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Abstract Wireless communication is susceptible to radio

interference and jamming attacks, which prevent the

reception of communications. Most existing anti-jamming

work does not consider the location information of radio

interferers and jammers. However, this information can

provide important insights for networks to manage its

resource in different layers and to defend against radio

interference. In this paper, we investigate issues associated

with localizing jammers in wireless networks. In particular,

we formulate the jamming effects using two jamming

models: region-based and signal-to-noise-ratio(SNR)-

based; and we categorize network nodes into three states

based on the level of disturbance caused by the jammer. By

exploiting the states of nodes, we propose to localize

jammers in wireless networks using a virtual-force iterative

approach. The virtual-force iterative localization scheme is

a range-free position estimation method that estimates the

position of a jammer iteratively by utilizing the network

topology. We have conducted experiments to validate our

SNR-based jamming model and performed extensive sim-

ulation to evaluate our approach. Our simulation results

have showed that the virtual-force iterative approach is

highly effective in localizing a jammer in various network

conditions when comparing to existing centroid-based

localization approaches.

Keywords Jamming � Radio interference � Localization �

Virtual force

1 Introduction

As wireless networks become increasingly pervasive,

ensuring the dependability of wireless network deploy-

ments will become an issue of critical importance. One

serious class of threats that will affect the availability of

wireless networks are radio interference, or jamming

attacks. Jamming attacks can be launched with little effort

with two reasons. First, the wireless communication med-

ium is shared by nature. An adversary may just inject false

messages or emit radio signals to block the wireless med-

ium and prevent other wireless devices from even com-

municating. Another reason stems from the fact that most

wireless networks consist of commodity devices that can

be easily purchased and reprogrammed to interfere with

communications. For instance, a device can be pro-

grammed to either prevent users from being able to get

hold of communication channel to send messages, or

introduce packet collisions that force repeated backoff, and

thus disrupts network communications.

To ensure the availability of wireless networks, mech-

anisms are needed for the wireless networks to cope with

jamming attacks. In this paper, we explore the task of

diagnosing jamming attacks. In particular, how to localize

a jammer. Learning the physical locations of the jammers

allows the network to further exploit a wide range of
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defense strategies. One can cope with a jammer or an

interference source by localizing it and neutralize it

through human intervention. Additionally, the location of

jammers provides important information for network

operations in various layers. For instance, a routing pro-

tocol can choose a route that does not traverse the jammed

region to avoid wasting resources due to failed packet

delivery.

Much work has been done in the area of localizing a

wireless device [1–5], but these approaches are not appli-

cable to determine the location of jammers due to three

challenges. First, jammers will not comply with localiza-

tion protocols. Most existing localization schemes either

require special hardware, e.g., ultrasound transmitter to

measure the time difference of arrival, or require nodes to

be localized to participate in localization algorithms,

making them inapplicable to localize jammers. Second, the

jamming signal is usually embedded in the legal signal and

is very hard, if possible, to extract. Finally, as jamming has

disturbed network communication, the localization

schemes cannot require extensive communication among

network nodes. So far, very little work has been done in

localizing jammers.

To address the challenges of finding the position of a

jammer, we first studied the impact of jamming on net-

work nodes at various locations. Based on the level of

disturbance, we divided the network nodes into three

main categories: unaffected nodes, jammed nodes, and

boundary nodes. Further, we examined two jamming

models, region-based and signal-to-noise-ratio(SNR)-

based, to illustrate the underlying principles that govern

the state of a node. The region-based model is widely

adopted in many literatures, and it determines the impact

of jamming purely by examining the received jamming

signal power, whereas the SNR-based model exploits the

SNR at the receiver, which captures the jamming effects

more accurately. We investigated both models to provide

a guideline of model selection for studying jamming-

related problems.

Second, we propose a virtual-force iterative localization

(VFIL) approach that can utilize both jamming models to

estimate the position of a jammer. The VFIL method

leverages the network topology and exploits the knowledge

of the node state to perform position estimation. The basic

scheme of the virtual-force iterative approach, VFIL-Tr,

assumes the transmission range of the jammer is known.

Since in practice the jammer’s transmission range is mostly

unknown, we further derived a variant of VFIL called

VFIL-NoTr, which estimates the jammer’s transmission

range in each iterative step. Additionally, when utilizing

SNR-based jamming model, we observed an oscillation

problem, whereby the estimation of the jammer oscillates

between two locations other than the true location of the

jammer. To address oscillation, we developed an improved

VFIL mechanism for both VFIL-Tr and VFIL-NoTr.

Finally, we conducted experiments using MicaZ motes

and performed extensive simulations under different net-

work configurations, such as various network node densi-

ties and jammer’s transmission ranges. Our experimental

results validate the jamming models, and we found that the

VFIL approach is more effective under the widely-adopted

region-based model than the more realistic SNR-based

model. Further, simulation results show that our virtual-

force iterative approach is less sensitive to node densities

and can achieve higher localization accuracy compared

with centroid-based approaches.

The rest of the paper is organized as follows. We begin

the paper in Sect. 2 by discussing the related work. In

Sect. 3, we specify the network models and adversary

models being used in this paper. We next formulate the

jamming effects using the region-based model and present

the virtual-force iterative localization scheme leveraging it

in Sect. 4. To better capture the jamming effects, in Sect. 5,

we introduce the SNR-based model and validate it via

experiments. We describe the improved VFIL scheme in

Sect. 5, which can address the oscillation problem occurred

in the SNR-based model. Finally, we present the compre-

hensive simulations that evaluate our VFIL algorithms in

Sect. 6 and conclude in Sect. 7.

2 Related work

Coping with jamming and interference is usually a topic

that is addressed through conventional PHY-layer com-

munication techniques. In these systems, spreading tech-

niques (e.g. frequency hopping) are commonly used to

provide resilience to interference [6, 7]. Although such

PHY-layer techniques can address the challenges of an RF

interferer, they require advanced transceivers.

Further, the issue of detecting jammers was briefly

studied by Wood et al. [8], and was further studied by Xu

et al. [9], where the authors presented several jamming

models and explored the need for more advanced detection

algorithms to identify jamming. Jamming detection was

also studied in the context of sensor networks [10, 11] and

in networks involving frequency hopping [12]. Our work

focuses on localizing jammers after jamming attacks have

been identified using the proposed jamming detection

strategies.

