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Abstract 15 

Accurate, reliable, and timely burn severity maps are necessary for planning, 16 

managing and rehabilitation after wildfires. This study aimed at assessing the ability 17 

of the Sentinel-2A satellite to detect burnt areas and separate burning severity levels. 18 

It also attempted to measure the spectral separability of the different bands and 19 

derived indices commonly used to detect burnt areas. A short investigation into the 20 

associated environmental variables present in the burnt landscape was also 21 

performed to explore the presence of any correlation. As a case study a wildfire 22 

occurred in the Sierra de Gata region of the province of Caceres in North-Eastern 23 

Spain was used. A range of spectral indices were computed, including the Normalized 24 

Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR). The 25 

potential added value of the three new Red Edge bands that come with the Sentinel-26 

2A MSI sensor were also used. The slope, aspect, fractional vegetation cover and 27 

terrain roughness were all derived to produce environmental variables. The burning 28 

severity was tested using Spectral Angle Mapper (SAM) classifier. European 29 Environment Agency’s CORINE land cover map was also used to produce the land 30 

cover types found in the burned area. The Copernicus Emergency Management 31 

Service have produced a grading map for the fire using 0.5m resolution Pleiades 32 

imagery, that was used as reference. Results showed a variable degree of correlation 33 

between the burning severity and the tested herein spectral indices. The visible part 34 

of the electromagnetic spectrum was not well suited to discern burned from unburned 35 

land cover. The NBRb12 (short-wave infrared 2 – SWIR2) produced the best results for 36 

detecting burnt areas. SAM resulted in a 73% overall accuracy in thematic mapping. 37 

None of the environmental variables appeared to have a significant impact on the 38 

burning severity. All in all, our study result showed that Sentinel-2 MSI sensor can be 39 

used to discern burnt areas and burning severity. However, further studies in 40 

different regions using the same dataset types and methods should be implemented 41 

before generalizing the results of the current study. 42 

 43 
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 1 

1. Introduction 2 Fire is an important mechanism in many of the Earth’s ecosystems and environments along 3 

(De Santis & Chuvieco, 2007; Ireland et al., 2015). The global carbon cycle is an essential part of 4 the Earth’s system and fires in all its forms are a required part of that (Prentice et al., 2001; 5 

Knorr et al., 2011; Karamesouti et al., 2016). Widespread lightning strikes, volcanic eruptions 6 

and the relatively recent introduction of anthropogenic ignition sources, have caused wildfires 7 throughout the Earth’s history (Bowman et al., 2009). Wildfires can have both a positive and 8 

negative effect on the burned areas. The removal of vegetation from forest floors allows 9 

increased regrowth in some areas. Conversely, massive devastation to ecosystems can also be 10 

caused, which takes hundreds of year to recover from (Wimberly et al., 2009). Wildfires can 11 

affect humans in several ways. Some of the most common include the damage to property, loss 12 

of crops, destruction of infrastructure, and the possible loss of life (Keeley et al., 2009; 13 

Petropoulos et al., 2014). 14 

The increase in wildfire occurrence and severity throughout the world in the last 10 years has 15 

led to an increase in the need for detailed and timely burnt area mapping techniques (Cansler & 16 

McKenzie, 2012; Kalivas et al., 2013; Keeley & Syphard, 2016). Global climate change is an 17 

important environmental, social and economic subject in many regions of the world (Leblon, 18 

2001; Ireland & Petropoulos, 2015). Wildfire frequency, intensity and consequences is a subject 19 

encompassing a wide range of areas including but not limited to atmospheric science (Huang et 20 

al., 2015), remote sensing (Chuvieco, 2012), ecology (Ricotta et al., 2001), forest management 21 

(McRae et al., 2001) and natural resources (Steel et al., 2015). Historical research on the global 22 

drivers of climate change indicate that there is an increase in wildfire activity on a yearly basis 23 

(Pechony & Shindell, 2010). It is believed the increase in global temperatures will lead to an 24 

increase in fire frequency and severity (Remy et al., 2017).  25 

The environmental impacts of burning can be felt in various ways. It is estimated that about 26 

25%-35% of greenhouse effect gases are a result of wildfire and biomass burning events and 27 

therefore they are considered an important factor in climate change (ESA, 2016). Changing 28 

wildfire seasons have been attributed to extended droughts, with Littell et al. (2016) predicting 29 

a 50% increase in wildfire events across the western United States. Every year fires burn 30 

millions of km2 of land, with an estimated 3.5 million km2 having been burnt in the year 2014 31 

