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Abstract

An algorithm is proposed to determine the topology of an implicit real
algebraic surface in R3. The algorithm consists of four steps: surface pro-
jection, projection curve topology determination, space curve segmenta-
tion and surface patch composition, combination of surface patches and
surface topology representation. The topology is represented by a set of
surface patches, and each surface patch is presented by an ordered list
of space curve segments. The relationship between the surface patches
can be found by their space curve segments. Some examples show that
our algorithm is effective.
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1. Introduction

An implicit real algebraic surface(or curve, or hypersurface) S in Rm with degree n is
defined by f(x1, x2, · · ·, xm) = 0 where f(x1, x2, · · ·, xm) ∈ R[x1, x2, · · ·, xm] is a polynomial
of degree n and R the field of real number. What is the topology of S? S is a set of discrete
points on a line when m = 1. When m = 2, S is a plane algebraic curve. Algorithms to
determine the topology of plane algebraic curve were proposed in (Hoon, 1996 and Gonzalez-
Vega and Necula, 2002). When m = 3, the problem is more complex. The topology of S
with n = 2 is well known. They are some quadratic surfaces. But when n ≥ 3, there are
only some special surfaces whose topology can be determined.

Fortuna et al presented an algorithm (Fortuna etc. 2003) to determine the topology of
non-singular, orientable real algebraic surface in projective space. But for general case, there
is no existing algorithm to determine the topology of S. Theoretically, the CAD method
proposed by Collins can be used to determine information about the topology of an algebraic
surface [2, 3]. But, a complete algorithm is not given.

In this paper, we present an algorithm to determine the topology of S of m = 3, n ≥ 3.
In the rest of this paper, we replace f(x1, x2, x3) = 0 with f(x, y, z) = 0.

The basic idea of our algorithm is as follows. Project S: f(x, y, z) = 0 to plane and
obtain a plane algebraic curve C: g(x, y) = 0. Analyze the topology of C in a finite box, get
its singularities, segment the curve into plane curve segments and label its cells. Segment
the space curve defined by {f(x, y, z) = 0, g(x, y) = 0} into space curve segments. Compute
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the number of surface patches originating from each space curve segment in two cell bodies
and register each surface patches using its boundary space curve segments. Combine surface
patches if they having common critical space curve segment. In the end, we obtain a set
of surface patches presented by boundary space curve segments and critical space curve
segments of S.

It is difficult to analyze the computing time of the algorithm. The most time-consuming
part of the algorithm is that of obtaining C, analyzing C and space curve segmentation.

This paper is divided into seven sections. The second section is to obtain projection
curve of the surface. The third section presents an algorithm to determine the topology
of the plane projection curve and getting some information which we need in the following
sections, such as singularities, curve segments, cells, and so on. Space curve segmentation and
surface patch composition are discussed in the fourth section. The fifth section discusses the
combination of surface patches and the surface topology representation. The sixth section
presents the main algorithm to obtain the topology of a given algebraic surface. Then we
draw a conclusion in the last section.

2. Projection curve of the surface

In the following, we will show algorithms to determine topology of al algebraic surface
S: f(x, y, z) = 0, where f(x, y, z) ∈ Z [x, y, z], Z is the ring of integers.

In the section, our aim is to get the projection curve of the given surface S. We will
discuss how to obtain the projection curve of S.

When f(x, y, z) is irreducible, the discriminant of the surface is as follows.

g(x, y) = Res(f(x, y, z),
∂f(x, y, z)

∂z
, z)

where Res(f(x, y, z), ∂f(x,y,z)
∂z , z) is the resultant of f(x, y, z) and ∂f(x,y,z)

∂z .
In order to fit the operation below and make the operation easily, that is, the discrim-

inant obtained should be effective and efficient to determine the topology of S, we should
insure that

1. there is no point P0(x0, y0) on plane, which satisfies f(x0, y0, z) = 0, it is clear that
P0 vanish on the discriminant;

2. the sum polynomial of terms with total degree of f(x, y, z),
∑

i+j+k=n ai,j,k∗xi∗yj ∗zk,
has no factor who does not have variable z, where n is total degree of f(x, y, z).

An opportune surface is an irreducible algebraic surface f(x, y, z) which satisfies the two
cases.

If there exists line of S which is vertical to XY-plane, the number of the lines is finite.
Otherwise, there is a cylinder in S. It is in contradiction to the fact S is irreducible or
f(x, y, z) has three variables.

Otherwise, for case 1, f(x, y, z) has a line which is vertical to the XY-plane, we cannot
compute the surface patches which intersect the line lifting from P0. We can represent
f(x, y, z) as follows.

f(x, y, z) = ck(x, y) ∗ zk + ck−1 ∗ zk−1 + · · ·+ c0(x, y),
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where ci(x, y) ∈ Z [x, y] and ck(x, y) is nonzero polynomial. If f(x, y, z) does not satisfy
case 1, we can derive that the variety {c0(x, y) = 0, c1(x, y) = 0, · · · , ck(x, y) = 0} has real
root(s).

For example, given the following equation,

f(x, y, z) = x2 ∗ y2 + z2 ∗ y2 + x2 ∗ z2 − 7/2 ∗ x ∗ y ∗ z, (1)

we can derive f(0, 0, z) = 0 for all z, which means the line {x = 0, y = 0} is on the surface.
We don’t know how many surface patches intersect the line. We can take a transformation
of coordinate system to satisfy case 1. If ck(x, y) is a constant, it is clear that case 1 holds.

For case 2, the asymptotic surface( a surface approaching a given surface arbitrarily
closely) of f(x, y, z) is vertical to XY-plane, we cannot easily to compute the number of
surface patches originating from its corresponding space curve segments. We can represent
f(x, y, z) as follows.

f(x, y, z) =
∑

i+j+k=n

ai,j,k ∗ xi ∗ yj ∗ zk +
∑

i+j+k=n−1

ai,j,k ∗ xi ∗ yj ∗ zk + · · ·+ a0,0,0

Then we can derive the sum polynomial of terms with total degree of f(x, y, z):
∑

i+j+k=n ai,j,k∗
xi ∗ yj ∗ zk = T (x, y) ∗ T0(x, y, z).

