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Determining the shear viscosity of model liquids from molecular
dynamics simulations

Berk Hess?
Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen,
The Netherlands

(Received 8 June 2001; accepted 2 October 2001

Several methods are available for calculating shear viscosities of liquids from molecular dynamics
simulations. There are equilibrium methods based on pressure or momentum fluctuations and
several nonequilibrium methods. For the nonequilibrium method using a periodic shear flow, all
relevant quantities, including the accuracy, can be estimated before performing the simulation. We
compared the applicability, accuracy and efficiency of this method with two equilibrium methods
and another nonequilibrium method, using simulations of a Lennard-Jones fluid and the SPC and
SPC/E[(extended simple point chargewater models. ©2002 American Institute of Physics.
[DOI: [10.1063/1.1421362

I. INTRODUCTION IIl. PRESSURE FLUCTUATIONS

The shear viscosity is a property of liquids which can be The shear viscosity of a liquid is related to the fluctua-

+p(u-Vyu=pa—Vp+ 7V, ©)]

ing the force field, because it is a kinetic property, Wh”etensor. The viscosity can be calculated from an equilibrium
v fx P, (to) PyAto+1t)), dt 1
e ) . . e =— + .
liquids, as it also influences the rates(ajtationa) diffusion 7 kgT Jo (Pxalto) Pxa(to Mo D
p=Ilim5 —— —
make use of steady-state shear. One can use a periodic sh@ayolume of the size of a simulation box fluctuates heavily.
tioned above, except for the momentum fluctuation ap-
not wavelength or box-size dependent since acoustic modes
and thus also no acoustic waves. The momentum pulse ref the velocityu(r,t) of a liquid is described by the Navier—
. . Pt
simulation box.

determined easily by experiment. It is useful for parametriz-tlons of the off-diagonal elements of the pressure or stress
; . " simulation by integrating the Green—Kubo formdla:
most other properties which are used for parametrization are
of a thermodynamic nature. It is not only important for pure
3::;1 conformational change of molecules solvated in the I|q:|_hiS can be reformulated as an Einstein relation:
Several methods for determining the shear viscosity are 1v.d JtOHP (t)dt’ z @)
described in the literature. From an equilibrium simulation 2 KgT dt n . '
the viscosity can be obtained from pressure or momentum 0
fluctuationst There are two nonequilibrium methods that Both methods converge very slowly, because the pressure in
flow,2 or use sliding boundary conditions, for instance theT_hS?2 asymptotic behavior of the pressure autocorrelation is
commonly used SLLOalgorithm? All the methods men- © which mz_ikes an accurate estimation of Fhe viscosity
difficult. The Einstein relation is more convenient to use,
: . ) since the inaccuracies in the long time correlations can be
proach, are described in Allen and Tildestep recept ignored by only considering integrals over shorter times.
method uses momentum pulse relaxafide authors claim
that, unlike the periodic shear flow method, their method is
cannot travel across the box boundaries. However, acoustlf: MOMENTUM FLUCTUATIONS
modes are not the origin of the wavelength dependence. The viscosity can also be determined from transverse-
Steady shear does not induce density fluctuations in a liquidurrent correlation functions for plane waves. The behavior
laxation method suffers from the same wavelength depenStokes equation:
dence as the periodic shear flow method, since in both meth-
ods the size of the perturbation is of the order of the
We will describe the two equilibrium methods, the peri- wherea is the external force per unit of mass and volume.
odic shear flow method and the SLLOD algorithm in moreConsider an incompressible liquid with an initial velocity
detail. We will show applications of these four methods to afi€ld consisting of a plane wave in one direction:

Lennard-Jones fluid and two water models. uo cogk 2)
u(r,0)= 0 : (4)
aE|ectronic mail: hess@chem.rug.nl 0
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The y and z-component ofu will remain zero; for the IV. THE PERIODIC PERTURBATION METHOD

x-component the Navier—Stokes equation reduces to S )
Instead of measuring intrinsic fluctuations of the system,

u(z,t) 7 dPuy(z,t) which have a fixed magnitude, we can apply an external
o ; 97> ) force. The magnitude of this force can be chosen such that
o the effects are much easier to measure than the internal fluc-
The solution is tuations. The external force will cause a velocity fieldn
Uy (z,t)=uge "7 cogk 2), 6) the liquid according to the Navier—Stokes equat{@n We
can choose the external foreesuch thata, anda, are zero
p anda, is a function ofz only. This makesi, andu, equal to
Tr:W- (7 zero. Since there is no pressure gradient inxkdirection,

the equation fou, becomes
From the solution it can be seen that plane waves decay 5
. . . L IUy(Z) d°U(2)
exponentially with a time constant which is inversely propor- P —pa(2)+7 5
tional to the viscosity and proportional to the wavelength ot Jz
squared. According to the flgctuation—dissipation theorempe steady-state solution is given by
the response of the system to internal fluctuations is the same 5
as to a small external perturbation, such as initial condition 7 0°Ux(Z)
. e . (2)+ = —7—=0. (15
(4). This means the viscosity can be determined from the p dz
autocorrelation of the amplitude of plane waves in the simu-

