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Highlights: 

Bullet Points  

 
• A flow unit is defined as a reservoir zone with lateral continuity between wells and internally 

consistent characteristics that control fluid flow and are distinct from those of adjacent flow units. 

• Utilizing hydraulic flow units (HFUs) in the reservoir rock and identifying areas with suitable 

reservoir quality could examine the distribution of porosity and permeability variables. 

• Declustering and partitioning algorithms deal with hydraulic flow unit identification. 

• Fuzzy logic applies constrained clustering approaches with different must-link hard constraints. 

• The fuzzy c-mean method not improved the relationship between the petrophysical parameters of 

the reservoir in all hydraulic flow units and caused a decrease in the relationship between porosity 

and permeability. 
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Abstract 

 

Rock types are the reservoir's most essential properties and show special facies with a defined range of porosity and 

permeability. This study used the fuzzy c-means clustering technique to identify rock types in 280 core samples from 

one of the wells drilled in the Asmari reservoir in the Mansouri field, SW Iran. Four hydraulic flow units were 

determined for studied data after classifying the flow zone index with histogram analysis, normal probability analysis, 

and the sum of square error methods. Then the two methods of flow zone index and fuzzy c-means clustering were 

used to determine the rock types in given wells according to the results obtained from the implementation of these two 

methods in-depth, and continuity index acts, the fuzzy c-means methods with continuity number 3.12 compared to 

flow zone index with continuity number 2.77 shows more continuity in depth. The relationship between porosity and 

permeability improved using hydraulic flow unit techniques significantly. In this study, the correlation coefficient 

between porosity and permeability improves and increases in each hydraulic flow unit using the flow zone index 

method. So that in the general case, all samples increased from 0.55 to 0.81 in the first hydraulic flow unit and finally 

0.94 in the fourth hydraulic flow unit. The samples were characterized by similar flow properties in a hydraulic flow 

unit. In comparison, the correlation coefficient is obtained less than the general case in the fuzzy c-means method in 

all hydraulic flow units.  
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Abbreviations 

ANN: Artificial Neural Network 

COUCSI: Spontaneous absorption 

FCM: Fuzzy c-means 

FZI: Flow zone index 

HFU: hydraulic flow unit 

Jm: Evaluation function 

RQI: Reservoir Quality Index 

SCAL: Specific Core Analysis 

SSE: Sum of square errors 

 

1. Introduction 

The term "rock type classification" was first coined by Archie (1942) and later used by many scholars and engineers. 

Archie first defined the classification of rock types as units of rock formed under the same sedimentary conditions. He 

experienced comparable diagenesis leading to a relationship between porosity-permeability and unique capillary 

pressure curves (Bezdek, 1981; Serra, 1984; Serra and Abbott, 1982; Wolf and Pelissier-Combescure, 1982). Hydraulic 

flow units (HFUs) is referred to as lateral continuity of reservoir units with consistent geological properties controlling 

the behavior of fluid flow in pores media (Amaefule et al., 1993; Gualda and Vlach, 2007; Kadkhodaie-Ilkhchi et al., 
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2013). Amaefule et al. (1993) defined the concept of a hydraulic flow unit (HFU) as a method for estimating 

permeability in a reservoir and non-reservoir zones. Gomes et al. (2008) emphasized the importance of the main facies, 

sedimentary environments, the process of later diagenesis, and the relationship between rock and fluid by Specific 

Core Analysis (SCAL) to establish relationships between geological facies, petrophysical groups, and rock 

classification. Their proposed method of classifying carbonate rocks solved some industrial problems and differences 

between geological facies and petrophysical groups (Hosseini et al., 2023a; Kianoush et al., 2022a; Kolbikova et al., 

2021; Kumar et al., 2023; Tavakkoli and Amini, 2006; Yokeley et al., 2021). Kharrat et al. (2009)Kharrat et al. (2009) 

used ANNs and geostatistical data to model hydraulic flow units to estimate permeability and rock classification. The 

permeability obtained by the ANN method logically followed the changes in the properties measured by the logs where 

the reservoir was unavailable. Hollis et al. (2010) used the characterization of the cavity system in heterogeneous 

carbonates as an alternative approach to the well-known methods used to determine rock groups. The results show that 

the pore heterogeneity properties are critical for predicting flow behavior under reservoir conditions, and standard 

petrophysical parameters often need to be sound indicators. Permadi et al. (2011) conducted experiments on two 

models of carbonate and sandstone with different wettability. They conclude that there is a robust relationship between 

the microscopic geology and the geometry of the porous space, which are the layers of the rock classification . 

Chandra et al. (2015) effectively integrated reservoir rock clusters and simulations using well drilling. Using rock 

bands determination and well drilling, the X field reservoir simulation model was improved, and therefore the accuracy 

of in situ fluid computation was also improved (Hosseini et al., 2023b; Hosseini et al., 2023c; Hosseinzadeh et al., 

2023; Konaté et al., 2021; Valinasab et al., 2023; Yan et al., 2023). Ghadami et al. (2015) Studied Trojan-porosity 

modeling, the determination of reservoir rock groups, and the unification of hydraulic flow in a large carbonate 

reservoir. In this study, the formation was carried out using the concept of sequential stratigraphy, and the layering 

was divided into hydraulic flow units (HFU). In 2016, rock groups of rigid gas sandstone were determined: a case 

study in the Lance Formations and the Massif from the Yunus field. Four major rock groups were identified based on 

the particle size distribution data (Aliyev et al., 2016; Ghadami et al., 2015) 

Mirzaei-Paiaman and Saboorian-Jooybari (2016) proposed a spontaneous adsorption-based method for characterizing 

pore structure and its application in pre-SCAL sample selection and rock group determination. They used the flow 

zone index (FZI) for spontaneous absorption (COUCSI). Moradi et al. (2017) identified rock groups using geological 

and petrophysical data in the Asmari reservoir, located in Aghajari oilfield, SW Iran. They quantified five 

electrophysiological counts using petrophysical logs (EF1-EF5). The best electrophysics in the Asmari reservoir of the 

Aghajari oil field was determined due to high porosity, permeability and RQI, and low water saturation percentage. 

Using data mining techniques, Gonçalves et al. (2017) predicted carbonate rock groups from NMR responses. Their 

experiments show that combining pre-processed strategies with classification algorithms can increase prediction 

accuracy to 97.4% . 

