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Determining the shear viscosity of model liquids from molecular
dynamics simulations

Berk Hessa)

Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen,
The Netherlands

~Received 8 June 2001; accepted 2 October 2001!

Several methods are available for calculating shear viscosities of liquids from molecular dynamics
simulations. There are equilibrium methods based on pressure or momentum fluctuations and
several nonequilibrium methods. For the nonequilibrium method using a periodic shear flow, all
relevant quantities, including the accuracy, can be estimated before performing the simulation. We
compared the applicability, accuracy and efficiency of this method with two equilibrium methods
and another nonequilibrium method, using simulations of a Lennard-Jones fluid and the SPC and
SPC/E @~extended! simple point charge# water models. ©2002 American Institute of Physics.
@DOI: @10.1063/1.1421362#

I. INTRODUCTION

The shear viscosity is a property of liquids which can be
determined easily by experiment. It is useful for parametriz-
ing the force field, because it is a kinetic property, while
most other properties which are used for parametrization are
of a thermodynamic nature. It is not only important for pure
liquids, as it also influences the rates of~rotational! diffusion
and conformational change of molecules solvated in the liq-
uid.

Several methods for determining the shear viscosity are
described in the literature. From an equilibrium simulation
the viscosity can be obtained from pressure or momentum
fluctuations.1 There are two nonequilibrium methods that
make use of steady-state shear. One can use a periodic shear
flow,2 or use sliding boundary conditions, for instance the
commonly used SLLOD3 algorithm.4 All the methods men-
tioned above, except for the momentum fluctuation ap-
proach, are described in Allen and Tildesley.5 A recent
method uses momentum pulse relaxation.6 The authors claim
that, unlike the periodic shear flow method, their method is
not wavelength or box-size dependent since acoustic modes
cannot travel across the box boundaries. However, acoustic
modes are not the origin of the wavelength dependence.
Steady shear does not induce density fluctuations in a liquid
and thus also no acoustic waves. The momentum pulse re-
laxation method suffers from the same wavelength depen-
dence as the periodic shear flow method, since in both meth-
ods the size of the perturbation is of the order of the
simulation box.

We will describe the two equilibrium methods, the peri-
odic shear flow method and the SLLOD algorithm in more
detail. We will show applications of these four methods to a
Lennard-Jones fluid and two water models.

II. PRESSURE FLUCTUATIONS

The shear viscosity of a liquid is related to the fluctua-
tions of the off-diagonal elements of the pressure or stress
tensor. The viscosity can be calculated from an equilibrium
simulation by integrating the Green–Kubo formula:7

h5
V

kBT E
0

`

^Pxz~ t0!Pxz~ t01t !& t0
dt. ~1!

This can be reformulated as an Einstein relation:

h5 lim
t→`

1

2

V

kBT

d

dt K S E
t0

t01t

Pxz~ t8!dt8D 2L
t0

. ~2!

Both methods converge very slowly, because the pressure in
a volume of the size of a simulation box fluctuates heavily.
The asymptotic behavior of the pressure autocorrelation is
t23/2, which makes an accurate estimation of the viscosity
difficult. The Einstein relation is more convenient to use,
since the inaccuracies in the long time correlations can be
ignored by only considering integrals over shorter times.

III. MOMENTUM FLUCTUATIONS

The viscosity can also be determined from transverse-
current correlation functions for plane waves. The behavior
of the velocityu(r ,t) of a liquid is described by the Navier–
Stokes equation:

r
]u

]t
1r~u•“ !u5r a2¹p1h ¹2u, ~3!

wherea is the external force per unit of mass and volume.
Consider an incompressible liquid with an initial velocity
field consisting of a plane wave in one direction:

u~r ,0!5S u0 cos~k z!

0
0

D . ~4!
a!Electronic mail: hess@chem.rug.nl
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The y and z-component ofu will remain zero; for the
x-component the Navier–Stokes equation reduces to

]ux~z,t !

]t
5

h

r

]2ux~z,t !

]z2 . ~5!

The solution is

ux~z,t !5u0 e2t/tr cos~k z!, ~6!

t r5
r

hk2 . ~7!

From the solution it can be seen that plane waves decay
exponentially with a time constant which is inversely propor-
tional to the viscosity and proportional to the wavelength
squared. According to the fluctuation–dissipation theorem
the response of the system to internal fluctuations is the same
as to a small external perturbation, such as initial condition
~4!. This means the viscosity can be determined from the
autocorrelation of the amplitude of plane waves in the simu-
lation box, which is also called the transverse-current corre-
lation function. However, at short times the correlation func-
tion is not a pure exponential. To account for this, a
phenomenological correction can be applied by incorporat-
ing a relaxation-time.8,9 This changes Eq.~5! to

]ux~z,t !