. L Since we will be using a periodic system in the simulations,
lation box, which is also called the transverse-current corre; gap Y

lation function. However, at short times the correlation func—the acceleration and velocity profile should also be periodic,

. . . . To obtain a smooth velocity profile with small local shear
tion is not a pure exponential. To account for this, a

phenomenological correction can be applied by incorporat[ates’ the a_ccelera_tlon pr_of!le should be_s_moo_th as W_e"'_A
ing a relaxation-timé&® This changes Eq(5) to simple function which satisfies both conditions is a cosine:

Ju(zt) 7y 72U,(z,S) a,(z)=Acogk z), (16)

t
T_;J'Ogb(t—S)TdS. (8) k:2_7T

(14

: (17

I,

The most simple model for the memory kerrgls ] ]
wherel, is the height of the box. When we takg(x)=0 at

H(1)= ie_wm_ ) t=0, the generated velocity profile is
m ul(z)=W1—-e Yr)cogk 2), (18
The solution of this equation with initial conditia@) is p
V=A—>, (19
nk

1
uy(z,t)=uge #| coshQB)+ ﬁsink(Q,B) cogk 2),
wherer, is given by(7). The Navier—Stokes equation is not

(10 valid for microscopic length-scales, therefore the wavelength
where should be at least an order of magnitude larger than the size
of a molecule.
B:L (11) In an MD-simulation an acceleration can be added to
27 each particle each MD step, according to Etf). The av-

erage) can be measured and the viscosity can be calculated
using the following formula:

_ - 1o Ap
0=1/1 4Tmpk. (12 =3 (20

Note that although) can become imaginary, the solution We define the instantaneod&t) in the simulation as fol-
will always be real. For largk the solution converges to the |ows:

solution of the Navier—Stokes equatidf). The viscosity N N

can be calculated by fitting the transverse-current correlation _

functions for differentk-vectors to formulg10). )= 2; mv; x(t)cogk ri,z(t))/ igl m;, (21
Unfortunately the shear viscosity which is obtained us- ) ) i

ing this method is dependent dux k| . To obtain the mac- WNErevix is the x-component of the velocity; , is the

roscopic viscosity, one needs to extrapolatéto0. Palmer z-coordinate anai is the mass of _atom The average fov ,

argues that since the viscosity in one dimension should be gan be measured after the amplitude of the velocity profile

symmetric function ok, one can approximate the viscosity has been fully developed,'whlc'h is around57, . To Obt‘,"“n
in third order by the correct value for the viscosity the generated velocity pro-

file should not be coupled to the heat bath, also the velocity
(k)= 7(0)(1—ak?) +O(k*. (13 profile should be excluded from the kinetic energy. One

and
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would like V to be as large as possible to get good statistics. =10 3kgm !s*
However, the shear rate should not be so high that the system

moves too far from equilibrium. The maximum shear rate k=1nm*
occurs where the cosine is zero, the rate is: p=100kgm3
A=0.1nmps?
B vy(z) _ p B & o
Smax— m?% 0z _A%- (22 C,=4X10°Jkg “K 27

= VY=0.1nmps?

The system will be able to relax when the inverse shear rate  |,=27 nm

is longer than the relaxation time. For most liquids this will

be the rotation correlation time, which is around 10 picosec-

onds. When the shear rate is too high the apparent viscosity 7c=0.1ps

will be too low. Ts=0.125K
The accuracy of the viscosity estimate is determined by

the momentum fluctuations described in the previous section.

The amplitude of the fluctuation o¥(t) is

7r=1ps

Smax=1/10ps L.