Mahjour et al. (2016) used three methods of Testerman statistical zonation, flow zone index (FZI), and cluster analysis 

to identify flow units and estimate average porosity and permeability in the Tabnaak gas field in southern Iran. 

Compilation of core porosity and permeability are used to identify these units. Yasmaniar et al. (2018) utilized 

Artificial Neural Network (ANN) to determine the permeability of different Rock Type Using the Hydraulic Flow Unit 

Concept (Ding et al., 2022; Kharrat et al., 2009; Kianoush et al., 2023c; Mahadasu and Singh, 2022; Masroor et al., 

2023; Rafik and Kamel, 2017). Oliveira et al. (2020) demonstrated that an inter-clustering process is recommended 

when selecting data points associated with representative volumes and local spots characterizing HFUs. In 2020, rock 

type and hydraulic flow units were used as a successful tool for reservoir characterization of the Bentiu-Abu Gabra 

sequence, Muglad basin, SW Sudan (El Sawy et al., 2020; Shalaby, 2021; Shoghi et al., 2020; Wu et al., 2020). 

Machine learning is effectively used by Man et al. (2021) to boost the prediction of permeability and reduces 

uncertainty in reservoir modeling. Recently, a variety of conventional methods and machine learning algorithms were 

investigated in determining hydraulic flow units (HFUs), and the performance of each method was evaluated 

(Fernandes et al., 2023a; Forbes Inskip et al., 2020; Kianoush et al., 2022b, 2023c; Kianoush et al., 2023a; Masroor et 

al., 2023; mohammadinia et al., 2023; Shi et al., 2023; Yu et al., 2023). Salavati et al. (2023) used hydraulic flow units, 

multi-resolution graph-based clustering, and fuzzy c-mean clustering methods to determine rock types. Al-Ismael and 

Awotunde (2023) used differential evolution optimization and two-stage clustering techniques to identify HFUs to 

support a critical process in reservoir characterization . 
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Finally, a novel approach has been done for estimating pore size distribution and capillary pressure in the hydrocarbon 

zone through a hydraulic flow unit framework using an NMR log. The workflow establishes a robust and cost-effective 

methodology for NMR T2 distribution correction in hydrocarbon zone for uncored and partially cored wells (Baykin 

et al., 2023; Fernandes et al., 2023a; Fernandes et al., 2023b; Jehanzaib et al., 2023; Kadkhodaie, 2021; Kianoush, 

2023; Lai et al., 2023; Osinowo et al., 2023; Wang and Weijermars, 2023; Wang et al., 2023; Zhang et al., 2023b) 

(Abraham-A et al., 2023; Duda et al., 2012; Yu et al., 2023; Zhang et al., 2023a; Zhang et al., 2023b; Zheng et al., 

2023).  

The fuzzy c-means (FCM) method is an efficient tool for solving fuzzy clustering problems. The FCM clustering is 

based on minimizing an objective function that represents the distance from any given data point to a cluster center 

weighted by that data point's membership value. This algorithm moves objects between clusters until the objective 

function cannot be decreased further. The result is a set of clusters that are as compact and well-separated as possible. 

The nature of FCM algorithm is to apply the gradient descent method to find out optimal solution, so there is a local 

optimization problem and the algorithm convergence speed is greatly influenced by the initial value. Evolutionary 

optimization methods are effective global optimization algorithm.  

The FCM approach uses a fuzzy membership which assigns a degree of membership for every class. The importance 

of degree of membership in fuzzy clustering is similar to the pixel probability in a mixture. FCM algorithm always 

converges. However, unfortunately, in most cases, this convergence does not lead to the general minimum and stops 

at the first local minimum. For this reason, the FCM algorithm is sensitive to the selection of initial values, and 

therefore a random selection of initial values leads to unfavorable performance of the algorithm (Bezdek, 1981; 

Hosseini et al., 2023a; Jafarzadeh et al., 2019; Kadkhodaie and Amini, 2008; Kadkhodaie et al., 2006; Majdi and Beiki, 

2019; Shakiba et al., 2015). 

The general purpose of conducting this study is to determine the final model of reservoir modeling and sedimentary 

environment for the Asmari reservoir in the Mansouri field, utilizing techniques to identify rock typing, flow units, 

and electrofacies. It has been carried out in two stages. This manuscript is the result of the first part of the studies. In 

this study, to confine the number of hydraulic flow units of reservoir samples is first prepared. Then their porosity and 

permeability are determined by measuring devices. The flow zone index (FZI) is calculated for each sample. After 

determining the FZI of each sample using MATLAB software, the flow zone index logarithmic data is performed, 

histogram analysis is performed, and the number of hydraulic flow units is determined based on the normal 

distributions. 

Given that these two patterns are user-friendly (depending on the number and experience of the user), there is a 

heightened likelihood of error in computation. The squared sum parameter to determine the number of hydraulic flow 

units was used to reduce the errors. The method first assumes the number of batches equal to 1 (HFU = 1) using the 

sum of squares of errors. It performs cluster analysis of the mean K data by MATLAB software, then linear regression 

analysis. On the data and calculate the sum of the squares of the errors. 

The same for the number of other batches has been done, and finally, the sum of the squares of errors against the 

number of batches has been plotted. In these graphs, the changes in the sum of the squares of errors are not perceptible 

from one value to the next and can be neglected. It was the optimal number of hydraulic flow units . Hydraulic flow 

units were made on 280 core samples obtained from one of the drilled wells in the Mansouri field, including 

permeability, porosity, and formation information. 

This research aims to determine the porosity and permeability parameters as essential factors for rock typing. Thus, 

any cluster produced during the clustering process represents a rock group. In the clustering process, each rock group 

will have its own characteristics of minimum, maximum, mean, median, standard deviation, and amplitude of its 

porosity and permeability variations, separating it from other groups. In addition, as a novelty, in cross-porosity versus 

permeability plates, each group is well separated from the other groups, and there is no overlap. In this case, as the 

first time in the Asmari Formation of the Mansouri oilfield, integrating the Fuzzu C-means and hydraulic flow unit, 

each rock represents a facies with a specific range of porosity and permeability. In this research, as a new approach, it 

has been tried to use clustering (unobserved) methods to determine the number of rock groups. The results showed 

that the fuzzy c-mean method not enhanced the relationship between the petrophysical parameters of the reservoir in 

all hydraulic flow units and caused a decrease in the relationship between porosity and permeability. 
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2. Geological Setting  

