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Abstract 

Acute lymphoblastic leukemia (ALL) is the most frequent childhood malignancy 

and it is characterized by the accumulation of immature lymphoid cells within the bone 

marrow and lymphoid tissues. Approximately 85% of pediatric ALL patients have a B-cell 

phenotype (B-ALL), and, despite significant improvements in treatment outcome, around 

10-20% still relapse. Thus, there is a clear need for new prognostic factors capable of 

accurately predicting response to therapy. 

PI3K/Akt/mTOR and JAK/STAT5 pathways are extensively implicated in cancer. 

Both cell-autonomous factors and microenvironmental cues, such as interleukin 7 (IL-7), 

contribute to the activation of these pathways in ALL. However, it remains to be 

determined whether their activation status has a prognostic value in this malignancy. 

In the current thesis, we proposed to tackle this issue by analyzing the 

phosphorylation levels of key elements of both pathways in a retrospective cohort (n=58) 

of pediatric B-ALL cases. Methodologically, we decided to use phospho-flow cytometry, 

given its potential applicability in clinical diagnostics. 

Overall, our results show that pediatric B-ALL samples display significant inter-

patient heterogeneity in the constitutive and IL-7-triggered levels of PI3K/Akt/mTOR and 

JAK/STAT5 pathway activation. Interestingly, we found that the response to IL-7 does not 

correlate with the levels of IL-7 receptor α expression. Most importantly, correlation of 

basal activation levels of both pathways with clinical features with known prognostic value 

revealed that higher constitutive levels of phosphorylation of S6 on S235/236 and Akt on 

S473, but not on T308, are associated with higher white blood cell counts. These results 

suggest the existence of two independent mechanisms leading to Akt activation in ALL, 

with different biological outcomes. 

Overall, our preliminary results suggest that there is a positive association of high 

Akt S473 and S6 S235/236 phosphorylation levels with high risk, which is often 

associated with a poor prognosis. 

 

Keywords: B-cell Acute Lymphoblastic Leukemia, PI3K/Akt/mTOR pathway, 

JAK/STAT5 pathway, Interleukin 7, Prognostic value. 
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Resumo 

A leucemia linfoblástica aguda (LLA) é o cancro mais frequente em crianças, 

apresentando um pico de incidência entre os 2 e os 5 anos de idade. Esta doença 

caracteriza-se pela expansão clonal descontrolada e consequente acumulação de linfócitos 

imaturos na medula óssea, com posterior infiltração de outros órgãos. O subtipo mais comum 

de LLA é a leucemia linfoblástica aguda de células B (LLA-B), constituindo cerca de 85% dos 

casos pediátricos e 75% dos casos adultos. Os tratamentos actuais apresentam uma elevada 

eficácia e aproximadamente 80% dos doentes pediátricos apresentam-se livres de doença 5 

anos após o início do tratamento. Contudo, cerca de 10-20% dos doentes sofrem recidivas, 

frequentemente associadas a complicações a longo prazo, resultantes da elevada toxicidade 

dos tratamentos. Existem vários factores de prognóstico em LLA pediátrica essenciais para 

definir o tratamento mais adequado dos doentes, incluindo idade, contagem de leucócitos na 

fase de diagnóstico e presença de anomalias citogenéticas (trissomia 21 ou cromossoma de 

Filadélfia). Um factor de grande importância para a progressão da doença é a activação de 

vias de transdução de sinal fundamentais. Sabe-se, por exemplo, que mutações em 

elementos destas vias podem afectar a resposta dos doentes ao tratamento. No entanto, e 

apesar da contribuição destas vias para o desenvolvimento de LLA-B, o seu valor 

prognóstico não é conhecido. Importa salientar que a caracterização da activação das vias de 

transdução de sinal à data do diagnóstico poderá auxiliar na escolha de terapias mais 

específicas, com consequente aumento da eficácia e diminuição da toxicidade do tratamento. 

As vias de sinalização PI3K/Akt/mTOR and JAK/STAT5 têm sido amplamente 

implicadas em cancro de um modo geral e, em particular, em LLA. A via PI3K/Akt/mTOR 

encontra-se constitutivamente hiperactivada em doentes pediátricos com leucemia 

linfoblástica aguda de células T (LLA-T), promovendo a viabilidade das células leucémicas. 

Foi também demonstrado que esta via é activada pela citocina IL-7 (que se encontra 

presente no microambiente tumoral), modulando a resistência das células leucémicas face à 

quimioterapia. A corroborar este facto, diferentes estudos indicam que a citocina IL-7 é capaz 

de modular, tanto in vitro como in vivo, a resposta das células de LLA-B a inibidores 

farmacológicos de mTOR (Rapamicina). Existe igualmente evidência a nível genético que 

apoia um possível valor prognóstico para esta via em LLA. Vários estudos realizados em 

LLA-T mostram que mutações ou delecções que levam à inactivação do principal regulador 

negativo da via, o supressor tumoral PTEN, estão associadas a um pior prognóstico. Este 

regulador pode ainda estar sujeito a inactivação pós-tradução, um processo bastante 

frequente tanto em LLA-T como em LLA-B. 
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Tal como a via PI3K/Akt/mTOR, a via de sinalização JAK/STAT5 é activada em 

resposta a estimulação com IL-7, ou quando o receptor desta citocina, IL-7R, se encontra 

constitutivamente activado devido a mutações. O principal papel desta via no 

desenvolvimento de LLA-B tem sido maioritariamente demonstrado pela activação 

constitutiva do factor de transcrição STAT5 a jusante da translocação BCR-ABL. Doentes 

com esta translocação, conhecidos como Filadélfia-positivos, apresentavam outrora muito 

mau prognóstico, uma situação resolvida com a inclusão no tratamento de terapias 

direccionadas especificamente para BCR-ABL, entre as quais o Imatinib foi o primeiro 

exemplo. 

Tendo em conta as razões acima descritas, o principal objectivo desta tese é 

determinar, pela primeira vez, se o estado de activação das vias de sinalização 

PI3K/Akt/mTOR e JAK/STAT5 tem valor prognóstico em LLA-B pediátrica. Para responder a 

esta questão, avaliaram-se os níveis de fosforilação de elementos chave de cada uma das 

vias de transdução de sinal num grupo retrospectivo (n=58) de casos pediátricos de LLA-B 

provenientes do Departamento de Pediatria do Instituto Português de Oncologia de Lisboa 

Francisco Gentil (IPOLFG). Para determinar o estado de activação de PI3K/Akt/mTOR 

analisaram-se os níveis de fosforilação de Akt e de S6, um alvo de mTOR; quanto à segunda 

via, JAK/STAT5, avaliou-se o nível de fosforilação de STAT5. Estes níveis foram medidos 

tanto basalmente como após estimulação com IL-7, utilizando citometria de fluxo (phospho-

flow cytometry). Posteriormente, e uma vez que dispomos dos dados clínicos de todos os 

doentes utilizados neste estudo, correlacionaram-se os valores de fosforilação obtidos com 

os parâmetros clínicos com valor prognóstico, tais como idade, contagem de leucócitos à 

data do diagnóstico e doença residual mínima após a terapia de indução. Correlacionaram-

se, também, com o estado de maturação de LLA-B (classificação de EGIL), com o objectivo 

de melhor compreender a biologia da doença. Adicionalmente a esta análise molecular, 

procedeu-se a uma análise funcional onde se avaliou a sensibilidade de cada amostra 

primária à citocina IL-7, medindo parâmetros como a viabilidade e a proliferação das células 

primárias em resposta à IL-7. Mediram-se, ainda, os níveis de expressão da subunidade α do 

IL-7R (IL-7Rα) nestas amostras, com o intuito de os correlacionar tanto com os resultados 

moleculares como com os funcionais. 

É importante referir que a metodologia phospho-flow cytometry foi seleccionada tendo 

por base a enorme quantidade de informação passível de ser obtida através da análise de 

uma única célula, e também por facilmente poder ser introduzida como técnica de 

diagnóstico em contexto clínico num futuro próximo. Na verdade, a técnica de citometria de 

fluxo já é actualmente utilizada na clínica para proceder à sub-classificação dos doentes com 

LLA com base no imunofenótipo das células. 
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Tendo em conta os nossos resultados, demonstrou-se que as amostras pediátricas 

de LLA-B são bastante heterogéneas no que diz respeito aos níveis de activação constitutiva 

das vias de transdução de sinal PI3K/Akt/mTOR e JAK/STAT5. Verificou-se, também, que a 

estimulação com IL-7 induz um aumento de activação de ambas as vias, embora com grande 

variabilidade entre as amostras. Quanto à análise funcional, e em concordância com o que já 

se tinha observado, a maioria das amostras primárias é sensível à estimulação com IL-7, 

traduzindo-se num aumento de viabilidade e proliferação celular. No que diz respeito aos 

níveis de expressão do IL-7Rα, também eles bastante variáveis, verificou-se que os mesmos 

não se correlacionam com os resultados moleculares e/ou funcionais. Isto é, níveis elevados 

de expressão do receptor não se traduzem necessariamente em maior activação das vias 

após estimulação com IL-7, nem num maior aumento de viabilidade ou proliferação celular. 

Para terminar, procedeu-se à correlação dos níveis de activação de ambas as vias de 

sinalização, tanto basais como após estimulação com IL-7, com as características clínicas 

anteriormente mencionadas. Não se encontrou nenhuma correlação significativa quando os 

níveis de activação foram comparados com a idade, o estado de maturação ou a doença 

residual mínima. Curiosamente, níveis basais elevados de fosforilação de S6 nas serinas 235 

e 236 e de Akt na serina 473 (mas não na treonina 308) correlacionam-se com níveis 

elevados de leucócitos no diagnóstico que, por sua vez, estão associados a um risco 

elevado. Compararam-se, também, os níveis de expressão do IL-7Rα com os mesmos 

parâmetros clínicos e, embora não se tenha encontrado nenhuma associação significativa, 

existe uma tendência para níveis elevados de expressão em crianças com idade igual ou 

superior a 10 anos, normalmente associada a um pior prognóstico. 

