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The strong coupling: status and challenges

1. Introduction

Quantum Chromodynamics (QCD) contains only a single free parameter, the value of its cou-

pling constant, besides the values of the quark masses. Therefore, all strong interaction phenomena

should be described in terms of the unique strong coupling αs. The overwhelming consistency

of the many determinations of αs, performed in very different processes and in a broad range of

energy scales, provides a beautiful verification of QCD, establishing the SU(3)C gauge theory as

the fundamental quantum field theory of the strong interaction.

The impressive progress achieved in recent years has promoted perturbative QCD to the status

of precision physics, improving in a very sizeable way the physics potential of the current LHC

program. In the MS-scheme the QCD β function is known to five loops [1, 2, 3, 4], which pro-

vides a precise theoretical control of the renormalization-scale dependence of the running coupling.

Moreover, the very modest growth of the β -function coefficients with the perturbative order gives

rise to a surprisingly smooth power expansion. The β function and, therefore, the running coupling

depend on the number of active quark flavours n f . The matching conditions relating the effective

QCD theories with n f and n f −1 quark flavours are known to four loops [5, 6].

At the current level of accuracy, a very good understanding of the uncertainties associated with

the different measurements of αs is needed. Thus, we should restrict the analysis to observables

where perturbative techniques are reliable and enough terms in the expansion in powers of αs are

available. Following the Particle Data Group (PDG) criteria [7], in this contribution we will require

a NNLO or higher accuracy. Non-perturbative contributions and theoretical uncertainties from the

expected asymptotic behaviour of perturbation theory should also be under good control.

The outline of this contribution is the following. First of all, in Sect. 2, we review the determi-

nations of αs from inclusive observables such as the hadronic τ decay width and the Z → hadrons

branching fraction. Then, in Sect. 3, we discuss determinations from global PDF fits, high-energy

collider observables, and event shapes. In Sect. 4, we study extractions of the strong coupling

from the lattice QCD static energy. Then in Sect 5, we review recent progress in determining

αs(mZ) from lattice QCD calculations more generally. Finally in Sect. 6 we present some general

reflections about the main lessons that can be drawn from this discussion exercise.

2. Inclusive observables (A. Pich)

The inclusive electroweak production of hadrons provides clean observables that can be accu-

rately predicted with perturbative tools, such as the cross section σ(e+e− → hadrons) or the decay

widths Γ(Z → hadrons) and Γ(W → hadrons). The final hadrons are produced through the colour-

singlet vector V
µ

i j = ψ̄ jγ
µψi and axial-vector A

µ
i j = ψ̄ jγ

µγ5ψi quark currents (i, j = u,d,s . . .). The

QCD dynamics is governed by the corresponding two-point correlation functions (J =V,A)

Π
µν
i j,J(q) ≡ i

∫

d4x eiqx 〈0|T (Jµ
i j(x)Jν

i j(0)
†)|0〉 =

(

−gµνq2 +qµqν
)

Π
(0+1)
i j,J (q2)+gµνq2 Π

(0)
i j,J(q

2) .

(2.1)

The scalar functions Π
(L)
i j,J(q

2) (the superscript L = 0,1 denotes the angular momentum in the

hadronic rest frame) are analytic in the whole complex q2 plane, except along the (physical) posi-

tive real axis where their imaginary parts have discontinuities. These absorptive cuts correspond to

the measurable hadronic spectral distributions with the given quantum numbers.
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The strong coupling: status and challenges

For massless quarks, Π
(0)
i j,V (s) = 0 while sΠ

(0)
i j,A(s) is a known constant generated by the non-

perturbative Goldstone-pole contribution that cancels in Π
(0+1)
i j,A (s). When i 6= j, the two quark

currents must necessarily be connected through a quark loop (non-singlet topology), which gives

identical contributions to the vector and axial massless correlators: Π
(0+1)
i 6= j,V (s) = Π

(0+1)
i 6= j,A (s). The

neutral-current correlators (i = j) get additional singlet contributions, where each current couples

to a different quark loop. Since gluons have JPC = 1−− and colour, these singlet topologies start to

contribute at O(α3
s ) and O(α2

s ), respectively, for the vector and axial-vector currents.

The perturbative expansion of the correlators Π
(0+1)
i j,J (s) is known with an impressive O(α4

s )

accuracy [8, 9, 10]. Therefore, the ratio Re+e−(s)≡σ(e+e− → hadrons)/σ(e+e− → µ+µ−), which

is proportional to the imaginary part of the electromagnetic vector-current correlator, could be

used to perform a clean N3LO determination of αs, at energies high enough to safely neglect

non-perturbative contributions. The experimental uncertainties are, however, too large to get a

competitive value.

ΓΓΓ(((ZZZ →→→ hadrons))). The electroweak neutral quark current contains vector and axial-vector com-

ponents, weighted with the corresponding Z couplings. The large value of the top mass generates

sizeable singlet axial corrections which start at O(α2
s ). The ratio of the hadronic and electronic

widths of the Z boson is given by the perturbative QCD series (mb = 0, mt 6= 0, n f = 5)

RZ ≡ Γ(Z → hadrons)

Γ(Z → e+e−)
= REW

Z NC

{

1+ ∑
n=1

F̃n

(

αs(mZ)

π

)n
}

, (2.2)

with F̃1 = 1, F̃2 = 0.76264, F̃3 =−15.490 and F̃4 =−68.241 [9]. Taking into account electroweak

corrections and QCD contributions suppressed by powers of m2
b/m2

Z [11, 12], the ratio RZ is in-

cluded in the global fit to electroweak precision data. One obtains in this way a quite accurate

value of αs(mZ) [13]:

α
(n f =5)
s (mZ) = 0.1196±0.0030 . (2.3)

Since this result assumes the validity of the electroweak Standard Model, its comparison with other

determinations of the strong coupling provides a non-trivial constraint on new-physics scenarios.

ΓΓΓ(((τττ →→→ ννντττ +++hadrons))). The current precision on the hadronic decay width of the W± boson is not

good enough to perform an accurate determination of αs. A much more sensitive observable is the

hadronic τ decay width [14, 15, 16, 17], which proceeds through a virtual W± boson. Restricting

the analysis to the dominant Cabibbo-allowed decay width,

Rτ,V+A ≡
Γ[τ− → ντ +hadrons(S = 0)]

Γ[τ− → ντe−ν̄e]
(2.4)

= 12π |Vud |2 SEW

∫ m2
τ

0

ds

m2
τ

(

1− s

m2
τ

)2[(

1+2
s

m2
τ

)

ImΠ
(0+1)
ud,V+A(s)−2

s

m2
τ

ImΠ
(0)
ud,V+A(s)

]

,

where SEW = 1.0201±0.0003 incorporates the electroweak radiative corrections [18, 19, 20]. The

measured invariant-mass distribution of the final hadrons determines the spectral functions ρJ(s)≡
ImΠ

(0+1)
ud,J (s)/π , shown in figure 1 (the only relevant contribution to the s ImΠ

(0)
ud,V+A(s) term is the

π− final state at s = m2
π ).
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The strong coupling: status and challenges

Figure 1: Spectral functions for the V , A and V +A channels, determined from ALEPH τ data [21].

Although the low-energy spectral functions themselves cannot be described with perturbative

tools, the analyticity properties of the Π
(L)
i j,J(s) correlators relate weighted integrals (moments) of

the experimental spectral distribution with theoretical QCD predictions [17, 22]:

Aω
J (s0) ≡

∫ s0

sth

ds

s0

ω(s) ImΠ
(0+1)
ud,J (s) =

i

2

∮

|s|=s0

ds

s0

ω(s)Π
(0+1)
ud,J (s) . (2.5)

The complex integral in the right-hand side (rhs) runs counter-clockwise around the circle |s|= s0,

sth is the hadronic mass-squared threshold and ω(s) is any weight function analytic in |s| ≤ s0.