For example, when f(x, y, z) = x ∗ z2 + y ∗ z − 1, the sum polynomial of terms with
total degree of f(x, y, z) is x ∗ z2, x = 0 is an asymptotic surface( plane) of the surface. The
projection curve of the surface is −4 ∗ x2 − y2 ∗ x = 0, but f(0, 0, z) = −1 6= 0, we cannot
determine the boundaries of the surface patches which are approaching the plane x = 0.

So we need to take a transformation of the coordinate system to avoid the two cases
happening. For case 2, it is easy to do so. We can take the following transformation of
coordinate system. 


x
y
z


 =




1 0 a
0 1 b
0 0 1







X
Y
Z


 , (2)

where (x, y, z), (X, Y, Z) are any point in the old coordinate system and the new coordinate
system respectively. We can choose any a, b(a 6= 0, b 6= 0). Denote the corresponding
surface in the new coordinate system as F (X, Y, Z). As is well known, a transformation of
coordinate system does not change the topology of a surface. So the surface f(x, y, z) has
the same topology with the surface F (X, Y, Z). Represent F (X, Y, Z) as follows.

F (X, Y, Z) = Cn(X, Y ) ∗ Zn + Cn−1(X, Y ) ∗ Zn−1 + · · ·+ C0(X, Y ),

where Cn(X, Y ) =
∑

i+j+k=n ai,j,k ∗ ai ∗ bj ∗ 1k. For case 1, we need to find a, b such that

{Cn(X, Y ), Cn−1(X, Y ), · · · , C0(X, Y )}
has no real root. If we can choose a, b such that Cn(X, Y ) is a nonzero constant, it is OK. We
can choose a rational point (a, b) which is not on the curve

∑
i+j+k=n ai,j,k ∗ xi ∗ yj ∗ 1k = 0.

Then two problems are solved.
For case 2, here is an example. For the surface x ∗ y ∗ z − 1 = 0, we choose a =

1, b = 1. The new surface which has a same topology with the surface x ∗ y ∗ z − 1 = 0



Determine the Topology of Real Algebraic Surfaces 5

is F (X, Y, Z) = Z3 + (Y + X) ∗ Z2 + X ∗ Y ∗ Z − 1. Its projection curve is G(X, Y ) =
27 + 6 ∗X2 ∗ Y + 6 ∗X ∗ Y 2 −X4 ∗ Y 2 + 2 ∗X3 ∗ Y 3 −X2 ∗ Y 4 − 4 ∗ Y 3 − 4 ∗X3. There is
no asymptotic surface projected in G(X, Y ). F (X, Y, Z) is an opportune surface.

We will show you how to deal with the example: Equation 1. Represent S as follows.

f(x, y, z) = (y2 + x2) ∗ z2 − 7/2 ∗ x ∗ y ∗ z + x2 ∗ y2 = 0.

The variety {y2 + x2,−7/2 ∗ x ∗ y, x2 ∗ y2} has a common real root {x = 0, y = 0}. So we
need to take a transformation of coordinate system. Follow the method presented above, we
need to choose a rational number pair (x, y) = (a, b), such that (y2 + x2) ∗ 12 + x2 ∗ y2 is
nonzero. We can choose (a, b) = (1, 1). The new surface is
F (X, Y, Z) = 3 ∗Z4 +4 ∗Y ∗Z3 +4 ∗X ∗Z3− 7/2 ∗Z3 +2 ∗Y 2 ∗Z2 +2 ∗X2 ∗Z2− 7/2 ∗Y ∗
Z2−7/2∗X ∗Z2 +4∗X ∗Y ∗Z2−7/2∗X ∗Y ∗Z +2∗X ∗Y 2 ∗Z +2∗X2 ∗Y ∗Z +X2 ∗Y 2.
And there is no number pair (x0, y0) such that F (x0, y0, Z) = 0. It is an opportune surface.

If g(x, y) = 0 is reducible, factor it as follows.

g(x, y) = g1(x, y)n1 · · · gm(x, y)nm .

Let
g0(x, y) = g1(x, y) · · · gm(x, y).

The two equation g0(x, y) = 0 and g(x, y) = 0 express the same plane curve. So we only
need to compute the topology of g0(x, y) = 0.

An opportune projection of an irreducible surface is a square-free polynomial which has
same real zeros with the discriminant of the surface.

Follow the discussion above, we can derive the following algorithm to obtain the projec-
tion curve of a given irreducible surface f(x, y, z) = 0.
Algorithm 1 The input is an irreducible polynomial f(x, y, z). The output is an opportune
projection of the surface f(x, y, z) = 0: g(x, y) = 0.

1. Represent f(x, y, z) as f(x, y, z) = ck(x, y) ∗ zk + ck−1 ∗ zk−1 + · · · + c0(x, y), check
whether the variety {ck(x, y), ck−1, · · · , c0(x, y)} has real root or not. If it has real
root(s), go to 3.

2. Represent f(x, y, z) as f(x, y, z) =
∑

i+j+k=n ai,j,k ∗ xi ∗ yj ∗ zk +
∑

i+j+k=n−1 ai,j,k ∗
xi ∗ yj ∗ zk + · · ·+ a0,0,0, check whether

∑
i+j+k=n ai,j,k ∗ xi ∗ yj ∗ zk has a factor which

does not have variable z. If it does not have this factor, go to 4.

3. If there holds one of the two cases above, take the transformation of coordinate system
as Equation (2), choose rational number pair (a, b) such that (a, b) is not a point of
curve

∑
i+j+k=n ai,j,k ∗ xi ∗ yj ∗ 1k = 0, and compute the corresponding new surface

F (X, Y, Z) in the new coordinate system. Denote F (X, Y, Z) still as f(x, y, z).

