) and using tests described

in that paper to determine the number of regimes in the PTR model.

It also seems possible to apply the procedure to detecting the number of

breaks in a linear model. This can be in principle done by letting time be the

transition variable in the STR model instead of a random transition variable.

This possibility is currently being studied by one of the authors.
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Appendix A: Properties of threshold estimates

The purpose of this appendix is to give an explanation to the outcome that

the threshold parameters can be estimated sequentially with reasonable accuracy

from smooth transition approximations to the threshold autoregressive model.

Because the STAR model is an approximation to the data-generating process,

the arguments are merely suggestive and not based on any asymptotic theory. It

suffices to study the block corresponding to the location parameters in the average

Hessian and show that it is approximately diagonal. From this it follows that

sequential estimation of threshold values yields quite accurate estimates because

the estimators of the thresholds are approximately independent. This will be

demonstrated using the MLSTAR model (3) that contains two transitions.

Assume that {εt}, t = 1, . . . , T , is a sequence of identically normally distrib-

uted random variables with mean zero and variance σ2. Then the log-likelihood

of the STAR model with two transitions for observation t is

lt = a −
1

2
ln σ2 −

ε2
t

2σ2
, (13)

where a is a constant, and εt = yt − x′

tβ
∗

0 − x′

tβ
∗

1G1t − x′

tβ
∗

2G2t with Git =(
1 + e−γ(st−ci)

)
−1

. Let

I(|st − ci| < εγ), i = 1, 2, (14)

where I(A)=1 when A is true and zero otherwise. Thus

∂Git

∂ci

= γ
(
1 + e−γ(st−ci)

)−2
e−γ(st−ci)

= γGit(1 − Git). (15)

For sufficiently large γ, derivative (15) only takes values greater than an arbitrarily

small positive constant in a small neighbourhood described by the argument of

the indicator function (14). In particular, γGit(1 − Git)|st=ci
= γ/4.

Now, assume |c1 − c2| > δγ, where δγ > 0 is such that if |st − c1| < εγ, then

|st − c2| > εγ and vice versa, where εγ > 0. Setting LT =
∑T

t=1 lt, the elements of

the block of interest in the average Hessian are

1

T

∂2 LT

∂c2
i

=
1

σ2

(
1

T

T∑

t=1

(x′

tβ
∗

i )
2

(
∂Git

∂ci

)2

+
1

T

T∑

t=1

εt(x
′

tβ
∗

i )
∂2Git

∂c2
i

)
(16)

≈
1

σ2

(
γ2

16T

T∑

t=1

(x′

tβ
∗

i )
2I(|st − ci| < εγ)

)
+ o(1), i = 1, 2
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and

1

T

∂2 LT

∂c1∂c2

=
1

σ2

(
1

T

T∑

t=1

(x′

tβ
∗

1)(x
′

tβ
∗

2)
∂G1t

∂c1

∂G2t

∂c2

)

≈
1

σ2

(
γ2

T

T∑

t=1

(x′

tβ
∗

1)(x
′

tβ
∗

2)I(|st − c1| < εγ)I(|st − c2| < εγ)

)

= 0 (17)

because I(|st − c1| < εγ)I(|st − c2| < εγ) = 0. As a consequence, the expression

(16) is of larger order of magnitude than (17), and the relevant block of the

Hessian is approximately diagonal.

Simulation evidence

To verify that our estimates of c are reasonably accurate when the true number

of thresholds is greater than the number of thresholds estimated, consider the

DGP2 in our study,

yt =





2.7 + 0.8yt−1 − 0.2yt−2 + εt, yt−2 ≤ 5
6 + 1.9yt−1 − 1.2yt−2 + εt, 5 < yt−2 ≤ 12
1 + 0.7yt−1 − 0.3yt−2 + εt, yt−2 > 12.

(18)

When estimating a model with one threshold, the estimates are distributed as

follows:

Figure 4: The first threshold estimate distributions for T = 200, T = 400 and
T = 800.

The estimates are centered around the true value 12 and the spread of the esti-

mates diminishes when the sample size grows. The same seems to hold for a case

where the outer regimes are identical:

yt =





2.7 + 0.8yt−1 − 0.2yt−2 + εt, yt−2 ≤ 5
6 + 1.9yt−1 − 1.2yt−2 + εt, 5 < yt−2 ≤ 12

2.7 + 0.8yt−1 − 0.2yt−2 + εt, yt−2 > 12.
(19)
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Figure 5: The first threshold estimate distributions for T = 200, T = 400 and
T = 800.

Or alternatively:

yt =





2.7 + 0.8yt−1 − 0.2yt−2 + εt, yt−2 ≤ 3
1 + 0.7yt−1 − 0.3yt−2 + εt, 3 < yt−2 ≤ 6

2.7 + 0.8yt−1 − 0.2yt−2 + εt, yt−2 > 6.
(20)

Figure 6: The first threshold estimate distributions for T = 200, T = 400 and
T = 800.
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