Without localizing jammers, Wood et al. [8] has studied

how to map the jammed region. The basic idea is to have

the jammed nodes bypass their MAC-layer temporarily and

announce the fact that they are jammed. With slightly

modification, our algorithm can not only localize the

jammer but also map the jammed region.
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Moreover, countermeasures for coping with jammed

regions in wireless networks have been investigated. The

use of error correcting codes [13] is proposed to increase

the likelihood of decoding corrupted packets. Channel

surfing/hopping [14–16], whereby wireless devices change

their working channel to escape from jamming, spatial

retreats [17], whereby wireless devices move out of jam-

med region geographically, and anti-jamming timing

channel [18], whereby data are communicated via a covert

timing channel that is built on failed-packet-delivery event,

are proposed to cope with jamming. Additionally, worm-

hole-based anti-jamming techniques have been proposed as

a means to allow the delivery of important alarm messages

[19]. The combinations of mask framing, frequency

hopping, packet fragmentation, and redundant encoding

techniques is proposed to cope with multiple types of

jammers [20].

On the other hand, there has been active work in

the area of wireless localization. Based on localization

infrastructure, infrared [1] and ultrasound [21, 22] are

employed to perform localization, both of which need to

deploy specialized infrastructure for localization. Further,

using received signal strength (RSS) [2, 4, 23, 24] is an

attractive approach because it can reuse the existing

wireless infrastructure. Based on the localization meth-

odology, the localization algorithms can be categorized

into range-based and range-free. Range-based algorithms

involve estimating distance to anchor points with known

locations by utiliziing the measurement of various physi-

cal properties, such as RSS [2, 4, 23, 25], Time Of Arrival

[26], and Time Difference of Arrival [21]. Range-free

algorithms [27–30] use coarser metrics to place bounds on

candidate positions.

However, little work has been done in localizing jammers.

Most of the existing localization methods can not be applied

to localize jammers due to the disturbed network commu-

nication under jamming attacks. Recently Pelechrinis et al.

[31] proposed to localize the jamming by measuring packet

delivery rate (PDR) and performing gradient decent search.

However, they did not present results of performation eval-

uation. Our work is novel in that rather than relying on the

traditional network communication approaches, we use

network topology to achieve better accuracy of localizing

jammers comparing to existing range-free algorithms. We

further conducted extenstive simulation to validate the

effectiveness of our approach under two different jamming

models.

3 Overview of network model and jamming model

In this section we outline the basic wireless network and

jamming models that we use throughout this paper.

3.1 Network model

A wide variety of wireless networks have emerged, ranging

from wireless sensor networks, mobile ad hoc network, to

mesh networks. The broad range of choice implies that

there are many different directions that one can take to

tackle the problem of localizing jammers. Devising a

generic approach that works across all varieties of wireless

networks is impractical. Therefore, as a starting point, we

target to tailor our solutions to a category of wireless net-

works with the following characteristics.

3.1.1 Stationary

We assume that once deployed, the location of each

wireless device remains unchanged. We will consider

mobility in our future works.

3.1.2 Neighbor-aware

Each node in the network has a number of neighbors, and it

maintains a table that records its neighbors’ information,

such as their locations or activeness. Such a neighbor table

is typically maintained by routing protocols. In cases where

it is not available from routing protocols, it can be easily

achieved by letting each node periodically broadcast hello

messages.

3.1.3 Location-aware

Each node knows its location coordinates and its neigh-

bors’ locations. This is a reasonable assumption as many

applications already require localization services [2, 28].

3.1.4 Omnidirectional

Each node is equipped with an omnidirectional antenna,

and each node has the same radio range in all directions.

3.1.5 Able to detect jamming

In this work, we focus on locating a jammer after it is

detected. We assume the network is able to identify a

jamming attack. The network can utilize one of the existing

jamming detection approaches, ranging from measuring

simple properties [8, 9] to leveraging more complicated

consistency checks.

3.2 Jamming model

In this work, we deal with jammers each equipped with an

omnidirectional antenna. Once deployed, the jammer is

stationary in the network. There can be multiple jammers
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in the network. However, multiple jammers do not have

overlapped jamming regions.

3.3 Formulation of jamming effects

There are many different attack strategies that a jammer

can perform in order to disrupt wireless communications

[9]. For example, a constant jammer continually emits a

radio signal. Alternatively, the reactive jammer stays quiet

when the channel is idle, but starts transmitting a radio

signal as soon as it senses activity on the channel, causing a

message to be corrupted when it is received.

Despite the diversity of many attack philosophies, the

consequences of different jammers are the same. For those

nodes which are located near a jammer, their communi-

cation are severely disrupted, whereas a node which is far

away from a jammer may not be affected by the jammer at

all. Based on the degree of disturbance to a node, we can

divide network nodes, N, into three non-overlapping cate-

gories under jamming attacks: jammed nodes NJ, boundary

nodes NB, and unaffected nodes NU. Let lij be the predicate

function of the link state from node ni to node nj. We define

lij as,

lij ¼
1 nj can receive packets from ni

0 otherwise

(

ð1Þ

we emphasize that the link state defines the receiving

capability within one hop, and it is possible that lij = lji.

Further, we define Lmn as the end-to-end connectivity

predicate function from node nm to nn, which are two nodes

more than one hop away. We denote Lmn = 1, if there exists

a path from node nm to nn and the link state of each hop

equals 1. Otherwise, Lmn = 0. Let Nbr{ni} be the set of one-

hop neighbors of node ni before any jammer becomes

active. Given Lmn and lij, we define NJ, NB, and NU as below,

– Unaffected node. NU = {nu|Vni [ Nbr{nu}, liu = 1}.

The receiving ability of unaffected nodes have not been

changed by the jammer at all. Their neighbor set

remains the same as the one before a jammer starts to

interfere.

– Jammed node. NJ = {nj|Vni [ NU, Lij = 0}. Due to

jamming, the communication of jammed nodes has

been severely disturbed. Considering the fact that in a

normal scenario a node is able to communicate with

any nodes in the network either directly or indirectly

through multiple intermediate nodes, we define a

jammed node as the one that cannot receive packets

from any unaffected nodes.

– Boundary node. NB = {nb|(Ani [ NU, Lib = 1) and

(Nbr{nb} \ NJ = [)}. A boundary node is neither a

jammed node nor an unaffected node. Its communica-

tion ability is partially affected. Part of its neighbors are

jammed, but it can still reach at least one unaffected

node, possibly, in multiple hops.

In this paper, we consider that a stationary jammer inter-

feres with the network communication at fixed transmission

power setup. To make the problem more attackable, we do

not consider network topology changes caused by factors

other than jamming, e.g., mobility, or hardware failures. As

such, the state of each network node will remain unchanged

throughout the course that the jammer is active.We denote Si
as the state of the i-th node, and it can be any value in the set

of {JAMMED, BOUNDARY, UNAFFECTED}.