4. Compute the discriminant of f(x, y, z). Denote g(x, y) = Res(f(x, y, z), ∂f(x,y,z)
∂z , z).

5. If g(x, y) is irreducible, return it. Else, factor it as g(x, y) = g1(x, y)m1 ∗ g2(x, y)m2 ∗
· · · ∗ gt(x, y)mt , where gi(x, y) is irreducible. Still denote g(x, y) = g1(x, y) ∗ g2(x, y) ∗
· · · ∗ gt(x, y) and return it.
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When f(x, y, z) is reducible, the problem is more complex. Factor f(x, y, z) we can obtain
the following expression.

f(x, y, z) = f1(x, y, z)m1 ∗ · · · ∗ fn(x, y, z)mn ,

where each component fi(x, y, z) is irreducible. If one component only content variable z,
it is some discrete points. We can delete the component before we compute the projection
curve and add these discrete points into the topology structure after we finish the analysis.
So we suppose there does not exist this kind of component. Denote f0(x, y, z) = f1(x, y, z) ∗
· · · ∗fn(x, y, z). It is clear that f(x, y, z) = 0 and f0(x, y, z) = 0 is a same surface. So we only
need to determine the topology of the surface f0(x, y, z). Still denote it as f(x, y, z). Check
whether each component fi(x, y, z) is an opportune surface. If all components are opportune
surfaces, we can compute the projection curve of f(x, y, z) as follows.

For all i, j = 1, 2, · · · , n, when i 6= j, denote Ti,j(x, y) = Res(fi(x, y, z), fj(x, y, z), z),
compute its square-free polynomial which has same roots with Ti,j(x, y) = 0, still denote is
as Ti,j(x, y). When i = j, denote the opportune projection of fi(x, y, z) as Ti,i(x, y). Then
the projection curve of f(x, y, z) is as follows.

g(x, y) =
∏

1≤i≤j≤n

Ti,j(x, y). (3)

If there exists any component which is not an opportune surface, take a transformation
of coordinate system to insure that all components are opportune surfaces in the new coor-
dinate system. And then compute the projection curve of the new surface with the method
mentioned above.

For any surface f(x, y, z) = 0, we can present the following algorithm to compute the
projection curve of it which can be used to determine its topology.
Algorithm 2 The input is a polynomial f(x, y, z). The output is a square-free polynomial
g(x, y), where C: g(x, y) = 0 is the projection curve of f(x, y, z).

1. Factor f(x, y, z). Suppose f(x, y, z) = f1(x, y, z)m1∗· · ·∗fn(x, y, z)mn , denote f(x, y, z) =
f1(x, y, z) ∗ · · · ∗ fn(x, y, z).

2. If n = 1, compute the opportune projection of S by Algorithm 1 and return it.

3. Else (n > 1), do

(a) Check whether fi(x, y, z) is an opportune surface or not for all i, if there exists a
component which is not an opportune surface, we should take a transformation
of coordinate system as Equation (2), by the method mentioned above, such that
each component is an opportune surface in the new coordinate system. Still
denote the surface as f(x, y, z) = 0.

(b) Compute the projection curve of f(x, y, z) by the method discussed above. We
can derive the opportune projection curve of f(x, y, z) as Equation (3) and return
it.

3. Projection curve topology determination

In this section, we will present algorithms to determine the topology of a projection curve
derive from last section.
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3.1. Preliminaries
There are some definitions which will be used below.
A complete curve segment(CCS) of a plane algebraic curve in a finite interval is one of

the following cases:

1. An isolated singularity Pi of C: g(x, y) = 0. Denote as CPi .

2. A continuous curve segments from a singularity (or boundary point: intersection be-
tween the boundaries of a finite box and C) to another singularity (or the same singu-
larity or boundary point). Denote as Ck

i,j : the k-th curve segment from the singularity
Pi to the singularity Pj ; Or Ci,j : the curve segment from the singularity Pi to the
boundary point Bj ; Or B0

i,j : the curve segment form the boundary point Bi to the
boundary point Bj .

3. A closed continuous curve. Denote as CQ, where Q is a point on the closed curve.

A point P0(x0, y0) is said to be a singularity of an implicit algebraic curve C: g(x, y) = 0
if g(x0, y0) = gx(x0, y0) = gy(x0, y0) = 0.

A critical curve of a surface is a space curve which is one part of the surface and the
third parameter of the normal vector of the surface on the curve is zero.

A cell of a plane curve in a finite interval is a closed polygon whose boundaries are CCSes
or boundaries of the interval.

A curve segments sequence of a singularity of a plane curve is a ordered sequence of CCSes
originating from the singularity. The order is from left-up to right-up in counter-clockwise.

3.2. topology determination
If the opportune projection curve C: g(x, y) = 0 of S: f(x, y, z) = 0 is irreducible,

then we present the following algorithm to compute the topology of C and obtain topology
information we need in the later sections, such as singularities, CCSes, cells of the curve
and so on. The plane curve topology determination algorithm already exists(Hong, 1996;
Gonzalez-Vega and Necula, 2002), one can see more detail there. Our algorithm is based on
the revised topology determination algorithm (Gao and Li, 2004).
Algorithm 3 Irreducible algebraic curve topology determination. The input is an irreducible
plane algebraic curve C: g(x, y) = 0. The output is a bounding box B= {(x, y) : xl ≤ x ≤
xr, yb ≤ y ≤ yu}, all boundary points Bi(i ∈ IB) defined by C and the boundaries of the box
and four endpoints of the box, all singularities Pi(i ∈ IS) of C in the box, all CCSes of C,
such as Ck

i,j , Ci,l, CPi , CQ(i, j ∈ IS , l ∈ IB, k = 0, 1, · · ·) of C in the box and cell(s) besides it,
a set of sequences of CCSes originating from each singularity, a positive number ri for each
singularity Pi and all cells Ci(i ∈ IC) in the box defined by CCSes and boundaries of the
box.

1. Compute the discriminant D(y) =
∑m

i=0 diy
i of g(x, y) with respect to x and let yu =

1 + max{|d0|,···,|dm−1|}
|dm| (or we can choose another rational number which is more than

max{|d0|,···,|dm−1|}
|dm| ). Then by Cauchy’s inequality, all the roots of D(y) = 0 are in the

interval (yb = −yu, yu).
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2. Compute the discriminant D̄(x) of g(x, y) with respect to y and determine its real
roots: α1 < . . . < αs−1. Select two rational numbers xl and xr such that xl < α1 and
xr > αs−1 and let α0 = xl, αs = xr. Now we have determined the bounding box B.