(Yang et al., 2014). The main aspects of burning events are the removal of vegetation and the 32 

remnants of combustible materials that are left behind after the fire. In Southern Europe, around 33 

45,000 fires have burnt around half a million hectares of land (Moreira et al., 2011). 34 

While the initial results of wildfires are well-documented through ecological and economic 35 

factors, the longer term fire effects through carbon sequestration and vegetation regrowth are 36 

lesser known due to the temporal periods required understanding them (Conrad et al., 2002). 37 

Since the advent of remote sensing, techniques for wildfire detection and observation have been 38 

an extensively studied topic (Walz et al., 2007). Monitoring of active burning events (San-39 

Miguel-Ayanz et al., 2012), the emissions from wildfires (Reid et al., 2004), burnt area detection 40 

(Schepers et al., 2014) and burning severity analyses (De Santis & Chuvieco, 2007) are just a few 41 

of the many areas of wildfires that have been, and are currently being studied. 42 

Fires often ignite and are located in areas far from human habitation and observation, so access 43 

to field locations can be both difficult and potentially dangerous to achieve. Remote sensing can 44 
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provide rapid, inexpensive, timely, and repetitive results from varying satellite and airborne 1 

sources (Heward et al., 2013). The constant imaging of the Earth has resulted in a better global 2 

coverage of areas affected by fires on a regular basis. The non-invasive method prevents humans 3 

having to enter affected areas either during burning events or shortly afterwards. The access to 4 

remote sensing allows previously inaccessible fires to be monitored and recorded (Fraser et al., 5 

2003). However, recoding of images from fires can be difficult, as smoke from fires can obscure 6 

sensors and make visual interpretations problematic (Gedalof et al., 2005; Said et al., 2015). 7 

Burned area mapping has been implemented for many years, but there is a constant need to 8 

better understand wildfires characteristics (Kushla & Ripple, 1997; Kalivas et al., 2013). The 9 fires’ impact on vegetation is a useful metric for the amount of carbon released into the 10 

atmosphere, while the severity levels within a burnt area indicate the possible regeneration 11 

rates that may occur following the fire suppression. Sentinel-2 satellite is a recent addition to 12 

the Earth observation network, with the 2nd satellite (2B) in constellation launched on the 13th 13 

of March 2017. This has increased the observation rates of the Earth substantially and allows for 14 

better understanding of earth processes.  15 

The main study goals are to use the relatively new Sentinel-2A MSI senor to: i) to determine the 16 

ability of the Sentinel-2A sensor to accurately delineate burnt areas and burn severity, ii) to 17 

assess the spectral separability of the individual bands and created environmental indices in 18 

separating burning severity within the burnt area,, and, iii) to compare the local environmental 19 

variables against the burn severity to establish any relationships that might exist. 20 

 21 

2. Materials and Methods 22 

2.1. Study site 23 

The European fire season is generally between May to September during the summer months, 24 

with occasional fires outside of this time-period. Since the release of the Sentinel-2A MSI sensor 25 

in June of 2015, there has been a limited number of fire seasons with temporal coverage. The 26 

main requirement for the study site selection was that it needed to have a large enough burned 27 

area with a range of burning severity and a long enough post fire temporal history to be able to 28 

conduct the investigation appropriately. The European Space Agency Forest Fire Information 29 

System (EFFIS) website (EFFIS, 2017), as well as the fire news website were used to investigate 30 

possible study site locations. The Copernicus (EFFIS) mission has been producing burned area 31 

delineation and grading maps for various sizes of forest fires throughout Europe since the 32 

release of Sentinel 2 data. The maps use high resolution Worldview, Spot and Pleiades data to 33 

produce fire severity and grading maps for these areas.  34 

The chosen wildfire occurred in the Sierra de Gata region of the province of Caceres in North-35 

Eastern Spain (Figure 1). The fire occurred between the 5th and 10th of August 2015 and 36 

burned approximately 80 Km2 of the surround area. The site is located in the Mediterranean 37 

region, where largescale wildfires are common. The reason the specific fire event was selected, 38 

was the need to have a temporal aspect to the investigation. The land cover in the region is 39 

predominantly shrub land and forest, with predominant vegetation being Quercus pyrenica, a 40 

deciduous species of Mediterranean oak (Santa Regina, 2000). The lower regions of the area are 41 

dominated by agriculture in the form of Olive Groves and pastoral fields. 42 

 43 

[FIGURE 1] 44 
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Figure 1. Location of the area of interest (Sierra de Gata region, Spain). 1 