]t
5

h

r E
0

t

f~ t2s!
]2ux~z,s!

]z2 ds. ~8!

The most simple model for the memory kernelf is

f~ t !5
1

tm
e2t/tm. ~9!

The solution of this equation with initial condition~4! is

ux~z,t !5u0 e2bS cosh~Vb!1
1

V
sinh~Vb! D cos~k z!,

~10!

where

b5
t

2tm
~11!

and

V5A124tm

h

r
k2. ~12!

Note that althoughV can become imaginary, the solution
will always be real. For largek the solution converges to the
solution of the Navier–Stokes equation~6!. The viscosity
can be calculated by fitting the transverse-current correlation
functions for differentk-vectors to formula~10!.

Unfortunately the shear viscosity which is obtained us-
ing this method is dependent onk5iki . To obtain the mac-
roscopic viscosity, one needs to extrapolate tok50. Palmer
argues that since the viscosity in one dimension should be a
symmetric function ofk, one can approximate the viscosity
in third order by

h~k!5h~0!~12ak2!1O~k4!. ~13!

IV. THE PERIODIC PERTURBATION METHOD

Instead of measuring intrinsic fluctuations of the system,
which have a fixed magnitude, we can apply an external
force. The magnitude of this force can be chosen such that
the effects are much easier to measure than the internal fluc-
tuations. The external force will cause a velocity fieldu in
the liquid according to the Navier–Stokes equation~3!. We
can choose the external forcea such thatay andaz are zero
andax is a function ofz only. This makesuy anduz equal to
zero. Since there is no pressure gradient in thex-direction,
the equation forux becomes

r
]ux~z!

]t
5rax~z!1h

]2ux~z!

]z2 . ~14!

The steady-state solution is given by

ax~z!1
h

r

]2ux~z!

]z2 50. ~15!

Since we will be using a periodic system in the simulations,
the acceleration and velocity profile should also be periodic.
To obtain a smooth velocity profile with small local shear
rates, the acceleration profile should be smooth as well. A
simple function which satisfies both conditions is a cosine:

ax~z!5A cos~k z!, ~16!

k5
2p

l z
, ~17!

wherel z is the height of the box. When we takeuz(x)50 at
t50, the generated velocity profile is

ux~z!5V~12e2t/tr !cos~k z!, ~18!

V5A r

hk2 , ~19!

wheret r is given by~7!. The Navier–Stokes equation is not
valid for microscopic length-scales, therefore the wavelength
should be at least an order of magnitude larger than the size
of a molecule.

In an MD-simulation an acceleration can be added to
each particle each MD step, according to Eq.~16!. The av-
erageV can be measured and the viscosity can be calculated
using the following formula:

h5
A
V

r

k2 . ~20!

We define the instantaneousV(t) in the simulation as fol-
lows:

V~ t !52(
i 51

N

miv i ,x~ t !cos~k ri ,z~ t !!Y (
i 51

N

mi , ~21!

where v i ,x is the x-component of the velocity,r i ,z is the
z-coordinate andmi is the mass of atomi . The average forV
can be measured after the amplitude of the velocity profile
has been fully developed, which is aroundt55t r . To obtain
the correct value for the viscosity the generated velocity pro-
file should not be coupled to the heat bath, also the velocity
profile should be excluded from the kinetic energy. One

210 J. Chem. Phys., Vol. 116, No. 1, 1 January 2002 Berk Hess



would like V to be as large as possible to get good statistics.
However, the shear rate should not be so high that the system
moves too far from equilibrium. The maximum shear rate
occurs where the cosine is zero, the rate is:

smax5max
z
U]vx~z!

]z U5A r

hk
. ~22!

The system will be able to relax when the inverse shear rate
is longer than the relaxation time. For most liquids this will
be the rotation correlation time, which is around 10 picosec-
onds. When the shear rate is too high the apparent viscosity
will be too low.

The accuracy of the viscosity estimate is determined by
the momentum fluctuations described in the previous section.
The amplitude of the fluctuation onV(t) is

^„V~ t !2^V~ t !&…2&1/25A2kBT

rV
. ~23!

The 2 arises from the integral over (2 cos)2 in ~21!; rV is the
total mass of the system. For large wavelengths the fluctua-
tions have exponential correlation~10!, with correlation time
t r ~7!. From this the error in the average can be calculated.
The relative standard error in the amplitude of the velocity
profile is

sV
V 5A2t r

ta
A2kBT

rV

smax

k
5

2

smax
A kBT

tahV
, ~24!

whereta is the time over which the average ofV(t) is deter-
mined. The error in the viscosity is

sh5
sV
V h5

2

smax
AkBTh

taV
. ~25!