Concluindo, estes resultados, embora preliminares, parecem sugerir uma possível 

associação entre níveis elevados de fosforilação de S6 (serinas 235 e 236) e Akt (serina 473) 

e risco elevado, que se encontra normalmente associado a um mau prognóstico. O facto de 

esta correlação apenas abranger a fosforilação de Akt na serina 473, e não a na treonina 

308, aponta para possível existência de dois mecanismos de activação de Akt em LLA, 

afectando diferencialmente os dois resíduos com consequências biológicas distintas. É nossa 

intenção repetir as análises realizadas neste estudo num maior número de amostras 

primárias, com o objectivo de validar as conclusões apresentadas nesta tese. 

 

Palavras-chave: Leucemia linfoblástica aguda de células B (LLA-B), via de sinalização 

PI3K/Akt/mTOR, via de sinalização JAK/STAT5, citocina IL-7, valor de prognóstico. 
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Introduction 

B cell development 

The development of B lymphocytes is an ordered and highly regulated process 

that begins in the bone marrow (BM) and continues in the secondary lymphoid organs, 

such as the spleen and lymph nodes. It starts when hematopoietic stem cells (HSCs) 

become committed to the B cell lineage and proceeds with the rearrangement of 

immunoglobulin (Ig) genes, as well as with the gain and loss of expression of several 

genes that have critical roles in commitment and maintenance along the B cell 

development1. 

B lymphopoiesis can be divided into several stages, each defined by the 

sequential expression of different genes, and by the rearrangement status of the 

immunoglobulin heavy (IgH) and light (IgL) chains (Figure 1). The earliest cell committed 

to the B cell lineage is called the early progenitor-B cell (early pro-B or pre-pro-B), which is 

characterized by the beginning of IgH chain rearrangement, with the recombination of 

diversity (DH) and joining (JH) gene segments, and the expression of Igα (CD79a), a B 

lineage specific protein2-4. In pro-B cells, the rearrangement of the variable (VH) gene 

segment with the rearranged DJH segments occurs and cells start to express CD192, 3, 5. 

Upon completion of functional VDJ IgH rearrangements, pro-B cells differentiate into 

precursor B cells (pre-B cells). Pre-B cells are characterized by the expression of the 

cytoplasmic µ heavy chain (µHC) on the cell surface, in association with a surrogate light 

chain, as part of the pre-B cell receptor (pre-BCR) complex, which plays important roles in 

B cell proliferation and maturation6, 7. This stage can be subdivided into two substages: an 

initial proliferative phase called large pre-B cell stage and a maturation phase named 

small pre-B cell stage, which is characterized by the rearrangement of the VL and JL gene 

segments of the IgL chain7. Signaling through the pre-BCR is responsible for the transition 

between these two substages. After the successful IgL rearrangement and association 

with the HC, an IgM is produced, which specifically characterizes immature B cells. The 

immature B cells that are not self-reactive leave the BM and complete their maturation in 

the spleen.  
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Figure 1. Schematic representation of B cell developmental stages. Each stage is defined by 
the sequential expression of different proteins and by the rearrangement status of the IgH and IgL 
chains. GL: germline; TdT: terminal deoxynucleotidyl transferase. 

 

As described earlier, B cell development is a tightly regulated process, mainly 

controlled at the transcriptional level. This level of regulation is responsible for B cell 

lineage commitment and differentiation. By knockout experiments, several transcription 

factors have been identified as essential for B lymphopoiesis. In lymphoid lineage 

commitment, two transcription factors are the key regulators, PU.1 and Ikaros8, 9. PU.1 is 

also responsible for controlling the expression of the interleukin 7 receptor (IL-7R) in 

lymphoid progenitors10. Other three transcription factors, immunoglobulin enhancer-

binding factor (E2A), early B cell factor (EBF) and paired box protein (Pax5), are important 

for the commitment to the B cell lineage at the pro-B cell stage11. Although the 

transcription factors mentioned above affect early development, some of them are also 

active at the later stages of B cell differentiation. 

Besides the importance of the specific transcription factors mentioned above, the 

cells comprising the BM microenvironment also have a major role in B cell development 

by directly interacting with the B cell precursors and by secreting required cytokines and 

chemokines. Thus, both intrinsic and extrinsic factors regulate B cell lymphopoiesis. 

Receptors to the secreted cytokines and chemokines are expressed in B cells and control 

the early stages of B cell development. The most important ones are c-kit, fms-like 

tyrosine kinase 3 (Flt3), IL-7R and C-X-C chemokine receptor type 4 (CXCR4). Their 



Introduction 

17 

respective ligands are the stem cell factor (SCF), Flt3 ligand (Flt3L), interleukin 7 (IL-7) 

and stromal derived factor 1 (SDF-1, also known as C-X-C chemokine ligand (CXCL) 

12)12, 13. Different cell types within the BM, such as osteoblasts, reticular cells and 

fibroblast-like stromal cells expressing IL-7, produce these factors, creating specific 

cellular niches12. Throughout B cell development, B cells at different stages of 

differentiation localize within different BM niches according to their needs (Figure 2). 

 

Figure 2. Movement of B cell progenitors within BM niches during B cell development. 
HSCs, when committed to the B cell lineage, move from the osteoblasts or endothelial cells to the 
reticular cells expressing CXCL12. Thereafter, pro-B cells move away from these cells towards IL-
7-expressing stromal cells and, within the pre-B cell stage, large pre-B cells are still in contact with 
IL-7-expressing cells, whereas small pre-B cells leave them. At last, immature B cells exit the BM. 
From Clark et al., 201414. 

 

 

B-cell Acute Lymphoblastic Leukemia (B-ALL) 

Malignant B cell development 

B-ALL is a malignant neoplasm characterized by uncontrolled clonal proliferation 

and accumulation of immature cells of B lymphoid lineage within the BM that ultimately 

leads to the infiltration of several extramedullary organs. These cells phenotypically 

resemble the normal developmental stages of B cell differentiation and can disrupt normal 

hematopoiesis due to their abnormal proliferative rate. The mechanisms that impair 
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normal B cell development and the precise cellular origin of the disease are not 

completely understood. 

Regarding the mechanisms that lead to the disruption of B cell lymphopoiesis, it is 

already known that multiple specific genetic changes may contribute to B-ALL 

development. It is thought that a primary genetic event, usually a chromosome 

translocation, followed by different secondary genetic alterations may drive the malignant 

transformation. These genetic alterations commonly interfere with the control of normal B 

cell differentiation and proliferation15. In fact, alterations in genes encoding transcription 

factors essential for normal B lymphopoiesis, such as Ikaros, E2A, EBF and Pax5, have 

been described16. As in normal development, genetic abnormalities are not the only 

events promoting leukemogenesis: the surrounding microenvironment plays an important 

role in this process. Indeed, both composition and function of BM stromal cells are 

significantly changed in B-ALL cases, leading to an increase in the levels of the 

chemokines and cytokines responsible for the proliferation and survival of the leukemic 

cells17. However, it is not known whether the microenvironmental abnormalities precede 

the leukemic stage or are a consequence of the leukemic cell activity. 

The exact cell-of-origin of B-ALL remains an open relevant issue. By in vitro and in 

vivo studies, it has been suggested that the primary genetic event can occur in different 

cells at different stages of maturation18. In other words, both cells at early stages of B cell 

development as well as cells at later stages can be the leukemia cells-of-origin in human 

B-ALL. Another hypothesis defends that the primary transformation may take place at an 

early developmental stage, followed by further differentiation of the altered B cell and 

arrestment at a later stage of differentiation19. Regarding pediatric B-ALL, it has been 

proposed, for several years, that it may be originated prenatally in utero during fetal 

hematopoiesis, with additional postnatal events to complete malignant transformation20. 

 

General Features 

Acute lymphoblastic leukemia (ALL) is the most frequent childhood malignancy, 

accounting roughly for one quarter of all pediatric cancers and more than 80% of 

leukemias. ALL has a peak of incidence at 2 to 5 years of age and is also common in the 

elderly, while it is unusual in middle-aged adults21, 22. The most common subtype of ALL is 

B-ALL, comprising 85-90% of pediatric and 75% of adult ALL cases. Despite significant 

improvements in treatment outcome, with a 5-year event-free survival rate of 

approximately 80% for childhood ALL23, around 10-20% of the patients still relapse with 

very poor prognosis. The scenario is even worst when looking at adult ALL, where only 
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about 30-40% of the patients achieve long-term disease-free survival24. Of note, the 

current thesis focuses only on pediatric B-ALL. 

Patients with ALL are usually characterized by BM infiltration with more than 80-

100% of malignant lymphoblasts and diagnostic symptoms are correlated with leukemia 

cell burden, extension of BM replacement and involvement of peripheral blood (PB) and 

extramedullary sites. For these reasons, there are several clinical features at presentation, 

such as anemia, thrombocytopenia, splenomegaly, lymphadenopathy and headache 

(usually an indication of central nervous system (CNS) involvement)25.  

B-ALL can be sub-classified according to the immunophenotype and to specific 

genetic abnormalities. Regarding the immunophenotype, the European Group for the 

Immunological classification of Leukemias (EGIL)26 proposes a classification mainly based 

on the maturation stage of normal B cell development where the arrest occurred, leading 

to four B-ALL subtypes: pro-B ALL (B-I), common B-ALL (B-II), pre-B ALL (B-III) and 

mature B-ALL (B-IV, Burkitt ALL). The first three subtypes constitute the precursor B-ALL 

group, whereas the last one forms the mature B-ALL group. The most common subtype in 

pediatric cases is, as the name suggests, the common B-ALL. A summary of the 

immunological markers of each subtype is shown in Table 1. 

Table 1. The EGIL classification of pediatric B-ALL. 

B-ALL Subtype Immunological markers 

Pro-B ALL HLA-DR+, TdT+, cCD79+, CD19+, CD10-, cyIgM-, CD20-, sIg- 

Common B-ALL HLA-DR+, TdT+, cCD79+, CD19+, CD10+, cyIgM-, CD20-, sIg- 

Pre-B ALL HLA-DR+, TdT+, cCD79+, CD19+, CD10+, cyIgM+, CD20+/-, sIg- 

Mature B-ALL CD20+, sIg+, TdT- 

HLA: human leukocyte antigen; TdT: terminal deoxynucleotidyl transferase; cy: cytoplasmic;          
s: surface. 