While the left-hand-side integral is directly determined by the experimental data, for large-enough

values of s0 the operator product expansion (OPE), Π
(0+1)
ud,J (s)OPE = ∑D OD,J/(−s)D/2, can be used

to predict the contour integral as an expansion in inverse powers of s0, the perturbative contribution

being the leading D = 0 term. Contributions to the rhs integral from the region near the real axis,

where the OPE is not valid, can be efficiently suppressed with ‘pinched’ weights that vanish at

s = s0.

The ratio Rτ,V+A involves the doubly-pinched weight ω(x) = (1−x2)(1+2x) = 1−3x2+2x3,

with x ≡ s/s0 and s0 = m2
τ . Cauchy’s theorem implies that the contour integral is only sensitive

to OPE corrections with D = 6 and 8, which are strongly suppressed by the corresponding powers

of the τ mass. In addition, the D = 6 vector and axial-vector contributions have opposite signs,

cancelling to a large extent. Therefore, Rτ,V+A is a clean observable to determine αs. It is known

with O(α4
s ) precision, and it is very sensitive to the strong coupling because αs(mτ) is sizeable.

The small non-perturbative corrections can be directly estimated from the data, using weights with

the appropriate power of s to project a particular OPE contribution [22]. The dominant theoretical

uncertainty is the perturbative error associated with the unknown higher-order corrections. For a

given value of αs, a truncated fixed-order perturbation theory (FOPT) approximation [17] leads to

a larger perturbative contribution than the so-called contour-improved perturbation theory (CIPT)

[23, 24], which resums large corrections arising from the long running of the strong coupling along

the circle s = s0. Therefore, FOPT results in a smaller fitted value of αs(mτ) than CIPT.

The predicted suppression of non-perturbative corrections [17] has been confirmed through

detailed analyses of the invariant-mass distribution of the hadronic τ decay products, performed by

ALEPH [25, 26, 27, 28, 29], CLEO [30] and OPAL [31], showing that these effects are below 1% in

Rτ,V+A. In comparison, the purely perturbative contribution is around 20%. The most complete and

precise experimental study, performed with the recently updated ALEPH data, gives α
(n f =3)
s (mτ) =

3
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The strong coupling: status and challenges

Method α
(n f =3)
s (mτ)

CIPT FOPT Average

ALEPH moments 0.339+0.019
−0.017 0.319+0.017

−0.015 0.329+0.020
−0.018

Modified ALEPH moments 0.338+0.014
−0.012 0.319+0.013

−0.010 0.329+0.016
−0.014

A(2,m) moments 0.336+0.018
−0.016 0.317+0.015

−0.013 0.326+0.018
−0.016

s0 dependence 0.335±0.014 0.323±0.012 0.329±0.013

Borel transform 0.328+0.014
−0.013 0.318+0.015

−0.012 0.323+0.015
−0.013

Average 0.335±0.013 0.320±0.012 0.328±0.013

Table 1: Determinations of α
(n f =3)
s (mτ) from τ decay data, in the V +A channel [38].

0.332± 0.005exp ± 0.011th [21], where the second error takes into account the different central

values obtained with the FOPT (0.324) and CIPT (0.341) prescriptions. Taking as input the small

non-perturbative contribution extracted from the ALEPH analysis, the strong coupling can also be

determined from the total τ hadronic width (and/or lifetime); this gives α
(n f =3)
s (mτ) = 0.331±

0.013 (FOPT + CIPT) [32], in perfect agreement with the ALEPH result.

Slightly smaller (10%) values of αs(mτ) have been obtained in Ref. [33] through a direct fit of

the vector spectral function from s = ŝ0 = 1.55 GeV2 to m2
τ , with a 4-parameter ansatz for ρV (s),

plus the moment Aω=1
V (ŝ0). This approach maximizes the role of non-perturbative effects in order

to better study them [34, 35], but this is not a good strategy to perform an accurate determination of

the strong coupling. The OPE is actually not valid on the physical cut and the quoted uncertainties

are largely underestimated [36, 37]. A more careful numerical study has shown that the fitted

results strongly depend on the chosen value of ŝ0 and the particular form of the assumed spectral-

function ansatz [38]: fluctuations of αs(mτ) larger than 3σ are obtained with slight modifications

of these assumptions, showing that the fitted value is model dependent.

Ref. [38] has performed an exhaustive reanalysis of the τ determination of the strong cou-

pling, including many consistency checks to assess the actual size of non-perturbative effects. All

strategies adopted in previous works and several complementary approaches have been investi-

gated, studying the stability of the results and trying to uncover any potential hidden weaknesses.

Once their uncertainties are properly estimated, all adopted methodologies result in very consistent

values of αs(mτ). Table 1 summarizes the most reliable and precise determinations. The first three

lines show the results obtained with different types of (at least doubly-pinched) weights, which

are sensitive to different power corrections. The amazing stability of the fitted values reflects the

very minor numerical effect of OPE corrections, which has been confirmed through many other

additional tests. The fourth line extracts the information from the s0 dependence of a single mo-

ment with ω(2,m)(x) = 1− (m+2)xm+1+(m+1)xm+2, for m = 0,1,2; although this is much more

sensitive to potential violations of quark-hadron duality, it results in values of the strong coupling

fully compatible with the determinations in the first three lines. The fifth line adopts weights of the

form (1− xm+1)e−ax that suppress violations of duality, but paying the price of a potentially larger

sensitivity to power corrections.

The overall agreement of all determinations in Table 1 shows their robustness and reliability.

4
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The strong coupling: status and challenges

As expected, there is a systematic difference between CIPT and FOPT; the last column averages

the results from both prescriptions, but adding in quadrature half their difference as an additional

systematic error. Averaging the five determinations, but keeping the smaller uncertainties to ac-

count for the large correlations, one finds the values indicated in the last line. From the average of

the five combined (CIPT and FOPT) results in the last column, one finally gets

α
(n f =3)
s (mτ) = 0.328±0.013 , (2.6)

in very good agreement with the ALEPH determination of the strong coupling mentioned before.

After evolution up to the scale mZ , the value of α
(n f =3)
s (mτ) in (2.6) decreases to

α
(n f =5)
s (mZ) = 0.1197±0.0015 , (2.7)

which nicely agrees with the direct measurement at the Z peak in Eq. (2.3). The comparison of these

two determinations provides a beautiful test of the predicted QCD running; i.e., a very significant

experimental verification of asymptotic freedom:

α
(n f =5)
s (mZ)

∣

∣

∣

τ
− α

(n f =5)
s (mZ)

∣

∣

∣

Z
= 0.0001±0.0015τ ±0.0030Z . (2.8)

Notice the order-of-magnitude difference between the errors in (2.6) and (2.7), which exhibits the

much higher sensitivity to the strong coupling at lower energies.

High-precision measurements of the spectral functions, especially in the higher kinematically-

allowed energy bins, would be required in order to improve the αs determination from τ decay.

Both higher statistics and a good control of experimental systematic uncertainties are needed, which

could be possible at the Belle-II experiment. An improved understanding of higher-order pertur-

bative corrections is also needed. While τ decay data are kinematically limited to s ≤ m2
τ , higher

values of the hadronic invariant mass can be accessed in e+e− annihilation. However, in the vector

spectral function the onset of the QCD asymptotic behaviour is unfortunately also reached at larger

values of s, as exhibited in Fig. 1 for its I = 1 component. The more inclusive nature of the V +A

channel leads to a much flatter distribution, which is related with the smaller non-perturbative

corrections to the spectral moments. Nevertheless, e+e− data provide useful complementary in-

formation that can be analysed through spectral moments in the same way than with τ decay data

[39, 40]. The integrated distributions provide in fact a better sensitivity to αs than the ratio Re+e−(s).

However, owing to the current experimental precision, the resulting uncertainty on αs is larger than

the one achieved with τ data [41].