2.1. Loaction and Structural Geology of study field 

Carbonate sediments of the middle-late Cretaceous (the upper Albian, Cenomanian, Turonian, and Santonian stages), 

known as the Bangestan reservoir (Ilam and Sarvak formations), are among the giant oilfields in the Zagros Basin, 

which contain a sizeable prolific hydrocarbon reservoir. Mansouri field in the southernmost part of the north Dezful 

zone, about 45 kilometers south of Ahwaz, is located approximately on the border of the Arabian plateau, and 

quaternary alluviums represent the Zagros plateau and its surface outcrop (Fig. 1). Mansouri field is located in the 

north of the Ahwaz field, in the west, in the vicinity of the Abteymur and Susangerd fields, and in the northeast of the 

Shadegan field. The axial trend of this field is from the northwest to the southeast (the general Zagros trend) and lies 

between ˚48 to ˚52 east longitude and ˚30 to ˚32 north latitude (Fig. 2). Mansouri field is located in a flat zone just off 

the foot of the foothills and was discovered by seismic exploration in 1963. Based on the seismic and structural maps 

of the Mansouri field, it is an anticline with gentle and low slopes in the northwest-southeast (NW-SE) direction. The 

northern slopes are slightly higher than the southern slopes, respectively (AbdollahieFard et al., 2019; Motiei, 1995; 

Varkouhi and Wells, 2020) . 

Furthermore, 5-6 degrees, the slope of the eastern and western slopes is about 1-5 degrees. The study of geophysical 

maps and the information on drilled wells show no evidence of fault or disruption in the field, and it is generally mild 

in structure (Fig. 1). Mansouri's field in the horizons of Asmari is about 42 kilometers long. It has a variable width of 

up to 6 kilometers in the middle of the field and an average of 4.5 kilometers, which decreases to the east and west 

slopes. The dimensions of the reservoir at the contact surface of water and oil (2272 m below sea level) are 30 km long 

and 3.5 km wide, stretching northwest-southeast (Aleali et al., 2013; Hosseini et al., 2023a; Kianoush et al., 2023b; 

Kianoush et al., 2023a; Michael and Gupta, 2022; NISCO, 2022; Sabouhi et al., 2023). 

In addition to the Asmari reservoir and sandstone section of Ahwaz, the Bangestan reservoir (Ilam and Sarvak 

Formations) are also present in this field (AbdollahieFard et al., 2019; Motiei, 1995; Talaie et al., 2023; Tavakkoli and 

Amini, 2006).  

Factors influencing reservoir characterizations are sedimentary environments, microfacies, diagenetic processes, and 

tectonic activities. Kadkhodaie and Kadkhodaie (2018) and Kiaei et al. (2015) explored that sedimentary environments 

and microfacies control the mineralogy and porosity of formations. Although the microfacies study helps extend 

researchers' knowledge about the origin and history of carbonate reservoirs, there has yet to be a detailed investigation 

of the seismic stratigraphy on the reservoir properties. Also, integrating the microfacies and geochemical data can help 

petroleum engineers and geoscientists better understand reservoir characterizations (Flügel, 2010; Kadkhodaie-Ilkhchi 

et al., 2013; Kadkhodaie and Kadkhodaie, 2018; Kiaei et al., 2015). Fig. 4 shows the chronostratigraphic framework 

of the sediments equivalent to the Bangestan reservoir (the upper Albian to Santonian) in the Zagros Basin and the 

Arabian Plate. 

From petrographic studies of thin sections and core data, the Sarvak Formation consists of shallowing facies of rudist 

biostrome, back shoal, shoal, lagoon, and flat tidal facies. Also, the Ilam Formation represents open- and deep-marine 

facies. The Sarvak and Ilam Formations show evidence of an internal carbonate platform with an interior shelf and a 

carbonate ramp, respectively (Abraham-A et al., 2023; Forbes Inskip et al., 2020; Kianoush et al., 2023d; Kianoush et 

al., 2023a; Varkouhi and Wells, 2020). 

 

2.2. Stratigraphy of the Asmari Formation 

In the sequence of oil/gas wells, zoning is one procedure that segregates the sequence studied into zones with common 

conditions (geological or reservoir conditions, etc.). This section used log data to accurately represent the Asmari 

Formation in the Mansouri Field. The lithology was evaluated and estimated in each sequence using corrected and 

edited logs and lithology cross-sections (neutron-density, Rho-U plot, MID plot, and MN plot). Finally, using the 

probabilistic method, the petrophysical parameters were calculated in the whole sequence, and the average of these 

parameters was calculated in the whole well and each zone. The shear boundaries for the carbonate and sandstone 

sequences of the Asmari Formation are presented in Table 1. Zones with typical reservoir geology (lithology) were 

studied in the well sequences using read logs (Fig. 3). The Asmari Formation has been divided into five zones based 

on petrophysical results. 
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Zone 1 (3538.5-3472.5 m): This zone exists in all drilled wells. The central part of the zone consists of dolomite plus 

a thick layer of limestone. Limestones are mostly cream to light brown and cream to gray, semi-hard to hard, fine-

grained, micro-crystalline with anhydrite, chert, mudstone argillic to packstone. 

Zone 2 (3582.5-3538.5 m): This zone is present in all wells. The lithology of this zone mainly consists of dolomite and 

sandstone. 

Zone 3 (3605-3582.5 m): Its dominant lithology includes shale, limestone, and sandstone. 

Zone 4 (3715-3605 m): This zone exists in all wells, and most of it contains a barrier/ beach ridge and is likely to be 

associated with the Ahwaz sand dunes. Much of the lithology of this zone is sandstone and shale. 

Zone 5 (3772-3715 m): This zone cannot be identified in all wells due to a lack of logging data. The main lithologies 

in this zone are shale, sandstone, and limestone. 

 

3. Methodology 

In this study, 280 core samples (obtained from one of the wells of Mansouri Field) were selected to determine hydraulic 

flow units. Furthermore, information on permeability, porosity, and structural properties was recorded. General 

flowchart of this study is presented in Fig. 4. 

3.1. The relationship between porosity and permeability 

Matrix permeability is related to porosity and the specific surface of rocks, as expressed by the Kozeny (1927) 

equation (Eq. (1)): 

3 2

2

0.101

i

K
S

r V

ϕ
ϕ

=
−

 

(1) 

Where K: matrix permeability (mD); φ: matrix porosity (%); S/V: specific surface of pores in rocks (cm2/ cm3); 

ri: constitutional factor, dimensionless, related to pore geometry and fluid flowing path per length in the porous 

medium. Kozeny 's relation is one of the most basic and famous relations that expresses permeability as a function of 

the porosity and the specific surface area of the grains. In nuclear magnetic logs, applying Eq. (2), the interpretation 

models for rock permeability estimation are built by two methods, through analysis of the correlation 

between T2 spectrum distribution and S/V  . 