 

Regarding the genetic abnormalities, they are detected in about 80% of children 

with B-ALL and their identification has important implications on prognosis and therapeutic 

choices15. Different types of alterations have been found, including chromosomal 

translocations; additions or deletions of chromosomes and genes; and rearrangement, 

gain, loss or mutation of specific genes. These genetic changes often lead to disruption of 

the regulation of normal B cell development and aberrant signal transduction, by affecting 

the function of transcription factors and the constitutive activation of tyrosine kinases, 
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respectively15. The frequency of the genetic abnormalities seen in pediatric cases is 

presented in Figure 3. 

 

 

Figure 3. Estimated frequency of genetic abnormalities subgroups in pediatric ALL. The 
genetic alterations shown in purple are only detected in T-cell ALL cases. This figure does not 
include submicroscopic genetic alterations. iAMP21: intrachromosomal amplification of 
chromosome 21. Adapted from Pui et al., 201123. 

 

Treatment 

Childhood ALL treatment has been changing over time in order to establish taylor-

made, patient-adjusted therapies with the goal of augmenting efficacy while decreasing 

the significant acute toxicities and late-occurring adverse events associated with current 

chemotherapy. 

Briefly, B-ALL treatment usually comprises 3 phases. The initial phase of 

treatment, the remission induction phase, whose main objective is to achieve remission 

and restore normal hematopoiesis, includes the combination of glucocorticoids 

(prednisone or dexamethasone), vincristine and asparaginase. One or more additional 

drugs, such as an anthracycline (doxorubicin or daunorubicin) and cyclophosphamide, are 

integrated in the treatment of children with high or very high risk ALL27. After completion of 

this first phase, it is necessary to ensure the complete abolishment of residual leukemic 

cells, including the drug-resistant ones. This is the goal of the consolidation or 
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intensification phase, normally consisting on the administration of high-dose methotrexate 

and mercaptopurine27. The treatment finishes with a less intensive regimen of weekly 

methotrexate and daily mercaptopurine, named continuation or maintenance therapy, to 

avoid relapses and effect cure27. Since some patients may present CNS involvement at 

time of diagnosis and some of them may present it during the course of the disease, CNS 

directed therapy should be included in treatment protocols. Currently, this therapy consists 

of triple intrathecal chemotherapy with methotrexate, cytarabine, and hydrocortisone27.  

It is important to refer that pediatric patients with mature B-ALL, known to have 

unfavorable prognosis, are treated with a more intensive chemotherapy regimen, including 

high-dose methotrexate, cytarabine, and cyclophosphamide, for a short period of time21. It 

has also been shown that high risk ALL patients, such as those with Ph-positive disease 

and those with a poor early response to treatment, benefit from allogeneic hematopoietic 

stem cell transplantation (SCT), the most intensive form of treatment21.  

 

Prognostic Factors 

The prognosis of childhood ALL has improved substantially over the last decades, 

mostly due to the identification of trustworthy prognostic factors essential to establish 

prognosis, treatment protocol and follow-up strategy, as well as to personalize patient 

counseling. Two subgroups of prognostic factors can be identified: those at presentation, 

including age, initial white blood cell (WBC) counts, CNS disease, immunophenotype and 

presence of certain cytogenetic and molecular features; and those based on treatment 

response, comprising achievement of complete remission, detection of minimal residual 

disease (MRD), time to relapse and overall survival23. Notably, some prognostic indicators 

in pediatric ALL, such as gender and race, have lost their prognosis strength as a result of 

enhanced treatment strategies21.  

Regarding the first subgroup of prognostic factors, and starting by age at diagnosis 

which has a strong prognostic effect, children older than 1 year of age and younger than 

10 years of age have a better prognosis than infants (less than 1 year old) or adolescents. 

In fact, the 5-year event-free survival estimate is 88% for children with ages between 1 

and 9 years, 73% for adolescents between 10 and 15 years, 69% for children older than 

15 years, and 44% for infants. The latter group has the worst prognosis21. Other factors 

conferring a poor prognosis are the presence of high WBC counts (≥50x109cells/L) and 

CNS disease at diagnosis21. The prognostic value of the developmental stage of B-ALL is 

uncertain. It is currently known that children with mature B-ALL have an unfavorable 

prognosis as compared to those with precursor B-ALL21. Nonetheless, there is no 



Introduction 

22 

consensus about the prognostic power of each of the three subtypes within the precursor 

B-ALL group. The last, but not least, important prognostic factor in this subgroup is the 

presence of genomic abnormalities. The most commonly associated with an adverse 

outcome are hypodiploidy (<44 chromosomes), especially near haploidy (24-31 

chromosomes) and low-hypodiploidy (32-39 chromosomes); BCR-ABL1 translocation 

(also called Philadelphia chromosome (Ph)); MLL gene rearrangements; and iAMP2128. 

Of note, the outcome of patients with BCR-ABL1 translocation has been dramatically 

improved with the introduction of BCR-ABL targeted therapies (tyrosine kinase inhibitors, 

TKIs, such as Imatinib) in the treatment protocols. Those associated with a favorable 

prognosis are hyperdiploidy (>50 chromosomes) or DNA index (DI) ≥1.16, and ETV6-

RUNX1 rearrangement28. This is confirmed by the estimated event-free survival rates for 

each genetic abnormality (Table 2)27. 

Table 2. Estimated event-free survival of different genetic abnormalities with 
significant prognostic value in pediatric B-ALL. 

Prognosis Genetic abnormality 
Estimated percent event-free 

survival (at the indicated years) 

Favorable 
Hyperdiploidy 80-90 (5 years) 

ETV6-RUNX1 fusion 85-95 (5 years) 

Adverse 

Hypodiploidy 30-40 (3 years) 

BCR-ABL1 fusion 80-90 (3 years) 

MLL-AF4 fusion 30-40 (5 years) 

iAMP21 60-70 (5 years) 
 

Regarding the response to treatment, MRD detection at the end of induction 

therapy is the most powerful independent predictor of prognosis and can be used to 

change treatment regimens28, 29. Assessment of this parameter provides a more sensitive 

measurement of the rate of reduction of leukemic cells from both BM and PB during 

remission induction therapy28. Two different methods can be used to detect MRD at very 

low levels (<0.01%), namely flow cytometric profiling of aberrant leukemia-associated 

immunophenotype and polymerase chain reaction (PCR) amplification of leukemia-

specific fusion transcripts or Ig gene rearrangements21, 25. Children with 1% or more 

leukemic cells in BM at the end of remission induction therapy have a worse prognosis, 

whereas those with less than 0.01% leukemic cells, which achieved immunological or 

molecular remission, have an outstanding outcome21. So, the extent of MRD inversely 

correlates with prognosis. 
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IL-7/IL-7R-mediated signaling in normal and malignant B cell development 

Normal B- and T- cell development require different cytokines secreted in the 

microenvironment, including IL-7, a type I pro-survival cytokine originally described as a 

growth factor for mouse B lineage progenitors30. IL-7 is produced by several types of cells, 

such as BM and thymic stromal cells, vascular endothelial cells, intestinal epithelium, 

keratinocytes and follicular dendritic cells. Its heterodimeric receptor, IL-7R, comprises the 

IL-7Rα subunit (CD127), encoded by IL7R and shared by the receptor for thymic stromal 

lymphopoietin (TSLP), and the common gamma chain, γc, which is shared by the cytokine 

receptors for IL-2, IL-4, IL-9, IL-15, and IL-2131, 32. The IL-7 receptor is mainly expressed 

by lymphoid cells, as B and T cell precursors, and also by leukemic cells33. 

The precise role of the IL-7/IL-7R system during normal human B cell development 

is not as clear as it is for normal human T cell development and murine B cell 

development. Expression of the IL-7R is tightly regulated during both mouse and human B 

cell differentiation, starting at early pro-B cells until the large pre-B cell stage. When the 

maturation proceeds, its expression begins to be downregulated33, 34. The critical roles of 

IL-7 in murine B cell development have been demonstrated by in vivo loss-of-function 

experiments. By using blocking antibodies against IL-7 or IL-7R, it was observed a rapid 

decrease in the total number of B lineage cells within the BM35, 36. Furthermore, targeted 

deletions in the IL-7, IL-7Rα or γc genes lead to a block at an early stage of B 

lymphopoiesis in adult mice37-39. However, when one looks at human B cell development, 

IL-7 does not seem to be absolutely essential. Indeed, B cell differentiation can occur in 

the absence of IL-7, as it was shown by Pribyl and LeBien40. Using in vitro cultures of 

CD34++/CD19- HSCs isolated from human fetal BM, the authors generated CD19+ B cells 

without addition of exogenous IL-7. Moreover, addition of anti-IL-7 neutralizing antibodies 

to those cultures did not affect the development and expansion of CD19+ cells40. This lack 

of IL-7 requirement is further supported by patients with X-linked severe combined 

immunodeficiency (XSCID), characterized by mutations in the γc subunit of the IL-7R, who 

completely lose T cells without affecting B cell numbers41. In spite of this apparent human 

IL-7-independent development of B cells, this cytokine still plays a role in cell survival, 

proliferation and differentiation during the early stages of B cell development42. 

Additionally to its role in normal lymphoid development, IL-7 has also been 

associated with ALL development. Indeed, IL-7 is present in the leukemia 

microenvironment43 and leukemic cells express the IL-7R33. Several studies have 

addressed this issue, although the majority of them focused on T-cell acute lymphoblastic 

leukemia (T-ALL), the less common subtype of ALL. For instance, in vitro studies indicate 
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that IL-7 increases viability and promotes cell proliferation of primary T-ALL cells, acting 

mainly through activation of the PI3K/Akt pathway31, 44, 45. In addition, IL-7 was shown to 

accelerate leukemia expansion in murine xenotransplant models of T-ALL46. Regarding B-

ALL development, although some studies have demonstrated that IL-7 induces 

proliferation and survival of primary B-ALL cells, the response to IL-7 varies considerably 

among patients47, 48. There is also evidence that IL-7R expression is elevated in adult 

patients with pre-B ALL49. Recently, somatic gain-of-function mutations in IL7R in pediatric 

B-ALL patients have been described, hinting on the oncogenic potential of IL-7R-mediated 

signaling in B cells50. It should be noted, nonetheless, that mutational activation of the IL-

7R was frequently concomitant with aberrant expression of CRLF2, which together form a 

functional receptor for TSLP50. 