3. Compute the real roots of g(α0, y) = 0 and g(αs, y) = 0 in the interval (yb, yu) and
compute the real roots of g(x, yb) = 0 and g(x, yu) = 0 in the interval (xl, xr). The
four endpoints of the box are (xl, yu), (xl, yb), (xr, yu), (xr, yb). Denote these points in
order as Bi, i ∈ IB.

4. For every αi, do

(a) compute within B the real roots of g(αi, y), βi,0 < . . . < βi,ti .
(b) For each point Pi,j = (αi, βi,j), do

i. Count the numbers of branches of C in B to the left and to the right. Denote
it as Pl(l ∈ IS) in order if gx(αi, βi,j) = gy(αi, βi,j) = 0, label rl = min{αi −
αi−1, αi+1 − αi, βi,j − βi,j−1, βi,j+1 − βi,j} and record an ordered sequence of
branches originating from the singularity from left-up to right-up in counter-
clockwise, transform the branches to corresponding CCSes in the end.

ii. Label each cell in Di= (αi, αi+1)× (yb, yu), combine the two cells besides line
segment Pi,jPi,j+1 if it is their common boundary and relabel the new cell.
Denote the cells as Ck(k ∈ IC) in order.

iii. Label each curve segment in the interval Di and record the cell(s) besides
it, combine the two curve segments(one in Di−1, the other in Di) if their
unique common point Pi,j is nonsingular, relabel the new curve segment and
record the cell(s) besides it. At last, we can obtain a set of CCSes and the
corresponding cell(s) besides them.

5. Return corresponding information.

We can show you an example. As is shown in Fig. 1. It is a component of projection
curve of the following surface.

f(x, y, z) = (y2 + z2 − x2 + 1/2 ∗ x3 − 4)2 − 16 ∗ x2 + 8 ∗ x3. (4)

Its equation is g(x, y) = 2 ∗ y2 − 8 ∗ y − 2 ∗ x2 + x3 + 8.
We can obtain its topology information as follows.
Boundary points set: {B0, B1, B2, B3, B4, B5}.
Singularities set: {P0{2, {C0,0, C0,3, C

0
0,0, C

0
0,0}}}.

Set of CCSes: {C0,0{C0, C2}, C0,3{C0, C2}, C0
0,0{C1, C2}}.

Set of cells: {C0{B0,1, B1,2, B2,3, C0,3, C0,0}, C1{C0
0,0}, C2{B3,4, B4,5, B5,0,

C0,0, C
0
0,0, C0,3}}.

When g(x, y) is reducible, we can compute a finite box and the real roots of the discrim-
inant of each component of g(x, y) with respect to y as Algorithm 3. Replace all these roots
in order, then compute the topology information of g(x, y) = 0 as Algorithm 3. We can
derive the topology of g(x, y) = 0 in the end.
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2C

1C

0C

0
0,0C

0,0C

0,3C

5B

4B3B2B

1B 0B

0P

Fig. 1. Topology determination of irreducible plane curve

The following algorithm is to determine the topology of any square-free algebraic curve
g(x, y) = 0. In order to fit our problem and describe easily, we can suppose g(x, y) =
g1(x, y) · · · gm(x, y) if it is reducible.
Algorithm 4 Plane curve topology determination. The input is C: g(x, y) = 0. The output
is same to Algorithm 3.

1. If g(x, y) is irreducible, determine the topology of C by Algorithm 3.

2. Else (g(x, y) is reducible), do as follows.

(a) For each gi(x, y), compute a finite box with the method presented in Algorithm
3. Search a new finite box which includes all the finite boxes above as the finite
box of g(x, y) = 0. Compute the intersection points of the box boundary and
g(x, y) = 0.

(b) Separate the vertical line(s) Lt(x, y) = x − ct = 0(t = 0, · · · , L) from g(x, y) if
it exists. Denote all the left components of g(x, y) as g0(x, y). Suppose it as
g0(x, y) = g1(x, y) · · · gm1(x, y).

(c) Solve Res(gi(x, y), ∂gi(x,y)
∂y , y) = 0 and Res(gi(x, y), gj(x, y), y) = 0 for all i, j =

0, · · · ,mi(i 6= j). Denote their roots and ct(t = 0, · · · , L) together in order as
αk(k = 0, · · · , l, α0 = xl, αl = xr, αk < αk+1).

(d) For every αk, to g0(x, y), we can do the same work as Algorithm 3 in step 4.
Note that when αk = ct(t = 0, · · · , L), all the real roots of g0(αk, y) = 0, de-
note as βk,j(j = 0, · · · , tk), are singularities of g(x, y) = 0, and line segments
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Pk,jPk,j+1(k = 0, · · · , tk − 1),Bk1Pk,0, Pk,tkBk2 are CCSes of g(x, y) = 0. We can
derive the topology information of g(x, y) = 0 in the end.

3. Return the corresponding topological information of C.
Here is an example that g(x, y) is reducible. It is the projection curve of surface defined

by Equation (4). Its equation is as follows.

g(x, y) = g1(x, y) ∗ g2(x, y) ∗ g3(x, y) ∗ g4(x, y),

where g1(x, y) = x, g2(x, y) = (x− 2), g3(x, y) = 2 ∗ y2 + 8 ∗ y − 2 ∗ x2 + x3 + 8, g4(x, y) =
2 ∗ y2 − 8 ∗ y − 2 ∗ x2 + x3 + 8. We can derive its picture as Fig. 2.
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9C

8C

7C

6C

5C

4C
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0C
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1

2,4C

0
2,4C

1
1,3C

0
1,3C

1,8C

0
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0
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0
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11B

10B9B8B7B6B5B

4B 3B 2B 0B1B

4P

3P

2P

1P

0P

Fig. 2. Topology determination of reducible plane curve

4. Space curve segmentation and surface patch composition

In this section, we will determine the position of each space curve segment and each
surface patch of S. Our basic idea to determine the topology of S is to divide S into points,
space curve segments and surface patches, from points to obtain space curve segments, form
space curve segments to obtain surface patches, at last to obtain the topology of the surface.