Consider a porous sample, with cross-sectional area A and length L, consisting of n parallel straight capillary tubes, 

with the space between the tubes filled with cement. If the capillary tubes all have the same radius r (cm) and the same 

length L (cm), the flow rate q (cm3/s) of a set of tubes is obtained according to the following Eq. (2): 

L

Pn
q r ∆
= )

8
(

4

µ
π

 

(2) 

In this relationship, the pressure drop ΔP is expressed in length L with the unit of dynes/cm2. 

 

3.2. Hydraulic flow units determination 

A flow unit is a volume of reservoir rock that is continuous and predictable laterally and vertically, and the geological 

and petrophysical characteristics affecting the fluid flow within it are constant and distinctly different from other rock 

volumes (Bhatti et al., 2020; Kharrat et al., 2009). Hydraulic flow units are related to the distribution of geological 

facies, but they do not necessarily correspond to the boundaries of these facies. Therefore, these units can not be 

connected vertically. 

Geological texture, mineralogy, sedimentary structures, layered contact surface, nature of permeable barriers, and 

petrophysical properties of porosity, permeability, and capillary pressure often define flow units. 

The main methods for determining the number of hydraulic flow units include histogram analysis, normal probability 

analysis, and the sum of squares errors. These mentioned parameters will be discussed in the following section. 

 

3.2.1. Histogram analysis 

In this method of analysis, the logarithm of hydraulic flow unit values  will be obtained after acquiring the FZI values 

of each sample, and then using the MATLAB software, the logarithmic data of the flow zone index of the histogram 
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analysis is performed. According to the principles of hydraulic flow units, the distribution of the logarithm of the flow 

zone index in each hydraulic flow unit is the normal distribution. This method applies this principle and determines 

the number of hydraulic flow units (Al-Rbeawi and Kadhim, 2017; Alhashmi et al., 2016; Bhattacharya et al., 2016; 

El-Sayed et al., 2021; El Sharawy and Gaafar, 2016; Ismail et al., 2021; Kazemzadeh et al., 2013; Kianoush et al., 

2022a; Kianoush et al., 2023a; Mirkamali et al., 2016; Roslin and Esterle, 2016; Salehi et al., 2015; Shakiba et al., 

2015).  

 

3.2.2. Normal probability analysis 

In this analysis, the logarithmic values of the flow zone index are obtained using MATLAB software. According to 

the principles of hydraulic flow units, the normal probability logarithm of the flow zone index in each hydraulic flow 

unit is linearly distributed. This method uses this principle and determines the number of hydraulic flow units (Davis, 

2018; Heydari et al., 2012; Hosseini et al., 2023a; Madani et al., 2019; Manshad et al., 2021; Rabbani et al., 2018; 

Shirneshan et al., 2018; Yasmaniar et al., 2018).  

 

3.2.3. Sum of squares errors (SSE) 

In this analysis, the working method is as follows: first, the number of categories is assumed to be 1 (HFU=1), and the 

cluster analysis of average K data is performed by MATLAB software, then linear regression analysis is performed on 

the data and the value. The sum of squared errors was calculated. This work was done the same way for the number of 

other categories, and finally, a graph of the sum of squared errors against the number of categories was drawn. 

According to the diagram, with the increase in the number of hydraulic flow units, the total amount of errors decreased. 

However, from one value to the next, the changes in the total square of errors were not noticeable and can be ignored. 

This value is the optimal number of hydraulic flow units (Fernandes et al., 2023a; Olayiwola and Sanuade, 2021). 

 

3.3. Methods for determination of rock types 

After determining the number of hydraulic flow units, two methods are used to determine rock groups, which are 

discussed below. 

 

3.3.1. Flow Zone Index Method 

According to Zahaf and Tiab (2002)'s findings, a hydraulic flow unit is continuous throughout the specific volume of 

the reservoir, which practically has the physical stability of rock and fluid properties. This flow unit uniquely describes 

the static and dynamic interactions with the well wall. Based on microscopic measurements and core samples, El-

Sayed et al. (2021) developed a method to identify and describe formations that have similar hydraulic properties or 

similar flow units. The hydraulic quality of rocks is controlled by pore geometry, radius, tortuosity, specific surface, 

mineralogy, and morphology side by side with textural parameters such as sorting, packing, grain size, and shape. The 

selection of samples of the same pore attributes can be clustered in a similar hydraulic unit. The boundaries of rock 

genetic units a geologist represents may be useful for the reservoir engineer if they coincide with unprecedented 

changes in flow properties (El-Sayed et al., 2021; Ji et al., 2022; Ojo et al., 2021; Shalaby, 2021). 

The flow zone index method is the most commonly used method for determining rock Types. In this method, unlike 

other methods, the user has no role in determining the results, and all the steps are based on mathematical models. 

Kozeny (1927) has extracted one of the most fundamental and famous relationships that express permeability as a 

function of porosity and specific surface zone. The generalized form of the Carmen-Kuzny relation is as Eq. (3): 
3

2 2

1
( )

(1 )
g

K

vgrSf τ

ϕ
ϕ

=
−

 
(3) 

where K : permeability (µm2); Ø = fractional porosity; τ is the electrical tortuosity and can be measured from electrical 
resistivity measurement; fg is a shape factor.  

The objective is to avoid measuring these microscopic properties by gathering these parameters into a single variable 

called the flow zone indicator (FZI). The previous equation can be adjusted to be Eq (4); 
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3

2 2
2

1
( )

(1 )
s

K

vgrSF

ϕ
ϕτ

=
−

 
(4) 

 

Where Svgr is the Specific surface area of the grain (μm− 1). 

The problem of the variability of the decomposition constant mentioned above could be solved by the following. 

 

Dividing the two sides of the relationship by the porosity and taking the root of the two sides of the relation will have 

Eq. (5): 

1
( )
1

gr

e

se e

K

vSF τ

ϕ
ϕ ϕ

=
−

 
(5) 

where: K in square micrometers (µm2). 