The accuracy increases with the square root of time and the
number of particles. When the CPU-time increases linearly
with the number of particles, the CPU-time required for a
given accuracy is independent of the system size. Thus a
large system is optimal, since it produces a longer wave-
length. The system should not be chosen too large, because
the equilibration and shear development time increase as
well.

The heat generated by the viscous friction is removed by
coupling to a heat bath. Because this coupling is not instan-
taneous the real temperature of the liquid will be slightly
lower than the observed temperature. Berendsen derived this
temperature shift for coupling with the Berendsen
thermostat.10,11 We rewrote the shift in terms of the shear
rate:

Ts5
h tc

2r Cv
smax

2 , ~26!

wheretc is the coupling time for the Berendsen thermostat
andCv is the heat capacity.

To get an idea of the order of magnitude of the quantities
involved, we can look at a small simulation system for water
at 20 °C:

h51023 kg m21 s21

k51 nm21

r5103 kg m23

A50.1 nm ps22

Cv543103 J kg21 K21

⇒ V50.1 nm ps21

l z52p nm

t r51 ps

tc50.1 ps

Ts50.125 K

smax51/10 ps21.

~27!

Thus for the requested shear rate we get a measurable value
for V and a temperature shift of 0.125 K, which is negligible.

V. THE SLLOD ALGORITHM

One can also obtain the viscosity by imposing a Couette
flow. The equation of motion needs to be modified to achieve
this. In the SLLOD algorithm this is done in a non-
Hamiltonian way. When shearing in thex-direction with the
gradient in thez-direction, the SLLOD equations of motion
are

dr i

dt
5vi1s ri ,zS 1

0
0
D , ~28!

dvi

dt
5

1

mi
f i2s v i ,zS 1

0
0
D , ~29!

where i is the particle index, a second index indicates the
vector component ands is the shear rate. As the system is
periodic, the periodic boundary conditions also need to be
modified. This can be accomplished by using a continuously
deforming triclinic unit-cell, which is implemented in the
GROMACS3.0 package,12 that we modified to use the SLLOD
method. The viscosity is calculated from the stress tensorP:

h52
1

s
^Pxz&. ~30!

There are two problems with this approach, besides the equa-
tions of motion not being Hamiltonian. The first problem is
that conceptually the viscosity does not correspond to the
viscosity obtained from an experiment. In the SLLOD algo-
rithm not a force profile, but the linear velocity profile is
imposed up to the atomic level, while in the experiment ex-
ternal forces induce a Couette flow on the macroscopic level.
On the atomic level the velocity profile is not necessarily
linear. In simple liquids these viscosities will be the same,
but in complex liquids they can be different. A second prob-
lem is that the equations of motion produce an overall rota-
tion in the system.
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VI. VISCOSITY OF A LENNARD-JONES FLUID

As a simple model system we chose a fluid of Lennard-
Jones particles. The system was made dimensionless by ex-
pressing units ins, e and the mass. All simulations have
been performed at number densityn* 50.452 and tempera-
ture T* 52, starting from an equilibrated conformation. The
time step was 0.01, the neighbor list was updated every 10
steps, with a cut-off of 5. The temperature was coupled using
a Berendsen thermostat with a coupling time of 20.

For the pressure fluctuations method we performed a
simulation in double precision with a duration of 5000 and in
a periodic, cubic box containing 1000 particles. The right
hand side of Eq.~2! averaged over the three off-diagonal
elements, without taking the limit, is shown in Fig. 1. Since
the curves are reasonably constant fromt* 55 to 80, we took
the average over this period. An error estimate can be made
from the three values for the off-diagonal elements. For the
whole simulation the dimensionless viscosityh* is 0.444
60.018.

For the transverse-current method we simulated two sys-
tems for a duration of 5000: the system of 1000 particles
described above and 8000 particles in a cubic box. The co-
ordinates and velocities were written at intervals of 0.2. The
k-vectors used for the analysis are~1,0,0!, ~1,1,0!, (1,
21,0), (1,1,21), ~2,0,0! each in all 3 permutations and
~1,1,1!, for notational convenience we left out the inverse
box length for eachk-vector component. For eachk-vector
there are 2 perpendicular velocity directions and 2 ampli-
tudes, one of sin(k•r ) and one of cos(k•r ). For each
k-vector length there are only 3 independent directions.
Since our simulation boxes are cubic, we can average over
all permutations of thek-vectors given above, as well as over
the k-vectors which differ only in signs. The transverse-
current autocorrelation functions are close to exponential,
except for the initial decay~not shown!. A higher density
would produce a negative minimum in the autocorrelation.
The autocorrelation functions can be fitted very well with
expression~10!, where we used exponentially decaying
weights with time constant 10. The resultingk-dependent
viscosities of the 1000 particle system can be fitted perfectly

with the second order approximation~13!, this gives h*
50.433 ~Fig. 2!. For the 8000 particle system the fit is
worse; the value ish* 50.465. Fitting one curve to both
systems results inh* 50.448. It is hard to tell which of these
values is the best one.h* (k) will be closer to the real value
of the viscosity for smallk, but the error increases, since the
correlation time is proportional to 1/k2.