Thus for the requested shear rate we get a measurable value

2kgT for V and a temperature shift of 0.125 K, which is negligible.
(U= (UONHY2=\— (23

The 2 arises from the integral over (2 cos) (21); pV isthe v THE SLLOD ALGORITHM

total mass of the system. For large wavelengths the fluctua-

tions have exponential correlati@h0), with correlation time One can also obtain the viscosity by imposing a Couette

7, (7). From this the error in the average can be calculatedflow. The equation of motion needs to be modified to achieve

The relative standard error in the amplitude of the velocitythis. In the SLLOD algorithm this is done in a non-

profile is Hamiltonian way. When shearing in thxedirection with the
gradient in thez-direction, the SLLOD equations of motion

oy 27 2kBTSmaX_ 2 kgT o4 are
VVEV W ks Ve 24

Smax

1
dr;
wheret, is the time over which the average Xt) is deter- d_tl =vi+sri,| 0], (29
mined. The error in the viscosity is 0
gy 2 kBTT] 1
= p= ™ dv; 1
T V g Smax tvV - 9 _Iz_fi_sl}i z 0], (29
dt m; ! 0

The accuracy increases with the square root of time and the
number of particles. When the CPU-time increases linearlyvherei is the particle index, a second index indicates the
with the number of particles, the CPU-time required for avector component and is the shear rate. As the system is
given accuracy is independent of the system size. Thus periodic, the periodic boundary conditions also need to be
large system is optimal, since it produces a longer wavemodified. This can be accomplished by using a continuously
length. The system should not be chosen too large, becausleforming triclinic unit-cell, which is implemented in the
the equilibration and shear development time increase asromAcs3.0 packagé? that we modified to use the SLLOD
well. method. The viscosity is calculated from the stress teRsor
The heat generated by the viscous friction is removed by
coupling to a heat bath. Because this coupling is not instan-
taneous the real temperature of the liquid will be slightly
lower than the observed temperature. Berendsen derived this
temperature shift for coupling with the Berendsen There are two problems with this approach, besides the equa-

thermostat®!! We rewrote the shift in terms of the shear tions of motion not being Hamiltonian. The first problem is
rate: that conceptually the viscosity does not correspond to the

viscosity obtained from an experiment. In the SLLOD algo-
nTe rithm not a force profile, but the linear velocity profile is
Ts:msmaw (26) imposed up to the atomic level, while in the experiment ex-
ternal forces induce a Couette flow on the macroscopic level.
where 7. is the coupling time for the Berendsen thermostatOn the atomic level the velocity profile is not necessarily
andC, is the heat capacity. linear. In simple liquids these viscosities will be the same,
To get an idea of the order of magnitude of the quantitiedut in complex liquids they can be different. A second prob-
involved, we can look at a small simulation system for waterlem is that the equations of motion produce an overall rota-
at 20°C: tion in the system.

1
n=- §<PXZ>' (30)
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FIG. 2. Viscosity estimate for a Lennard-Jones fluid using transverse current
autocorrelation functions. The circles are for the 8000 particle system; the
diamonds for the 1000 particle system. The filled symbols are averages over
all k-vectors(open symbolswith equal length. The solid lines are the fits to
expression(13) for the separate systems; the dashed line is the fit for both
systems.

FIG. 1. Viscosity estimate for a Lennard-Jones fluid using &). The
derivative is plotted as a function of time for the whole simulatisnlid
line) and the two halvegdashed lines

VI. VISCOSITY OF A LENNARD-JONES FLUID . . . . .
with the second order approximatidi3), this gives n*

As a simple model system we chose a fluid of Lennard—=0.433 (Fig. 2). For the 8000 particle system the fit is
Jones particles. The system was made dimensionless by eworse; the value isp* =0.465. Fitting one curve to both
pressing units ino, € and the mass. All simulations have systems results ifp* =0.448. Itis hard to tell which of these
been performed at number density=0.452 and tempera- values is the best oney* (k) will be closer to the real value
ture T* =2, starting from an equilibrated conformation. The of the viscosity for smalk, but the error increases, since the
time step was 0.01, the neighbor list was updated every 10orrelation time is proportional to K7.
steps, with a cut-off of 5. The temperature was coupled using For the periodic perturbation method we simulated sys-
a Berendsen thermostat with a coupling time of 20. tems of 3 different sizes, to study the wavelength depen-

For the pressure fluctuations method we performed aence: 1000 particles in a cubic box as described above and
simulation in double precision with a duration of 5000 and in2 and 4 of these boxes stacked in thdirection. The simu-

a periodic, cubic box containing 1000 particles. The rightlation protocol was the same as for the other methods, except
hand side of Eq(2) averaged over the three off-diagonal for the coupling time of the Berendsen thermostat, which
elements, without taking the limit, is shown in Fig. 1. Sincewas set to 5, to more rapidly remove the energy introduced in
the curves are reasonably constant fidns 5 to 80, we took  the system by the external force. For each system size we
the average over this period. An error estimate can be madésed 3 different amplitudes for the acceleration profile. All
from the three values for the off-diagonal elements. For thesimulations have length 5000. We started the analysis at time
whole simulation the dimensionless viscosity is 0.444 400, which allows for enough time to develop a steady shear.
+0.018. Error estimates were calculated assuming a double exponen-