Permeability in milliseconds, the following parameter can be introduced (Eq. (6)): 

( ) 0.0314
K

RQI mµ
ϕ

=  
(6) 

where: RQI is known as the Reservoir Quality Index (expressed in micrometers). It is an approximate index of the 

average hydraulic radius in the reservoir rock and is the key to the hydraulic units that correlate porosity, permeability, 

and capillary pressure. 

φ
z

 is the ratio of pore volume to grain volume is defined as Eqs. (7), (8) and (9): 

1

e

z

e

ϕϕ ϕ
=

−
 

(7) 

FZI is considered an indicator of flow zone: 

2 2

1
( )

gr
zs

RQI
FZI m

vSF
µ

ϕτ
= =  (8) 

By taking the logarithm of both sides of the equation, we could write Eq. (9): 

z
LogRQI Log LogFZIϕ= +  

(9) 

Eq. (9) shows a straight line with the same slope on the logarithmic plot of RQI in terms of Φz. The intersection point 

of this straight line at Φz = 1 is the flow zone index. Samples with different FZI values correspond to other parallel 

lines. Samples on a straight line have similar characteristics and form a single flow unit. Straight lines with a slope 

equal to unity should initially be expected for sandstone formations without shale. Larger slopes characterize shale-

bearing formations . 

FZI flow zone index is a unique parameter that includes geological properties, rock texture, and mineralogy in its 

geometry and facies structure . 

Generally, rocks containing detrital materials have porous layering and porous joints are filled with clays and fine 

graining, so they show a low FZI value. On the other hand, sands with low amounts of shale, coarse and fine graining, 

low specific surface area, low shape factor, and low twist degree show high FZI. Different sedimentary environments 

control diagenetic processes and flow zone index geometry. 

Fluid flow units can be identified based on the values of the flow zone index. It is assumed that the same values of the 

flow zone index are assigned to the same hydraulic flow units. Therefore, for examples with similar FZIs, the 

logarithmic diagram of RQI vs. V will be linearly linear with the unit slope. The value of the flow zone index can be 

obtained from the origin of this line. Samples with different flow zone index values make another parallel line. All 

specimens are located on a single line and have the same bottleneck properties and thus form a single flow unit (Amraei 

and Falahat, 2021; Jehanzaib et al., 2023; Kadkhodaie and Kadkhodaie, 2018; Mahjour et al., 2016; Shahat et al., 

2021). 
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3.3.2. FZI Calculation of flow unit 

To obtain an equivalent value of FZI for each group according to Eq. (9) when plotting RQI in a logarithmic graph, it 

must obtain a line with a constant slope of 45 degrees, which is zero at (that is) the value. As a result, LogRQI equals 

LogFZI. This method can obtain FZI equivalent to each unit of hydraulic flow (Mahjour et al., 2016; Shalaby, 2021). 

The deviation formula can be used to obtain a 45-degree angle that has a high scattering point (Eq. (10)).  
2

( )Err SY y= =−∑ ∑  
(10) 

 

Err = Error (deviation)  

Y = RQI for all samples  

y = RQI for each sample  

Now consider Eq. (9) as a linear formula in which: 

y = LogRQI 

x = Log Φz 

b = LogFZI 

To reduce the deviation, we have to derive the deviation formula for a variable equal to zero, which will have Eqs. 

(11) and (12): 
2

1

1

0 2( 1)( ) 0

( ) 0

( )
n

i

n

i

S

S
y x b

b

y x b

y x b

=

=

=

∂
= ⇒ − − − =

∂

⇒ − − =

− −∑

∑

∑

 

(11) 

 

y x
b

n

−
⇒ =∑ ∑

 

(12) 

After obtaining b, FZI can be calculated for each unit. 

 

3.3.3. Fuzzy C-Means Method 

Clustering is the most crucial method of unsupervised learning. A cluster data is a set that resembles one another. 

Clustering seeks to divide the data into clusters that maximize the similarity between the data within each cluster and 

the similarity between the data within the different clusters. Clustering of numerical data forms the basis of many 

classification and system modeling algorithms. Traditional hard clustering analysis requires every point of the data set 

to be assigned into a cluster precisely. But in fact, most things exist ambiguity in the attribute, there are no explicit 

boundaries among the things, and no the nature of either-or. So the theory of the fuzzy clustering is more suitable for 

the nature of things, and it can more objective reflect the reality. Fuzzy clustering isused to partition sample points into 

subgroups which are characterized by cluster centers. Each data point belongs to a cluster center with a degree which 

is determined by the membership grade. 

A fuzzy c-means clustering method has been proposed to solve the problem of assigning each data to a particular 

cluster in each iteration (Bezdek, 1981; Ghadami et al., 2015; Kadkhodaie-Ilkhchi et al., 2010; Kadkhodaie and Amini, 

2008; Olayiwola and Sanuade, 2021; Pourreza et al., 2023; Salavati et al., 2023; Shakiba et al., 2015; Tian et al., 2016).  

In fuzzy clustering, an object can be a member of more than one cluster. For k clusters, m1, m2, m3,…, and mk is the 

possibility of an object I belonging to each cluster. These values are between 0 and 1, and the sum of their values is 1. 

For this method, membership is spread across all clusters. The advantage of this clustering is that each object does not 

have to reach a specific cluster, and its disadvantage is that there is so much more information to interpret. In this 

model, objects close to the center of a cluster with more probability belong to the cluster with a higher degree than the 

edge objects of the cluster (Gosain and Dahiya, 2016; Reza Keyvanpour and Shirzad, 2022; Zadeh, 1978). Sample of 

FCM Clustering is shown in Fig. 5. 



9 

 

Currently, the fuzzy c-means clustering (FCM) algorithm is the most widely used. This technique was originally 

introduced by Bezdek (1981) as an improvement on earlier clustering methods. It provides a method that shows how 

to group data points that populate some multidimensional space into a specific number of different clusters . 

Given n data patterns, x1, x2, ..., xn, fuzzy clustering means grouping the data patterns into c clusters (1≤c≤m) which 
centered at ci. FCM algorithm starts with an initial guess for the cluster centers (ci.), which are intended to mark the 

mean location of each cluster. Additionally, the algorithm assigns every data point a membership grade, uij, for each 

cluster, where uij is the degree of membership of object j (xj) in cluster i. By iteratively updating the cluster centers and 

the membership grades for each data point, the cluster centers are moved to the right location within a data set. The 

membership uij and the cluster centers ci are updated by the following equations (Bezdek, 1981; Bezdek et al., 1984; 

Seising, 2018; Zadeh, 1978). 