For the periodic perturbation method we simulated sys-
tems of 3 different sizes, to study the wavelength depen-
dence: 1000 particles in a cubic box as described above and
2 and 4 of these boxes stacked in thez-direction. The simu-
lation protocol was the same as for the other methods, except
for the coupling time of the Berendsen thermostat, which
was set to 5, to more rapidly remove the energy introduced in
the system by the external force. For each system size we
used 3 different amplitudes for the acceleration profile. All
simulations have length 5000. We started the analysis at time
400, which allows for enough time to develop a steady shear.
Error estimates were calculated assuming a double exponen-
tial auto-correlation using formula~A16!, which is derived in
the Appendix. None of the simulations show a significant
long correlation time. The short correlation time is close to
t r @Eq. ~7!#. All results are shown in Table I. The medium

TABLE I. Viscosity measurements of a Lennard-Jones fluid ofN particles
using the periodic perturbation method with 3 different system sizes. smax*
andh* are averages over time 400–5000. Two error estimates are given for
the viscosity, one based on block averaging~see the Appendix! and between
parentheses expression~25!.

N k* A* smax* h*

0.02 0.044 0.42760.019 (0.013)
1000 0.48 0.04 0.086 0.43460.007 (0.007)

0.08 0.176 0.42760.005 (0.003)

0.01 0.041 0.46160.014 (0.010)
2000 0.24 0.02 0.084 0.44860.004 (0.005)

0.04 0.169 0.44560.005 (0.002)

0.005 0.041 0.45260.006 (0.007)
4000 0.12 0.01 0.083 0.45460.004 (0.004)

0.02 0.165 0.45460.002 (0.002)

FIG. 1. Viscosity estimate for a Lennard-Jones fluid using Eq.~2!. The
derivative is plotted as a function of time for the whole simulation~solid
line! and the two halves~dashed lines!.

FIG. 2. Viscosity estimate for a Lennard-Jones fluid using transverse current
autocorrelation functions. The circles are for the 8000 particle system; the
diamonds for the 1000 particle system. The filled symbols are averages over
all k-vectors~open symbols! with equal length. The solid lines are the fits to
expression~13! for the separate systems; the dashed line is the fit for both
systems.
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and large systems give compatible values for the viscosity at
all shear rates. The small system gives lower viscosities. This
indicates the viscosity converges to the infinite wavelength
value somewhere betweenk* 50.48 and 0.24. The shear-rate
dependence is negligible, since the highest shear rate~0.17!
is still 15 times smaller than the inverse of the exponential
decay time of the autocorrelation~1/0.4!. The temperature
shifts atsmax 0.08 and 0.17 are 0.5% and 2%, respectively.
The most accurate estimate of the viscosity can be obtained
from the large system, averaging the values for the 3 shear
rates givesh* 50.45360.002.

For the SLLOD method we used the 1000 particle sys-
tem with a shear rate of 0.05. The viscosity, averaged over
time 400–5000 is 0.46260.008. The temperature shift is
0.4%.

To compare the accuracy at equal CPU-time, the run-
time of the periodic perturbation simulations of 4000 par-
ticles should be decreased by a factor of 4. Taking into ac-
count the shear development time, the accuracy decreases by
a factor 2.3, which makes the periodic perturbation method
more accurate than both equilibrium methods at all 3 shear
rates. At an equal average shear rate (smax52s) the nonequi-
librium methods are equally accurate.

VII. VISCOSITY OF THE SPC AND SPCÕE
WATER MODELS

To estimate the viscosity of the SPC~simple point
charge! water model13 from the pressure fluctuations, we
have performed MD-simulations in double precision of 1728
molecules in a cubic box of length 3.75 nm. All simulations
were done at a constant density of 980 kg m23. The tempera-
ture was coupled to 300 K, using a Berendsen thermostat10