3. Global PDF fits and collider measurements (J. Rojo)

The determination of the strong coupling constant from fits of parton distribution functions

(PDFs) has a long history. In a joint determination of PDFs and αs(mZ), the sensitivity to the

latter arises from two different aspects of the fit. On the one hand, through the scaling violations

induced by DGLAP evolution, which are particularly strong at small x. On the other hand, from

the partonic matrix elements for those input processes that are driven by QCD scattering already at

the Born level, such as jet production. In this context, modern PDF fits (see [42, 43, 44] for recent

reviews) contain a wide variety of hadron collider data sensitive to the value of the strong coupling,

5
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The strong coupling: status and challenges

Figure 2: Modern PDF fits contain a wide variety of hadron collider data sensitive to the value of the strong

coupling. Here we compare the values of αs(mZ) obtained in the NNPDF3.1 NLO and NNLO global fits

with those obtained from the reduced χ2 restricted to specific families of processes. Several of them, such

as inclusive jets and top quark production, are often used as input for independent determinations of αs(mZ).

from inclusive jets [45] to direct photon [46], the transverse momentum of Z bosons [47] and top

quark pair production [48], and therefore offer unique opportunities for precision determinations of

αs(mZ). In addition, several of these processes such as inclusive jets and top quark production are

often used as input for independent determinations of αs(mZ). Here we first review selected recent

determinations of αs(mZ) in the context of global PDF fits, and then those determinations based on

collider measurements that do not involve a simultaneous PDF extraction.

Determinations within PDF fits. The most recent determination of αs(mZ) from a global PDF

fit is [49] based on the NNPDF3.1 analysis [50]. This study finds that at NNLO one has

αs(mZ) ≡ α
(n f =5)
s (mZ) = 0.1185±0.0005exp ±0.0011th , (3.1)

where the theory error from missing higher-order (MHO) corrections at O
(

α3
s

)

is conservatively

estimated from the half-shift between NLO and NNLO. This global analysis is based on a com-

prehensive set of input data from the precise HERA structure functions to jet, electroweak gauge

boson, and top quark production at the Tevatron and the LHC. Crucially, many of these processes

exhibit a direct (and complementary) sensitivity to αs. Theoretical calculations are based on exact

NNLO QCD fixed-order theory, which for most processes used in the fit have become available

only very recently.

In Fig. 2 we compare the values of αs(mZ) obtained in the NNPDF3.1 NLO and NNLO global

fits with those obtained from the “reduced” χ2 restricted to specific families of processes, which we

define by keeping all PDFs fixed to their best-fit values in the global analysis, while examining now

how the χ2 contribution of a specific family varies with the value of the strong coupling αs. From

this study, one then finds that the value of αs(mZ) appears to be determined from the combination

of several classes of process that carry a similar weight in terms of their sensitivity to the strong

coupling: tt̄ production, Z pT , collider gauge boson production, and collider and fixed-target deep-

6
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The strong coupling: status and challenges

Figure 3: Left: comparison of the αs(mZ) values determined in the NNPDF3.1, NNPDF2.1, MMHT14,

and ABMP16 PDF fits compared to the PDG17 average. Right: the correlation between the fitted values of

αs(mZ) and mt(mt) obtained in the ABMP16 analysis; figure reproduced from [54].

inelastic scattering. In other words, there is not a single process that dominates the extraction of αs

from the global PDF, but rather the interplay between many of them with comparable weight.

In Fig. 3 (left) we compare the αs(mZ) values determined in the NNPDF3.1, NNPDF2.1 [51,

52], MMHT14 [53], and ABMP16 [54] PDF fits with the current PDG average [7], namely

α
(pdg)
s (mZ) = 0.1181±0.0011 . (3.2)

For the NNPDF results, the inner error band includes the experimental and procedural uncertain-

ties while the outer bar includes as well the theoretical MHO uncertainties. Both the NNPDF

and the MMHT14 results agree within them as well as with the PDG averages. On the other

hand, the ABMP16 determination is markedly lower. These differences can be partly explained

by differences in the input dataset as well as in the treatment of heavy quark mass effects in the

deep-inelastic structure functions, as discussed in [55, 56]. From the NNPDF3.1 result in Fig. 3

we can also see that, provided MHO uncertainties can be robustly estimated and reduced to a level

comparable or below the experimental uncertainties, the determination of αs(mZ) from the global

fit could become one of the dominant ingredients in the PDG average.

In a similar way that MHO uncertainties affect the αs(mZ) determination from the global

fit (even though they are often neglected), one needs to account for the effects of other theory

uncertainties such as the input values of the heavy quark masses. For example, in the description of

top quark pair production cross sections, changes in the PDFs and αs can be partially compensated

by changes in the top quark mass mt . This is illustrated in the right panel of Fig. 3, which shows

the correlation between the fitted values of αs(mZ) and mt(mt) obtained in the ABMP16 analysis.

As discussed in [48], the dependence on the value of mt can be efficiently suppressed by fitting

normalised differential distributions where the dependence on the top quark mass cancels out.

Determinations from individual collider measurements. The same sensitivity to the value of

αs(mZ) that specific collider measurements provide within the global PDF fit (see Fig. 2) can also

be exploited to provide independent determinations that do not involve the simultaneous extraction

7
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Figure 4: Left: summary of determinations of αs from jet production in DIS by the H1 experiment [60]

based on NNLO QCD theory. We show results for both αs(µR) and αs(mZ), where µR indicates the typical

scale of the process. Right: results of the determination of αs(mZ) from the total tt̄ cross section reported in

[63] using NNPDF3.0 noLHC as input PDF set.

of the PDFs, but that rather assume PDFs and their uncertainties as an external input, see e.g. [45]

and references therein for the specific case of jet production. In this context, the recent availability

of the NNLO QCD corrections for fully differential distributions in inclusive jet [57], dijet [58], and

top quark pair production [59] has made possible a significant reduction of the MHO uncertainties

associated to these collider determinations, which before were limited to NLO QCD accuracy.

To illustrate this point, recently the strong coupling was determined from jet production mea-

surements (both inclusive jets and dijets) in deep-inelastic lepton-proton scattering by the H1 col-

laboration [60] using the recently available NNLO QCD calculation [61]. Two different determi-

nations are presented in this study: one where PDFs and their uncertainties are taken as external

input from previous determinations and another where αs(mZ) is fitted simultaneously with the

PDFs based on the xFitter tool [62]. This analysis finds αs(mZ) = 0.1157± 0.0020 (exp)±
0.0029 (th) and αs(mZ) = 0.1157± 0.0028 (tot) in each of the two cases. Therefore despite the

use of NNLO QCD calculations, theory errors from MHOs are still significant. In the left panel of

Fig. 4 we present a summary of the different H1 determinations of αs from jet data using NNLO

QCD theory. We show results for both αs(µR) and αs(mZ), where µR indicates the typical scale of

the process.

As proposed for the first time in [64], the total cross section for top quark pair production at

the LHC also provides a clean observable to determine the strong coupling. This sensitivity has

been exploited in [63] to carry out an updated extraction of αs(mZ) from σ (tt̄) based on data from

the Tevatron Run II and the LHC 7, 8, and 13 TeV. In the right panel of Fig. 4 we show the results

of this analysis using NNPDF3.0 noLHC [65] as input PDF set. The green line and band indicate

the central value of the combination of all collider measurements and the associated one-sigma

experimental uncertainty, while the red band includes as well the MHO, PDF, and mt theoretical

uncertainties. Their final combined result is αs(mZ) = 0.1177±0.0035, in agreement with the PDG

average.
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Figure 5: Summary of recent determinations of αs(mZ) at the LHC from the CMS experiment, compared to

previous results by the Tevatron and HERA as well as with the global PDG average. Results are presented

as a function of Q, the characteristic energy scale involved in each specific determination.

Other related determinations of αs(mZ) from collider cross sections, which do not involve si-

multaneously PDF extractions, are the CMS determination based on the R3/2 ratio of three-to-two

jet cross sections [66] and on the inclusive jet cross section [67] at 7 TeV and the ATLAS determina-

tions based on the transverse energy-energy correlation [68] and the dijet azimuthal correlation [69]

in jet production at 8 TeV.