The following is our main steps.
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At first, we need to determine the points of S on each line lifting from a boundary point
Bi(x̄i, ȳi)(i ∈ IB) or a singularity Pi(xi, yi)(i ∈ IS) of C: g(x, y) = 0, especially from a
singularity of C. These points are the endpoints of CSCSes. Second, we need to determine
how many CSCSes originating from each point of a certain line on each CCP whose boundary
is the line. Then we can determine all CSCSes of S. Third, we need to compute the number
of CSPs originating from each CSCS in the corresponding cell body(s). At last, we can
determine the CSPs in each cell body from below to up by pointing out their boundaries,
those are CSCSes. So, we determine each CSP of S. It is what we want.

4.1. Basic definition
In order to describe our algorithm clearer, we present the following definitions.
A complete cylinder patch (CCP) is a cylinder patch lifting from a CCS obtained in last

section.
A cell body is a body lifting from a cell obtained in last section. There are two cell bodys

beside a CCP corresponding to the cells beside the CCS. When the CCS is a point, there is
only one cell body beside it.

A complete space curve segment (CSCS) of S: f(x, y, z) = 0 is one of space curve segments
defined by a CCP and S.

A complete surface patch (CSP) of S: f(x, y, z) = 0 is a surface patch which is part of S,
and its boundary is CSCSes.

Given a function P (x), let P0(x) = P (x), P1(x) = P ′(x) and define the Sturm functions
by

Pi(x) = −(Pi−2(x)− Pi−1(x)[
Pi−2(x)
Pi−1(x)

]),

where [Pi−2(x)
Pi−1(x) ] is a polynomial quotient. The chain is terminated when Pn(x) is a constant.

Then P0(x), P1(x), · · · , Pn(x) is the Sturm functions of P (x).
Sign-changing number of Sturm functions of P (x) at point x = a is the number of sign

changes on the Sturm functions of P (x) evaluated at point x = a. That is, the number of
sign changes on P0(a), P1(a), · · · , Pn(a).

4.2. Basic algorithm
To do so, we need the following basic algorithms.
The following algorithm is to isolate the real roots of an equation T (x). The difference

between the algorithm and general algorithm is that the isolated points of our algorithm is
not a root of T (x).
Algorithm 5(Real Roots-Isolating) The input is Sturm functions of polynomial T (x) and
an interval (a, b)(T (a) 6= 0, T (b) 6= 0). The output is a serial of ordered rational number in
(a, b), there is a real root between each pair of adjacent numbers.

1. Compute the sign-changing numbers V (a), V (b) of the Sturm functions of T (x) at
x = a, x = b respectively. V (a) − V (b) is the number of real roots between (a, b) by
Sturm theorem. Let rational numbers set be Ns := a, b. If V (a)− V (b) = 0, return ∅.
If V (a)− V (b) = 1, return Ns.

2. When V (a)− V (b) > 1, if T (a+b
2 ) 6= 0, c = a+b

2 , else choose another rational number c

near a+b
2 in (a, b) insuring that T (c) 6= 0.
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(a) If V (a) − V (c) > 1 and V (c) − V (b) > 1, Ns := Ns + {c}, do a = a, b = c, go to
2; and a = c, b = b, go to 2.

(b) Else if V (a)−V (c) = 1 and V (c)−V (b) > 1, Ns := Ns +{c}, and let a = c, b = b,
go to 2.

(c) Else if V (a)−V (c) > 1 and V (c)−V (b) = 1, Ns := Ns +{c}, and let a = a, b = c,
go to 2.

(d) Else if V (a)− V (c) = 0 and V (c)− V (b) > 1, let a = c, b = b, go to 2.
(e) Else if V (a)− V (c) > 1 and V (c)− V (b) = 0, let a = a, b = c, go to 2.

3. Return the ordered rational numbers Ns.

Given a point, a positive number and a plane curve (the point can be on the curve or
not on the curve), the following algorithm is to find the circle whose center is the point, and
it is the minimal circle among the circles which is tangent to the curve. Return a positive
number which is equal to half of the less of the radius and the given positive number.
Algorithm 6 The input is a plane algebraic curve T (x, y) = 0, a positive number r and a
point P0(x0, y0). The output is a positive number which is equal to half of the minimal of
extremum distance rmin from P0 to the curve and r.

1. Let L(x, y, λ) = (x− x0)2 + (y − y0)2 + λT (x, y).

2. Eliminate {2(x− x0) + λTx(x, y), 2(y − y0) + λTy(x, y), T (x, y)} in order {λ Â x Â y}.
3. Solve the univariate equation in y obtaining from last step in interval (y0 − r, y0 + r).

If there is no real root in the interval, return r; Else, get corresponding xi,j for each
real root yi we have gotten in the interval (x0 − r, x0 + r), if there is no real root in
the interval, return r/2; else, let R = mini,j

√
(x− xi,j)2 + (y0 − yi), if R ≤ r, return

R/2, else, return r/2.

Remark The step 2 of this algorithm is an application of Wu’s method. One can find
more detail in [14].

4.3. Algorithm of segmentation
To each singularity Pi(i ∈ IS) of g(x, y) = 0, there is a sequence of CCSes Ck1

i,j1
, · · · , Ckt

i,jt
.