For the transverse-current method we simulated two sydial auto-correlation using formulg16), which is derived in
tems for a duration of 5000: the system of 1000 particleshe Appendix. None of the simulations show a significant
described above and 8000 particles in a cubic box. The cdeng correlation time. The short correlation time is close to
ordinates and velocities were written at intervals of 0.2. Ther, [EqQ. (7)]. All results are shown in Table I. The medium
k-vectors used for the analysis af&,0,0, (1,1,0, (1,

_1’0)’ (1’1’_ 1)' (2’0,0 each in all 3 permutations and TABLE . \ﬁsgos?ty measurgments ofaLe-nnard-‘Jones fluidxlomarticles

(1,1,, for notational convenience we left out the ir]V(:H_S(_:.usmg*the periodic perturba}tlon method with 3 dlfferent‘system sdj@;. s
and »* are averages over time 400—5000. Two error estimates are given for

box length for eaclk-vector component. For eadfivector  the viscosity, one based on block averagisee the Appendixand between

there are 2 perpendicular velocity directions and 2 ampliparentheses expressi¢2b).

tudes, one of sik(r) and one of co¥(-r). For each

. . ) k* A* X *
k-vector length there are only 3 independent directions. Smax 7
Since our simulation boxes are cubic, we can average over 0.02 0.044 0.4270.019 (0.013)
all permutations of th&-vectors given above, as well as over 1000 0.48 0.04 0.086 0.4340.007 (0.007)
the k-vectors which differ only in signs. The transverse- 0.08 0.176 0.4270.005 (0.003)
current autocorrelation functions are close to exponential, 0.01 0.041 0.4610.014 (0.010)
except for the initial decaynot shown. A higher density 2000 0.24 0.02 0.084 0.448.004 (0.005)
would produce a negative minimum in the autocorrelation. 0.04 0.169 0.445 0.005 (0.002)
The autocorrelation functions can be fitted very well with 0.005 0041 0.4520.006 (0.007)
expression(10), where we used exponentially decaying 4000 012 0.01 0.083 0.4520.004 (0.004)

weights with time constant 10. The resultikgdependent 0.02 0.165 0.4540.002 (0.002)
viscosities of the 1000 particle system can be fitted perfectly
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and large systems give compatible values for the viscosity at 0.8 —; . . .
all shear rates. The small system gives lower viscosities. This Lo T cut-off 0.9
indicates the viscosity converges to the infinite wavelength 07 | ! - ;u,:t_oog 4
value somewhere betweéii = 0.48 and 0.24. The shear-rate = L - RF14
dependence is negligible, since the highest shear(@ald) jw 06 L' —PME, ]
is still 15 times smaller than the inverse of the exponential 'e :' g, ST
decay time of the autocorrelatiail/0.4). The temperature 2 '
shifts atspq 0.08 and 0.17 are 0.5% and 2%, respectively. S
The most accurate estimate of the viscosity can be obtained i
from the large system, averaging the values for the 3 shear
rates givesp* =0.453+0.002.

For the SLLOD method we used the 1000 particle sys- Sy 0 0 30 20 50
tem with a shear rate of 0.05. The viscosity, averaged over Time (ps)
time 400-5000 is 0.4620.008. The temperature shift is
0.4%. FIG. 3. Viscosity estimate for SPC water using EP). The derivative is

pPplotted as a function of time for 5 simulations which differ only in electro-

To compare the accuracy at equal CPU-time, the ru :
statics treatment.

time of the periodic perturbation simulations of 4000 par-

ticles should be decreased by a factor of 4. Taking into ac-

cofunt the shean?}veloEmenﬁ t|me,. t?ﬁ accuragy QecreaSES Héfve little effect on the potential, but the forces contribute
a factor 2.3, which makes the periodic perturbation method;ciicantly to the virial. Artifacts of the electrostatics cut-
more accurate than both equilibrium methods at all 3 sheags .- pe seen in the dipole—dipole correlation [gkit. 4)
rates. At an equal average shear raig,{=2s) the nonequi- At distances slightly below the cut-off the dipoles are anti-

librium methods are equally accurate. correlated, at distances slightly above the cut-off the dipoles

are correlated. In addition to this effect, the simulation with a
VIl. VISCOSITY OF THE SPC AND SPC/E cut-off of 1.4 nm shows extra correlation at short distances.
WATER MODELS A reaction-field decreases the long-range correlations signifi-