To exert its functions in cell survival and proliferation, IL-7 activates two important 

signaling pathways, JAK/STAT5 and PI3K/Akt/mTOR31 (Figure 4). Activation of these key 

pathways has been extensively implicated in cancer in general and in ALL progression in 

particular. Importantly, mutations in elements of these pathways may impact on response 

to treatment51-53. The signaling is initiated by binding of the IL-7 to its receptor, which 

induces dimerization of the IL-7R. This, in turn, brings the associated Janus kinases 

(JAKs) proteins (JAK1 in IL-7Rα and JAK3 in γc) together and leads to their 

transphosphorylation and activation54, 55. Activated JAKs are then responsible for the 

phosphorylation of specific tyrosine residues on the cytoplasmic domain of the IL-7Rα 

subunit, thus creating docking sites for SH2-containing proteins, such as signal transducer 

and activator of transcription (STAT) proteins and phosphatidylinositol 3-kinase (PI3K)54. 

 

JAK/STAT5 pathway 

Once STAT5 (two isoforms: STAT5a and STAT5b) is recruited and activated by 

JAK-mediated phosphorylation, it dimerizes and translocates to the nucleus, where it acts 

as a transcription factor of several genes whose proteins are involved in cell viability, 

proliferation and cell cycle progression54. Such proteins include Bcl-2, Bcl-XL, Mcl1 and 

cyclin D3. Besides being activated in response to IL-7 stimulation44, 48, STAT5 can also be 

activated upon mutational activation of the IL-7R50, 56. STAT5 is a crucial effector of IL-7 

signaling during early B cell development, as demonstrated by the fact that expression of 

a constitutively active form of STAT5b (Stat5b-CA) largely restores B cell development in 

Il7r-/- mice57. There is evidence that STAT5 is involved in IL-7-mediated cell survival of pro-

B cells by promoting the transcription of the Mcl1 gene58. However, its involvement in 

regulating B cell differentiation is still controversial59. The key role of JAK/STAT5 pathway 
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in the development of human B-ALL is mainly shown by constitutive activation of STAT5 

in Ph-positive ALL cases, downstream of the BCR-ABL translocation, and in patients with 

CRLF2 overexpression in combination or not with activating mutations in JAK1 and 

JAK259-61. Mice with expression of a BCR-ABL cDNA in B cell progenitors developed a 

disease that resembles human B-ALL only in the presence of STAT562, further supporting 

the major contribution of this transcription factor in malignant transformation. 

 

PI3K/Akt/mTOR pathway 

Another signaling pathway activated downstream of IL-7/IL-7R axis is the 

PI3K/Akt/mTOR pathway. When activated by binding of the IL-7 to its receptor, PI3K, 

composed by a p110 catalytic subunit and a p85 regulatory subunit, is involved in the 

production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the membrane31, 63. This 

event recruits and triggers the activity of the serine/threonine 3-phosphoinositide 

dependent protein kinases, PDK1 and PDK2, which are responsible for the 

phosphorylation and full activation of the serine/threonine kinase Akt/PKB. PDK1 

phosphorylates a threonine residue (T308) within the kinase domain of Akt, whereas 

PDK2 phosphorylates a serine residue (S473) in the C-terminal domain of Akt31, 63. Once 

activated, Akt activates or represses by phosphorylation a number of downstream targets, 

such as BAD, GSK3β and mTOR31. mTOR phosphorylates and thereby activates p70S6 

kinase, which then phosphorylates the ribosomal protein S6, leading to an increase in 

protein translation at the ribosome. Overall, this pathway promotes cell viability and 

proliferation, inhibits apoptosis and controls cell metabolism31, 43, 63. The major negative 

regulator of PI3K/Akt/mTOR pathway is the tumor suppressor PTEN, a lipid phosphatase 

that dephosphorylates PIP3 into PIP2, thus downregulating PI3K signaling31, 63. 

In vivo studies have shown that PI3K/Akt/mTOR pathway regulates cell 

proliferation of pre-B and also mature B cells, since mice deficient for the catalytic or 

regulatory subunits of PI3K have a block at the pre-B cell stage, with pro-B cells 

proliferating normally64, 65. However, it is not completely excluded a putative role of this 

pathway in the survival of pro-B cells in response to IL-7 signaling, acting in concert with 

STAT514. Like the STAT5 pathway, the PI3K/Akt/mTOR pathway has also been 

associated with ALL. For instance, constitutive hyperactivation of PI3K/Akt/mTOR is a 

very frequent event in pediatric patients with T-ALL, involved in promoting leukemic cell 

viability66. Also, this pathway is activated by IL-7 present in the leukemia 

microenvironment, which may modulate resistance to chemotherapy31, 67. Indeed, some 

studies indicate that IL-7 can modulate the response of leukemic cells to mTOR 
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pharmacological inhibitors (Rapamycin) both in vitro and in vivo68, 69. It was also shown 

that mutational inactivation or deletion of the PTEN gene is associated with poor 

prognosis of ALL, raising the possibility that this pathway may have prognostic value in 

ALL51, 52. However, there is also evidence that non-deletional PTEN posttranslational 

inactivation occurs very often in both T-ALL66 and B-ALL70, which may be a confounding 

factor in prognosis analysis based exclusively on the mutational status of PTEN. 

 

 

Figure 4. Schematic representation of IL-7/IL-7R-mediated signaling through JAK/STAT5 
and PI3K/Akt/mTOR pathways. Black arrows denote activation, whereas red bars indicate 
inhibitory actions. Dashed arrow identifies translocation to the nucleus. 
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Objectives 

Despite the significant improvements in treatment outcome over the last decades, 

around 10-20% of B-ALL patients still relapse and have very poor prognosis. So, there is 

an urgent demand for new prognostic factors predicting response to therapy. Given the 

importance of the PI3K/Akt/mTOR and JAK/STAT5 signaling pathways to B-ALL 

development, we decided to focus on these two critical pathways and evaluate the 

prognostic significance of their activation in B-ALL, at the protein level. Taken these 

reasons together, in the present thesis, we aimed to determine, for the first time, the levels 

of activation of PI3K/Akt/mTOR and JAK/STAT5 pathways in primary leukemia samples at 

the single cell level and correlate those levels with clinical parameters (such as MRD), in 

order to understand whether the activation status of these important signaling pathways 

have prognostic value in childhood B-ALL. To this purpose, we have used a flow 

cytometry approach with phospho-specific antibodies (phospho-flow) to analyze a 

retrospective cohort of pediatric B-ALL patient samples collected at diagnosis and for 

which we have collected clinical data. The reason why we selected the phospho-flow 

methodology relates to its potential applicability to actual clinical diagnostics. 

The following specific aims were defined to accomplish the main goal: 

1. Examine the basal levels of PI3K/Akt/mTOR and JAK/STAT5 signaling pathway 

activation for each patient sample. 

2. Assess the levels of PI3K/Akt/mTOR and JAK/STAT5 activation for each patient 

sample upon ex vivo stimulation with IL-7. 

3. Evaluate the sensitivity of the patient samples to IL-7. 

4. Determine whether basal and/or IL-7-mediated activation of PI3K/Akt/mTOR 

and/or JAK/STAT5 signaling pathways may serve as prognostic factors. 

In the first two specific aims, we have analyzed the phosphorylation levels of Akt, the 

mTOR downstream target S6 and STAT5. 

By addressing these tasks, it was our overall goal to understand whether the activation 

status of PI3K/Akt/mTOR and/or JAK/STAT5 pathways has prognostic value in pediatric 

B-ALL. 
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Materials and Methods 

Primary B-ALL samples and the NALM-6 cell line 

Bone marrow samples from childhood B-ALL patients (n=58) were collected at 

diagnosis at the Pediatric Department of Instituto Português de Oncologia de Lisboa 

Francisco Gentil (IPOLFG) in accordance with the Declaration of Helsinki, after informed 

consent and proper internal Ethical Committee approval. Patient characteristics are 

summarized in Table S1 (see Supplementary Information). These samples were 

previously enriched by density centrifugation over Ficoll-Paque (GE Healthcare) and 

frozen in liquid nitrogen in a suspension of fetal bovine serum (FBS; Biowest) with 10% 

dimethyl sulfoxide (DMSO; Sigma). The human B-ALL cell line, NALM-6, was thawed and 

expanded in culture in RPMI-1640 culture medium with L-glutamine (Gibco) supplemented 

with 10% of FBS and penicillin/streptomycin (Gibco) (hereafter referred to as RPMI 10 

medium) at a concentration of 0.5x106 cells/ml at 37ºC in 5% CO2. After three passages, 

this cell line was frozen in the same conditions described above. 