 

In FCM, the objective is to minimize the Eq. (13): 
2

1 1

N c
m

m ij
j i

j iJ u x v
= =

= −∑∑  
(13) 

where uij represents the membership of pixel xj in the jth cluster, vi is the ith cluster center, .  is a norm metric, and m 

is a constant. The parameter m controls the fuzziness of the resulting partition, and m=2 is used in this study. 

 

Then, the following condition must be observed (Eq. (14)): 

1

1
C

ij

i

u
=

=∑  
(14) 

The complete procedure of this algorithm is as follows: 

A) Determine the initial values for c (number of clusters), m (fuzzy value of the algorithm), and v (initial centers for 

each cluster). 

B) Calculate the amount of belonging to each cluster concerning the Eq. (15): 
2/( 1)

1

( )

m

c

ij
k

j i

j k

x v
u

x v

− −

=

=
−

∑
−

 

(15) 

 

C) Calculate the number of new centers for each cluster according to the Eq. (16): 

( )
1

1

( )

mN

j
j

Ni m

j

ij

ij

u x
V

u

=

=

=
∑

∑
 

(16) 

This iteration is based on minimizing the following objective function that represents the distance from any given data 

point to a cluster center weighted by that data point's membership grade: 

2

1 1

.

1

1

c n
m

ij j i

i j

Obj Func u x c

i c

j n

= =

= −

≤ ≤
≤ ≤

∑∑
 

(17) 

where m is the weighting exponent and usually set to 2. Several stopping rules can be used. One is to terminate the 

algorithm when the relative change in the centroid values becomes small or when the objective function cannot be 

minimized more. 

Repeat steps two and three until the value of the difference between the u (the amount of data belonging to the cluster) 

in the new stage differs from the value of u in the previous step, less than a threshold value. 

The output of the FCM method is the coordinates of the batch centers and the U matrix, where the membership 

functions of each point in each cluster are specified. In the FCM fuzzy clustering algorithm, the number and centers 
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of the clusters are first determined by the user. The quality of this algorithm strongly depends on the initial number of 

clusters and the initial location of the cluster centers (Jafarzadeh et al., 2019; Kadkhodaie-Ilkhchi et al., 2013; 

Kadkhodaie and Amini, 2008; Kadkhodaie and Kadkhodaie, 2018; Kadkhodaie et al., 2006; Kiaei et al., 2015). 

 

4. Results 

Results of hydraulic flow units were made based on 280 core samples and well logs obtained from one of the drilled 

wells in the Mansouri field, including permeability, porosity, and formation information. The integrated analysis of 

Fuzzy C-mean and hydraulic flow unit (HFU) clustering techniques is found useful with limited data to develop the 

porosity relationship to predict the rock type in un-cored wells, especially less distance offset wells. In order to 

determine the number of hydraulic flow units, reservoir samples were first prepared. Then their porosity and 

permeability were determined by measuring devices. The flow zone index (FZI) was calculated for each sample. After 

determining the FZI of each sample using MATLAB software, a histogram analysis was performed on the logarithmic 

data of the flow area index, and the number of hydraulic flow units was determined based on the obtained normal 

distributions. Considering that these two methods depend on the user (this number changes according to the user's 

opinion and experience), the possibility of making errors in the calculations is high. For this purpose, to reduce the 

errors, it was tried to use the sum of square errors parameter to determine the number of hydraulic flow units. In using 

the sum of squares of errors, the working method is as follows: first, the number of categories is assumed to be 1 

(HFU=1), and the average K cluster analysis of the data was performed by MATLAB software, then the linear 

regression analysis was performed on It was done on the data and the sum of square errors was calculated. It was done 

the same way for the number of other categories, and finally, a graph of the sum of squared errors against the number 

of categories was drawn. In these graphs, from one value to the next, the changes in the sum of squared errors are not 

noticeable and can be ignored. This value is the optimal number of hydraulic flow units. 

Then, considering that one of the most important parameters in determining rock type is the parameters of porosity 

and permeability, in this research, the definition of rock type based on these two parameters, using the fuzzy c-mean 

clustering method in MATLAB software environment, takes place. Thus, each cluster produced during the clustering 

process is considered a representative of a rock type. In the clustering process of this method, each rock type will have 

characteristics related to statistical parameters (the minimum, maximum, mean, median, and standard deviation) and a 

range of porosity and permeability changes, which separates it from another type. In addition, in the cross-plots of 

porosity versus permeability, each type is well separated from the other types, and there is no overlap. Obviously, in 

this case, any rock represents a facies with a specific range in terms of porosity and permeability. 

4.1. Determination the number of hydraulic flow units 

The number of hydraulic flow unit determinations results include histogram analysis, normal probability analysis, and 

the sum of squared errors. These three methods are studied on core data in the following section . 

a) The histogram analysis results in four normal distributions representing four hydraulic flow units (Fig. 6). 

The first hydraulic flow unit consists of 24 members, the second hydraulic flow unit consists of 109 members, the third 

hydraulic flow unit consists of 117 members, and the fourth hydraulic flow unit consists of 30 members. 

b) As the normal probability analysis results, four linear distributions are obtained, representing four hydraulic flow 

units; therefore, this method confirms the number of hydraulic flow units obtained from the previous step. 

In this method, normal probability analysis is performed on the logarithmic data of the flow zone index, and four linear 

distributions are obtained, representing four hydraulic flow units and, thus, the number of hydraulic flow units obtained 

from the previous stage. The first hydraulic flow unit consists of 24 members, the second hydraulic flow unit consists 

of 109 members, the third hydraulic flow unit consists of 117 members, and the fourth hydraulic flow unit consists of 

30 members. (Fig. 7). 

c) Table 2 shows the value of the sum of squared errors (SSE) calculated according to the number of hydraulic flow 

units. As Table 1, the value of SSE in the presence of a hydraulic flow unit is equal to 0.92, which clearly shows the 

inadequacy of classical methods and the existence of several fluid behaviors in the tank. By adding the number of 

HFUs, the number of SSEs decreases. However, as continue to add HFUs, the amount of SSE reduction becomes less 

and less, and SSE, in this case, is used as a criterion to determine the optimal number of hydraulic flow units in the 

reserve, reaching the lowest value of SSE at 0.02 in 4 known HFU units. As Fig. 8 , increasing the number of HFUs 



11 

 

causes insignificant changes in the SSE value. Fig. 9 shows all four hydraulic units' normal porosity versus rock quality 

index (RQI). Furthermore, Table 3 shows the average FZI values for each hydraulic flow unit in the studied well. 