 2 

2.2. Datasets 3 

The Sentinel-2A data sets were acquired from the Copernicus Open Access Hub (scihub) website 4 

(ESA, 2016). The images were downloaded in the Level-1C product format. These Level-1C 5 

products are composed of 100x100 km2 tiles. The images were orthorectified in the 6 

UTM/WGS84 projection and geometrically corrected. Per-pixel radiometric measurements were 7 

provided in Top of Atmosphere (TOA) reflectance along with the parameters to transform them 8 

into radiances. Level-1C products were resampled with a constant Ground Sampling Distance 9 

(GSD) of 10, 20 and 60 m depending on the native resolution of the spectral band. Table 1 lists 10 

the band names, spatial resolutions and wavelengths of all the MSI sensors. Bands 1/9/10 have 11 

a spatial resolution of 60m, these bands were not included in any part of this study due to their 12 

low resolution. The pre-fire and post-fire images were acquired as close together as possible, in 13 

order to minimize spectral differences due to seasonal changes in the landscape. The pre-fire 14 

image was acquired at 10:30 am on the 25th of July 2015, and the post-fire image was acquired 15 

at 11:05 am on the12th of August. The images were cloud free and both were acquired mid-16 

morning in order to reduce atmospheric variation due to changes in the solar incidence angle. 17 

 18 

Table 1. Sentinel-2 bands with resolution, central wavelengths and bandwidths. 19 

 20 

An ASTER 30m (N40W007 tile) Digital Elevation Model (DEM) was acquired from the United 21 

States Geological Society, Earth Explorer website (USGS, 2017). The DEM was used to produce 22 an elevation map for the region, and raster’s for the slope and aspect were derived from this 23 

images using the raster tools within QGIS 2.8.9. The terrain roughness index was also calculated 24 

to investigate whether the roughness of the landscape could increase or decrease the severity of 25 

a fire. Table 2 lists all the variables used and their deceptions. 26 

 27 

Table 2. List of used environmental variables. 28 

 29 

The fractional vegetation cover (FVC) (Li et al., 2005) is the amount of vegetation given on a per 30 

pixel basis (Jiménez-Muñoz et al., 2009). The FVC is normally done by taking the Maximum NDVI 31 

(NDVIv – completely vegetated land cover), Minimum NDVI (NDVIs – thought to be the 32 

reflectance of bare soil or rock in an area) and mean NDVI values from an image and converting 33 

these into a per pixel account of FVC: 34                               (1) 35 

These values vary from region to region and they have no universal constant values. For the 36 

specific study area those values ranged roughly from 0 to 1.1. The main issue when applying 37 

equation (1) is the correct identification of the NDVI for soil and NDVI for vegetation, as these 38 

can be difficult to establish in a region (Song et al., 2017). The bare soil land cover type form the 39 

Corinne land cover map and the maximum NDVI for the pre-fire image was used to produce the 40 

indices. (Bingfang et al., 2004).  The land cover map was acquired from the European Space 41 

agency to coincide with their already created, CORINE land cover map. The classification 42 
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consists of 44 classes with a minimum area of 25 ha and a thematic accuracy of ≥ 85% (ESA, 1 

2016). The overall land cover can be seen in Figure 2. The map has been subdivide into four land 2 

cover types based on the CORINE Sub Type classification (Table 3). This was done to provide a 3 

large enough area to allow for interpretation. The four classes have been chosen because they 4 

cover the majority of the land types in the area: trees, grassland, scrubland and cropland.  5 

 6 

Table 3. General CORINE land cover classes of the study site. 7 

 8 

The Copernicus Emergency Management system Grading Map (EMSR132) was used as reference 9 

truth in order to validate the different techniques. This dataset is available in both raster and 10 

vector formats and consists of a four-class burn severity index: High Burn (HB), Moderate Burn 11 

(MB), Low Burn (LB), and Unburned or Very Low Burn (VLB). It was created using Pleiades 1A 12 