Our jamming localization algorithms start to determine

the location of the jammer after jamming is detected and

the state of each node is identified. One candidate detection

algorithm is consistency-based jamming detection algo-

rithm [9], which not only identifies the presence of jam-

ming but also returns the link state of each pair of nodes.

Thus, we are able to derive Si for all nodes in the network.

In addition to determining Si relying on detection algo-

rithms, it is important to understand the underlying princi-

ples that govern the state of a node ni. In this paper, we will

examine two models. The first one is a widely adopted

model, whereby a node is considered jammed if it is located

within the jammed region. The second model involves

checking the signal-to-noise ratio (SNR) at each node. We

will study those two models in Sects. 4 and 5, respectively.

4 Jamming localization in region-based model

4.1 Model formulation of jamming effects

Typically, most recent papers on jamming and wireless

networks have modeled the effect of the jammer as a

region-based effect [8, 32], i.e., for a given jammer, there

exists a jammed region within which a node is unable to

communicate with its neighbors and thus is considered

jammed. A jammer with a directional antenna may have a

sector-shaped jammed region; a jammer with an omnidi-

rectional antenna may have a circular jammed region; and

multiple jammers can create a jammed region which is the

union of the individual jammed regions. In this section, we

focus on the region-based jamming model. To simplify the

illustration, we adopt the standard free space propagation

model. The power of the received signal at d meters away

from the transmitter is

PR ¼
PTG

4pd2
; ð2Þ

where PT is the transmission power; G is the product of the

transmit and receive antenna field radiation patterns in the

LOS (line-of-sight) direction (Fig. 1).
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Apply the free space propagation model to the jammer,

the received jamming signal power decreases inversely

proportional to the square of the distance d. Thus, the effect

of a jammer is a circle centered at the jammer’s location, as

shown in Fig. 2. On the edge of the circle, the received

jamming signals equal ambient noise level and we call this

circle the Noise Level Boundary (NLB) of the jammer

with radius RJ. A node located inside the NLB circle is

considered jammed, as its received jamming signal is lar-

ger than the ambient noise level. In contrast, a node outside

the NLB circle is considered non-jammed. Therefore, NLB

defines the jammed region, and we define the link state of a

pair of nodes i and j below,

lij ¼ lji ¼
0jjZi � ZJ jj2�RJ or jjZj � ZJ jj2�RJ

1jZi � ZJ jj2[RJ and jjZj � ZJ jj2[RJ

� �

:

ð3Þ

where Zi is the position of i-th node, ZJ is the position of

the jammer and ||*||2 is the 2-norm distance. In the region

based jamming model, the definition of the three categories

NU, NJ and NB can be simplified as,

– Unaffected node. NU = {nu|(Vni [ Nbr{nu}, ||Zi -

ZJ||2[RJ) and (||Zu - ZJ||2[RJ)}. An unaffected

node and all of its neighbors are located outside of

NLB of the jammer.

– Jammed node. NJ = {nj| ||Zj - ZJ||2 B RJ}. A jammed

node is located within the NLB of the jammer.

– Boundary node. NB = {nb|(||Zb - ZJ||2[RJ) and

(Ani [ Nbr{nb}, ||Zi - ZJ||2 B RJ)}. A boundary node

is not jammed itself but it cannot hear from some of its

neighbors.

Figure 2 illustrates the classification of different net-

work nodes under a jamming situation. The jammed region

is the light blue circle centered at the jammer. Nodes

{n1, n2, n3, n4} are jammed nodes; nodes {n5, n6, n7, n8,

n9, n10, n11, n12} are boundary nodes; nodes {n13, n14,

n15, n16} are unaffected nodes.

4.2 Jammer localization algorithms

In this section, we first overview an existing range-free

localization algorithm that can be applied to determine the

position of a jammer, Centroid Localization (CL). We then

present our approach of Virtual Force Iterative Localiza-

tion (VFIL).

4.2.1 Centroid localization (CL)

Centroid Localization can be used to localize a jammer, as

it performs the estimation without the cooperation of the

target nodes. In particular, CL utilizes position information

of all neighboring nodes of the node to be localized. In the

case of localizing a jammer, the neighboring nodes of the

jammer are jammed nodes. Therefore, to infer the position

of a jammer, CL collects all coordinates of jammed nodes,

and averages over their coordinates as the estimated posi-

tion of the jammer. Assume that there are m jammed nodes

{(x1, y1), (x2, y2),…, (xm, ym))}. The position of the jam-

mer can be estimated by:

ẐJ ¼ ðx̂J ; ŷJÞ ¼

Pm
k¼1 xk

m
;

Pm
k¼1 yk

m

� �

: ð4Þ

CL only utilizes the coordinates of network nodes, and

therefore it is robust against the radio propagation uncer-

tainties in the environment. However, it is extremely sen-

sitive to the distribution of jammed nodes. For example, if

the distribution of the jammed nodes is biased towards one

side of the jammer, the estimation will be biased as well.

3noitaretI(c)2noitaretI(b)1noitaretI(a)

Fig. 1 Iteration of localization steps in Virtual Force Iterative Localization (VFIL) method

Fig. 2 Illustration of a jamming scenario in a wireless network using

the region-based jamming model
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Additionally, it is sensitive to node density. In a uniformly

distributed network, increasing the network density will

increase the chances that jammed nodes are evenly distrib-

uted around the jammer, and thus produce better estimation.

4.2.2 Virtual force iterative localization (VFIL)

Centroid localization method is sensitive to the distribution

of the jammed nodes and the network density. To achieve a

better localization accuracy, we propose the Virtual Force

Iterative Localization method.

VFIL starts with a coarse estimation of the jammer’s

position derived by CL, and then re-estimate the jammer’s

position iteratively until the estimated jammer’s position is

close to the true location. There are several challenges

associated with this algorithm: (1) How do we know when

the estimated position is close enough? (2) How can we

adjust the estimation in each iteration?

4.2.2.1 Termination When the estimated jammer’s

location is its true position, the estimated jammed region

will overlap with the real jammed region. One main

characteristic of the real jammed region is that it contains

all jammed nodes but none of the boundary nodes. Thus,

VFIL should stop when the estimated jammed region

covers all the jammed nodes while all boundary nodes fall

outside of the region.

4.2.2.2 Iteration At each round of location estimation in

VFIL, some of the jammed nodes will be located inside the

estimated jammed region, while others may be outside.