According to the results obtained from these three methods, the sum of squared errors method is optimal for 

determining the number of hydraulic flow units because it is independent of the user and has a higher accuracy in 

determining the number of categories. 

4.2. Comparison of rock types determination methods 

Two methods of flow zone index and fuzzy c-means (FCM) are used to determine rock types in the study wells. In this 

section, the proposed approaches are compared: 

a) Ideally, the reservoir quality index and porosity ratio values are drawn in a log-log scale. In that case, the data with 

the same flow area index values are placed on a line with a single slope, and the samples with different flow area index 

values are placed on parallel lines. The samples on the same line have the same pore throat properties, forming a 

hydraulic flow unit. Each line defines a unique HFU, and the width from the origin of the lines at Φz=1 shows the 
average value for that unit. Initially, both methods of rock type determination were implemented in-depth. The wells 

studied have four hydraulic flow units. If each unit has maximum coupling, its coupling number is 1, and when it has 

minimum coupling, its coupling number is zero. Four hydraulic flow units have maximum coupling, their total 

coupling number is 4, and for any of these four units, there is no correlation between their data. Their total correlation 

number becomes zero. 

b) the fuzzy c-mean algorithm divides the data set into four similar fuzzy clusters with different numbers of members. 

In this diagram, each cluster is displayed with a different color, and the centers of each cluster are marked with a black 

square. The first cluster with blue has 77 members, the second with red has 42 members, the third with green has 87 

members, and the fourth with pink has 74 members. 

As seen in Table 4, the fuzzy c-means tries to minimize Jm with successive iterations until a significant improvement 

is achieved. Furthermore, as seen in Fig. 10, the algorithm divides the fuzzy c-means of the dataset into four identical 

fuzzy clusters with different members. In this graph, each cluster is represented by a single color, and the centers of 

each cluster are marked with a black square. The first cluster is blue, with 77 members. The second cluster is red, with 

42 members, and the third is green, with 87 members. Furthermore, the fourth cluster is pink, with 74 members. 

 

5. Discussion 

5.1. Determining Rock type 

In this research, two methods of flow zone index and Fuzzy C-mean (FCM) have been used to determine the rock 

types in the studied well. In this section, solutions are proposed to compare these methods, which are mentioned 

below: 

Both methods of determining rock types in depth were implemented, as shown in figures (Fig. 11a and Fig. 11b). 

The studied well information showed four hydraulic flow units. If each unit has maximum continuity, its continuity 

number is one; if it has minimum continuity, its continuity number becomes zero. Suppose four hydraulic flow units 

have maximum continuity. In that case, their total continuity number becomes 4, and if each of these four units has 

no continuity between their data, their total continuity becomes zero . 

First, the data of the flow zone index (FZI) method have been implemented in-depth. The continuity number for the 

first hydraulic flow unit is 0.66. The second hydraulic flow unit is 0.79, the third hydraulic flow unit is 0.76, and the 

fourth hydraulic flow unit is 0.53. Finally, summing the continuity numbers of these three units, the total continuity 

number becomes 2.7672 (Table 5) . 

Then the data obtained from the fuzzy c-means method has been implemented in-depth. The continuity number for 

the first hydraulic flow unit is 0.87. The second hydraulic flow unit is 0.61, the third hydraulic flow unit is 0.89, and 

the fourth hydraulic flow unit is 0.72. Finally, by summing the continuity numbers of these three units, the total 

continuity number is 3.1153 (Table 6) . 

According to the obtained results, the total continuity number of the fuzzy c-mean method is higher than the total 

continuity number of the flow zone index in-depth, and it shows more continuity in depth. 
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5.2. Changes in the porosity diagram according to permeability 

Usually, permeability-porosity diagrams in heterogeneous carbonate reservoirs are usually scattered and show poor 

correlation (Fig. 12a) but correlate with the classification and arrangement of data regarding hydraulic flow units. 

Permeability is observed in each hydraulic flow unit (Fig. 12b to Fig. 13d). Table 7 and Table 8 show the correlation 

coefficients of porosity with permeability for all samples and four units of hydraulic flow in the well-studied. 

The correlation coefficient for all samples is equal to 0.552. However, the correlation coefficient obtained in the flow 

zone index method for the first hydraulic flow unit is 0.809. The second hydraulic flow unit is 0.939, the third hydraulic 

flow unit is 0.845, and the fourth hydraulic flow unit is 0.94, which indicates the improvement of the relationship 

between permeability and porosity in all hydraulic flow units compared to the general state for all samples . 

Furthermore, the correlation coefficients obtained in the fuzzy c-mean for the first hydraulic flow unit is 0.195, for the 

second hydraulic flow unit is 0.094, for the third hydraulic flow unit is 0.171, and for the fourth hydraulic flow unit is 

0.05-e8, which These results show that the correlation coefficients obtained using the fuzzy c-mean method in all four 

hydraulic flow units are lower than the correlation coefficient in the general case . 

Based on these results, the flow zone index method improved the correlation coefficients between permeability and 

porosity in all hydraulic flow units relative to the correlation coefficients in the general states for all samples. However, 

the fuzzy centrifugal method not only improved the relationship between the petrophysical parameters of the reservoir 

in all hydraulic flow units relative to the general states but also reduced the porosity-permeability relationship. 

Furthermore, According to the results, the total fidelity of the fuzzy c-means method is greater than the total fidelity 

of the flow zone index at depth and shows greater consistency at depth. 

According to these results, the flow zone index method has improved the correlation coefficients in the relationship 

between permeability and porosity in all hydraulic flow units compared to the correlation coefficients in general cases 

for all samples. However, the fuzzy c-mean method not improved the relationship between the petrophysical 

parameters of the reservoir in all hydraulic flow units compared to the general conditions; furthermore, it also caused 

a decrease in the relationship between porosity and permeability. The log of changes in petrophysical parameters versus 

depth in the studied well includes the depth column, porosity change column, permeability change column, hydraulic 

flow unit column, and rock types change column is shown in Fig. 14. 