To provide a general overview, in Fig. 5 we show a summary of recent determinations of

αs(mZ) at the LHC from the CMS experiment, compared to previous results by the Tevatron and

HERA as well as with the global PDG average. Results are presented as a function of Q, the typical

energy scale involved in each specific determination. We can see how only the LHC determinations

have a direct coverage of the TeV region, which is also important in searches of new heavy particles

as we discuss next.

Testing the running of αααsss(((QQQ))) in the TeV scale. In addition to the precision determination of

the strong coupling at the Z boson mass, αs(mZ), the direct measurement of its running with Q in

the TeV region is also of high interest. The reason is that this running is generically modified in

the presence of new strongly interacting particles as predicted by many scenarios of new physics

beyond the Standard Model (bSM), such as by squarks and gluinos in supersymmetry, or top part-

ners in composite Higgs models. These modifications are for example crucial in scenarios where

the strong and electroweak interactions are unified at very high scales [70].

The effects of such new bSM degrees of freedom are illustrated in Fig. 6, taken from [71],

which shows how αs(Q) is affected by new colored particles for different representations. In this

example, a mass of 500 GeV has been assumed by the bSM particles belonging to new strongly

interacting multiplets. If such new states are light enough, they could lead to visible effects in the

9
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Figure 6: Left: the running of αs(Q) is generically modified in the presence of new strongly interacting

particles as predicted by many bSM scenarios, where 500 GeV mass has been assumed for the new-physics

multiplets [71]. Right: the running of αs(Q) in the TeV scale can be directly determined from LHC processes

such as multijet production, in this case we show the CMS 8 TeV analysis [72].

running of αs(Q) within the LHC range. Conversely, precision measurements of αs(Q) in the TeV

range could be of use to derive stringent model-independent bounds on bSM scenarios containing

strongly interacting sectors.

Direct measurements of αs(Q) in the TeV range can be obtained from processes such as in-

clusive jet, dijet, and multijet production, as well as top quark pair production in the tail of the mtt̄

distribution, which are both sensitive to the value of the strong coupling and lead to sizable event

rates in the TeV region. For instance, in Fig. 6 (right) we show the CMS measurement of αs(Q)

from the multijet cross sections at 8 TeV [72] using NLO QCD calculations and MSTW20018 as

input PDF set. By restricting the input data used in the fit to separate bins of the HT,2/2 kinematic

variable, one can effectively measure αs(Q) for increasing values of Q and thus validate its running

by comparing it to the SM predictions. While the current results are limited by the scale uncer-

tainties of the NLO calculation as well as by statistics in the TeV region, future extractions based

on NNLO QCD and in a much higher integrated luminosity should be in the position of providing

stringent tests of bSM scenarios where the running of αs(Q) is modified as compared to the QCD

prediction.

αααsss(((mmmZZZ))) from electron-positron collisions. The strong coupling can also be determined from

high-energy e+e− collisions, by exploiting how the pattern of QCD radiation is modified in these

collisions once αs(mZ) is varied. Specifically, a number of the so-called event shapes such as the

thrust or the C-parameter have been in the last years used to extract αs(mZ) from LEP measure-

ments. The main benefit of this process is that it is experimentally very clean, and that one has

good control over the perturbative calculation including resummation, with recent extractions be-

ing based on NNLO+N3LL theory. On the other hand, the extraction of αs(mZ) from event shapes

requires a precise modeling of the hadronisation mechanism of quarks and gluons (and related non-

perturbative effects) in order to connect the perturbative calculation with the LEP cross sections.

Two recent determinations of the strong coupling constant from event shapes [73, 74], based

on the Soft-Collinear Effective Theory (SCET) formalism, find the following results:

αs(mZ) = 0.1135±0.0011 (Thrust) , (3.3)
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αs(mZ) = 0.1123±0.0015 (C−parameter) , (3.4)

so rather smaller than the PDG average. The reason for these differences is still under investigation.

One possible reason could be related to the treatment of non-perturbative effects, which are more

challenging to control than the perturbative part of the calculation where residual MHO corrections

appear to be quite small.

4. QCD static energy (A. Vairo)

Lattice QCD provides a potentially very accurate source of αs [75], see Sec. 5. Indeed among

the determinations quoted by the Particle Data Group [7], the most precise ones are lattice deter-

minations. Among the lattice determinations, the extraction of αs from the QCD static energy is

particularly attractive as the perturbative expansion of this quantity is very accurately known as

well as its lattice determination.

Lattice determinations of the QCD static energy have started since the inception of lattice QCD

itself. The QCD static energy, E0(r), is the energy possessed by a static quark and a static antiquark

located at a distance r. Its expression in Minkowski spacetime is [76, 77, 78, 79]

E0(r) = lim
T→∞

i

T
ln

〈

TrPexp

{

ig

∮

r×T
dzµ Aµ(z)

}〉

, (4.1)

where the integral is over a rectangle of spatial length r and time length T ; 〈. . .〉 stands for the

path integral over the gauge fields Aµ and the light-quark fields, P is the path-ordering operator

of the color matrices (fields are time ordered) eventually traced and g is the QCD gauge coupling

(αs = g2/(4π)).

In the short range rΛQCD ≪ 1, for which αs(1/r)≪ 1, E0(r) may be computed as a perturba-

tive expansion in αs (evaluated at a typical scale of order 1/r; at three loops and higher, however,

also couplings at the lower energy scale αs/r show up):

E0(r) = Λ− 4αs

3r
(1+ . . .), (4.2)

where Λ is a constant and the dots stand for higher-order terms. The expansion of E0(r) in powers

of αs has been computed at order α4
s /r × lnαs in [80, 81], at order α4

s /r in [82, 83], at order

α5
s /r× lnαs in [84], all orders α4+n

s /r× ln1+n αs (N2LL accuracy) have been computed in [85], and

all orders α5+n
s /r× ln1+n αs (N3LL accuracy) have been computed in [86]. A compact summary

of the perturbative expression of E0(r) can be found in [87].

In lattice regularization Λ includes a linear divergence due to the self-energy ∼ αs(1/a)/a,

with a the lattice spacing. In dimensional regularization the linear divergence vanishes, but the

perturbative expansion of E0(r) is affected by a renormalon ambiguity of order ΛQCD [88, 89]. The

renormalon ambiguity reflects in the poor behaviour of the perturbative series, which may be cured

by subtracting the renormalon from the perturbative series and suitably redefining the constant Λ.

If we are interested in (4.2) just for extracting αs, then the relevant information is encoded in

the slope of the static energy, i.e., the force

F(r) =
d

dr
E0(r). (4.3)
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The force does not depend on Λ. In lattice regularization it is not affected by the linear self-

energy divergence and it is free from the renormalon of order ΛQCD. The continuum perturbative

expansion of the force shows, therefore, a convergent behaviour (at least up to three loops). In

order to compute αs, one may compare the perturbative continuum expression of the force with its

lattice determination. However, a precise direct lattice computation of the force is challenging (see

also below), while an accurate determination of E0(r) is much easier, for it amounts at extracting

the exponential fall off of a static Wilson loop. Hence an alternative strategy is to integrate the

perturbative continuum expression of the force over the distance, obtaining back the static energy

(see also [90]),

E0(r) =
∫ r

r∗
dr′ F(r′), (4.4)

up to an irrelevant constant determined by the arbitrary distance r∗, which can be reabsorbed in the

overall normalization when comparing finally with lattice data. Equation (4.4) amounts effectively

to a rearrangement of the perturbative expansion of the static energy. The integration in (4.4) can

be done (numerically) keeping the strong coupling that appears in the perturbative expansion of the

force running at a natural scale of the order of the inverse of the distance.