Similarly, some boundary nodes may be included in the

estimated jammed region mistakenly caused by the esti-

mation errors. Since the objective of VFIL is to search for

an estimation of the jammed region that can cover all the

jammed nodes whereas does not contain any boundary

nodes, at each iterative step, the jammed nodes that are

outside of the estimated jammed region should pull the

jammed region toward themselves, while the boundary

nodes that are within the estimated jammed region should

push the jammed region away from themselves.

To model this push and pull trend, we define two virtual

forces, namely Pull Force Fi
pull generated by a jammed

node i that is outside of the jammed region, and Push Force

F
j
push generated by a boundary node j that is located inside

the jammed region. Let ðX̂J ; ŶJÞ be the estimated position

of the jammer, (xj, yj) be the location of a jammed node and

(xb, yb) be the location of a boundary node. We define F
nj
pull

and F
nb
push as normalized vectors that point to/from the

estimated jammer’s position as

F
nj
pull¼

xj�X̂J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj�X̂JÞ
2þðyj�ŶJÞ

2
q ;

yj�ŶJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj�X̂JÞ
2þðyj�ŶJÞ

2
q

2

6

4

3

7

5
;

ð5Þ

and

F
nb
push ¼

�
X̂J � xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXJ � xbÞ
2þðYJ � ybÞ

2
q ;

YJ � yb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXJ � xbÞ
2þðYJ � ybÞ

2
q

2

6

4

3

7

5
:

ð6Þ

We further define a joint force Fjoint as the combination

of all F
nj
pull and F

nb
push based on the formula of force

synthesization [33]:

Fjoint ¼

P

nj2Npull
F
nj
pull þ

P

nb2Npush
F
nb
push

P

nj2Npull
F
nj
pull þ

P

nb2Npush
F
nb
push

�

�

�

�

�

�

; ð7Þ

where Npull is the set of jammed nodes that are located

outside of the estimated jammed region, and Npush is the set

of boundary nodes that are located within the estimated

jammed region. Following the direction of Fjoint, VFIL

moves the estimated position of the jammer towards the

jammer’s true position at each iteration.

4.2.2.3 Algorithm walk-through In order to illustrate the

VFIL, let us walk through each step of the algorithm. We

start with the algorithm that assumes a known jammed

range, i.e., the NLB of the jammer is known, and then

present the approach that can determine the jammer’s

location without this assumption.

– Step 0. Detect the jamming attack and determine Si for

all network nodes based on the link state returned by

the jamming detection algorithm.

– Step 1. Estimate the position of the jammer, ẐJ . The

intial estimation is obtained by calculating the centroid

of all jammed nodes.

– Step 2. Derive the estimated jammed region, which is a

circle centered at ẐJ with the radius the same as the

jammed range, RJ.

– Step 3. Infer the state Ŝi for each node using the

estimated jammed region based on the definition of NJ,

NB, and NU. Derive Npull and Npush, and form the joint

force Fjoint.

– Step 4. Set an adjustable moving step, and Move the

estimated jammer’s position along the direction of

Fjoint to a new estimate position, e.g., ẐJ ¼ ẐJþ

Fjoint � D, where D is the step size. The objective is
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to reduce the resulting Fjoint and make it approach zero

in the following iterations.

– Step 5. Repeat Step 1 to 4 until all the jammed nodes

are included in the estimated jammed region and all the

boundary nodes are excluded in the estimated jammed

region.

Figure 1(a–c) illustrate the iterative steps of VFIL

algorithm. In the first step depicted in Fig. 1(a), Npull =

{n3} and Npush = {n5}. The combined Fjoint applied by

nodes n3 and n5 moves the estimated position of the jam-

mer to a new location whereby the jammed region becomes

{n1, n2, n3, n4, n5}, which contains all jammed nodes and a

boundary node n5, as depicted in Fig. 1(b). Thus, in the

second iteration, Npull = [ and Npush = {n5}, and

Fjoint ¼ F
n5
push. Pushed by F

n5
push, the jammer is moved to a

new estimated location, as depicted in Fig. 1(c), which

results in a new jammed region that contains all jammed

nodes and excludes all non-jammed nodes. As a result, the

algorithm terminates.

4.2.2.4 Estimation of NLB of the jammer In the afore-

mentioned algorithm, we assume the jammed radius is

known. Now, we consider the case that the transmission

range of the jammer RJ is unknown. We propose to esti-

mate R̂J in each iteration step. In particular, right after

estimating the jammer position, ẐJ , we calculate the jam-

med range as the one that minimizes the number of

unmatched nodes, that is, the jammed nodes that are

located outside of the estimated jammed range and the

boundary nodes that are located within the estimated

jammed range. Formally, we define the unmatched nodes

in terms of Npull and Npush as Npull ¼ fnijSi ¼ JAMMED \

Ŝi 6¼ JAMMEDg and Npush ¼ fnijSi 6¼ JAMMED \ Ŝi ¼

JAMMEDg. Thus, the estimated radius of the NLB of the

jammer equals,

R̂J ¼ argminRJ
ðjjNpushjj þ jjNpulljjÞ: ð8Þ

After finding the best match of the jammed range in Step 2,

VFIL continues to determine Npull and Npush and forms the

joint force Fjoint in Step 4.

The detailed flow chart of VFIL is depicted in Fig. 3. In

the rest of the paper, to distinguish these two variants of

VFIL, we call the virtual force algorithm that assumes the

awareness of RJ as VFIL-Tr, and the one without the

knowledge of RJ as VFIL-NoTr.

4.2.2.5 Convergence Based on the observation of our

simulation study, in most cases, VFIL converges within

100 iterations towards the true position of the jammer. In

rare cases, the algorithm will fluctuate around the true

position instead of converging towards the true position

quickly. After careful examination, we found that the

fluctuated estimations in such cases are already very close

to the true position. Therefore, after a threshold of itera-

tions, we stop the iterations and use the current estimation

value as the final localization estimate.

5 Jamming localization in SNR-based model

5.1 Model formulation of jamming effects

5.1.1 The limitation of the region based model

The region-based jamming model essentially only consid-

ers the path loss of the jamming signal while ignores the

signal from the sender S, and thus it does not provide a

complete depiction of the complex relationships between

the transmission power of senders and the jammer, as well

as the geometry of the deployment. Essentially, the prob-

ability of success reception of a packet is primarily a

function of the signal-to-noise ratio (SNR) at the receiver

R. In the jamming scenario, the ‘‘noise’ includes ambient

noise PN and jamming signals PJ,

SNR ¼
PSR

PN þ PJR

�
PSGSR

PJGJR

�
d2JR
d2SR

; ð9Þ

where PSR is the received power of desired signal, PN is the

noise, and PJR is the received jamming power; PS and PJ

are the transmission power of S and J respectively; GSR and

GJR are the antenna field patterns in the line-of-sight(LOS)

direction between S and R, and between J and R. The

approximation holds when the ambient noise level is

neglectable compared to the signal and jamming power.