with a coupling time of 0.1 ps. The time step was 2 fs and the
neighbor list, which is built with a cut-off of 0.9 nm, was
updated every 5 steps. The cut-off for the Lennard-Jones
interactions was 0.9 nm. The water geometry was maintained
with the SETTLE algorithm.14 We performed 5 simulations
of 1 ns with different electrostatics treatments, starting from
an equilibrated conformation. The first simulation used a
Coulomb cut-off of 0.9 nm. The second simulation used a
Coulomb cut-off of 1.4 nm, all forces between 0.9 and 1.4
nm were updated every 5 steps. The protocols for the third
and fourth simulation are identical to the protocol of the first
and second, respectively, except that a reaction field15,16with
a dielectric constant of 80 was used. The fifth simulation
used Particle Mesh Ewald~PME!17 for the electrostatics, the
cut-off for the particle–particle interactions was 0.9 nm. Be-
cause the simulations were performed at a constant volume,
the pressure ranges from 3 bar for the 0.9 nm cut-off simu-
lation to 500 bar for the 1.4 nm cut-off reaction-field simu-
lation. The pressure fluctuations are about 270 bar for all 5
simulations. Running at a constant pressure of 1 bar would
change the density by 1 or 2%, which would have little effect
on the pressure fluctuations. To obtain the viscosity, we cal-
culated the expression of Eq.~2!, without taking the limit.
The results for the 5 simulations are shown in Fig. 3. The
differences between the simulations are large. This reflects
the dependence of the pressure fluctuations on the treatment
of the electrostatics. The long-range Coulomb interactions

have little effect on the potential, but the forces contribute
significantly to the virial. Artifacts of the electrostatics cut-
off can be seen in the dipole–dipole correlation plot~Fig. 4!.
At distances slightly below the cut-off the dipoles are anti-
correlated, at distances slightly above the cut-off the dipoles
are correlated. In addition to this effect, the simulation with a
cut-off of 1.4 nm shows extra correlation at short distances.
A reaction-field decreases the long-range correlations signifi-
cantly. The reaction-field simulation with a cut-off of 0.9 nm
has a lower dipole correlation in the first coordination sphere
~0.28 nm!. With PME there is no correlation after 0.75 nm.
The too large correlation of dipoles at long distances makes
an accurate estimation of the viscosity from pressure fluctua-
tions impossible. A problem with all the simulations is that
the derivative is not constant. Smith and Van Gunsteren ap-
plied the same method for a smaller system of 512 SPC
water molecules using a cut-off of 0.9 nm.18 They obtained
viscosities of 0.5460.09•1023 (kg m21 s21) and 0.5860.09
31023 with a reaction-field.

To check the convergence, we performed a simulation of
20 ns with PME, with a time step of 4 fs. The viscosity
results are shown in Fig. 5. Still the pressure fluctuations
look far from converged. We chose to average over time 1 to

FIG. 3. Viscosity estimate for SPC water using Eq.~2!. The derivative is
plotted as a function of time for 5 simulations which differ only in electro-
statics treatment.

FIG. 4. The average inner product between the water dipole directions as a
function of the distance between the dipoles.
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20 ps, because the three off-diagonal elements are relatively
close over this period. The resulting value for the viscosity is
0.3860.0231023 (kg m21 s21). Note that even within these
first 20 picoseconds the off-diagonal elements differ up to
10%.

To estimate the viscosity from the transverse-current cor-
relation functions, we simulated the same system as above
for 2 ns with PME. We used a coupling time of 2.5 ps instead
of 0.1 ps for the Berendsen thermostat to minimize the influ-
ence of the thermostat on the correlation functions. The co-
ordinates and velocities were written each 0.1 ps. To check
the dependence of the viscosity on the size of the simulation
box, we also simulated a system of 512 SPC water molecules
at the same density with the same simulation protocol, coor-
dinates and velocities were written every 0.05 ps. We calcu-
lated transverse current correlation functions using the center
of mass of the water molecules. The transverse currents were
calculated for the samek-vectors as for the Lennard-Jones
fluid. Figure 6 shows the transverse-current autocorrelation
functions as well as the fits for the 4 differentk-vector
lengths for the 1728 SPC system. Although the fit is better
than a pure exponential fit, the first part of the curves is

steeper than the fit and the negative part of the curves is also
not fitted well. The values of the viscosity obtained from
both simulations~Fig. 7! are consistent. Although a straight
line fits the data much better, we fitted with the second order
function ~13!, because the viscosity should be an even func-
tion of k. The resulting viscosity is 0.39731023