Whatever strategies one pursues, the comparison of the perturbative expression of the QCD

static energy or the force to lattice QCD determinations provides with (at least) three-loop accuracy

the QCD strong coupling αs at a typical scale that is large enough for perturbative QCD to work and

smaller than the inverse lattice spacing 1/a. This means that the distance range of the QCD static

energy explored by lattice QCD that is relevant for the extraction of αs goes from about 0.2 fm to

about 0.05 fm or slightly below. Hence, the QCD static energy provides an accurate determination

of αs at a low energy scale, typically about 1.5 GeV, for which it has very few competitors (one of

these is the extraction of αs from the τ decay, as the mass of the τ is about 1.777 GeV, see Sect. 2).

This gives to this determination a value in itself and adds to its relevance, regardless of the final

precision in the determination of αs(mZ). Nevertheless, the precision in the final determination of

αs(mZ) is also competitive with other determinations. One of the challenges in extracting αs from

the QCD static energy is to move the distance range towards shorter ones in order to be deeper in

the perturbative regime and reduce uncertainties originating from not included higher-order terms,

keeping at the same time sufficiently away from the minimal lattice distance, a.

Status. Precision determinations of αs from the QCD static energy have started in quenched

QCD with Ref. [90]. The precision of the data allowed computing numerically the derivative of the

static energy and hence the force: αs was computed from the force. More recent pure gauge theory

(Nf = 0) determinations can be found in [91, 92].

Static-energy determinations with 2 flavors are in [93, 94, 95] and with 2+1 flavors in [96, 97].

A summary of these latest results is in [98]. The most recent analysis of the static energy with 2+1

flavors is in [99, 100]. Considering (somewhat long) distances up to about 0.35 fm to extract αs,

it obtains results that are consistent with the ones in [96, 97], but with larger final errors, see also

Fig. 11.

The determination of [97] is based on the perturbative expression (4.4) computed up to N2LL

accuracy and compared with 2+1 flavors lattice data (strange quark mass at its physical value and

pion mass at 160 MeV) for β = 7.373, 7.596 and 7.825 in the range from 0.05 fm to 0.14 fm. The
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result is

r1ΛMS = 0.495+0.028
−0.018 . (4.5)

Taking the lattice scale r1 = 0.3106±0.0017 fm from [101], the result translates into

ΛMS = 315+18
−12 MeV (4.6)

for three flavors. The above value of ΛMS converts into

αs(1.5GeV,n f = 3) = 0.336+0.012
−0.008 , (4.7)

at the energy scale of 1.5 GeV that corresponds to a distance of about 0.13 fm and is about the

largest scale consistent with a three-flavors running. Finally, this value of αs evolves to the value

αs(mZ,n f = 5) = 0.1166+0.0012
−0.0008 , (4.8)

at the Z mass. A comparison of the lattice data for β = 7.825 with the perturbative expression

is shown in Fig. 7. In the considered distance range, non-perturbative corrections, which would

manifest themself as power corrections in r, are consistent with zero.
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Figure 7: Left panel: Lattice data of the QCD static energy for β = 7.825 compared with the N2LL perturba-

tive expansion (equivalent to 3 loops plus leading ultrasoft resummation) evaluated for r1ΛMS = 0.495+0.028
−0.018

(the thin grey band reflects the uncertainty). Right panel: The same lattice data with the perturbative expres-

sion subtracted. The error bars are obtained by adding, in quadrature, the errors of the lattice data and the

uncertainty of the perturbative expression due to the variation of r1ΛMS. The normalization constant in the

difference between lattice and perturbative data has been fixed on the seventh point. Data from [97].

A similar analysis has been done in [97] with the force. However, the numerical derivatives

of the static energy add to the uncertainties of the strong coupling determination, which, done in

this way, turns out to be consistent, but less accurate, than the direct determination from the static

energy presented above.

Perspectives. The determination of αs from the QCD static energy has still room for improve-

ment and will face in the near future interesting challenges. In the following we list some of them.

Not all of the available theoretical information on the short-distance static energy has been

used: in particular, presently available data do not seem sensitive neither to the N3LL expression

of the static energy, nor to short-range non-perturbative effects (e.g., condensates ∼ r3〈g2E(0)2〉,
or correlators ∼ r2

∫ ∞

0
dt〈gE(t) · gE(0)〉, where E is the chromoelectric field). One question is

13



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
3
5

The strong coupling: status and challenges

then if lattice data at shorter distances and more accurate will become sensitive to these effects.

It should be mentioned that an assessment of the size of the non-perturbative contributions to the

static energy will have a major impact on quarkonium physics.

Forthcoming lattice computations with 2+1+1 flavors will naturally raise the question of how

much the data for the static energy will turn out to be sensitive to the charm mass and of how

much this will affect the extraction of αs. The region around the charm quark mass, (1.5GeV)−1 ≈
0.13 fm, and below is indeed the region from where αs from the static energy mostly comes.

More precise lattice data may also allow for a competitive determination of αs directly from

the force, as it was done long ago in quenched QCD [102], and as it may be possibly done also by

looking to loop functions different from the static Wilson loop.

αααsss from the static energy at very short distances. As mentioned above, one may look at the

static energy at very short distances to minimize the effect of unknown higher-order terms, which

include perturbative and non-perturbative contributions, and to have a better behaved series. This

may certainly represent an improvement with respect to present determinations, but one should

also realize that the range from 0.05 fm to 0.14 fm used in [97] already shows a well behaved

perturbative series, agreement with data and a stable result with respect to (adding/subtracting)

lattice data, renormalization scale, etc.

A new set of data from a short-distance determination of the static energy in the range from

about 0.02 fm to 0.18 fm on a lattice with 2+1 flavors will be presented in Ref. [103]. At short

distances finite volume effects are irrelevant, as confirmed by previous analyses. A possible is-

sue is however that at small lattice spacings the Monte Carlo evolution of the topological charge

freezes. Although a thoroughly investigation is still to be done, the analysis performed in [104]

does not show for the considered observables any sensitivity if the topological charges 0, 1 and 2

are considered.

Preliminary results are shown in Fig. 8. The data prefer a somewhat lower value of αs with

respect to the PDG average, but consistent with the result (4.8).
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Figure 8: Preliminary lattice data for the static energy at β = 8.4 from [103] compared with the N2LL

perturbative expression, for αs(mZ ,n f = 5) = 0.1167 and for αs(mZ ,n f = 5) = 0.1181 (PDG value [7]).

Charm mass effects. Since the charm mass is larger than ΛQCD, at distances comparable with the

inverse of the charm mass or shorter, charm-mass effects may be computed in perturbative QCD.

14



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
3
5

The strong coupling: status and challenges

Indeed, the effect of a charm mass loop to the QCD static energy is well known (see Ref. [105]).

As mentioned above, a finite charm mass contributes to the static energy at distances where one

mostly compares lattice data with perturbative QCD, and eventually extracts αs. Similarly, charm

mass loops are relevant for precision bottomonium physics, because the typical momentum transfer

inside the ϒ(1S) is about the charm mass.

In Fig. 9, we compare at one loop the static energy in perturbative QCD with αs running with

3 flavors, 4 flavors and with 4 flavors plus the one-loop contribution of a massive charm. At large

distances, the charm decouples, and the static energy is effectively described by a 3 flavors αs. At

short distances, the charm may be considered massless, and the static energy is effectively described

by a 4 flavors αs. Accurate lattice data should be sensitive to this transition and, in particular, to

the intermediate region where the static energy is best described by a charm with a finite mass.

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

-3.0

-2.5

-2.0

-1.5

r [fm]

E0 [GeV]

Figure 9: Dashed blue: massless charm (case of 4 active flavors); dotted green: infinitely heavy charm (case

of 3 active flavors); black: massive charm at 1 loop (MS mass taken to be 1.237 GeV).

αααsss from the force. Precise lattice data of the QCD static energy may allow for a precise determi-

nation of the force by interpolating the lattice points and numerically performing the derivatives.