0.5m data, validated by field plots. The produced image used pre- and post- event images to 13 

produce a grading map of the affected area at a fine resolution. The data set was consider to be 14 

accurate to 85%. 15 

 16 

[FIGURE 2] 17 

Figure 2. True color and CORINE land cover maps of the study site. 18 

 19 

 20 

2.3. Data pre-processing and information extraction 21 

The level 1C Sentinel-2A data comes pre-processed radiometrically and geometrically to 22 

produce Top of Atmosphere values (TOA) (Chavez, 1996; Whyte et al., 2018). To obtain the 23 

required L2A values for Bottom of Atmosphere, atmospheric correction of the data was 24 

required. The scattering of electromagnetic (EM) waves as they pass through the atmosphere 25 

causes variations in spectral responses image to image and needs to be accounted for. Image-26 

wide dark-object subtraction (DOS1) was undertaken using the Semi-Automatic Classification 27 

(SCP) plugin in QGIS. The DOS1 is an empirical correction method which assumes that the 28 

darkest pixel in every band reflects no light back to the sensor, thus, this is then subtracted from 29 

every other pixel in the band. This method requires no user input and makes assumptions about 30 

the reflectance values being recorded. The images did not require cloud masking as there was 31 

no cloud coverage within the area of interest. The image bands were homogenized to 10m 32 

resolution by using the nearest neighbor sampling techniques in QGIS. All other ancillary data 33 

sets were also resampled to 10m resolution. 34 

To derive the burned areas and burn severity maps, spectral indices from the Sentinel-2A band 35 

data was required to be computed. All data processing was performed with the band math tool 36 

in QGIS 2.8.9. The derived indices were the commonly found ones, specifically the Normalised 37 

Burn Ratio (NBR, Garcia & Caselles, 1991) and Normalised Difference Vegetation index (NDVI, 38 

Levin & Heimowitz, 2012; Chatziantoniou et al., 2017), but also the use of the new Red Edge 39 

bands were tested to see how they responded. Two NBR indices were calculated, using both 40 

short-wave infrared (SWIR) bands found on the Sentinel-2A sensor. NBRb11 uses the near 41 

infrared (NIR) Band 8 and the SWIR Band 11, and NBRb12 uses the NIR Band 8 and the SWIR 42 

Band 12. This was done to compare the two SWIR and their responses (Huang et al., 2016). The 43 
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Sentinel NDVI has been assessed by D’Odorico et al. (2013) and has recently been validated by 1 

Lange et al. (2017). The premise is that living green plants absorb the red region of the EM 2 

spectrum and reflect high values of Near infra-red, the result of an NDVI calculation normally 3 

gives a result of -1/+1 with the +1 indicating a high value of green vegetation. The three Red 4 

Edge bands of the Sentinel-2A sensor were used (Bands 5/6/7) to derive separate indices, and 5 

the narrow band Near Infra-red bands were also used. The red edge band of any spectrum has 6 

been used to detect changes in vegetation since its inception and is based on the sharp rise 7 

between the red and NIR regions of the EM spectrum. The equations use the narrow band of the 8 

NIR region. All used indices are listed in Table 4. 9 

 10 

Table 4. Details of spectral indices used. 11 

 12 

2.4. Data analysis 13 

2.4.1. Burnt area mapping 14 

Delineation of the burned areas was based on the computation of various radiometric indices, 15 

removing subsequently the pre-fire image from the post-fire image. This a common method 16 

developed by Key & Benson (1999) for delineating burned areas. The differentiation is a change 17 

detection technique, which comprises a quantitative measurement of change between two 18 

images. The image is then thresholded using an OTSU threshold (Otsu, 1979). Subsequently, the 19 

image is processed to remove groups of 6 pixels or less to clean the image for vectoring using 20 

the sieved tool in QGIS. The implementation of this step (sieving) could potentially result into 21 

missing some burnt areas. However, the extent to which this could happen is always dependent 22 on a number of parameters, some of the most important ones being the sensor’s spatial 23 

resolution, the burning characteristics in respect to the characteristics of the area burned, and 24 

the spectral information used in the burnt area algorithm. The decision of using 6 pixels was 25 made after taking into consideration all the above points, and also after a “trial & error” process 26 

assessing visually the impact of the number selection in the sieving processing step 27 

implementation, ensuring that impact is minimized. The image is then converted to a shapefile 28 

in order to calculate the area of created image vs the area of the reference image. This was 29 

performed for all differentiated spectral indices. 30 

To assess the accuracy of the different radiometric indices vector files, the skipped area, false 31 

area and detected area was calculated (e.g. Petropoulos et al., 2012). The results from the 32 