To estimate the viscosity of the SP@imple point cantly. The reaction-field simulation with a cut-off of 0.9 nm
chargé water modée® from the pressure fluctuations, we has a lower dipole correlation in the first coordination sphere
have performed MD-simulations in double precision of 1728(0.28 nnm). With PME there is no correlation after 0.75 nm.
molecules in a cubic box of length 3.75 nm. All simulations The too large correlation of dipoles at long distances makes
were done at a constant density of 980 kg’niThe tempera- an accurate estimation of the viscosity from pressure fluctua-
ture was coupled to 300 K, using a Berendsen therm@stattions impossible. A problem with all the simulations is that
with a coupling time of 0.1 ps. The time step was 2 fs and theéhe derivative is not constant. Smith and Van Gunsteren ap-
neighbor list, which is built with a cut-off of 0.9 nm, was plied the same method for a smaller system of 512 SPC
updated every 5 steps. The cut-off for the Lennard-Jonewater molecules using a cut-off of 0.9 rifiThey obtained
interactions was 0.9 nm. The water geometry was maintainediscosities of 0.54 0.09 10 3 (kgm 1s1) and 0.58-0.09
with the SETTLE algorithnt* We performed 5 simulations X 10 2 with a reaction-field.
of 1 ns with different electrostatics treatments, starting from  To check the convergence, we performed a simulation of
an equilibrated conformation. The first simulation used a20 ns with PME, with a time step of 4 fs. The viscosity
Coulomb cut-off of 0.9 nm. The second simulation used aresults are shown in Fig. 5. Still the pressure fluctuations
Coulomb cut-off of 1.4 nm, all forces between 0.9 and 1.4look far from converged. We chose to average over time 1 to
nm were updated every 5 steps. The protocols for the third
and fourth simulation are identical to the protocol of the first

and second, respectively, except that a reactionfiéfavith ' '
a dielectric constant of 80 was used. The fifth simulation O4r N cut—off 0.9 |
used Particle Mesh Ewal®ME)'’ for the electrostatics, the 03 | ---- cut-off 1.4 |
cut-off for the particle—particle interactions was 0.9 nm. Be- ' ——-RFO9
cause the simulations were performed at a constant volume, 02 I —-— RF14 i

: A O —— PME
the pressure ranges from 3 bar for the 0.9 nm cut-off simu- g ]
lation to 500 bar for the 1.4 nm cut-off reaction-field simu- v 01 F ]
lation. The pressure fluctuations are about 270 bar for all 5
simulations. Running at a constant pressure of 1 bar would 0.0 | Eoi A
change the density by 1 or 2%, which would have little effect e
on the pressure fluctuations. To obtain the viscosity, we cal- 01 b ]
culated the expression of E), without taking the limit. - A -

0 0.5 1 1.5 2

The results for the 5 simulations are shown in Fig. 3. The
differences between the simulations are large. This reflects
the dependence Qf the pressure fluctuations on t_he treatMEAE, 4. The average inner product between the water dipole directions as a
of the electrostatics. The long-range Coulomb interactiongunction of the distance between the dipoles.
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FIG. 5. Viscosity estimate for SPC water using E#). The derivative is  FIG. 7. Viscosity estimate for SPC water using transverse current autocor-
plotted as a function of time for a simulation of 20 ns using PME. The relation functions. The circles are for the 1728 molecule system; the dia-

dotted lines are the three off-diagonal elements of the pressure tensor; ttigonds for the 512 molecule system. The filled symbols are averages over all
solid line is the average. k-vectors(open symbolswith equal length. The line is the fit of the filled
symbols to expressiofi3).