An alternative direct determination of the force could come from computing a Wilson loop with a

chromoelectric field insertion [106, 98]:

F(r) =− lim
T→∞

〈

TrP r̂ ·gE(t,r)exp

{

ig

∮

r×T
dzµ Aµ(z)

}〉

〈

TrPexp

{

ig

∮

r×T
dzµ Aµ(z)

}〉 . (4.9)

This quantity has been computed in the context of determining the quarkonium potentials on the

lattice in Ref. [107]. However, a dedicated study with the aim of extracting αs is still to be done.

In particular, the lattice version of gE(t,r) needs to be properly renormalized.

5. Lattice determinations (R. Sommer)

Lattice gauge theory is a non-perturbative formulation of QCD, which allows to evaluate the

Euclidean path integral by a Monte Carlo “simulation”. The process starts from discretizing space-

time on a hypercubic lattice with lattice spacing a and thus a momentum cutoff of |pµ | ≤ π/a. Due
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to the large number of degrees of freedom and the fermionic nature of quark fields, the Monte Carlo

process requires considerable effort and both the simulated space-time T ×L3 and the spacing a

are restricted. Although lattice ensembles with L/a = O(100) are possible nowadays, even this

number sets limits to what can be done, which we will discuss shortly.

First, let us give a broad characterization of the lattice methods for extracting the QCD cou-

pling. Indeed there are several methods. Their differences are at least as big as the difference of a

phenomenological extraction from DIS vs. from τ decays. It is important and not too difficult to

have a rough grasp of these differences. For more details we refer to [75].

In general, one performs a Monte Carlo evaluation of the path integral representation of ob-

servables (correlation functions) for a few suitably chosen values of

L/a, T/a, g0, {ami, i = 1 . . .Nf } . (5.1)

Here L/a is the number of points of the world in each space dimension, T (often bigger than L) is

the extent of the time axis, g0 is the bare coupling of the theory and ami are the bare quark masses.

Think now of the theory with just the lightest three quarks and isospin symmetry, m1 = m2. The

first step is to obtain the relation between the bare parameters, g0, am1, am3 and three hadronic,

low energy quantities, which are conveniently chosen to be the masses of pion and kaon as well as

a leptonic decay constant, which we here just take to be fπ .1 More precisely, the functions

F1(g0,am1,am2) =
mπ

fπ
, (5.2)

F2(g0,am1,am2) =
mK

fπ
, (5.3)

F3(g0,am1,am2) = a fπ , (5.4)

are determined for a few values of their arguments. Then, at fixed g0, one finds by appropriate

fits/extrapolations values µ∗
i (g0) such that F1(g0,µ1(g0),µ2(g0)) = m

QCD
π / f

QCD
π and analogous for

F2. Here the label QCD refers to PDG numbers corrected for isospin violating and electromagnetic

effects. F3 is then used to determine the lattice spacing, a(g0) = F3(g0,µ1(g0),µ2(g0))/ f
QCD
π .

The latter step is called scale setting because from now on all dimensionful quantities which are

originally just defined in units of the lattice spacing a can now be expressed in physical units.

All of this has to be done in volumes which are large enough such that finite size effects on the

used hadron masses and decay constants are negligible. Fortunately finite size effects are quite

well understood and asymptotically decrease exponentially ∼ exp(−mπL). Choosing mπL ∼> 4 is

sufficient. Such a bound imposes a limitation to the lattice spacings available in large volume. For

numbers one has to take into account that simulations can also be carried out at pion masses larger

than in Nature. What is roughly realized nowadays is

a ∼> 0.04fm (5.5)

in a “large volume”.

1Pion and kaon masses are clearly the observables of choice to fix the light quark masses. However, for fixing the

bare coupling or equivalently the overall scale of QCD, the nucleon mass would be more natural. Unfortunately it is

difficult once precision is required. See [108] for details.
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Figure 10: The plane α
(3)

MS
(µ) against the scale µ in lattice units. a is the lattice spacing and the blue region

corresponds to the rough bound a > 0.04 fm. Note that the continuum limit is approached by extrapolations

with aµ ≪ 1. The points on the left correspond to actual Monte Carlo simulations in category (III).

5.1 Methods for the strong coupling.

The general method for extracting αMS with the help of lattice QCD is to consider a short-

distance, one-scale, observable with an expansion (an αMS(µ)
0 term can always be subtracted)

Q(µ) = c1αMS(µ)+ c2αMS(µ)
2 + · · · . (5.6)

The observable is computed by lattice QCD and applying the perturbative expansion with cnl+1

known is denoted by a determination at nl loops. It means that for the effective coupling

αeff = Q/c1 (5.7)

the nl +1 loop β -function is known. We will mostly have nl = 2, but for the static potential nl = 3

(with some complications, see Sect. 4) holds.

Advantages. An important advantage of taking Q from lattice QCD compared to using experi-

mental data is that one is automatically in the Euclidean where perturbation theory works and no

hadronisation corrections, duality violations etc. are a concern. Furthermore one has the freedom

to design suitable observables.

Disadvantages. In practice, lattice QCD simulations are restricted to Nf = 4 quarks at the most,

because the b-quark is simply too heavy. One relies on including the heavy flavors, mostly in-

cluding the charm, by perturbation theory, using 4-loop matching and 5-loop running in the MS

scheme [109, 6, 5, 110, 111, 112, 2, 3, 1, 113]. Worries that this might compromise the error

estimates of the results have recently been removed by a non-perturbative study [114].

We turn to the announced different categories.

(I) Continuum-limit observables in large volume. The most straightforward strategy is to take

a finite observable Q which depends on a single large momentum scale µ and which is defined in
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a large volume (i.e., large enough such that finite volume effects can be neglected). One can then

(and needs to) take the continuum limit

Q(µ)≡ lim
a→0

Qlat(a,µ) with µ fixed . (5.8)

In practice this is done by an extrapolation in aµ → 0 using the structural information from

Symanzik’s effective theory [115] of lattice artefacts that (assuming µ ≫ Λ )

Q(µ)−Qlat(a,µ)
aµ→0∼ a2µ2 . (5.9)

Here, the challenge is that one wants µ to be high such that αMS(µ) is small and the expansion

Eq. (5.6) is precise and at the same time aµ small because of Eq. (5.9). Recalling Eq. (5.5) one

is usually in the blue shaded region of Fig. 10 and it is difficult to extrapolate when αMS is small,

say αMS ≤ 0.3. One has to compromise between the two requirements. At this conference, Peter

Petreczky reported about recent progress using this method.

(II) Lattice observables at the cutoff. There is also the possibility to consider lattice observables

involving distances of a few lattice spacings, which are not related to a continuum observable. The

prominent examples are rectangular Wilson loops W (r, t) of extent r× t with r = am and t = an,

keeping the integers n,m fixed as one takes the limit a → 0; the loops shrink to size zero in the

limit. Still such observables have an expansion

W (na,ma)
g0→0∼ ∑

k≥0

c
(k)
m,n g2k

0
a→0∼ ∑

k≥0

ĉ
(k)
m,n ḡ2k

MS
(1/a) , (5.10)

where in the second step use is made of the relation between the bare coupling and a renormalized

coupling at the cutoff scale, g2
0 = ḡ2

MS
(1/a)+O(ḡ4).

We note two features of this approach: (i) Lattice perturbation theory has to be used and there is

less experience with the size of higher-order terms (even after tadpole improvement [116]) and the

available loop orders are often lower than for continuum perturbation theory. (ii) Lattice artefacts

can only be separated from perturbative corrections in Eq. (5.10) by assuming some functional

form and fitting to it.