 

Intracellular phospho-specific flow cytometry 

To assess the phosphorylation status of PI3K/Akt/mTOR and JAK/STAT5 

pathways, primary leukemia and NALM-6 cells were thawed and cultured in RPMI 10 at 

37ºC in 5% CO2 for 1 hour at a concentration of 2x106 cells/ml and 0.5x106 cells/ml, 

respectively. Afterwards, cells were washed with PBS (Gibco), pelleted by centrifugation, 

and fixed with Cytofix buffer (BD Biosciences) for 10 minutes at 37ºC. Cells were then 

pelleted and permeabilized in ice-cold Perm buffer III (BD Biosciences) for 30 minutes on 

ice. The cells were first washed in PBS and then in Stain buffer (BD Biosciences), and 

stained with the following antibodies: CD79a-APC (BioLegend); CD3-eFluor 450 

(eBioscience); pAkt S473-Alexa Fluor 488, pAkt T308-PE, pS6 S235/236-Alexa Fluor 488, 

and pSTAT5 Y694-Alexa Fluor 488 (all from BD Biosciences). Following a 30 minutes 

incubation at room temperature in the dark, cells were washed in stain buffer, 

resuspended in PBS and analyzed on an LSRFortessa (BD Biosciences). To measure the 

phosphorylation status of both pathways upon ex vivo stimulation with IL-7 (Prepotech), 

the same protocol was performed with an additional step: before fixing the cells, they were 

stimulated with 50ng/ml of IL-7 and incubated at 37ºC for 30 minutes. At least 100 000 

events were collected for all samples. Data were collected using DIVA software (BD 

Bioscience) and analyzed using the FlowJo software (Tree Star). Basal phospho-protein 

levels were normalized to those of NALM-6 cells, which underwent the same protocol. 
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Analysis of IL-7Rα surface expression 

The expression of the interleukin 7 receptor α chain (IL-7Rα or CD127) on primary 

ALL cells was assessed ex vivo by flow cytometry using a CD127-PE antibody 

(eBioscience). For the staining, cells were washed with PBS and resuspended in PBS 

with CD19-APC (eBioscience), CD3-APC-eFluor 780 (eBioscience) and CD127-PE. After 

30 minutes of incubation at 4ºC in the dark, cells were washed with PBS and resuspended 

in 200µL of PBS. Next, samples were analyzed in an LSRFortessa cytometer. Data were 

collected using DIVA software, analyzed with FlowJo software and represented as the 

specific mean fluorescence intensity (MFI). 

 

Assessment of cell viability and cell size 

Cells were cultured in 96-well plates at a density of 2x106 cells/ml at 37ºC with 5% 

CO2 in medium only or with 10ng/ml of IL-7. At different time points (24h, 48h, 72h or 

96h), cells were harvested and cell viability was determined by double-staining with APC-

conjugated Annexin V (AnnV; eBioscience) and 7-AAD (BD Biosciences). Briefly, cells 

were washed with PBS and resuspended in 100µL of PBS with FITC-conjugated CD19 

(eBioscience) and CD3-eFluor 450. After 30 minutes of incubation at 4ºC in the dark, cells 

were washed with PBS and resuspended in 100µL of binding buffer (eBioscience) with 

Annexin V and 7-AAD. After 15 minutes of incubation at room temperature in the dark, 

100µL of binding buffer were added and the samples analyzed by flow cytometry using an 

LSRFortessa. Live cells were identified as the Annexin V and 7-AAD double-negative 

population and cell size was evaluated by FSCxSSC discrimination within the live cell 

population. Data were collected using DIVA software and analyzed with FlowJo software. 

 

Protein Extraction and Quantification 

Cells were harvested and centrifuged at 3200 rpm for 5 minutes at 4ºC to produce 

a cell pellet. After discarding the supernatant, the cell pellet was lysed in lysis buffer 

(50mM Tris-HCl pH 8.0; 150mM NaCl; 5mM EDTA; 1% (v/v) NP-40, 1mM Na3VO4; 10mM 

NaF; 10mM NaPyrophosphate; supplemented with protease inhibitor cocktail Complete 

Mini (Roche)), supplemented with 1mM of AEBSF (Bio-Rad). Next, protein supernatants 

were collected by centrifugation at 13000 rpm for 20 minutes at 4ºC. The total protein was 

quantified by performing the Bradford assay (Bio-Rad). Before resolving the protein 

extracts, they were resuspended in Laemmli sample buffer (Bio-Rad) and denatured for 5 

minutes at 95ºC. 
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Western Blot 

Equal amounts of protein extracts were resolved by 12% SDS-PAGE and 

transferred onto nitrocellulose membranes by using a conventional transfer system (90 

minutes, 400mA). Then, in order to check the effectiveness and uniformity of the protein 

transfer, membranes were stained with Ponceau S solution (Sigma). Subsequently, 

membranes were blocked for 1 hour with 3% milk diluted in Tris-Buffered Saline with 0.1% 

Tween 20 (TBS-T buffer) and immunoblotted with the following primary antibodies 

(previously diluted in TBS-T buffer): p-Akt (S473) (1:500) and Akt (1:1000) (Cell Signaling 

Technology); p-S6 (S235/236) (1:1000) and S6 (1:1000) (Cell Signaling Technology); p-

STAT5A/B (Y694/Y699) (1:1000, Cell Signaling Technology) and STAT5 (1:1000, Santa 

Cruz Biotechnology); and actin (1:1000, Santa Cruz Biotechnology). The membranes 

were incubated with each antibody overnight at 4ºC under gentle agitation. As a 

reference, Precision Plus ProteinTM molecular weight marker was used (Bio-Rad). Next 

day, the membranes were washed with TBS-T buffer for 25 minutes and incubated for 1 

hour at room temperature under gentle agitation with horseradish peroxidase-conjugated 

secondary antibodies (anti-rabbit IgG (1:5000, Promega) or anti-goat IgG (1:5000, Santa 

Cruz Biotechnology), depending on the primary antibodies), diluted in 3% milk TBS-T 

buffer solution. After washing the membranes with TBS-T buffer for 25 minutes, 

immunodetection was performed by chemiluminescence detection using the Pierce ECL 

Plus Western Blotting Substrate (Thermo Fisher Scientific Inc.). Films exposed to the 

membranes were developed in a Curix60 (AGFA HealthCare). 

 

Membrane Stripping 

To re-probe the same membranes with new antibodies, the previous were 

removed through a stripping procedure. First, membranes were incubated for 30 minutes 

at 56ºC with slight agitation in stripping buffer (35mM Tris-HCl, 2% SDS, 1.42mM β-

mercaptoethanol (β-ME), pH 6.7) supplemented with 14.2mM of β-ME (Bio-Rad). 

Afterwards, membranes were washed four times, being the first wash with water and the 

following ones with TBS-T buffer. At the end of the stripping procedure, the membranes 

were ready for a new immunoblot, starting from the blocking step of the protocol described 

above. 
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Proliferation Assays 

Cells were cultured in flat-bottom 96-well plates at 2x106 cells/ml at 37ºC with 5% 

CO2 in RPMI 10 medium only or in the presence of 10ng/ml of IL-7. Cultures were 

performed in triplicates for the indicated time points. To assess DNA synthesis, cells were 

incubated with 1µCi/well of [3H] thymidine (Perkin Elmer) for 16 hours before harvesting. 

[3H] thymidine incorporation was measured by using a liquid scintillation counter (Perkin 

Elmer). Average and standard deviation of triplicates were calculated. 

 

Statistical analysis 

GraphPad Prism version 6.01 for windows (GraphPad Software) was used to 

perform statistical analysis. Differences between groups were calculated using Student’s t 

test or One-way ANOVA, as appropriate. P values lower than 0.05 were considered 

statistically significant. 
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Results 

 

Diagnostic ALL samples display heterogeneous levels of basal 

PI3K/Akt/mTOR and JAK/STAT5 signaling pathway activation 

An important association between the activation status of oncogenic signaling 

pathways and their capacity to predict response to therapy and risk of relapse in acute 

myeloid leukemia (AML) patients was demonstrated by Gary Nolan and his colleagues71. 

Given this evidence, we decided to start by analyzing the basal levels of activation of the 

PI3K/Akt/mTOR and JAK/STAT5 pathways ex vivo by flow cytometry for each patient 

sample (Table S1). Using phospho-specific antibodies and focusing only on B-ALL blast 

cells, identified by the expression of cCD79a (Figure 5A), we assessed the levels of 

phosphorylation of Akt (at serine 473 and threonine 308), the mTOR downstream target 

S6 (at serines 235 and 236) and STAT5 (at tyrosine 694) (Figure 5B). This methodology 

was first established by Nolan et al.71, and has been used and optimized in our lab70. In 

order to compare the patients between them, the basal levels were normalized to those of 

the B-ALL cell line, NALM-6, used in this study as a reference. This reference was 

included in every experiment. Briefly, each phospho-protein level was first normalized to 

the unstained condition and, then, to the respective phospho-protein level of NALM-6, 

previously normalized to the respective unstained condition as well. Overall, we found a 

high degree of variability between patients regarding the basal phosphorylation levels of 

each protein analyzed (Figure 5C). Interestingly, and contrary to what has been shown by 

others, we did not find increased JAK/STAT5 signaling pathway activation in the two BCR-

ABL-positive cases we studied (data not shown). 
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Figure 5. Gating strategy and analysis of signaling pathway activation by phospho-flow 
cytometry. (A) Lymphocytes were included using a forward scatter area (FSC-A) vs. side scatter 
area (SSC-A) gate. Single cells (Singlets) were then selected on a FSC-A vs. forward scatter width 
(FSC-W) plot to exclude signaling data from doublets. Cytoplasmic CD79a (cCD79a)+ and 
cytoplasmic CD3 (cCD3)- cells were selected and analysis of individual phospho-proteins at the 
indicated residues was performed in this cell population. (B) Examples of phospho-Akt (S473), 
phospho-Akt (T308), phospho-S6 (S235/236) and phospho-STAT5 (Y694) histograms for three 
individual B-ALL patient samples are shown. Background fluorescences from unstained cells were 
used as negative controls to define positivity in each channel. MFI for each condition (Unstained 
vs. stained for each phospho-antibody) is presented within the histograms. (C) Levels of 
phosphorylated Akt, S6 and STAT5 for all B-ALL samples, after normalization to NALM-6 levels. 
Points represent individual samples and horizontal bars indicate median. 
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ALL samples show heterogeneous levels of PI3K/Akt/mTOR and JAK/STAT5 

pathway activation in response to IL-7 

Previous studies in AML have shown that the response of a leukemic cell to 

exogenous stimuli may have prognostic value71. Moreover, there is evidence indicating 

that IL-7, which is present in the leukemia microenvironment, can contribute to leukemia 

progression and drug resistance in vitro and in vivo46, 68. Therefore, we sought to 

understand whether the response of B-ALL cells to a pro-survival stimulus, such as the 

one induced by IL-7, may have prognostic value. To this end, we started by analyzing the 

response of B-ALL cells to IL-7, by examining its effects on specific signaling pathways, 

namely PI3K/Akt/mTOR and JAK/STAT5. 