20 ps, because the three off-diagonal elements are relatively
close over this period. The resulting value for the viscosity issteeper than the fit and the negative part of the curves is also
0.38+0.02x 10 3 (kgm s 1). Note that even within these not fitted well. The values of the viscosity obtained from
first 20 picoseconds the off-diagonal elements differ up tdboth simulationgFig. 7) are consistent. Although a straight
10%. line fits the data much better, we fitted with the second order
To estimate the viscosity from the transverse-current corfunction (13), because the viscosity should be an even func-
relation functions, we simulated the same system as abow®n of k. The resulting viscosity is 0.39710 3
for 2 ns with PME. We used a coupling time of 2.5 ps insteadX (kgm 1s™1).
of 0.1 ps for the Berendsen thermostat to minimize the influ-  We also measured the viscosity for several simulations
ence of the thermostat on the correlation functions. The coef SPC water with the periodic perturbation method, using 3
ordinates and velocities were written each 0.1 ps. To checkHifferent system sizes and several electrostatics treatments.
the dependence of the viscosity on the size of the simulatioithe simulation protocol was identical to the one used for the
box, we also simulated a system of 512 SPC water moleculeaquilibrium simulations described previously, except that
at the same density with the same simulation protocol, cooreach atom was subject to an additional acceleration accord-
dinates and velocities were written every 0.05 ps. We calcuing to Eq.(16). The system sizes, the electrostatics treatment
lated transverse current correlation functions using the centend the results are shown in Table Il. The accuracy of all
of mass of the water molecules. The transverse currents wegimulations is in agreement with expressi@s). The results
calculated for the samk-vectors as for the Lennard-Jones for the smallest system show that the shear rate should not be
fluid. Figure 6 shows the transverse-current autocorrelatiohigher than 0.1 ps’; above this value the apparent viscosity
functions as well as the fits for the 4 differektvector  starts to decrease and the temperature starts to increase. The
lengths for the 1728 SPC system. Although the fit is bettesimulations for the medium system size show the depen-
than a pure exponential fit, the first part of the curves isdence of the viscosity on the electrostatics treatment and the
temperature. The viscosity for the 2 cut-off simulations is

- 10% higher than PME simulation at 303 K and the reaction-

N ' ' field simulation with cut-off 0.9. The reaction-field simula-
AN tion with twin-range cut-off is in between. The relative dif-
0.8 RN | ference in the viscosity between the PME simulation at 300
06 _ \\\ | and 303 K is two times as small as in experiment. For the
W | large system the two cut-off simulations show that there is no
o4 L | dependence on the shear-rate at 0.028.p8he PME simu-
i AN lation  produces a viscosity of  0.489.005
oz | NN | x 103 (kgm ts™1). The same value is obtained when the
I N ) viscosities of the PME simulations at the 3 different wave-
0.0 \:\ ) s lengths are fitted to expressiqa3). The cut-off and PME
I ez simulations show the saniedependence.
_02 , . , . , For the SLLOD method we simulated the 1728 SPC sys-
0 1 2 3 tem mentioned above. The shear rate was 0.025 pehe

Time (ps) viscosity was obtained by averaging from 50 to 2000 ps. For

FIG. 6. Transverse current autocorrelation functions for the 1728 SPC moIgjl CL_th-Oﬁ Ojl O_ig nm  the viscosity I.S 0.'4:3)'010
ecule system for 4 differerk-vector lengths. The solid lines are the corre- <X 10 (kgm==s™), for PME electrostatics it is 0.407
lation functions; the dashed lines the fit to expres<it). +0.007-10 3 (kgm 1s™Y).
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TABLE II. Viscosity measurements using the periodic perturbation method with 3 different system sizes and exgBef&ax. The first column shows the

x/y Xz dimensions of the simulation box, the number of molecules and the period used for analysis. c-o indicates cut-off treatment of the eleRfrostatics,
is the cut-off distanceP (pressurg T,, (the measured temperatlirg,., and » are averages over the period indicated in the first column. Two error estimates
are given for the viscosity, one based on block averaging and between brackets expi@Ssibiote thatT,, is a few degrees higher than the coupling
temperature of 300 K for simulations without PME.

Re A P Tm Smax n
Elec. (nm) (nmps?) (ban (K) (ps ™ (10 %kgm s
c-0 0.9 0.025 42 302.4 0.053 0.4t0.028 (0.026)
1.88x5.63(nm) c-0 0.9 0.05 62 302.5 0.107 0.41D2.015 (0.013)
648 SPC c-0 0.9 0.1 100 303.2 0.218 0.4@B010 (0.006)
20-200(ps) c-0 0.9 0.2 191 306.5 0.601 0.29D2.004 (0.002)
PME 0.9 0.05 322 300.2 0.113 0.388.011 (0.012)
c-0 0.9 0.025 43 302.5 0.067 0.436.005 (0.004)
3.75xX 7.5 (nm) c-0 1.4 0.025 —104 303.4 0.068 0.4280.005 (0.004)
3456 SPC RF 0.9 0.025 498 303.3 0.076 0:888004 (0.003)
20-1000(ps) RF 1.4 0.025 388 302.9 0.072 0.406.004 (0.004)
PME 0.9 0.025 341 300.1 0.073 0.399.003 (0.003)
PME 0.9 0.025 389 303.1 0.076 0.380.005 (0.003)
3.75x 15 (nm) c-0 0.9 0.0025 44 302.4 0.013 0.480.010 (0.011)
6912 SPC c-0 0.9 0.005 45 302.4 0.026 0446006 (0.005)
50-2000(ps) PME 0.9 0.005 343 300.0 0.029 0.408.005 (0.006)
3.75x15 (nm) 0.9 0.005 — 166 300.0 0.018 0.6420.008 (0.009)
6912 SPC/E PME
50-2000(p9
1 300.2 0.851
experiment 1 302.2 0.815
1 303.2 0.798