(III) Continuum-limit observables in small volume and step scaling. Early on, there was the

idea [117] of using the freedom in the definition of Q(µ) to consider finite volume quantities, e.g.

in L4 geometries. Then the renormalization scale in αs(µ) is

µ = 1/L , (5.11)

and any other dimensionful parameter present in the definition of Q(µ) is in a fixed relation to

(scaled with) L. The advantage is that now µa = a/L can easily be taken to a/L = 1/8 . . .1/32 or

smaller. However, a number of steps are needed to connect recursively

µ0 → sµ0 → s2µ0 → . . .→ sN µ0 , (5.12)

and in each step a few different lattice spacings a have to be simulated to take the continuum

limit. The start value µ0 has to be taken such that the lattice spacings are known in fm through
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a large volume scale setting sketched above. Thus one typically starts with µ0 = O(1fm−1) =

O(200MeV) and needs e.g. s = 2, N = 9 in order to be beyond the Z mass, where perturbation

theory can be applied with great confidence. Indeed, at significantly lower energies, one has to be

more careful, as seen explicitly by the investigation in [118]. There a family of schemes all with

a well-behaved three-loop β -function were studied non-perturbatively. Depending on the exact

choice of scheme, truncation errors of perturbation theory were found to be large at the level of

precision that we are discussing for αMS. At this conference, Alberto Ramos presented a recent

precise three-flavor computation using this method. For details we refer to his contribution.

5.2 Towards the 2019 FLAG review.

The Flavour Lattice Averaging Group (FLAG) formed a working group (R. Horsley, T. Onogi,

R.S.) on αs in 2011 and first included determinations of αs(mZ) in its review in 2013 [119]. An

update appeared in 2016 [75]. Presently we are preparing the 2019 edition. Here I will report on

its preliminary status and give a preliminary world average. However, first I will roughly explain

the algorithm to arrive at averages. It has similarities to PDG but still differs significantly from the

PDG practice. The main difference is that FLAG formulates a set of criteria, which computations

have to pass in order to enter the average of a given quantity of phenomenological interest [75].

Criteria. We cite here from the present draft of the new FLAG review:

The major sources of systematic error are common to most lattice calculations. These include,

as discussed in detail below, the chiral, continuum and infinite-volume extrapolations. To each

such source of error for which systematic improvement is possible we assign one of three coloured

symbols: green star, unfilled green circle . . . or red square. These correspond to the following

ratings:

⋆ the parameter values and ranges used to generate the datasets allow for a satisfactory control

of the systematic uncertainties;

◦ the parameter values and ranges used to generate the datasets allow for a reasonable attempt

at estimating systematic uncertainties, which however could be improved;

� the parameter values and ranges used to generate the datasets are unlikely to allow for a

reasonable control of systematic uncertainties.

The appearance of a red tag, even in a single source of systematic error of a given lattice result,

disqualifies it from inclusion in the global average.

The last sentence is a first difference to the PDG procedure.

For the computations of αs, the criteria for chiral and infinite volume extrapolations are relaxed

as they do not play a dominant role. Instead criteria on perturbative behaviour and renormalization

scale try to make sure that the computation is at reasonable high µ , the perturbative knowledge is

sufficiently good (i.e., nl, the number of loops, is sufficiently high) and µ could be varied over

some range in order to confirm the perturbative µ-dependence. We do not have the space here to

discuss this in detail, but the general idea is that these criteria try to make sure that the available

Monte Carlo data have a few points located sufficiently low in the landscape of Fig. 10, while the

continuum limit criterion requires to not be too far on the right. Details are listed in [75]; changes

in FLAG 2019 will be minor.
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αααsss from different methods. We now discuss the status of the results for α
(5)

MS
(mZ). In Tab. 2 all

relevant computations are listed. They are organized according to the different methods, namely the

different observables Q used. The last column lists the loop order defined above. We go through

the different methods, following the classification (I-III) of before.

(I) Continuum-limit observables in large volume. There is a large number of different meth-

ods. They share the necessity for finding a compromise between large µ and small aµ . In the

cases where computations qualify for taking an average (i.e., there is no red square), we perform a

weighted average of the different results. This yields the mean of the quoted pre-ranges in Tab. 2.

According to our judgement the uncertainties are dominantly systematic. They are due to the trun-

cation error of perturbation theory, whether ordinary higher order or non-perturbative effects. The

question is always whether the values of µ are high enough. We just estimate the perturbative

truncation error and take this as the uncertainty of the pre-range. Comparing with the errors of the

individual collaborations one sees that we are somewhat more conservative in our estimate of the

perturbative uncertainty, which seems a good strategy if one wants to arrive at a safe final range.

The individual methods are (we partially have to simplify)

1 Q-Q̄ potential: Q(µ) = r2Fstatic(r) , µ = 2/r, where Fstatic(r) is the force between static

quarks defined by the large-t behaviour of Wilson loops W (r, t). Note that nl is 3 but nl > 3

terms proportional to logα are also known. Indeed, at fixed order perturbation theory, start-

ing from three loops, there are infrared divergences. As mentioned in Sect. 4 and references

cited there, these divergences cancel once contributions from the scale αs/r are resummed,

leaving terms such as α4 logα in Q(µ), which, in turn, can be resummed to all orders via

renormalization group equations.

2 vacuum polarization: Q(µ) = D(Q2) , µ2 = Q2, with D the Adler function derived from

Π
µν
i j,V+A(q) (Eq. (2.1)) at Euclidean q and i 6= j. This method does not yet enter the average

as the presently best rating is (◦⋆ � ) [120].

3 Hl current, two points: moments of heavy-light pseudoscalar-current two-point functions.

Heavy quarks of masses around the charm and heavier are used. This method has attracted a

lot of attention. Different discretizations are used that allow also to compare the continuum-

limit moments before the extraction of αs. There is quite good agreement, but some tensions

exist.

4 gluon-ghost vertex: using gauge fixing, the momentum-space vertex is used. This method

does not yet enter the average as the continuum limit criterion is not passed.

5 Dirac eigenvalues: Q(µ) = ∂ log(ρ(λ ))
∂ log(λ ) , µ = λ with ρ(λ ) the spectral density of the

massless Dirac operator. Also this newly introduced method [121] does not yet pass the

continuum-limit criterion.

(II) Lattice observables at the cutoff. In this category small (m,n ≤ 3) Wilson loops

Q(µ) =W (ma,na) , µ = k/a

and functions thereof (e.g. log(W (a,a)) are used. The scale factor k is adjusted to have better

apparent convergence of PT. Our estimate of perturbative uncertainties is somewhat bigger than the

one of the collaborations.
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(III) Continuum-limit observables in small volume and step scaling. Finite volume couplings

(with Dirichlet boundary conditions in time) are used and their µ-dependence is traced to O(100GeV)

by step scaling. Perturbative errors are negligible and statistical errors of the many Monte Carlo

computations dominate. In [122] the freedom of choice for the definition of the coupling is used

to actually impose one definition at energies smaller than 4 GeV and a different one for higher

energies. This reduces overall uncertainties.

PRELIM
INARY

0.110 0.115 0.120 0.125
                    Nakayama 18
ETM 11D
ETM 12C
ETM 13D
HPQCD 08B
HPQCD 10
HPQCD 14A
JLQCD 16
Maezawa 16
HPQCD 05A
HPQCD 08A
Maltman 08
HPQCD 10
JLQCD 10
Hudspith 18
Bazavov 12
Bazavov 14
Takaura 18
PACS-CS 09A
ALPHA 17
FLAG 18 estimate
PDG 18 non-lattice average
PDG 18 Tau-decay
PDG 18 DIS
PDG 18 Jets
PDG 18 Hadron colliders
PDG 18 EW precision fits
FLAG 2018 + PDG 2018

Figure 11: α
(5)

MS
(mZ), the coupling constant in the MS scheme at the Z mass. The PDG 18 entries give

the outcome of their analysis from various phenomenological categories including their average. The lattice

computations with a filled green box symbol have no red box in the previous ratings and therefore qualify

for averaging. An open green square means the same but the number does not enter an average because it is

superseded by a later more complete computation or it was not published at the September 2018 deadline.

Computations with open red squares do not enter the averages because they had at least one red square

before.

World average from FLAG. The entries of Tab. 2 are also displayed in Fig. 11. For each method,

the gray band shows the pre-average as explained above. We are left with the task to combine those

pre-averages. Again we take the central value from their weighted average. However, since the

errors of the pre-averages are mostly systematic, we feel that the straight error 0.00057 of the

weighted average is too optimistic – it would be correct for independent Gaussian distributions.