We cultured primary B-ALL samples for 30 minutes in the presence or absence of 

IL-7, and, afterwards, evaluated the levels of phosphorylation of Akt, S6 and STAT5, to 

assess the effects of IL-7 on PI3K/Akt/mTOR and JAK/STAT5 pathways, respectively 

(Figure 6A). We used the same methodology and gating strategy as described above 

(Figure 5A). As shown in Figure 6B, the majority of B-ALL samples responded to IL-7 with 

activation of PI3K/Akt/mTOR, JAK/STAT5 or both pathways. Of note, the level of 

response varied considerably between patients (Figure 6A and 6B). 

Importantly, to validate our phospho-flow results, we have further measured the 

expression and phosphorylation of Akt, S6 and STAT5 proteins by western blot. This was 

performed for eight patients, for which we had sufficient biological material. In agreement 

with what we observed by flow cytometry, similar qualitative results were obtained by 

western blot. IL-7 stimulation led to the upregulation of STAT5 phosphorylation in all 

patient samples and of Akt phosphorylation in seven out of eight samples, without 

affecting total protein levels (Figure 6C). Regarding the phosphorylation levels of S6, IL-7 

mildly increased those levels in four out of eight primary samples (Figure 6C). However, in 

contrast with our phospho-flow analysis, phospho-STAT5 in medium condition was barely 

detected by western blot (Figure 6C). It is important to refer that although the qualitative 

tendency was the same using both techniques, the absolute fold changes calculated by 

each one differed considerably (data not shown). 
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Figure 6. Heterogeneity of IL-7-mediated signaling responses in B-ALL patient samples. (A) 
The levels of Akt (S473), S6 (S235/235), and STAT5 (Y694) phosphorylation in response to IL-7 
stimulation (50ng/ml; 30 minutes) were quantified by flow cytometry analysis using phospho-
specific antibodies. Examples of three individual B-ALL patients are presented. Background 
fluorescences from unstained cells were used as negative controls to define positivity in each 
channel. MFI for each condition (Unstained in medium condition vs. stained for each phospho-
antibody in medium or IL-7 conditions) is shown within the histograms. (B) Levels of 
phosphorylated Akt, S6 and STAT5 normalized to medium condition for all B-ALL samples are 
shown. Points represent individual samples and horizontal bars indicate median. (C) Primary B-
ALL cells (n=8) were stimulated for 30 minutes with control solution (non-stimulated) or 50ng/ml of 
IL-7, and levels of expression and phosphorylation of Akt, S6 and STAT5 were analyzed by 
immunoblotting. β-actin was used as loading control. 

 

 

High degree of heterogeneity of functional responses to IL-7 and IL-7Rα 
expression in primary ALL samples 

In order to correlate the levels of signaling activation in response to IL-7 with the 

functional output, we carried out functional analyses in response to IL-7. It is important to 

have in mind that IL-7 has been implicated in promoting both viability and cell cycle 

progression in leukemic cells. We started by analyzing the effects of IL-7 on cell viability. 

Thus, we cultured primary ALL cells in the presence or not of IL-7 and, at pre-defined time 

points, we performed flow cytometry analysis of Annexin V/7AAD staining and FSCxSSC 

discrimination to evaluate the impact of IL-7 on viability and cell size (an indirect measure 

of proliferation), respectively (Figure 7A and 7B). The majority of the patient samples were 

sensitive to IL-7 addition, although to different extents. Overall, IL-7 incubation led to a 

significant increase in the frequency of live cells (Annexin V and 7AAD double-negative) 

and a decrease in the frequency of early apoptotic cells (Annexin V positive and 7AAD 

negative) and late apoptotic or necrotic cells (Annexin V and 7AAD double-positive) 

(Figure 7B). Also, it was observed a significant increase in cell size of primary ALL cells 

after incubation with IL-7, indirectly hinting on an increase in cell proliferation (Figure 7B). 

Whenever possible (n=11), we also directly determined the effects of IL-7 stimulation on 

cell proliferation by thymidine incorporation assays. In general, leukemic cells responded 

to IL-7 by increasing their proliferation, although to different levels (Figure 7B). These 

findings support the notion that IL-7 stimulation promotes both cell viability and cell 

proliferation of B-ALL samples, albeit in a heterogeneous way. When we compared the 

molecular and functional analysis, we did not find any correlation between the levels of 

PI3K/Akt/mTOR or JAK/STAT5 pathway activation by phospho-flow and the functional 

outcome on proliferation and viability (data not shown). 
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Figure 7. Heterogeneity of functional responses to IL-7 in B-ALL patient samples. (A) 
Lymphocytes were included using a FSC vs. SSC gate and single cells (Singlets) were then 
selected on a FSC-A vs. FSC-W plot to exclude signaling data from doublets. Surface CD19+ and 
surface CD3- cells were selected and analysis of viability and cell size was performed in this cell 
population. (B) Primary leukemic cells collected at diagnosis were cultured with medium alone or 
10ng/ml of IL-7 and analyzed for cell viability and cell size increase at two different time points, 
according to each patient. Viability and cell size were evaluated by flow cytometry analysis of 
Annexin V/7AAD staining and FSCxSSC discrimination, respectively. The percentage of live cells 
(bottom left), early apoptotic cells (bottom right), and late apoptotic or necrotic cells (top right) is 
indicated in the respective quadrants. Thymidine incorporation assays were also performed to 
directly determine the impact of IL-7 on cell proliferation. Results are presented as normalized 
mean±SEM to medium conditions. Statistical analysis from triplicates was performed using 
Student’s t test and p values are shown in the graphics. Examples of three representative ALL 
patients are presented. 

 

Next, we assessed the expression of the IL-7Rα (CD127) in B-ALL blast cells ex 

vivo (0h) (Figure 8A and 8B). This expression was evaluated in order to correlate it with 

the molecular (signaling pathway activation) and functional (viability, cell growth) 

outcomes after IL-7 in vitro stimulation. We also compared the IL-7Rα expression levels 

with clinical parameters, such as age, WBC counts, maturation stage and MRD status. As 
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observed for the levels of activation, IL-7Rα expression is highly heterogeneous among 

the diagnostic ALL samples (Figure 8C).  

 

 

Figure 8. IL-7Rα expression in primary B-ALL cells. (A) Lymphocytes were included using a 
FSC vs. SSC gate and single cells (Singlets) were then selected on a FSC-A vs. FSC-W plot to 
exclude signaling data from doublets. Surface CD19+ and surface CD3- cells were selected and 
analysis of IL-7Rα protein levels was performed in this cell population. (B) Levels of IL-7Rα 
expression were quantified by flow cytometry using a specific antibody. Examples of histograms for 
three individual B-ALL patient samples are shown. Background fluorescences from unstained cells 
were used as negative controls to define positivity in each channel. MFI for each condition 
(Unstained vs. stained for IL-7Rα) is presented within the histograms. (C) Levels of IL-7Rα 
expression for all B-ALL samples. Points represent individual samples and horizontal bar indicates 
median. 
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By correlating the IL-7Rα expression levels with the phosphorylation levels of Akt, 

S6 and STAT5 in response to IL-7 stimulation, we found that higher expression of the 

receptor does not translate into increased responses (Figure 9A). In fact, surprisingly, 

when looking at the levels of phosphorylation of STAT5, we observed that some patient 

samples with lower IL-7Rα expression responded to IL-7 with higher upregulation of 

STAT5 phosphorylation than the others (Figure 9A). In terms of functional outcome, our 

results demonstrated that IL-7-mediated cell viability, as well as cell proliferation, do not 

significantly associate with IL-7Rα expression levels (Figure 9B). The comparison with 

clinical parameters gave us a trend suggesting that children older than 10 years of age 

have higher expression levels of the receptor (Figure S1). 

 

 

Figure 9. IL-7Rα expression levels do not correlate with signaling pathway activation or 
functional outcomes in pediatric B-ALL samples. (A) Correlation between IL-7Rα expression 
levels and IL-7-stimulated levels of Akt (S473), S6 (S235/236) and STAT5 (Y694) phosphorylation. 
(B) Correlation between IL-7Rα expression levels and IL-7-induced viability, cell size and 
proliferation. Statistical analysis was performed by linear regression. R square and p values are 
shown in the graphics. Points represent individual samples. 
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Levels of Akt and S6 phosphorylation associate with WBC counts 

There is a clear demand to establish new parameters capable of sub-classifying 

subtypes of B-ALL and predicting response to treatment. Indeed, they may have a 

significant impact in therapeutic decisions and open new routes for molecular investigation 

and targeted treatment, which are both important to reduce therapy resistance and 

disease relapse. 

To determine whether basal (Figure 5) and/or IL-7-induced (Figure 6) levels of 

activation of PI3K/Akt/mTOR and JAK/STAT5 pathways may have prognostic value, we 

correlated the activation levels of each pathway with well establish clinical features with 

known prognostic value, such as: a) age and WBC counts at diagnosis; and b) MRD at 

the end of induction therapy. As pointed out earlier, this is one of the most robust 

independent prognostic markers in ALL. We also associated the levels of activation with 

the B-ALL maturation stage (EGIL classification). We did not find evidence for significant 

associations between basal or IL-7-stimulated activation levels of both signaling pathways 

with age or maturation stage (Figure 10). Remarkably, higher basal levels of 

phosphorylation of S6 on S235/236 and Akt on S473, but not Akt on T308 and STAT5 on 

Y694, significantly correlated with higher WBC counts (Figure 11A). Regarding IL-7-

stimulated levels, although non-significant, we observed a trend suggestive of a 

correlation between higher responses to IL-7 at the signaling level with lower WBC counts 