We performed one periodic perturbation simulation us-should be treated accurately. Using a cut-off method, with a
ing a SPC/E(extended simple point chargwater model®  cut-off distance of 0.9 or 1.4 nm results in huge artifacts in
The simulation protocol is identical to the large SPC systenthe pressure fluctuations. This causes the calculated viscosity
with PME electrostatics. The only differences are that theto be too high. A reaction-field reduces the artifacts, but only
oxygens have a charge of0.8476 instead of-0.82 and the  a long-range electrostatics method, such as PME, solves the
hydrogens have a charge of 0.4238 instead of 0.41. Thisroblem completely. A second problem is choosing the pe-
small change in charge results in a viscosity of 0.64Ziod over which to average the integral of the pressure. This
+0.008< 10 ° (kgm™*s™%), which is closer to the experi- integral is very inaccurate for longer times. In general the
mental value of 0.85%¢ 10" * (kgm™*s™*).?° Smith and van  averaging period can only be chosen after visual inspection.
Gunsteren report values of 0.80.09<107°(kgm 's™) The transverse current autocorrelation method is a more
and 0.91-0.07x 10" * with the reaction-field, using the pres- gjrect approach, since it is based on the decay of correlation
sure fluctuation methotf. The difference is caused by the i the motion of particles, which is directly related to the
error in the pressure fluctuations due to the cut-off treatmer\;iscosity_ This makes the method insensitive to the type of

of the electrostatics, as was discussed above. The ratios @fgcirostatics treatment. A fit to an analytical transverse cur-

the va_tlues for the pressure fluctuation and the periodic pefgn 4tocorrelation function is required to obtain the viscos-
turbation method are the same as for SPC water.

ity. The Lennard-Jones fluid follows the behavior of the
Navier—Stokes equation. A phenomenological correction us-
VIIl. CONCLUSIONS ing a simple memory function improves the fit slightly. The

We have compared four methods known from literaturePehavior of water is more complicated, even with the
for calculating the shear viscosity from an MD-simulation. memory function the fit is not optimal. A more complex ana-
The methods differ in applicability, ease of use and compulytical model is needed to describe the behavior of all lig-
tational cost. For a Lennard-Jones fluid, which has onlyids. Thus far only the binary collision contribution to the
short-range interactions, all four methods give reliable retransverse current correlation function has been derved.
sults. With a more complex liquid, such as water, both equiAnother problem is that the obtained viscosity depends on
librium methods have some problems. the wavelength, so extrapolation to infinite wavelength is

The pressure fluctuations method requires accurateequired.
atomic forces, since these forces determine the virial and The periodic perturbation method is similar to the
thus contribute to the pressure. To get accurate forces, theansverse-current autocorrelation method. The difference is
simulation should be performed in double precision. Wherthat, instead of using internal fluctuations, a shear is induced.
Coulomb interactions are present, the long-range interactiorishis allows for a larger signal to noise ratio, while the shear
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rate can be chosen small enough that the structure and dy- 1 1
namics of the liquid are not disturbed. For a given simulationS(N) = N(N-1)

setup all relevant quantities can be estimated beforehand,
including the simulation time required to reach a certain ac- NN My T 1 (T 2
curacy. The simulation box can be chosen to have an elon- X ?J[(il)/N] Tx(t)dt— $J0 X(t)dt) . (Ad)
gated shape such that the wavelength dependence of the vis-
cosity becomes negligible. Thus only one simulation isWhen the block length is shorter than the correlation time of
required. Also a larger box produces better statistics. To obf, the error estimate will be too low. Whéhis much longer
tain an accurate viscosity the shear rate should be an order tifan the correlation time, the error estimate will be almost
magnitude smaller than the inverse of the correlation time irexact. The expectation @?(N) can be calculated analyti-
the liquid. Under such conditions the method is still compu-cally:
tationally more efficient then both equilibrium methods. 1
The SLLOD method has the same accuracy as the pe(-S(N) )= —
turbation method at an equal average shear rate and equal N (N—1)
computational time. However, it has several disadvantages. N N N 1 (T 2
The equations of motion are non-Hamiltonian and the system < E (—f x(t)dt— —f x(t)dt) >
has an overall rotation. But more importantly, the velocity is =\ T Jii-omt TJo
prescribed, which generates forces, instead of forces gener- (A5)
ating a velocity profile. In simple liquids this is not an issue, N
but for more complex ones it might become a problem. 1 2 EJ(i/N)T - 2
There is also the practical inconvenience of sliding boundary NN\ & T [i—1)/N]T
conditions.
Thus the periodic perturbation method is the method of 1 (7 2
choice, as it is insensitive to the electrostatics treatment and B (_f f( )dt) ) >
just as efficient as the SLLOD method, while it does not