Lifting them up, we can obtain a sequence of CCPs SCk1
i,j1

, · · · , SCkt
i,jt

. The singularity
corresponds to a vertical line {x = xPi , y = yPi}. There are some points Vi,j(j = 0, · · · , si) of
S on the line and some CSCSes Ckl,m

i,jl
(m = 0, · · · , ti,j,k) on each CCP SCkl

i,jl
(l = 1, 2, · · · , t).

we need to determine the CSCSes originating from Vi,j on each CCP. The following algorithm
is to finish the task.
Algorithm 7 The input is a real algebraic curve C: g(x, y) = 0, a real algebraic surface
S: f(x, y, z) = 0, a singularity Pi(xi, yi) on C, a positive number ri corresponding to Pi and
a sequence of CCSes {Ck1

i,j1
, · · · , Ckt

i,jt
} obtained in Algorithm 4. The output is a sequence of

points of S on the line lifting from Pi, a set of sequences of CSCSes {Ckl,m
i,jl

,m = 0, · · · , ti,j,k}
for each Ckl

i,jl
. Note that we only know one endpoint of the CSCSes, the other is unknown.
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1. Isolate the real roots of f(xi, yi, z) = 0 by Algorithm 5 and obtain the isolating values
zi,0, zi,1, · · · , zi,si . Denote (xi, yi, zi,j) as Wi,j . There exists a point of S, Vi,j , which is
on the line {x = xi, y = yi} between points Wi,j and Wi,j+1.

2. For ri, Pi, g(x, y) = 0, we can obtain a positive number Ri by Algorithm 6. It clear that
the number of intersection points of the circle (x − xi)2 + (y − yi)2 = r2(0 < r ≤ Ri)
and C is equal to the number of the CCSes in the input sequence.

3. In plane z = zi,j(j = 0, 1, · · · , si), for Ri, Pi, f(x, y, zi,j) = 0 we can obtain a positive
number ri,j by Algorithm 6. Still denote the minimal among {ri,0, · · · , ri,si} as ri(ri ≤
Ri).

4. Compute the real intersection points of the equations {(x−xi)2+(y−yi)2 = r2
i , g(x, y) =

0}. We can determine each point on its corresponding CCS by its coordinate and the
order of CCSes in the sequence. Denote them as {Pi,j1 , Pi,j2 , · · · , Pi,jt}.

5. For each Pi,jl
(xi,jl

, yi,jl
)(l = 1, · · · , t), compute the number of real roots of f(xi,jl

, yi,jl
, z) =

0 in interval (zi,j , zi,j+1)(j = 0, 1, · · · , si − 1). It is the number of CSCSes originating
from Vi,j on the CCP SCkl

i,jl
. So we can determine the CSCSes on each CCP: one

of their two endpoints is on the line lifting from Pi, their order on the CCPs is from
below to top. Denote them as Ckl,m

i,jl
. If there does not exist real root in the interval

(zi,0, zi,si), delete the CCS from the input sequence of CCSes.

6. Return the corresponding information.

Remark In Algorithm 7, if the singularity is a isolated point, we need not to compute it by
this algorithm. The input sequence of CCSes may includes CCS like Ci,j(the endpoints are
a singularity and a boundary point). It is also OK for the Algorithm. And the CSCSes on
the CCP lifting from Ci,j are determined by computing Pi with this algorithm.

We also need to compute the CSCSes on the CCPs lifting from boundary line segments,
for example, Bi,i+1 or CCS B0

i,j . It is easy. We can revise Algorithm 7 to do so. Isolate
f(xBi , yBi , z) = 0, compute line segments replacing the discs in Algorithm 7. The line
segments are parallel to XY-plane and their centers are projected to Bi. The following
algorithm is to an algorithm revised from Algorithm 7 to compute corresponding information
for a boundary point. Note that the number of CSCSes on the CCP SCj,i is the number of
real roots of f(xBi , yBi , z) = 0. The CSCSes on CCP SBi,i+1 is unknown, because Cj,i may
be the projection of a singular curve of f(x, y, z) = 0.
Algorithm 8 The input is a real algebraic curve C: g(x, y) = 0, a real algebraic surface
S: f(x, y, z) = 0, a boundary point Bi(xi, yi)(i ∈ IB), a CCS Cj,i(j ∈ IS) obtained in
Algorithm 4. The output is an empty set or a sequence of points of S on the line lifting from
Bi( if they exist), sequences of CSCSes on the CCPs lifting from the CCS Cj,i and boundary
line segments Bi,i+1, Bi,i−1. Denote as Cj,i,m, Bm1

i,i+1, B
m2
i,i−1. Note that we only know one

endpoint of the CSCSes, the other is unknown.

1. Isolate the real roots of f(xi, yi, z) = 0 by Algorithm 5.

(a) If there is no real root, delete the CCS Cj,i, combine the two cells divided by it
and return an empty set.
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(b) Else, do the following.
i. We can obtain the isolating values zi,0, zi,1, · · · , zi,si . Denote (xi, yi, zi,j) as

W 0
i,j . There exists a point of S, V 0

i,j , which is on the line {x = xi, y = yi}
between points W 0

i,j and W 0
i,j+1.

ii. Denote the CSCSes on the CCP lifting from Cj,i as Ci,j,m in order.
iii. Parameterize the boundary line of the finite box as (ta + xi, tb + yi).
iv. Compute the real roots of the equation f(ta + xi, tb + yi, zj) = 0 for each

j = 0, 1, · · · , si. Record the root whose absolute value is the minimal among
the real root(s). Denote the absolute value of the root as rj . And denote the
half of the minimal among r, r0, r1, · · · , rsi as R.

v. Compute the number of real roots of f(Ra+xi, Rb+ yi, z) = 0 and f(−Ra+
x0,−Rb+y0, z) = 0 in the interval (zm, zm+1)(m = 0, · · · , si−1) respectively.
They are the numbers of CSCSes originating from V 0

i,m on the CCPs beside
the line lifting from Bi. Denote the CSCSes as Bi,i+1,m1 and Bi,i−1,m2 in
order.

2. Return the corresponding information.

Remark To one of the four endpoints of the box Bi, if it is not a point of C, the number
of the points on the line lifting form it (if it exists) is equal to the number of CCSes on the
CCP SBi,i+1 or SBi,i−1. So we need not to compute these points.

After computing all boundary points and singularities of C by Algorithm 7 or Algorithm
8, we can determine the position of all CSCSes of S.