Fig. 3 Flow chart of Virtual Force Iterative Localization algorithm

without the knowledge of jammed range (VFIL-NoTr)
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Figure 4 illustrates the relationship among PS, PJ, dSR and

dJR. From Eq. 9, for a given set of devices and transmission

power setup, the SNR at R is a function of its distances to

J and S, e.g., dJR, dSR.

5.1.2 PDR versus SNR

To understand the relationship between SNR and the

probability of the successful reception of packets, we car-

ried out several experiment studies using three Crossbow

MicaZ motes. We use the metric packet delivery ratio

(PDR), the percentage of successfully delivered packets out

of the total delivery attempts, to qualify the packet recep-

tion quality. In our experiments, two MicaZ motes act as

the sender S and the receiver R respectively, and a third

mote J continuously sends out random bits to interfere with

the communication between S and R. Throughout the

experiments we used the same motes as R, S, and J to

eliminate the impact that might be caused by hardware

variance.

There are many ways to create different SNR at R. In

our experiment, we fixed the locations of S and J with 40

inches separation, and moved R in a 50 9 100 inches

rectangular with the step size of 5 inches. At each location,

R has a unique pair of (dJR, dSR), and it can lead to different

SNR values at R. At each spot, R measures two statistics,

the number of received packets (the sender S will transmit

1,000 packets in total) and RSSI (Received Signal Strength

Indication) values in two scenarios. The first case involves

measuring RSSI when both S and J are active, and the

second involves keeping J active while S turned off. Those

two measurements are used to calculate SNR at each

location. We plot the measured (SNR, PDR) in Fig. 5.

Figure 5 demonstrates a sharp cliff phenomenon: when

SNR is smaller than 0 dB, the PDR is 0; as SNR value

increases beyond some threshold value, the PDR jump to

100%. This cliff phenomenon coincides with the theoreti-

cal result, i.e., the success reception of a packet is primarily

determined by SNR at the receiver. Thus, we can define the

link state lij based on a threshold model. Formally, the link

state from node ni to nj is

lij ¼
0 SNRij � c0

1 SNRij[ c0

�

ð10Þ

where SNRij is the SNR measured at node nj when node ni
is transmitting and all other network nodes remain silent. co
is the threshold SNR, above which packets can be received

successfully, and we call it Decodable SNR threshold. To

determine the value of c0 empirically, we performed a

logistic regression over the measured data pairs (SNR,

PDR), and get co = 3.42 dB when PDR = 95%.

– Jamming Effects in SNR-based Model. Applying

Eq. 10 to the definition of network nodes, NJ, NB, and

NU, in the SNR-based jamming model we have

– Unaffected node. NU = {nu|Vni [ Nbr{nu}, SN-

Riu[ co}. A node is unaffected, if it can receive

packets from all of its neighbors.

– Jammed node. NJ = {nj|Vni [ NU, Lij = 0}. Essen-

tially, a node nj is jammed if it cannot communicate

with any of the unaffected nodes. We note that two

jammed nodes may still be able to communicate with

each other. However, they cannot communicate with

any of the unaffected nodes.

– Boundary node. NB = {nb|(Ani [ NU, Lib = 1) and

ð8ni 2 Nbrfnbg \ NJ ; SNRib � coÞg. A boundary node

can receive packets from part of its neighbors but not

from all its neighbors.

To illustrate the difference between those two jamming

models, we consider a network scenario shown in Fig. 6,

where the light blue circle depicts the NLB circle of the

jammer. In the region-based model, nodes {n1, n2, n3,

n7, n8, n11, n12} are considered jammed, since they are

located inside the NLB. In the SNR-based model, however,

only nodes {n1, n2, n11} are jammed because none of them

Fig. 4 Illustration of received signals at the receiver R
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Fig. 5 Experiment results of the relationship between Packet

Delivery Ratio (PDR) to Signal-to-Noise Ratio (SNR), using MicaZ
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is able to communicate with the majority of the network.

Interestingly, although nodes n1 and n2 are jammed, they

can still communicate with each other. This is because n1
and n2 are so close to each other that their received SNR12

and SNR21 are both higher than the decodable threshold co.

In fact, we have observed such a phenomenon during our

PDR versus SNR experiment using MicaZ motes [34].

Additionally, despite the fact that node n8 is located within

NLB, it is unaffected, because it does not lose the com-

munication ability with all its neighbors. Similarly,

{n4, n8, n9, n10, n13} are unaffected. Finally, nodes

{n3, n7, n12} are not jammed but boundary nodes, because

they can reach at least one of the unaffected nodes.

5.2 Enhanced virtual force iterative localization

algorithm

Once the presence of the jammer is detected, the jammer

can be localized using the VFIL scheme described in Sect.

4.2. Different from the region-based model, we applied the

SNR-based model to determine the estimated status of the

nodes in every iteration. To make the calculation efficient,

we adopted the concept of nearest and furthest un-jammed

neighbors. Essentially, a node ni is unaffected, if it can

receive packets from the neighbor located furthest away

from it, since the furthest neighbor will create the weakest

signal at ni among all its neighbors and the ability to

receive from furthest neighbor indicates the ability to

receive from all neighbors. Similarly, a node ni is a

boundary node, if it cannot receive packets from its furthest

neighbor yet can hear from its nearest un-jammed neigh-

bor. A node is jammed if it cannot hear from its nearest

un-jammed neighbor.

Applying the SNR-based model to VFIL algorithm, we

found that in some special scenarios, the estimated jammer

position will not converge to the true location of the jam-

mer, instead it oscillates between locations other than the

true location of the jammer. Even if different step sizes of

the virtual force are adopted, the oscillation phenomenon

persists. To address the extra oscillation problem, an

improved VFIL scheme is needed. We next describe the

oscillation problem that we encountered.