Instead we use the smallest error of the pre-averages. This yields the preliminary result

preliminary: α
(5)

MS
(mZ) = 0.11823(81) Refs. [123, 129, 97, 131, 127, 124, 128], (5.13)

and the associated Λ parameter

preliminary: Λ
(5)

MS
= 211(10) MeV Refs. [123, 129, 97, 131, 127, 124, 128]. (5.14)
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αMS(MZ) method nl

ALPHA 17 [123] 2+1 A ⋆ ⋆ ⋆ 0.11852( 84) step scaling 2

PACS-CS 09A [124] 2+1 A ⋆ ⋆ ◦ 0.11800(300) 2

pre-range (average) 0.11848( 81)

Takaura 18 [99, 100] 2+1 P � ◦ ◦ 0.11790(70)(+130
−120) Q-Q̄ potential 3

= static energy (sect. 4)
Bazavov 14 [97] 2+1 A ◦ ⋆ ◦ 0.11660(+120

−80 ) 3

Bazavov 12 [96] 2+1 A ◦ ◦ ◦ 0.11560(+210
−220) 3

pre-range with estimated pert. error 0.11660(160)

Hudspith 18 [125] 2+1 P ◦ ◦ � 0.11810(270)( +80
−220) vacuum polarization 3

JLQCD 10 [126] 2+1 A � ◦ � 0.11180(30)(+160
−170) 2

HPQCD 10 [127] 2+1 A ◦ ⋆ ⋆ 0.11840( 60) Wilson loops 2

Maltman 08 [128] 2+1 A ◦ ◦ ⋆ 0.11920(110) 2

pre-range with estimated pert. error 0.11858(120)

JLQCD 16 [129] 2+1 A ◦ ◦ ◦ 0.11770(260) Hl current, two points 2

Maezawa 16 [130] 2+1 A ◦ � ◦ 0.11622( 84) 2

HPQCD 14A [131] 2+1+1 A ◦ ⋆ ◦ 0.11822( 74) 2

HPQCD 10 [127] 2+1 A ◦ ⋆ ◦ 0.11830( 70) 2

HPQCD 08B [132] 2+1 A � � � 0.11740(120) 2

pre-range with estimated pert. error 0.11824(150)

ETM 13D [133] 2+1+1 A ◦ ◦ � 0.11960(40)(80)(60) gluon-ghost vertex 3

ETM 12C [134] 2+1+1 A ◦ ◦ � 0.12000(140) 3

ETM 11D [135] 2+1+1 A ◦ ◦ � 0.11980(90)(50)( +0
−50) 3

Nakayama 18 [121] 2+1 A ⋆ ◦ � 0.12260(360) Dirac eigenvalues 2

Table 2: Results for αMS(MZ) from simulations that use 2+1 or 2+1+1 flavours of quarks. A weighted

average of the pre-ranges gives 0.11823(57), using the smallest pre-range gives 0.11823(81) and the average

size of ranges as an error gives 0.11823(128).

The PDG has unfortunately not updated its world average since its 2016 value

α
(5)

MS
(mZ) = 0.1174(16) , PDG 2016, non-lattice [136] . (5.15)
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That number originates from the different pre-averages listed in the upper box of Fig. 11. We can

now add the information from the lattice and arrive at an average

preliminary: α
(5)

MS
(mZ) = 0.11806(72) , FLAG 2018 + PDG 2018/2016 (5.16)

of PDG non-lattice and FLAG lattice (weighted average). The error is reduced significantly com-

pared to FLAG 2016 and PDG 2016 and almost as small as PDG 2014. Unfortunately Eq. (5.16)

does not yet contain the interesting new non-lattice analyses discussed at this conference.

5.3 Further progress

Here I collect some lessons which I have learned during the period when I was involved in

forming and discussing a world average for αs.

The basic problem is simple and has been spelled out often, phrased in varying words. In

order to have a precise value with an error that can be estimated by perturbation theory itself, large

energy scales µ have to be reached and theory assumptions have to be kept at a minimum. I think

that we will not make further progress if we include complicated processes, where non-perturbative

contributions have to be fitted or removed by complicated analyses in order to make lower energies

accessible. Dealing with non-perturbative physics is always based on assumptions – if only where

the expansion in 1/µ applies and lowest-order terms (1/µ)Nmin dominate.

We should therefore separate the determination of αs at high enough µ , simple theory, from

tests of perturbation theory, with resummations, studies of higher-twist contributions, etc.

The concept of criteria introduced by FLAG is very useful in this respect and I would advocate

to consider such a procedure for phenomenological determinations. One should at least consider a

criterion on minimum values of µ , paired with sufficiently high perturbative order. In FLAG these

are the “renormalization scale” / “perturbative behaviour” criteria.

I personally also think that the criteria of FLAG need to be made more strict as time goes

on. This is necessary to avoid situations where complicated procedures, involving e.g. separate

estimates of perturbative errors (see above) are needed to arrive at a safe range.

Finally, it seems that the limit of lattice determinations of αs is not yet reached; I believe a fac-

tor two reduction in the error is possible with some variation of the developed techniques and some

dedication. A rather tough limitation, which is beyond such a factor of two, may be the inclusion of

electromagnetic effects. They dominantly (by far) enter in the process of scale setting. At present

one essentially uses models for relating Nature at low energy to pure QCD with electromagnetic

interactions removed. A typical estimate of the precision is at the level significantly below a % for,

e.g., fπ , defined in pure QCD related to π → ℓν + γ’s decays in Nature [136]. Uncertainties due to

that step can be translated directly into those of the 3-flavour Λ-parameter which is at the level of

4% right now. In other words, there is still some room before that limit becomes relevant.

6. Final discussion

The spectacular progress achieved in higher-order QCD calculations has made possible to

predict many observables with an impressive NNLO accuracy, reaching even the N3LO for fully

inclusive quantities such as RZ and Rτ,V+A, as well as for the static energy. With this improved
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theoretical control, rather clean and precise determinations of the strong coupling have come out

in a rich variety of energy scales. At the same time, high-precision lattice computations have been

able to control the continuum limit in αs determinations with NNLO accuracy up to energies around

the Z mass. The addition of novel LHC processes directly sensitive to αs, and for which NNLO

QCD calculations are available, have allowed several recent determinations from global PDF fits

with small uncertainties; being able to estimate the theory errors associated to these determinations

arising from MHO is now essential to make further progress in this direction.

The most precise determinations of αs(mZ) are currently obtained from lattice simulations.

The FLAG lattice average in Eq. (5.13) clearly dominates any world average with non-lattice re-

sults, making manifest the importance of having a strict and reliable control of lattice and perturba-

tion theory systematics; before averaging the results, FLAG tries to ensure their quality by a set of

criteria. The good agreement between the FLAG average and the accurate non-lattice determina-

tions presented in Eqs. (2.3), (2.7) and (3.1) constitutes a highly non-trivial consistency test among

results obtained with quite different techniques and physical observables. Still, there remain some

results which are quite a bit lower. In this report we mentioned Eqs. (3.3) and (3.4), as well as the

ABMP16 result in Fig. 3. These differences need to be better understood.

A precise determination of αs(mZ) is of paramount relevance, since it fixes the unique coupling

of QCD and, therefore, its predictions for any physical system. Nevertheless, we must also empha-

size the very important added value of precisely measuring the strong coupling at different scales.

The accurate low-energy determinations from τ decay, in Eq. (2.6), and from a number of lattice

determinations such as the QCD static energy, in Eq. (4.7), provide the needed inputs to perform a

very significant test of the running of αs. The beautiful agreement with measurements performed

at much higher energies gives a fundamental verification of the asymptotic-freedom property of

QCD. In addition, LHC cross sections have also the unique capability of directly measuring the

running of αs(Q) far above the electroweak scale, providing a unique test of the Standard Model

and of new strongly interacting sectors at high energies.
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