And now, we need to compute the number of CSPs originating from each CSCS in the
two cell bodies beside the CCP which the CSCS lies on. To do so, we need to compute two
points in the cells beside the corresponding CCS Ck

i,j(or Ci,j) on each side of the point P k
i,j

or P k
j,i( or Pi,j) obtained in Algorithm 7. Here we only need one point on the CCS. Lift the

point up and isolate the real roots of S on the line: z0, z1, · · · , zli,j,k
. Compute a sequence

of line segments whose center are the isolated points and all have a same direction and are
parallel to XY-plane. Insure that all line segments have no common point with S. Suppose
the shortest length is ri,j,k(ri,j). Choose the two endpoints P k,0

i,j , P k,1
i,j or Pi,j,0, Pi,j,1 of the

line segment on the plane where C lies on. Lift the points up, compute the number of real
roots of S on each line in the interval (zs, zs+1)(s = 0, · · · , li,j,k). It is the number of CSPs
originating from CSCS Ck,s

i,j in a cell body. The following algorithm is to do the work.
Algorithm 9 The input is a real algebraic curve C: g(x, y) = 0, a real algebraic surface
S: f(x, y, z) = 0, a CCS Ck

i,j(or Ci,j) on C and two cells beside it, a points on the CCS:
P k

i,j( or Pi,j)(x0, y0) and a sequence of CSCSes {Ck,m
i,j ,m = 0, · · · , li,j,k − 1} on the CCP

lifting from the CCS. The output is the number of CSPs originating from each CSCS of the
sequence in the two cell bodies respectively.

1. Compute the tangent line of C at point P k
i,j , compute the vertical line of the line at

P k
i,j and parameterize it as (ta + x0, tb + y0).

2. Compute the real roots of the equation g(ta + x0, tb + y0) = 0. Record the root whose
absolute value is the minimal among the nonzero real root(s). If the root does not
exist, denote r as a constant, such as 1, else denote r as the absolute value of the root.
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3. Isolate the real roots of f(x0, y0, z) = 0 by Algorithm 5, and derive a sequence of
rational number {z0, z1, · · · , zli,j,k

}.
4. Compute the real roots of the equation f(ta + x0, tb + y0, zi) = 0 for each i =

0, 1, · · · , li,j,k. Record the root whose absolute value is the minimal among the real
root(s). Denote the absolute value of the root as ri. And denote the half of the
minimal among r, r0, r1, · · · , rli,j,k

as R.

5. Compute the number of real roots of f(Ra+x0, Rb+y0, z) = 0 and f(−Ra+x0,−Rb+
y0, z) = 0 in the interval (zm, zm+1)(m = 0, · · · , li,j,k − 1) respectively. They are the
numbers of CSPs in the cell bodies beside the CCP SCk

i,j .

6. Return the corresponding information.

Remark If the CCS is an isolated singularity of C, we only need to lift the point up, isolate
the real roots of S on the line by Algorithm 5, find a line segments (its direction is parallel
to XY-plane) which pass the point as Algorithm 9, then we can easily determine the number
of CSPs originating from the points of S on the lifting line. If the CCS is a closed curve, Q
is a point on the CCS, we can also easily compute the number of CSPs originating from the
CSCSes of the CCP lifting from the CCS like the Algorithm 9.

And now, we have determine the position of all CSCSes and the number of CSPs origi-
nating from each CSCS in the two cell bodies beside it. Then we can form CSPs of S.

For each cell body lifting from the cell of C, because the number of CSPs originating
from the CSCSes on each CCPs of the cell body is the same, we can determine each CSP by
point out its boundaries, CSCSes.

The following algorithm is to determine the CSPs of S by the topology information
obtained by Algorithm 4 and S.
Algorithm 10 The input is S: f(x, y, z) = 0 and the output of Algorithm 4. The output is
all the CSPs of S.

1. Compute all the singularity of C by Algorithm 7 and all boundary points of C by
Algorithm 8, determine all the CSCSes on each CCP lifting from the CCS of C.

2. Compute the number of CSPs originating from each CSCS in two cell bodies beside it
by Algorithm 9.

3. For each cell body lifting from the cell of C, because the number of CSPs originating
from the CSCSes on each CCPs of the cell body is the same, we can determine each
CSP by point out its boundaries–CSCSes.

4. Return the CSPs of S.

And now, we have gotten the CSPs of S, it is clear that has a same topology with all the
CSPs we obtained by Algorithm 10.

Here is an example. The given surface is a torus. Its equation is as follows.

f(x, y, z) = 2 ∗ y2 ∗ x2 + 8 ∗ y2− 17 ∗ z2 + y4 + x4 + 2 ∗ x2 ∗ z2 + 2 ∗ y2 ∗ z2 + z4 + 16− 17 ∗ x2.
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Fig. 3. Topology determination of a projection curve of a torus
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Fig. 4. Topology determination of a projection curve of a torus

Its projection curve is as follows obtained by Algorithm 2. And its topology information is
as Fig. 3.

Follow Algorithm 10, isolate four singularities we can know that there is only one point
on each line lifting from the singularities. Denote them as V0,0, V1,0, V2,0, V3,0. The radii
of circles whose centers are the singularities are all 1. We can get four points beside each
singularities, as is shown in Fig. 4. Isolate the real roots of the torus on the lines lifting from
the four points, for example, the four points of singularity P1: P1,1, P

0
1,0, P

1
1,0, P

0
1,3. We can

find that there is no real root of the torus on the line lifting from P1,1, so delete the CCS
C1,1 and combine its corresponding cells C1, C2. There are one, two and three real roots on
the lines lifting from P 0

1,0, P
1
1,0, P

0
1,3 respectively. So as other singularities. Then we know

that there are one CSCS on CCPs SC0
0,1, SC0

2,3, denote as C0,0
0,1 , C0,0

2,3 , two CSCSes on CCPs
SC0

1,3, SC0
0,2, denote as C0,0

1,3 , C0,1
1,3 , C0,0

0,2 , C0,1
0,2 , and three CSCSes on CCPs SC1

0,1, SC1
2,3, denote
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as C1,0
0,1 , C1,1

0,1 , C1,2
0,1 , C1,0

2,3 , C1,1
2,3 , C1,2

2,3 . In order to compute the number of CSPs originating from
each CSCS, we will compute two points P k,0

i,j , P k,1
i,j beside P k

i,j in two cells by Algorithm 9.
As is shown in Fig. 5. P 0,0

1,3 , P 0,1
1,3 are two points beside P 0

1,3 in cells C0, C4 respectively. Lift
them up, we can find there is no real root of the torus on the line lifting form P 0,0

1,3 and there
are two CSPs originating from CSCSes C0,0

1,3 , C0,1
1,3 in C4 respectively. In the same way, we

can derive the number of CSPs originating from each CSCS in each cell beside it. So we can
get the CSPs as follows.