=1

(A6)

share the disadvantages of the SLLOD method. 1 N (TN 2
== = f(t)dt
N—-1 TJo
1 (7 2
APPENDIX: ERROR ESTIMATION - (TJ f(t)dt) ) (A7)
0

In this appendix we derive the standard error in the mean , )
of a correlated fluctuating quantity. Consider an observable ( fT NJT N(f(t)f(u))du dt
x, which fluctuates in time around an average vaiue TN-1( T

1 T(T
X(t)=c+f(t), (A1) —?zf f (f(t)f(u) )du dt). (A8)
0JO
(f(t))=0. (A2)  So the expectation can be calculated when the autocorrela-
tion of f is known. When the autocorrelation is exponential,

We want to estimate the error in the estimate ofvhich we lt—ul
obtain by averaging(t) fromt=0 to T. The optimal error (f(Of(u) >=0'26X[( - ) (A9)
estimate can be made when the autocorrelationf af T
known: the expectation o8%(N) appears to be

1T 2\ 1 /(T 2 (SA(N)) 2027(1+ N7 p( T ) 1) (A10)

—f X(t)dt—c == f f(t)dt T T N7

TJo T 0

1 (7 (7 + T N ( ;{ T 1+ !
=?f f CFOf(W )dudt. (A3) TN-1 N7 TN
0Jo
T, 1
. - cod - 1]-2)). a1y
When it is unknown, the autocorrelation can be fitted to a 7/ N
given functional form. However, usually autocorrelation 2
. . . . . . 20°T N7 T T

functions have long tails, which complicates the fitting. It is = 1+ —|exg — —|—1]+0|=]]|.
better to fit an integral property d¢f One integral property is T T N7 T (A12)

the error estimate from a block average. The data can be
divided intoN blocks, over which the average is calculated.WhenT is larger than the correlation time the last term can
When the block averages are considered to be independentba neglected. Wheit is of the order ofr the observation
standard error estimat® can be calculated by dividing the time is not sufficient to estimate the error. We can also write
standard deviation of these averages\iy: the error estimate in terms of the block length T/N:
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200 300 400
Block size (ps)

0 100 500

FIG. 8. Error estimates for #/for the 6912 SPC system with cut-off elec-
trostatics andd=0.005 nm/ps?. The analysis was done from 50 to 2000 ps

(19501 data poinjs The standard deviation of #/is 253. All curves are
plotted as a function of the block length, which is 198@s, whereN is the
number of blocks. The solid curve is the error estimgth) assuming the

blocks are independepexpression(A4)]. The dashed curve is the fit using
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202 2% (anf 1472 )
()—T aTq Tex _T_l_
T t
+(1=a)my| 1+ exp( - T—) —1) ) ) (A16)
2

The optimal error estimaféq. (A3)] is given by the limiting
value of £(t):

- E(t)za\/Z(arl-i-(Tl— a)Tz).

I (A17)
t—

To estimate the error one needs to estimate, 7, and
7. The standard deviation of(t) over timet=0 to T pro-
vides the optimal estimate fer. The other 3 parameters can
be obtained from a fit 08(t) to £(t). There are restrictions
on the range of the fitting parametessshould be between 0
and 1 andr, and 7, should be larger than 0. When the
longest correlation timer,, is longer than the averaging
interval and (X @), is not negligible compared tarr,

&(t) [expressiorfA16)]. The coefficient of the slow exponential is negative; there is not enough statistics to estimate the error. An ex-

this is due to bad statistics when using a small number of blocks. To obtai@mple is given in Fig. 8.
a more accurate error estimate, we fitted again with a single exponential, thisi
is the dot—dashed curve£13.3 ps). This gives a standard error estimate _B. J. Palmer, Phys. Rev. £9, 359 (1994.

for 1/n of 29.5.

<S2(t>>=2027(1+Z
T t

o

r
+ O(T ) .
(A13)
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