3(kg m21 s21).
We also measured the viscosity for several simulations

of SPC water with the periodic perturbation method, using 3
different system sizes and several electrostatics treatments.
The simulation protocol was identical to the one used for the
equilibrium simulations described previously, except that
each atom was subject to an additional acceleration accord-
ing to Eq.~16!. The system sizes, the electrostatics treatment
and the results are shown in Table II. The accuracy of all
simulations is in agreement with expression~25!. The results
for the smallest system show that the shear rate should not be
higher than 0.1 ps21; above this value the apparent viscosity
starts to decrease and the temperature starts to increase. The
simulations for the medium system size show the depen-
dence of the viscosity on the electrostatics treatment and the
temperature. The viscosity for the 2 cut-off simulations is
10% higher than PME simulation at 303 K and the reaction-
field simulation with cut-off 0.9. The reaction-field simula-
tion with twin-range cut-off is in between. The relative dif-
ference in the viscosity between the PME simulation at 300
and 303 K is two times as small as in experiment. For the
large system the two cut-off simulations show that there is no
dependence on the shear-rate at 0.026 ps21. The PME simu-
lation produces a viscosity of 0.40560.005
31023 (kg m21 s21). The same value is obtained when the
viscosities of the PME simulations at the 3 different wave-
lengths are fitted to expression~13!. The cut-off and PME
simulations show the samek-dependence.

For the SLLOD method we simulated the 1728 SPC sys-
tem mentioned above. The shear rate was 0.025 ps21. The
viscosity was obtained by averaging from 50 to 2000 ps. For
a cut-off of 0.9 nm the viscosity is 0.42360.010
31023 (kg m21 s21), for PME electrostatics it is 0.407
60.007•1023 (kg m21 s21).

FIG. 5. Viscosity estimate for SPC water using Eq.~2!. The derivative is
plotted as a function of time for a simulation of 20 ns using PME. The
dotted lines are the three off-diagonal elements of the pressure tensor; the
solid line is the average.

FIG. 6. Transverse current autocorrelation functions for the 1728 SPC mol-
ecule system for 4 differentk-vector lengths. The solid lines are the corre-
lation functions; the dashed lines the fit to expression~10!.

FIG. 7. Viscosity estimate for SPC water using transverse current autocor-
relation functions. The circles are for the 1728 molecule system; the dia-
monds for the 512 molecule system. The filled symbols are averages over all
k-vectors~open symbols! with equal length. The line is the fit of the filled
symbols to expression~13!.
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We performed one periodic perturbation simulation us-
ing a SPC/E~extended simple point charge! water model.19

The simulation protocol is identical to the large SPC system
with PME electrostatics. The only differences are that the
oxygens have a charge of20.8476 instead of20.82 and the
hydrogens have a charge of 0.4238 instead of 0.41. This
small change in charge results in a viscosity of 0.642
60.00831023 (kg m21 s21), which is closer to the experi-
mental value of 0.85131023 (kg m21 s21).20 Smith and van
Gunsteren report values of 0.8160.0931023 (kg m21 s21)
and 0.9160.0731023 with the reaction-field, using the pres-
sure fluctuation method.18 The difference is caused by the
error in the pressure fluctuations due to the cut-off treatment
of the electrostatics, as was discussed above. The ratios of
the values for the pressure fluctuation and the periodic per-
turbation method are the same as for SPC water.

VIII. CONCLUSIONS

We have compared four methods known from literature
for calculating the shear viscosity from an MD-simulation.
The methods differ in applicability, ease of use and compu-
tational cost. For a Lennard-Jones fluid, which has only
short-range interactions, all four methods give reliable re-
sults. With a more complex liquid, such as water, both equi-
librium methods have some problems.

The pressure fluctuations method requires accurate
atomic forces, since these forces determine the virial and
thus contribute to the pressure. To get accurate forces, the
simulation should be performed in double precision. When
Coulomb interactions are present, the long-range interactions

should be treated accurately. Using a cut-off method, with a
cut-off distance of 0.9 or 1.4 nm results in huge artifacts in
the pressure fluctuations. This causes the calculated viscosity
to be too high. A reaction-field reduces the artifacts, but only
a long-range electrostatics method, such as PME, solves the
problem completely. A second problem is choosing the pe-
riod over which to average the integral of the pressure. This
integral is very inaccurate for longer times. In general the
averaging period can only be chosen after visual inspection.

The transverse current autocorrelation method is a more
direct approach, since it is based on the decay of correlation
in the motion of particles, which is directly related to the
viscosity. This makes the method insensitive to the type of
electrostatics treatment. A fit to an analytical transverse cur-
rent autocorrelation function is required to obtain the viscos-
ity. The Lennard-Jones fluid follows the behavior of the
Navier–Stokes equation. A phenomenological correction us-
ing a simple memory function improves the fit slightly. The
behavior of water is more complicated, even with the
memory function the fit is not optimal. A more complex ana-
lytical model is needed to describe the behavior of all liq-
uids. Thus far only the binary collision contribution to the
transverse current correlation function has been derived.21

Another problem is that the obtained viscosity depends on
the wavelength, so extrapolation to infinite wavelength is
required.