(Figure 11B). None of the basal or IL-7-induced phospho-protein levels analyzed were 

significantly associated with MRD status (Figure 12). 
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Figure 10. Basal or IL-7-stimulated levels of activation of PI3K/Akt/mTOR and JAK/STAT5 
pathways do not appear to correlate with age or maturation stage in pediatric B-ALL 
patients. Association between basal levels of Akt (S473 and T308), S6 (S235/236) and STAT5 
(Y694) phosphorylation and age (A) or B-ALL maturation stage, as defined by EGIL classification 
(B-I, B-II and B-III) (C). Basal levels were normalized to those of the reference cell line, NALM-6. 
Association between IL-7-induced levels of Akt (S473), S6 (S235/236) and STAT5 (Y694) 
phosphorylation and age (B) or B-ALL maturation stage (D). Statistical analysis was performed by 
Student’s t test and p values are shown in the graphics. Points represent individual samples and 
horizontal bars indicate median. 
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Figure 11. Basal phosphorylation levels of S6 on S235/236 and Akt on S473 associate with 
WBC counts in B-ALL patient samples. (A) Association between basal levels of phosphorylation 
of Akt (S473 and T308), S6 (S235/236) and STAT5 (Y694) and WBC counts. Levels were 
normalized to those of NALM-6, the reference cell line. (B) Association between IL-7-stimulated 
levels of phosphorylation of Akt (S473), S6 (S235/236) and STAT5 (Y694) and WBC counts. 
Statistical analysis was performed using Student’s t test and p values are shown in the graphics. 
Points represent individual samples and horizontal bars indicate median. 
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Figure 12. Basal or IL-7-stimulated levels of activation of PI3K/Akt/mTOR and JAK/STAT5 
pathways do not associate with MRD status in pediatric B-ALL patients. (A) Association 
between basal levels of Akt (S473 and T308), S6 (S235/236) and STAT5 (Y694) phosphorylation 
and MRD status after induction therapy. Levels were normalized to those of NALM-6, the reference 
cell line. (B) Association between IL-7-induced levels of Akt (S473), S6 (S235/236) and STAT5 
(Y694) phosphorylation and MRD status. Statistical analysis was performed using Student’s t test 
and p values are shown in the graphics. Points represent individual samples and horizontal bars 
indicate median. 
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Discussion 

In the current thesis, we sought to study the prognostic value of the activation 

levels of JAK/STAT5 and PI3K/Akt/mTOR pathways, basally and upon IL-7 stimulation, in 

pediatric B-ALL samples using phospho-flow cytometry. The value of this methodology as 

a tool to predict patient responses to therapy was demonstrated by Nolan and 

colleagues71. These authors have evaluated the activation status of oncogenic signaling 

pathways at the single cell level using this approach in primary AML patient samples, and 

they observed a correlation between particular signal transduction profiles and resistance 

to chemotherapy. The other reason determinant when choosing phospho-flow cytometry 

for our studies was the feasibility of applying this technique to actual clinical diagnostics, 

since flow cytometry is already used in the clinic to subclassify leukemia patients based 

on their immunophenotype and for MRD detection. Of note, another advantage of this 

method is that it can be applied even when restricted cell numbers are available. 

Here, we show that the basal levels of JAK/STAT5 and PI3K/Akt/mTOR pathway 

activation vary considerably among pediatric B-ALL patients. Similar results have been 

previously reported, both in AML and adult B-ALL patients, demonstrating the significant 

heterogeneity at the signaling level of patient samples70, 71. 

Given that it is very difficult to obtain BM biopsies from healthy donors, we were 

not able to compare the B-ALL blast cells from leukemia patients with normal primary BM 

cells – and this was not, in fact, required for our goals. Nonetheless, we were able to 

compare the levels of pediatric ALL patients with the levels of adult patients, known to 

display higher levels of activation of these pathways in comparison with healthy 

individuals (70 and J.T. Barata et al. unpublished data). Thus, since the activation levels of 

pediatric B-ALL cells were higher than the levels of adult B-ALL samples (Figure S2), we 

speculate that pediatric B-ALL cells likely present higher levels of activation of 

PI3K/Akt/mTOR pathway than their normal counterparts. 

In contrast with previous studies that show that STAT5 is activated downstream of 

BCR-ABL translocation59, 61, we observed that the only two Ph-positive ALL cases of our 

cohort have phosphorylation levels of STAT5 comparable to those of the majority of the 

patients. We are aware that, given the very small number of patients that we have studied, 

such finding is not conclusive. Moreover, some of the Ph-negative patients display higher 

levels of STAT5 phosphorylation, suggesting that these patients could be integrated into 

the recently created BCR-ABL-negative Ph-like ALL subgroup. Whether high STAT5 

phosphorylation may constitute a robust marker of this subgroup, which is associated with 

poor prognosis72, 73, remains to be addressed. 
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Regarding the PI3K/Akt/mTOR pathway, we found that some patients have higher 

basal levels of Akt and S6 phosphorylation than others. Whether this can be explained by 

the posttranslational inactivation of the tumor suppressor PTEN, which is a very frequent 

event in both T-cell66 and adult B-cell ALL patients70, needs to be analyzed. Another 

possibility is that patients with higher levels of basal activation of one or both pathways 

may have gain-of-function mutations in the IL-7Rα, as demonstrated in T-ALL and B-

ALL50, 56. Of note, we have not looked at the mutational status of this receptor, since 

Shochat and his colleagues showed that it is a rare event in childhood B-ALL, occurring in 

less than 1% of patients without any additional abnormality50. 

Also concerning the basal levels, it would be worthy to measure the plasma IL-7 

levels of our cohort of B-ALL patients and correlate them with the basal levels of signaling 

pathway activation. We can speculate that patients with higher plasma IL-7 levels are the 

ones with higher basal phosphorylation levels of Akt, S6 and STAT5 ex vivo. Furthermore, 

those plasma levels can also impact, positively or negatively, on the IL-7 responsiveness 

of B-ALL cells in vitro. 

We have further verified that IL-7 stimulation of primary cells triggers, as expected, 

the activation of both signaling pathways in the majority of the patients31, 48. Nonetheless, 

the IL-7-induced activation of Akt, S6 and STAT5 phospho-proteins differed significantly 

between patient samples. Others have observed this variability in AML samples in 

response to other cytokines, such as Flt3L, granulocyte macrophage colony-stimulating 

factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), IL-3 and interferon 

gamma (IFNγ)71. Given the focus of our lab on T-ALL research and on normal human T 

cell development, it would be very interesting to also investigate IL-7-induced signaling in 

tumor-infiltrating T cells in the context of B-ALL, and compare these results with those of T 

cells in the periphery (non tumor-associated). 

To validate our technique, we also looked at the response to IL-7 by western blot 

in eight patients, and we tried to establish a correlation between these results with those 

obtained by intracellular phospho-protein staining for flow cytometry. Immunoblotting and 

flow cytometry are two distinct methodologies with different sensitivities and intrinsic 

errors, being the last one the best to analyze several signaling cascades in the same cell 

in a quick and efficient manner. Nevertheless, it has been previously described that 

phospho-specific flow cytometry analyses are well correlated with western blotting74. 

Overall, our results using flow cytometry are closely related to those obtained by western 

blot, in a qualitative way. However, when we compare absolute fold changes between 

both techniques, they differed considerably. This is well exemplified by the differences 
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obtained in the levels of STAT5 phosphorylation. As shown in Figure 6, while we observe 

basal phospho-STAT5 in medium conditions by phospho-flow cytometry, it is barely 

detected by western blot. Consequently, the IL-7-dependent fold change for this phospho-

protein in the western blot is much higher than by flow cytometry.  

We have shown that IL-7 increases viability and promotes cell proliferation of 

primary T-ALL cells, acting mainly through the activation of the PI3K/Akt/mTOR pathway31, 

43-45. In B-ALL, the proliferative effects of IL-7 stimulation have been also demonstrated by 

Touw et al.47. However, this study analyzed a very limited number of patients (n=5) and 

the response to IL-7 was not consistent in all patients. In agreement, we observed that IL-

7 promotes viability and proliferation of primary B-ALL cells, although to different extents. 

Nonetheless, and contrary to what was observed in T-ALL cells, we did not find a 

significant association between IL-7-induced higher levels of activation of the 

PI3K/Akt/mTOR pathway and higher IL-7-mediated viability and proliferation (data not 

shown). It is important to mention that this correlation was established using a small 

number of patients (n=22). Thus, further studies with a higher number of primary B-ALL 

samples are necessary to define the precise role of PI3K/Akt/mTOR pathway in IL-7-

induced viability and proliferation of primary B-ALL cells. 

We also evaluated the expression levels of IL-7Rα in primary cells, in order to 

correlate them with both molecular and functional outcomes. We found highly 

heterogeneous levels between patients. Unfortunately, and as explained above, we were 

not able to compare the expression levels of the receptor in B-ALL blast cells with those of 

primary BM cells from healthy individuals. However, there is evidence that IL-7Rα 

expression is higher in adult pre-B ALL patients than healthy donors, as it was 

demonstrated by Sasson and others49. The authors also analyzed the intracellular 

expression of the cell-cycle protein Ki-67 and the anti-apoptotic protein Bcl-2 in the pre-B-

ALL cells and observed that it was elevated in those cells expressing the IL-7Rα. So, they 

confirmed a possible association of IL-7Rα expression with a more active proliferative 

state of leukemic cells. In contrast, our results showed that cell proliferation, as well as cell 

viability, do not correlate with IL-7Rα expression levels. Similar results were obtained 

when we compared the same levels with signaling pathway activation upon IL-7 

stimulation. Since IL-7Rα expression levels can be easily detected by flow cytometry, and 

being this technique currently used in clinical diagnostic laboratories, we decided to 

correlate those levels with clinical parameters with known prognostic value (age, WBC 

counts, and MRD status) and with maturation stage, in order to address their prognostic 

significance. Overall, albeit non-significant, we found a trend suggesting that children 

older than 10 years of age, known to have a poor prognosis, have higher levels of 
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expression of this receptor (Figure S1). Further studies with a higher number of samples 

are required to understand whether IL-7Rα may be a possible surrogate marker of B-ALL 

cases with poor prognosis. 

Finally, we correlated the basal and IL-7-induced levels of activation of 

PI3K/Akt/mTOR and JAK/STAT5 pathways with the clinical features mentioned above. 

Since all patients analyzed are from a single institution and treated with the same 

therapeutic protocol, it was possible to avoid biases in the statistical analysis performed. 

We did not find any significant correlation between basal or IL-7-stimulated activation 

levels of both pathways in what regards to age, maturation stage or MRD status. 