The CSPs lifting from C3:

{S0
3 : [C0,0

0,1 , C1,0
0,1 ], S1

3 : [C0,0
0,1 , C1,2

0,1 ]}.

The CSPs lifting form C4:

{S0
4 : [C1,0

0,1 , C0,0
0,2 , C1,0

2,3 , C0,0
1,3 ], S1

4 : [C1,1
0,1 , C0,0

0,2 , C1,1
2,3 , C0,0

1,3 ],

S2
4 : [C1,1

0,1 , C0,1
0,2 , C1,1

2,3 , C0,1
1,3 ], S3

4 : [C1,2
0,1 , C0,1

0,2 , C1,2
2,3 , C0,1

1,3 ]}.
The CSPs lifting from C5:

{S0
5 : [C1,0

2,3 , C0,0
2,3 ], S1

5 : [C1,2
2,3 , C0,0

2,3 ]}.

There is no CSP lifting from C0.
Then we get what we want.
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Fig. 5. Topology determination of a projection curve of a torus

5. Combination of surface patches and surface topology representation

As we known, there are many CSCSes of S which are not critical curve segments. In
order to simplify the representation of the topology of S without changing it, we can combine
any two CSPs who have a common CSCS which is not a critical curve segment.
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For each CCP which is not lifted from a CCS which is a boundary line segment of C,
check each CSCS on the CCP whether the numbers of CSPs originating from it in the two
cell bodies both are 1. If it is, combine the two CSPs in the two cell bodies as follows.

Sj1
i1

= [· · · , Ck1,m1

i′,i , Ck,m
i,j , Ck2,m2

j,j′ , · · ·] (5)

Sj2
i2

= [· · · , Ck3,m3

i′′,i , Ck,m
i,j , Ck4,m4

j,j′′ , · · ·] (6)

Sj1
i1

+ Sj2
i2

= [· · · , Ck1,m1

i′,i , Ck3,m3

i,i′′ , · · · , Ck4,m4

j′′,j , Ck2,m2

j,j′ , · · ·] = Sj1,j2
i1,i2

, (7)

where Sj1
i1

, Sj2
i2

are the j1-th CSP in the cell body CBi1 and the j2-th CSP in the cell body
CBi2 . They are presented by their boundaries–CSCSes as Equations (5) and (6). CBi1 , CBi2

have a common boundary: CCP Ck
i,j . And there is only one CSP originating from CSCS

Ck,m
i,j in each cell body CBi1 , CBi2 . Then we can combine the CSPs as above.

In the end, we can get a set of surface patches whose boundary curve segments are critical
curve segments.

The following is an algorithm to combine the common CSCS, where is only one CSP
orginating from it in the each cell body beside it, of two CSPs in the two cell bodies beside
it.
Algorithm 11 The input is the output of Algorithm 10. The output is a simplified set of
CSPs of S. And the boundaries of the CSPs are critical curve segments of S.

1. For any two adjacent cell bodies and their common CCP, from the below to the up,
find out the CSCSes, where there is only one CSP originating from them in each cell
body beside them, combine the two CSPs as formula (7).

2. Return the CSPs of the S until the surface patches of it can not be combined.

We will follow the algorithm to finish the example in last section. Because there is no
CSPs in C0, we only need to consider the CSCSes on CCPs SC1

0,1, SC1
2,3. There is only one

CSP originating from C0,0
0,1 in C3, C4 respectively. So we can combine the CSPs S0

3 , S0
4 as

follows.
S0,0

3,4 = S0
3 + S0

4 = [C0,0
0,1 , C0,0

0,2 , C1,0
2,3 , C0,0

1,3 ]

At last, we can obtain four surface patches of the torus as follows, whose boundary space
curve segments are critical curve of the torus.

S0,0,0
3,4,5 = [C0,0

0,1 , C0,0
0,2 , C0,0

2,3 , C0,0
1,3 ],

S1,3,1
3,4,5 = [C0,0

0,1 , C0,1
0,2 , C0,0

2,3 , C0,1
1,3 ],

S1
4 = [C1,1

0,1 , C0,0
0,2 , C1,1

2,3 , C0,0
1,3 ],

S2
4 = [C1,1

0,1 , C0,1
0,2 , C1,1

2,3 , C0,1
1,3 ].
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6. Main Algorithm

By the discussion in the former sections, we can present the main algorithm to determine
the topology of an implicit algebraic surface.
Algorithm 12 The input is an implicit algebraic surface S: f(x, y, z) = 0. The output is a
set of surface patches whose boundaries are critical curve segments.

1. Get the projection curve C: g(x, y) = 0 of S by Algorithm 2.

2. Topology determination of C by Algorithm 4.

3. Space curve segmentation and surface patch segmentation of S by Algorithm 10.

4. Combination of CSPs of S by Algorithm 11.

5. Return a set of surface patches which are critical curve segments of S.

One can find our algorithm is effective in determining the topology of algebraic surface
by the examples shown above.

It is difficult to analyze the computing time of the algorithm. The more the singularities of
C: g(x, y) = 0 are, the more the computing time is. But we can not estimate the singularities
of the g(x, y) = 0.

7. Conclusion

In this paper, we present an effective algorithm to determine the topology of a given
implicit algebraic surface. The basic idea is to project the surface to plane, obtain the
topology information of the plane curve, lift the curve up and determine the space curve
segments on the surface, compose surface patches by space curve segments. Experiments
show our algorithm works effectively.
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