5.2.1 Oscillation problem

As defined in Sect. 3, each node ni has a state, Si, that is

determined by the true location of the jammer. In each

iteration, we infer the estimated node state, Ŝi, based on the

estimated position of the jammer, and the estimated state Ŝi
may not match its actual state Si. Under such a situation,

the node ni becomes an unmatched node. The objective of

the VFIL algorithm is to find an estimated location of the

jammer when all the nodes are in their actual states. Thus,

the VFIL algorithm will use the joint virtual force to pull or

push the estimated jammer’s position to the next estimated

location and seek to make these unmatched nodes to be in

their actual states. However, it is possible that the next

estimated location results in another group of unmatched

nodes and the resulting joint virtual force moves the esti-

mated jammer’s position back to the previous location. We

define this situation as the oscillation problem. When

oscillation occurs between two estimated locations of

jammer’s position, the localization algorithm will not

converge.

5.2.2 Example

In Fig. 7, we provide a detailed example to illustrate the

oscillation problem when localizing a jammer. In this

example, the estimated positions of the jammer oscillate

between E1 and E2. Under jamming, {n3, n7, n8, n9} are

non-jammed nodes. In particular, nodes {n3, n7} are

boundary nodes, and nodes {n8, n9} are unaffected. How-

ever, when the estimated jammer’s location is at E1 as

shown in Fig. 7(a), n3 becomes an unmatched node with its

state as Ŝ3 ¼ JAMMED, and it generates Push Force

Fpushn3 . Thus, the virtual force, F1 ¼ F
n3
push, will push the

next position estimation to E2 as shown in Fig. 7(b).

When the position estimation of the jammer becomes

E2, node n3 can receive from n4, and its state becomes

BOUNDARY. However, nodes n7, n8, and n9 become

jammed nodes, which are different from their actual states.

The joint virtual force F2 formed by n7, n8, and n9 is

opposite to F1 and will push the jammer’s estimated

location back to E1. Thus, the estimated jammer’s positions

will be oscillated between E1 and E2.

Nodes {n3} and {n7, n8, n9} are two groups of unmat-

ched nodes generating virtual force alternatively to move

the estimated jammer’s position back and forth between E1

and E2. In the first group, n3 is the only node in this group,

while in the second group, n9 will determine whether the

Fig. 6 Illustration of a jamming scenario under the SNR-based

jamming model
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whole group is jammed or not as n9 is the only path for n7
and n8 to transfer packets. Therefore, n3 and n9 are the key

nodes that lead to oscillation. We call this kind of nodes as

bridge nodes. A bridge node oscillates its state between

JAMMED and BOUNDARY as the estimated locations of

the jammer fluctuates among a set of positions.

5.2.3 Resolving oscillation

To solve the oscillation, we introduce the concept of the

SNR boundary of the bridge nodes. Essentially, given the

location of the network topology, the requirement of

making the bridge node’s estimated state match its true

value confines the location of the jammer. For example, as

depicted in Fig. 7(a), n4 is n3’s nearest non-jammed

neighbor node. To ensure that n3 is able to receive from n4,

the ratio of n3’s receiving power from n4 to its receiving

power to the jammer, SNR4,3, should be greater than the

threshold c0:
Pn4

d2
n3 ;E1

PJd2n3 ;n4

[ c0. Thus, the jammer has to be

located outside the circle that is centered at n3 with a radius

of rn3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PJd2n3 ;n4
c0

Pn4

r

, depicted as the dashed circle in

Fig. 7(a). We call this circle as SNR boundary.

Similarly, to ensure that n9 is an unaffected node, n9
should be able to receive packets from its furthest

neighbor n10. The radius of the SNR boundary of n9 is

confined by rn9 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PJd2n9 ;n10
c0

Pn10

r

and the jammer has to be

located outside the SNR boundary of n9, shown in

Fig. 7(b). Since both n3 and n9 are non-jammed nodes, the

estimated location of the jammer should be outside of

their SNR boundaries. Neither E1 nor E2 satisfy this

constrain of SNR boundary. To leverage SNR boundary,

we estimate the location of the jammer as one of the

intersection points of SNR boundaries. In particular, we

extend the Step 4 in the Virtual Force Iterative Locali-

zation algorithm as following:

– Step 4.1. Once an oscillation is detected, record all the

unmatched nodes found in oscillation;

– Step 4.2. Identify bridge nodes based on the definition

and append their SNR boundaries into list L;

– Step 4.3. Calculate the intersection points of all the

SNR boundaries in list L.

– Step 4.4. Check the intersection points one by one

against the jamming condition, i.e., state of each

network node. The first point that satisfies the jamming

condition is returned as the estimated jammer’s

position. If no intersection point satisfies the jamming

condition or no intersection points are found, recalcu-

late the virtual force using the nodes in L, and use the

bridge nodes in L to adjust the step size, then go back to

Step 2 (in the original algorithm). The motivation of

adjusting the step size is to get a different set of bridge

nodes and consequently a different set of intersection

points, increasing the chances of finding one intersec-

tion point that satisfies the jamming condition.

Based on the improved VFIL, continuing the example

illustrated in Fig. 7, we estimate the location of the jammer

as the intersection point Ê, whereby the derived states of all

nodes match their true states, as depicted in Fig. 7(c). We

will evaluate the effectiveness of our improved algorithm

in the next Section.

6 Simulation evaluation

In this section, we evaluate the effectiveness of our virtual

force iterative localization approach under both the region-

based model (RBM) as well as the SNR-based model

(SBM) through simulation.

6.1 Methodology

We implemented our own simulator using Matlab. We

simulated a wireless network environment in a 300-by-300

(a) (b) (c)

Fig. 7 Illustration of oscillation: a when the estimated jammer’s

position is at E1, the boundary node n3 becomes a jammed node, and

it forms the virtual force to push next estimated jammer’s position to

E2; b when the estimated jammer’s position is at E2, nodes n7, n8 and

n9 become jammed nodes, which do not match their actual states, and

they form the virtual force to push the estimated jammer’s position

back to E1; c the final estimated location of the jammer is considered

as the intersection point Ê of the SNR boundaries that satisfies all

jamming conditions
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feet field, within which network nodes were uniformly

distributed. The transmission range of each node was set to

30 feet. We evaluated the performance of three algorithms,

VFIL-Tr, VFIL-NoTr, and CL, in various network condi-

tions, including different network node densities and jam-

mer’s NLB radius. To study the impact of those network

parameters on the algorithms, we placed the jammer at the

center of the simulation area so that the jammer was sur-

rounded by multiple network nodes. Later, we investigated

the effect of the jammer’s position on the algorithm per-

formance by randomly placing the jammer anywhere

within the simulation area, including the edge of the net-

work. To capture the average trend, we run each algorithm

in each network setup 5,000 times.

6.2 Metrics

We used the following metrics to evaluate the performance

of our approaches.