Interestingly, higher basal levels of phosphorylation of S6 on S235/236 and Akt on S473, 

but not on T308, appeared to associate with higher WBC counts, arguing that there may 

be an association of high phosphorylation levels of these proteins with high risk. This 

result also suggests that two independent mechanisms (regarding S473 and T308 

phosphorylation) lead to Akt activation in B-ALL with different biological outcomes, which 

can be a relevant question to be evaluated. The fact that we only found significant 

associations with WBC counts may be because the number of patients that we analyzed 

is not enough or because this clinical parameter is more associated with high risk rather 

than poor prognosis, as a consequence of the current therapeutic regimens. 

We also would like to correlate the basal and IL-7-induced levels of activation of 

PI3K/Akt/mTOR and JAK/STAT5 pathways with other clinical parameters, especially 

those related to survival rates (3-year and 5-year event-free and overall survival), as soon 

as we have access to those data.  

To the best of our knowledge, no studies so far have determined the prognostic 

value of PI3K/Akt/mTOR and JAK/STAT5 signaling pathway activation in B-ALL using 

phospho-flow cytometry. There is, however, one recent study where the levels of 

phosphorylation of Akt on serine 473 were analyzed by western blot in a cohort of 21 

pediatric B-ALL patients75. After correlation of those levels with prognostic features, such 

as overall survival and relapse-free survival, the authors observed that Akt 

phosphorylation is associated with an unfavorable prognosis. This protein is also activated 

in patients with poor response to induction therapy75. 
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Conclusion 

Overall, our results suggest a positive association of high constitutive levels of 

phosphorylation of S6 on S235/236 and Akt on S473 with high risk, which is commonly 

associated with poor prognosis. Additional studies with a higher number of primary B-ALL 

samples, which we are currently performing, are required to strength and validate our 

results and to clarify the real prognostic value of these critical pathways. In the present 

thesis, we also provided evidence for heterogeneous basal activation of both pathways in 

primary ALL cells. We also showed that the majority of B-ALL patients tend to respond to 

IL-7 by up-regulating both signaling pathways, as well as by increasing cell viability and 

cell proliferation. Nonetheless, it remains to be addressed which of the two pathways, or if 

both, are involved in the observed functional outcomes. 

In conclusion, the completion of the work here described will enable us to 

determine the prognostic significance of PI3K/Akt/mTOR and JAK/STAT5 signaling 

pathways in the context of pediatric B-ALL. It can also help validating the value of 

phospho-flow cytometry in identifying patients with different prognosis, thus speeding up 

the use of this tool in clinical diagnostics. 
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Table S1. Immunophenotype and cytogenetics features of B-ALL patient samples. 

Patient nº. Gender 
Age 

(years) 
% Blasts Cytogenetics 

Immunophenotype  
(EGIL Classification) 

1 Male 14 90 n.d. B-II (Common B) 

2 Male 3 93 n.d. B-III (Pre-B) 

3 Female 7 95 n.d. B-III (Pre-B) 

4 Male 8 60 n.d. B-II (Common B) 

5 Female 5 92 n.d. B-II (Common B) 

6 Male 7 94 n.d. B-II (Common B) 

7 Female 3 92 n.d. B-III (Pre-B) 

8 Male 5 95 n.d. B-II (Common B) 

9 Female 8 82 n.d. B-III (Pre-B) 

10 Male 2 90 ETV6-RUNX1 B-III (Pre-B) 

11 Female 2 85 ETV6-RUNX1 B-III (Pre-B) 

12 Male 11 85 n.d. B-III (Pre-B) 

13 Male 7 90 n.d. B-III (Pre-B) 

14 Male 8 81.3 ETV6-RUNX1 B-III (Pre-B) 

15 Female 9 95 n.d. B-III (Pre-B) 

16 Male 5 90 ETV6-RUNX1 B-III (Pre-B) 

17 Male 2 69 n.d. B-II (Common B) 

18 Male 3 76 - B-II (Common B) 

19 Male 2 96 Hyperdiploidy B-II (Common B) 

20 Female 2 90 ETV6-RUNX1 B-II (Common B) 

21 Male 1 70 n.d. B-II (Common B) 

22 Female 3 87 Hyperdiploidy B-II (Common B) 

23 Female 2 92 ETV6-RUNX1; 
Trisomy 21 B-II (Common B) 

24 Male 3 90 Hyperdiploidy B-II (Common B) 

25 Male 2 88 MLL-ENL B-II (Common B) 

26 Male 14 75 n.d. B-II (Common B) 

27 Female 5 83 Hyperdiploidy B-II (Common B) 

28 Male 9 94 n.d. B-II (Common B) 

29 Female 5 95.4 ETV6-RUNX1 B-III (Pre-B) 

30 Female 10 90 Hyperdiploidy B-II (Common B) 

31 Male 3 95 ETV6-RUNX1; 
Trisomy 21 B-II (Common B) 

32 Female 2 n.d. - n.d. 

33 Female 3 84 ETV6-RUNX1 B-II (Common B) 

34 Female 11 95 n.d. B-II (Common B) 

35 Male 3 95 n.d. B-I (Pro-B) 

36 Male 6 95 ETV6-RUNX1 B-II (Common B) 
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Patient nº. Gender 
Age 

(years) 
% Blasts Cytogenetics 

Immunophenotype  
(EGIL Classification) 

37 Female 4 88 ETV6-RUNX1 n.d. 

38 Female 4 85 ETV6-RUNX1 B-II (Common B) 

39 Male 3 92 n.d. B-II (Common B) 

40 Female 3 80 ETV6-RUNX1 B-II (Common B) 

41 Female 13 91 E2A-PBX1 B-III (Pre-B) 

42 Female 3 94 ETV6-RUNX1 B-II (Common B) 

43 Male 3 95 n.d. B-II (Common B) 

44 Female 2 92 Hyperdiploidy B-II (Common B) 

45 Male 3 94 n.d. B-II (Common B) 

46 Male 3 86 n.d. B-II (Common B) 

47 Female 4 86 ETV6-RUNX1 B-II (Common B) 

48 Male 2 81 Hyperdiploidy B-II (Common B) 

49 Male 3 88 Hyperdiploidy B-II (Common B) 

50 Female 2 90 BCR-ABL B-II (Common B) 

51 Female 2 96.1 ETV6-RUNX1 B-II (Common B) 

52 Male 6 95 ETV6-RUNX1 B-II (Common B) 

53 Male 13 54 E2A-PBX1 B-II (Common B) 

54 Male 4 n.d. ETV6-RUNX1 B-II (Common B) 

55 Female 7 80 BCR-ABL B-II (Common B) 

56 Male 3 n.d. Hyperdiploidy n.d. 

57 Male 1 90 Hyperdiploidy B-II (Common B) 

58 Male 2 63 - B-II (Common B) 
-: not detected; n.d.: not determined 
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Figure S1. IL-7Rα expression levels do not associate with age, maturation stage, WBC 
counts or MRD status in pediatric B-ALL samples. Association between IL-7Rα expression 
levels and clinical parameters: age, maturation stage, WBC counts and MRD status. Statistical 
analysis was performed by Student’s t test and p values are shown in the graphics. Points 
represent individual samples and horizontal bars indicate median. 

 

Figure S2. Pediatric B-ALL cases display significantly higher levels of PI3K/Akt/mTOR 
pathway activation than adults. Levels of phosphorylated Akt (S473), Akt (T308) and S6 
(S235/236) in bone marrow cells from pediatric and adult B-ALL samples were quantified by flow 
cytometry analysis using phospho-specific antibodies. Points represent individual samples and 
horizontal bars denote median. Statistical analysis was performed by two-tailed Mann Whitney test 
and p values are shown in the graphics. From JBarata, unpublished data. 
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Prognost ic  significance of  PI3K/Akt /mTOR 
pathw ay using phosphoflow  in pediatric  acute 

lymphoblast ic  leukemia – preliminary results
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Acute Lymphoblastic Leukemia (ALL)

The most frequent childhood malignancy.

Characterized by the accumulation of immature lymphoid cells within the

bone marrow and lymphoid tissues.

Around 10-20% of patients relapse.

PI3K/Akt/mTOR pathway

Pro-survival pathway extensively implicated in cancer and ALL.

Frequently hyperactivated in ALL, promoting leukemia cell viability.

Activated by cell-autonomous lesions and microenvironmental cues (IL-7).

Does activation of PI3K/Akt/mTOR pathway have 

prognostic value in pediatric ALL?

INTRODUCTION

Levels of Akt and S6 phosphorylation 

associate with WBC counts 
CONCLUSIONS

This work was supported by a grant from Fundação para a Ciência e a Tecnologia (PTDC/SAU-ONC/122428/2010) to JTB. LRM received a postdoctoral fellowship from FCT. We thank the contribution of patients and their families, 
and the clinical director, physicians, and nurses from the Pediatrics Department of the Lisbon IPOFG involved in providing the primary samples for the studies presented here.

Higher basal levels of S6 (S235/S236) and Akt (S473, but not T308)

phosphorylation associate with higher WBC.

Two independent mechanisms leading to Akt activation in ALL.

In contrast, the ability to respond to IL-7 may correlate with lower WBC.

Overall, our data suggest that there may be an association of high Akt

(S473) and S6 (S235/S236) phosphorylation levels with high risk (WBC

counts) but not with poor prognosis (MRD status).

Studies with further primary ALL samples are warranted.

ALL samples display heterogeneous 

levels of PI3K/Akt/mTOR pathway

activation in response to IL-7

High degree of heterogeneity of IL-7Rα 

expression and functional responses to 

IL-7 in ALL samples

To answer this question, we used:

 Bone marrow samples (n=58) collected from pediatric ALL patients at

diagnosis from the Pediatric Department of Lisbon IPOFG.

 A flow cytometry approach with phospho-specific antibodies (phospho-flow).

ALL samples display heterogeneous 

levels of basal PI3K/Akt/mTOR signaling 

pathway activation

 None of the basal or IL-7-stimulated

phospho-protein levels analyzed
were significantly associated with

age, maturation stage (EGIL

classification) or MRD status
(minimal residual disease).
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