 

6. Conclusions  

Regarding the determination of hydraulic flow units on 280 core samples of the Mansouri field, using three different 

methods, the obtained result can be surmised as blew: 

Four hydraulic flow units were determined for the studied data after classifying FZI values by histogram analysis, 

normal probability analysis, and the sum of squares errors. If the number of hydraulic flow units is at most their 

optimum, the results will not improve significantly, making the calculations more difficult and complex. Because the 

SSE method has lower error rates than the other two methods, this method can be optimal for determining the number 

of hydraulic flow units. In the flow zone index method, the reservoir quality index values and the oscillation ratio are 

plotted on a logarithmic scale, the data having the same flow zone index values are aligned on a single slope line having 

the same pore throat properties, and they make a hydraulic flow unit. Mean FZI values were calculated at 0.19 for the 

first hydraulic flow unit, 0.31 for the second hydraulic flow unit, 0.63 for the third hydraulic flow unit, and 1.44 for 

the fourth hydraulic flow unit in the studied well. The fuzzy c-means clustering method divides the data set into four 

identical fuzzy clusters with different member numbers by minimizing the evaluation function (Jm). Flow zone index 

and fuzzy c-means were used to determine rock types in the studied well. According to the results obtained from 

implementing these two methods in depth and applying the correlation index, the total correlation number in the 

method of flow zone index is 2.7672, and the total continuity number is calculated in the fuzzy c-means method as 

3.1153. Therefore, the fuzzy c-means method shows more consistency in-depth than the flow zone index method. The 

flow zone index method improves and enhances the correlation coefficients of porosity relation with permeability in 

each hydraulic flow unit. 

In contrast, in the fuzzy c-means method, the correlation coefficient is lower in all hydraulic flow units than in the 

general state. FZI lines in low porosity are approximated in analyzing permeability graphs regarding porosity. 

Therefore, at a fixed porosity, samples with higher FZI have higher permeability, so that FZI values can be a good 

criterion for pore correlations, and the higher this permeability, the more rock permeability increases. The porosity and 

permeability values of different reservoir rock samples are highly dispersed, and using hydraulic flow units 
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dramatically improves the relationship between these two parameters. In this study, the correlation coefficient between 

porosity and permeability ranged from 0.552 for all samples to 0.809 in the first hydraulic flow unit, 0.939 in the 

second hydraulic flow unit, 0.845 in the third hydraulic flow unit, and 0.94 increase in the fourth hydraulic flow unit 

were since samples with similar flow characteristics were placed in a single hydraulic flow unit. 
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Tables 

 

(%) Cut off 

SANDSTONE 

(%) Cut off 

CARBONATE 
Type Parameter 

8 4.5 ≥ PHIE 

50 50 ≤ SWE 

30 20 ≤ Vsh 

 

Table 1 Cutting limits for carbonate and sandstone sections. 

 

 

Sum of Squared Error (SSE) No. of HFU 

0.921313 1 

0.144515 2 

0.08462 3 

0.021707 4 

0.013309 5 

0.002989 6 

 

Table 2. The value of the error calculated for the number of hydraulic flow units. 

 

 

Flow Zone Index 

(FZI) 

Hydraulic Flow 

Unit 

0.1899 1 

0.3117 2 

0.6345 3 

1.4459 4 

 
Table 3. FZI value for each hydraulic unit 

 

 

Iteration count obj. function 

1 8.8759 

2 6.9395 
3 6.6943 
4 5.8739 
5 4.9493 
6 4.3072 
7 3.8888 
8 3.7368 
9 3.6962 
10 3.6846 
11 3.6806 

 
Table 4. Evaluation function values in consecutive iterations 
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Total 

cohesion 

Flow 

Unit 

no. 4 

Flow 

Unit 

no. 3 

Flow 

Unit 

no. 2 

Flow 

Unit 

no. 1 

2.7672 0.5333 0.7692 0.7981 0.6666 

 
Table 5. Continuity numbers in hydraulic flow units in the flow zone index (FZI) method. 

 

 

Total 

cohesion 

Flow 

Unit 

no. 4 

Flow 

Unit 

no. 3 

Flow 

Unit 

no. 2 

Flow 

Unit 

no. 1 

3.1153 0.7297 0.8965 0.6190 0.8701 

 
Table 6. Continuity numbers in hydraulic flow units in Fuzzy C-mean (FCM) Method. 

 

 

all 

samples 

Flow 

Unit no. 

1 

Flow 

Unit no. 

2 

Flow 

Unit no. 

3 

Flow 

Unit no. 

4 

0.552 0.809 0.939 0.845 0.94 

 

Table 7. Correlation coefficients of porosity with permeability in flow zone index method. 

 

 

all 

samples 

Flow 

Unit no. 

1 

Flow 

Unit no. 

2 

Flow 

Unit no. 

3 

Flow 

Unit no. 

4 

0.552 0.195 0.094 0.171 0.00008  

 

  Table 8. Correlation coefficients of porosity with permeability in fuzzy c-means. 
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Figure Captions 

 

 

 

Fig. 1. The proposed depositional environment of the Zagros and adjacent basins in the middle Cretaceous (Khoshnoodkia et al., 

2022; Mirkamali et al., 2016). 
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Fig. 2 The Mansouri oilfield and adjacent fields (Sherkati and Letouzey, 2004). 
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Fig. 3 Reservoir zonation sequences of the Asmari Formation based on lithological alteration in the studied well. 
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Fig. 4 General Flowchart of study based on core and log data in the studied well. 

 

 
.)Salavati et al., 2023; Majdi and Beiki, 2019( Sample of FCM Clustering method. 5Fig.  
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Fig. 6. Histogram analysis on logarithmic data of flow zone index. 
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Fig. 7. Normal probability analysis on logarithmic data of flow zone index. 
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Fig. 8. Diagram of the sum of squares of errors versus the number of hydraulic flow units. 

 

 

 

Fig. 9. FZI of each flow unit. 
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Fig. 10. Fuzzy c-means method. 
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Fig. 11. Implementation of a) flow zone index method in depth, b) fuzzy c-means method in depth. 
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Fig. 12 Porosity relationship with permeability using flow zone index method for a) all samples, b) unit No. 1, c) unit No. 2, d) 

unit No. 3, e) unit No. 4. 
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Fig. 13 Porosity relationship with permeability for flow unit using fuzzy c-means method for a) unit No. 1, b) unit No. 2, c) unit 

No. 3, d) unit No. 4. 
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Fig. 14 The log of changes in petrophysical parameters versus depth in the studied well includes the depth column, porosity 

change column, permeability change column, hydraulic flow unit column, and rock types change column. 
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