The periodic perturbation method is similar to the
transverse-current autocorrelation method. The difference is
that, instead of using internal fluctuations, a shear is induced.
This allows for a larger signal to noise ratio, while the shear

TABLE II. Viscosity measurements using the periodic perturbation method with 3 different system sizes and experiment~Ref. 20!. The first column shows the
x/y3z dimensions of the simulation box, the number of molecules and the period used for analysis. c-o indicates cut-off treatment of the electrostatics,Rc

is the cut-off distance.P ~pressure!, Tm ~the measured temperature!, smax andh are averages over the period indicated in the first column. Two error estimates
are given for the viscosity, one based on block averaging and between brackets expression~25!. Note thatTm is a few degrees higher than the coupling
temperature of 300 K for simulations without PME.

Elec.
Rc

~nm!
A

(nm ps22)
P

~bar!
Tm

~K!
smax

(ps21)
h

(1023 kg m21 s21)

c-o 0.9 0.025 42 302.4 0.053 0.41460.028 (0.026)
1.8835.63 ~nm! c-o 0.9 0.05 62 302.5 0.107 0.41260.015 (0.013)

648 SPC c-o 0.9 0.1 100 303.2 0.218 0.40360.010 (0.006)
20–200~ps! c-o 0.9 0.2 191 306.5 0.601 0.29260.004 (0.002)

PME 0.9 0.05 322 300.2 0.113 0.38860.011 (0.012)

c-o 0.9 0.025 43 302.5 0.067 0.43660.005 (0.004)
3.7537.5 ~nm! c-o 1.4 0.025 2104 303.4 0.068 0.42860.005 (0.004)

3456 SPC RF 0.9 0.025 498 303.3 0.076 0.38860.004 (0.003)
20–1000~ps! RF 1.4 0.025 388 302.9 0.072 0.40660.004 (0.004)

PME 0.9 0.025 341 300.1 0.073 0.39960.003 (0.003)
PME 0.9 0.025 389 303.1 0.076 0.38760.005 (0.003)

3.75315 ~nm! c-o 0.9 0.0025 44 302.4 0.013 0.43960.010 (0.011)
6912 SPC c-o 0.9 0.005 45 302.4 0.026 0.44660.006 (0.005)

50–2000~ps! PME 0.9 0.005 343 300.0 0.029 0.40560.005 (0.006)

3.75315 ~nm!
6912 SPC/E
50–2000~ps!

PME
0.9 0.005 2166 300.0 0.018 0.64260.008 (0.009)

1 300.2 0.851
experiment 1 302.2 0.815

1 303.2 0.798
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rate can be chosen small enough that the structure and dy-
namics of the liquid are not disturbed. For a given simulation
setup all relevant quantities can be estimated beforehand,
including the simulation time required to reach a certain ac-
curacy. The simulation box can be chosen to have an elon-
gated shape such that the wavelength dependence of the vis-
cosity becomes negligible. Thus only one simulation is
required. Also a larger box produces better statistics. To ob-
tain an accurate viscosity the shear rate should be an order of
magnitude smaller than the inverse of the correlation time in
the liquid. Under such conditions the method is still compu-
tationally more efficient then both equilibrium methods.

The SLLOD method has the same accuracy as the per-
turbation method at an equal average shear rate and equal
computational time. However, it has several disadvantages.
The equations of motion are non-Hamiltonian and the system
has an overall rotation. But more importantly, the velocity is
prescribed, which generates forces, instead of forces gener-
ating a velocity profile. In simple liquids this is not an issue,
but for more complex ones it might become a problem.
There is also the practical inconvenience of sliding boundary
conditions.

Thus the periodic perturbation method is the method of
choice, as it is insensitive to the electrostatics treatment and
just as efficient as the SLLOD method, while it does not
share the disadvantages of the SLLOD method.

APPENDIX: ERROR ESTIMATION

In this appendix we derive the standard error in the mean
of a correlated fluctuating quantity. Consider an observable
x, which fluctuates in time around an average valuec:

x~ t !5c1 f ~ t !, ~A1!

^ f ~ t ! &50. ~A2!

We want to estimate the error in the estimate ofc, which we
obtain by averagingx(t) from t50 to T. The optimal error
estimate can be made when the autocorrelation off is
known:

K S 1

T E
0

T

x~ t !dt2cD 2 L 5
1

T2 K S E
0

T

f ~ t !dt D 2 L
5

1

T2 E
0

TE
0

T

^ f ~ t ! f ~u! &du dt. ~A3!