6.2.1 Estimation error of the jammer’s NLB radius

One intermediate step of the VFIL-NoTr is to estimate the

jammer’s Noise-Level-Boundary (NLB) radius, which

might affect the localization performance. Thus, we studied

jammer’s NLB estimation errors. In particular, we define

such errors as the difference between the true radius of the

jammer’s NLB and the estimated one using VFIL-NoTr.

To provide a statistical view of the estimation accuracy, we

present the Cumulative Distribution Functions (CDFs) of

the range estimation errors.

6.2.2 Localization error of the jammer’s position

To evaluate the accuracy of localizing the jammer, we

define the localization error as the Euclidean distance

between the estimated jammer’s location and the true

location. Similarly, to capture the statistical characteristics,

we studied the average errors under multiple experimental

runs. We present the CDFs of the localization errors

obtained from all experimental runs.

6.3 Results

6.3.1 Sensitivity of node density

We first studied the effects of various network node den-

sities on the localization performance. To adjust the net-

work node densities, we varied the total number of nodes,

N, deployed in the simulation. In particular, we chose N to

be 200, 300, and 400, respectively. Figure 8 presents the

localization results when VFIL-Tr, VFIL-noTr, or CL was

implemented using either the region-based jamming model

(RBM) or SNR-based jamming model (SBM). The radius

of the jammer’s NLB was fixed at 65.6 feet in both jam-

ming models. Further, we set the SNR threshold, c0, as 1.1

in the SNR-based model.

Overall, we observed that the higher the node density,

the better the localization accuracy. Among all algorithms,

VFIL-Tr achieves the best performance consistently with

all node density setup and in both jamming models,

whereas CL method performs the worst. Additionally, we

found that all the localization algorithms adopting the

region-based model outperform those using the SNR-based

model. This is because the region based model simplifies

the jamming situation, and considers a relatively regular

jammed area. Such regularity in the region-based model

makes the estimation of the jammer’s position more

accurate. Since the SNR-based model provides a better

approximation of real wireless communications, the

observation that all the algorithms perform better in the

region-based model emphasizes the necessity of adopting

the more realistic SNR-based model when studying jam-

ming-related problems.

We compared the median error, e.g., the estimation error

at the 50th percentile, for each algorithm in each experi-

ment setup. Figure 8(a) shows the results when the number

of nodes is 200, e.g., N = 200. As far as the region-based

model is concerned, the median estimation error of VFIL-

Tr is 2.8 ft, which means 50% of the time VFIL-Tr can

estimate the jammer’s location with an error less than

2.8 ft. In comparison, CL can only achieve a median

estimation error of 7.9 ft. Thus, the VFIL-Tr outperforms

CL by 65%. Similarly, VFIL-NoTr has a median error of

3.8 ft, exhibiting a performance improvement of 52%

compared with CL.

Under the SNR-based model, VFIL-Tr improves the

localization accuracy by 34% with an median error of

7.5 ft versus 11.3 ft for CL, whereas VFIL-NoTr improves

the localization accuracy by 15% with a median error of

9.6 ft.

Furthermore, when the number of nodes increases to

N = 300, as presented in Fig. 8(b), under the region based

model the improvement of the localization accuracy in

terms of the median error is 71% between CL and VFIL-Tr

methods (from 6.3 ft to 1.8 ft) and is 62% between CL and

VFIL-NoTr (from 7.9 ft to 2.4 ft). Under the SNR-based

model, the accuracy improvement of the median error

between CL and VFIL-Tr methods is 35% (from 9.6 ft to

6.2 ft) and 18% between CL and VFIL-NoTr (from 9.6 ft

to 7.9 ft).

Finally, in Fig. 8(c) where the node density increases to

N = 400, under the region-based model, the median error

of localization improves by 76% between CL and VFIL-Tr

methods (from 5.5 ft to 1.3 ft) and by 67% between CL

and VFIL-NoTr (from 5.5 ft to 1.8 ft), respectively.
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Similarly, under the SNR-based model, the median errors

improves by 35% between CL and VFIL-Tr methods (from

8.3 ft to 5.4 ft) and by 24% between CL and VFIL-NoTr

(from 8.8 ft to 6.8 ft), respectively.

As a conclusion, compared with the CL method, the

Virtual Force Iterative Localization (VFIL) approaches

improve the localization accuracy, and the performance

improvement increases as the node density increases.

6.3.2 Estimation of the jammer’s NLB radius

We next studied the accuracy of the jammer’s NLB radius

estimated by VFIL-NoTr. Figure 9 depicts the CDFs of the

jammer’s NLB radius estimation errors in various simula-

tion setups including different node densities and two

jamming models. In general, we found that our VFIL

approaches can estimate the jammer’s NLB radius more

accurately in the region-based jamming model than the one

obtained under the SNR-based jamming model. In partic-

ular, in Fig. 9(a, c), we observed that for the region-based

jamming model, a higher node density yields smaller

estimation errors, and the accuracy of the radius estimation

improves by 22% at 50th percentile (from 0.98 ft to

0.77 ft) when N = 400 compared with the one obtained

when N = 200.

In the SNR-based model, however, we observed that the

jammer’s NLB radius estimation is less sensitive to node

density changes. This is because as the node density

changes, the change rates of the number of boundary nodes

are different in two jamming models. When the region-

based model is concerned, the number of boundary nodes

will increase proportionally to the node density changes.

Since the number of boundary nodes is determined by the

relatively regular jammed area and the node distribution

during the deployment (e.g., uniform distribution). How-

ever, the less regular jammed area in the SNR-based model

will make the number of boundary nodes less deterministic.

Thus, even when the node density increases, the number of

boundary nodes may not increase in the SNR-based model.

Further, Fig. 9(b, d) present the CDFs of the jamming-

radius estimation errors using two jamming radii, 65.6 ft

and 92.8 ft, in 200-node topologies. We found that a larger

jamming NLB circle produces better estimations. This is

because a larger jamming NLB circle causes a larger

number of nodes to be jammed, which provides additional

topology constraints for radius estimating, e.g., to ensure

that the estimated node state confirms with the real state.

Because of the increased jamming NLB radius, the median

errors of the jammer’s NLB radius estimation are improved

by about 20% in both jamming models.