production of each index were compared to the reference data set from EMSR132. Three results 33 

were produced: i) the Detected Burned Area (DBA), which measured the ability of the index to 34 

correctly map the burned area compared to reference, ii) the Skipped Burned Area (SBA), which 35 

measured the amount of area missed by the index that is registered on the reference image, and 36 

iii) the False Burned Area (FBA), which measured the extra area produced by the index that is 37 

not present in the reference data. In order to compare the details of the indices, the outputs of 38 

the indices were converted to Vector files and the sizes compared for each variation. The 39 

evaluation of the accuracy was based on the following metrics: 40                                          (2) 41                                    (3) 42                                  (4) 43 
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2.4.2. Burn severity mapping 1 

Once the burnt area had been delineated, a burn severity map was produced. For this purpose, 2 

the Spectral Angle Mapping (SAM) classification technique was used to classify the four levels of 3 

burn severity (Tanase et al., 2015). SAM is a supervised classifier that uses the collection of 4 

spectra from selected regions of interest (ROI) to differentiate spectrally different classes. The 5 

Sentinel-2 image bands and indices were stacked in order to be observable in a single image. 6 

Different combinations of true color and false color images were observed with various 7 stretches applied to regions in order to make selection possible. The ROI’s and the SAM classifier 8 

were conducted in QGIS 2.8.9, using the base tools and the SCP plugin. 9 

The spectral angle mapper uses an angle (in radians) to define separate classes between spectra. 10 

The process has been used before in several studies to detect burnt areas and burn severity (e.g., 11 

Petropoulos et al., 2011). The relationship between spectral values and the relationship 12 

between indices was explored. The lower the spectral angle between the reference material and 13 

the image spectrum, the better the relationship and the higher the spectral agreement. In our 14 

study, a series of different angles from 0° to 0.5° were tested to find the highest accuracy 15 

(Petropoulos et al., 2011). 16 

To assess the accuracy of the SAM classification, the produced image was compared to the 17 

reference EMSR dataset. The error matrix was produced to determine how each severity class 18 

type compared to the reference (Congalton & Green, 2008). 300 validation points were created 19 

for each class for a total of 1200 points; these were viewed on both images and the class 20 

difference recorded in an error matrix. The matrix allows every class to be evaluated as to how 21 

accurate it is in reference to both how the samples were collected (Users Accuracy – UA) and 22 

how the classification technique produced the map (Producers Accuracy – PA). The table also 23 

creates an overall accuracy (OA) and a Kappa (K) statistic. An accuracy assessment was 24 

performed after each index was used to determine the accuracy of the indices relative to that of 25 

the reference Copernicus emergency management image. The assessment technique has been 26 

implemented many times in various land class/land cover assessments (Delegido et al., 2011), 27 

and also in burned scar mapping techniques (Keeley et al., 2009). The use of 28 

commission/omission errors to determine the accuracy of whether any given pixel in an image 29 

is accurately determined to be that of the class assigned to it, is a common technique. The 30 

omission error determines how many pixels of a particular ground truth class have been 31 

misclassified. The guideline values for values set out by Landis & Koch (1977) sets a Kappa value 32 of greater than 0.80 as “very good agreement”, 0.61 to 0.80 as “substantial agreement”, 0.41 to 33 0.60 as “moderate agreement” and below that as “poor to no agreement”. 34 

 35 

2.4.3. Spectral separability 36 

The spectral separability of all the bands and derived indices was extracted from the created 37 ROI’s for the severity classification. The values for each band and index were extracted from 38 

each layer using the Zonal Statistics plugin in QGIS. This allows the statistical values for each 39 

polygon to be extracted. A Shaprio-Wilk normality test was conducted to check for normality 40 

within the data sets (Parks et al., 2014). The test has a null hypothesis that the samples are 41 

drawn from a normally distributed dataset (Razali & Wah, 2011). The test was done on 42 

unburned to burned pixels, but extra data was extracted from surrounding pixels to check the 43 

unburned to unburned pixels (Huang et al., 2016). The test was performed because some 44 

metrics of separability require normally distributed datasets to be able to perform adequately 45 

(Matongera et al., 2016).  46 
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Transformed divergence (TD) was used to determine the parametric separability of the 1 

unburned to burned bands and indices, a control of unburned to unburned separability was also 2 

quantified as reference (Redmond et al., 2002). The higher the separability the better the 3 

suitability for mapping burnt areas, with reference to the unburned to burned class separability. 4 