When it is unknown, the autocorrelation can be fitted to a
given functional form. However, usually autocorrelation
functions have long tails, which complicates the fitting. It is
better to fit an integral property off . One integral property is
the error estimate from a block average. The data can be
divided intoN blocks, over which the average is calculated.
When the block averages are considered to be independent, a
standard error estimateS can be calculated by dividing the
standard deviation of these averages byAN:

S2~N!5
1

N

1

~N21!

3(
i 51

N S N

T E
@~ i 21!/N# T

~ i /N! T
x~ t !dt2

1

T E
0

T

x~ t !dt D 2

. ~A4!

When the block length is shorter than the correlation time of
f , the error estimate will be too low. WhenT is much longer
than the correlation time, the error estimate will be almost
exact. The expectation ofS2(N) can be calculated analyti-
cally:

^ S2~N! &5
1

N

1

~N21!

3K (
i 51

N S N

T E
@~ i 21!/N# T

~ i /N! T
x~ t !dt2

1

T E
0

T

x~ t !dt D 2L
~A5!
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f ~ t !dt D 2
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f ~ t !dt D 2D L ~A6!
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T E
0
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f ~ t !dt D 2 L
2K S 1
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0
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f ~ t !dt D 2L D ~A7!
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N21 S N2

T2 E
0

T/NE
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T/N

^ f ~ t ! f ~u!&du dt

2
1

T2 E
0

TE
0

T

^ f ~ t ! f ~u! &du dt D . ~A8!

So the expectation can be calculated when the autocorrela-
tion of f is known. When the autocorrelation is exponential,

^ f ~ t ! f ~u! &5s2expS 2
ut2uu

t D , ~A9!

the expectation ofS2(N) appears to be

^ S2~N! &5
2s2t

T S 11
Nt

T S expS 2
T

Nt D21D ~A10!

1
t

T

N

N21 S expS 2
T

Nt D211
1

N

3expS 2
T

t D2
1

ND D , ~A11!

5
2s2t

T S 11
Nt

T S expS 2
T

Nt D21D1OS t

TD D .

~A12!

WhenT is larger than the correlation timet, the last term can
be neglected. WhenT is of the order oft the observation
time is not sufficient to estimate the error. We can also write
the error estimate in terms of the block lengtht5T/N:
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^ S2~ t ! &5
2s2t

T S 11
t

t S expS 2
t

t D21D1OS t

TD D .

~A13!

A single exponential autocorrelation can usually be fitted
easily, but problems arise when there is a second, longer
correlation time present inf :

^ f ~ t ! f ~u!&5s2S a expS 2
ut2uu

t1
D1~12a!

3expS 2
ut2uu

t2
D D . ~A14!

Usually one decay time, which we choose to bet2 , is at least
one order of magnitude larger than the other anda is very
close to 1. The expectation now becomes

^S2~ t !&5
2s2

T S at1S 11
t1

t S expS 2
t

t1
D21D D

1~12a!t2S 11
t2

t S expS 2
t

t2
D21D D

1OS t1
2

T D 1OS t2
2

T D D . ~A15!

When we neglect the last 2 terms, we obtain a relatively
simple functionE which depends onT as 1/AT:

E 2~ t !5
2s2

T S at1S 11
t1

t S expS 2
t

t1
D21D D

1~12a!t2S 11
t2

t S expS 2
t

t2
D21D D D . ~A16!

The optimal error estimate@Eq. ~A3!# is given by the limiting
value ofE(t):

lim
t→`

E~ t !5sA2„at11~12a!t2…

T
. ~A17!

To estimate the error one needs to estimates, a, t1 and
t2 . The standard deviation ofx(t) over timet50 to T pro-
vides the optimal estimate fors. The other 3 parameters can
be obtained from a fit ofS(t) to E(t). There are restrictions
on the range of the fitting parameters:a should be between 0
and 1 andt1 and t2 should be larger than 0. When the
longest correlation time,t2 , is longer than the averaging
interval and (12a)t2 is not negligible compared toat1 ,
there is not enough statistics to estimate the error. An ex-
ample is given in Fig. 8.
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FIG. 8. Error estimates for 1/h for the 6912 SPC system with cut-off elec-
trostatics andA50.005 nm/ps22. The analysis was done from 50 to 2000 ps
~19501 data points!. The standard deviation of 1/h is 253. All curves are
plotted as a function of the block length, which is 1950/N ps, whereN is the
number of blocks. The solid curve is the error estimateS(N) assuming the
blocks are independent@expression~A4!#. The dashed curve is the fit using
E(t) @expression~A16!#. The coefficient of the slow exponential is negative;
this is due to bad statistics when using a small number of blocks. To obtain
a more accurate error estimate, we fitted again with a single exponential, this
is the dot–dashed curve (t513.3 ps). This gives a standard error estimate
for 1/h of 29.5.
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