6.3.3 Impact of the jammer’s NLB radius

After examining the estimation accuracy of the jammer’s

NLB radius, we studied the impact of different jammer’s

NLB radius, RJ, on the location estimation accuracy. In this

set of experiments, we fixed the number of nodes to 200
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Fig. 8 Performance impact under different node densities when the

jammer’s NLB radius is fixed at 65.6 ft
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and set the jammer’s NLB radius to 65.6, 80.4, and 92.8 ft,

respectively. Figure 10 presents the resulted average

localization errors of VFIL and CL algorithms using both

the region-based and SNR-based models respectively. In

both jamming models, we observed the similar trend of

localization performance as the one mentioned in Sect.

6.3.1: VFIL-Tr achieves the best performance regardless of

the values of jammer’s NLB radii, while CL performs the

worst; and our VFIL methods perform better using the

region-based model than using the SNR-based model. In

particular, when the jammer’s NLB radius is 65.6 ft, under

the region-based model, the mean error of VFIL-Tr has an

improvement of 70% over the one of the CL method (from

8.4 ft to 3.4 ft), whereas the VFIL-NoTr has a corre-

sponding improvement of 61% (from 8.4 ft to 4.4 ft).

Under the SNR-based model, the mean error of VFIL-Tr

improves by 38% compared with the one in the CL method

(from 12.1 ft to 8.8 ft), and the mean error of VFIL-NoTr

improves by 22%(from 12.1 ft to 10.6 ft).

Additionally, we observed that the VFIL methods

leveraging the SNR-based model are less sensitive to the

jamming range than the one using the region-based model.

In particular, when the jammed range increases from 65.6

ft to 92.8 ft, as depicted in Fig. 10, the mean errors of both

VFIL-Tr and VFIL-NoTr using the region-based model

decrease by 30%, dropping from 3.4 ft to 2.4 ft for VFIL-

Tr and from 4.4 ft to 3.1 ft for VFIL-NoTr, respectively. In

cases of the SNR-based model, the mean error of VFIL-Tr

decreases from 8.8 ft to 7.8 ft, resulting in an improvement

of 11%, and the one of VFIL-NoTr is reduced from 10.6 ft

to 9.7 ft, leading to an improvement of 8%.

6.3.4 Impact of jammer’s position

In this round of experiments, we investigated the impact of

the jammer’s position on the localization performance by

randomly placing the jammer anywhere in the network,

instead of restricting the jammer within the center of the

simulation area. We cycled through all three algorithms,

VFIL-Tr, VFIL-NoTr, and CL, in three network scenarios,

whereby (N = 200, rj = 65.6 ft), (N = 200, rj = 80.4 ft),

and (N = 300, rj = 65.6 ft), respectively. The resulted

error CDF curves are plotted in Fig. 11, from which we can

draw the same conclusion: VFIL-Tr still achieves the best

performance no matter which type of jamming model

is used.

However, compared Fig. 11(a) with Fig. 8(a) which has

the same network density and jammer’s NLB radius but

different jammer placement constraint (in the center of

networks), we observed that the performance of all jammer

localization algorithms degrades as a result of random

placement. This is because random positioning will include

cases where the jammer is placed close to the edge of the

network. Under such situations, the jammed nodes and

boundary nodes are resided at one side of the jammer,

causing the estimated jammer location biased towards the
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side where the jammed nodes and the boundary nodes

locate. Such performance degradation will not impose

much concern in practice, because a jammer is less likely

to place itself on the edge of the network, afraid of not

fulfilling its objective to disrupt the communication ability

of as many nodes as possible.

Additionally, we noticed the similar performance trend

in Fig. 11(b, c), indicating the generality of our observa-

tions across various node densities and jammer’s NLB

radii.
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6.3.5 Impact of the decodable SNR threshold

Finally, we examined the impact of the decodable SNR

threshold on the localization algorithms that adopt the

SNR-based jamming model. We studied their performance

in a network with 200 nodes and a jammer with a NLB

radius of 65.6 ft. Figure 12 depicts the average localization

error estimated by VFIL and CL methods when the deco-

dable SNR threshold c0 is set to 0.8, 1.1, and 1.4, respec-

tively. Again, we discovered that VFIL-Tr performs best

for all decodable-SNR threshold values, whereas CL per-

forms the worst. Additionally, as the value of c0 increases,

we found that the localization accuracy improves for all

three algorithms. In particular, when c0 is increased from

0.8 to 1.1 and then to 1.4, the average localization error of

CL decreases from 12.2 ft to 12.1 ft and then to 11.6 ft,

which is an improvement of 5%. Compared with CL

method, the VFIL methods exhibit a larger performance

improvement: 15% (from 9.5 ft to 8.1 ft) for VFIL-Tr and

12% (from 11.1 ft to 9.8 ft) for VFIL-NoTr. The perfor-

mance improvement created by increased c0 can be

explained as the following. Given the same number of

network nodes and the jammer’s NLB radius, a bigger c0
makes a larger number of nodes to be jammed, which

increases the number of constraints and consequently

improves the localization accuracy.

7 Conclusion

In this paper, we explored the task of diagnosing jamming

attacks. In particular, we focused on localizing the jammer

after a jamming attack is identified. We formulated the

jamming effects in two jamming models, region-based and

signal-to-noise-ratio(SNR)-based. The region-based model

applies the free space propagation model to the received

jamming signal power, whereas the SNR-based model

utilizes the signal-to-noise-ratio at the receiver to better

capture the effects of the jammer. Further, we categorized

the network nodes into three states under jamming:

JAMMED, BOUNDARY, and UNAFFECTED. By exploiting

the state of each network node, we developed virtual-force

iterative localization (VFIL) algorithm that utilizes the

network topology to iteratively adjust the estimated loca-

tion of a jammer until it reaches a close approximate of the

true location. VFIL does not depend on the measuring

signal strength inside the jammed region, and thus it is not

affected by the disturbed network communication caused

by jamming. VFIL has two variants: VFIL-Tr assumes the

NLB of the jammer is known, whereas VFIL-NoTr needs

to estimate the NLB of the jammer when estimating the

jammer’s location.

Our experiments involving MicaZ motes show that the

SNR-based model is a realistic jamming model in practice.

Since the region-based model is widely used in many lit-

eratures, we evaluated localization algorithms using both

models. Further, we conducted extensive simulation to

study the impact of various network factors on the per-

formance of our virtual-force iterative approach under both

jamming models. Those factors include network node

densities, jammer’s NLB radius, and jammer’s positions in

the network. Our simulation results have shown that the

virtual-force iterative approach is effective in localizing the

jammer with high accuracy and outperforms the existing

centroid-based methods. Additionally, we observed that all

localization algorithms exhibit better performance using

region-based jamming model, emphasizing the importance

of adopting a realistic jamming model to better capture the

algorithm performance.
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