The separability is bounded between 0 and 2 with 0 being no separability and 2 being 5 

completely separable (Chauhan 2016).  The TD provides a covariance weighted distance 6 

between class means to determine whether they are separable. 7 

 8 

3. Results 9 

3.1. Burnt area mapping assessment 10 

The ability for the derived spectral indices to delineate the burned areas is presented in Figure 11 

3. The results of the DBA are shown in green, the SBA in blue, and the FBA in red. Table 5 shows 12 

the accuracy results for the three areas and the efficacy rates at which they classified the burned 13 

area. The dNBR using bands 12/11 are shown in Figures 3-A and 3-B. The NBRb12 (Figure 3-A) 14 

shows a very similar area to that of the validation with only small areas of skipped data in the 15 

lower parts of the image. There are small areas of FBA in the lower left area of the image. The 16 

overall detection efficiency rate is at 0.97% meaning that it is very close to the validation 17 

dataset. There is a higher Omission error than Commission error but both are very low. NBRb11 18 

(Figure 3-B) has a lower detection efficiency rate at 0.859% although still quite high. The error 19 

is higher in the commission area, with almost 5 times as much SBA as the dNBRb12. The FBA is 20 

only 0.7 higher than the dNBRb12. The square shape of the FBA in the images indicates that they 21 

maybe agricultural features. 22 

The dNDVI and dNDVIre1n images are shown in Figures 3-C and 3-D. The NDVI has a very 23 

similar appearance to that of the dNBRb12, it has a lower FBA at only 0.93 but a much higher SBA 24 

of 22.56. The detection efficiency rate of 0.778% reflects this higher SBA. The dNDVIre1n shows 25 

a large area of SBA with the appearance becoming more speckled throughout the image. The 26 

efficiency rate of just 0.582 shows the effects of the large area of SBA. 27 

 28 

 29 

Table 5. Results obtained from classification accuracy assessment.  30 

 31 

The NDVIre2n and NDVIre3n are shown in Figures 3-E and 3-F, respectively. The detection 32 

efficiency rate for NDVIre2n (0.516%) and NDVIre3n (0.379%) show the low correlation 33 

between the DBA and SBA. There is a large area of FBA data on the outside with the fields in the 34 

bottom left being picked out prominently in the NDVIre2 image, but there is sparse coverage of 35 

the DBA and the increased area of FBA in the bottom left corner. The NDVIre3n has less FBA 36 

than the NDVIre2, but also a very small area of DBA. 37 

The total areas for each detected indices can be seen in Figure 4. The EMSR reference map is 38 

shown in the chart. The dNBRb12 has the highest correlated area with the three dNDVIrex bands 39 

being the least similar. The graph takes into account all the areas produced by the classification, 40 

so false burnt areas are also included. 41 

 42 
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[FIGURE 3] 1 

Figure 3. Thematic maps for burnt area detection, using dNBRb12 (A), dNBRb11 (B), dNDVI (C), 2 

dNDVIre1n (D), dNDVIre2n (E), and dNDVIre3n (F). 3 

 4 

[FIGURE 4] 5 

Figure 4. The total amount of burnt area created by each differentiated index, in km2. EMSR 6 

value is the reference. 7 

 8 

3.2. Burn severity analysis 9 

A thematic burn severity map was produced from the SAM classification. Figure 5 shows the 10 

thematic map of the four burning severity levels. The overall accuracy compared to the 11 

reference was 73.73% with a Kappa of 0.65. PA shows that the high burn severity area (HB) had 12 

the highest accuracy with the other three classes having roughly the same accuracy.  UA shows 13 

that the unburned or very low burn (VLB) areas had the highest accuracy with the moderate 14 

burn (MB) ones having the lowest user accuracy. The moderate Kappa agreement of just 0.65, 15 

shows that the classification is not particularly suitable.  16 

 17 

[FIGURE 5] 18 

Figure 5. Thematic map for Spectral Angle Mapper Burn severity index. (HB: High Burn, MB: 19 

Moderate Burn, LB: Low Burn, VLB: Unburned or Very Low Burn). 20 

 21 

3.3. Spectral separability analysis 22 

The first process in assessing the spectral suitability was to check the normality of the datasets 23 

to see how it performs. The results from the Shapiro-Wilk’s normality test show that most of the 24 

data is not normally distributed with all the bands except 6 and 11 being near 0 (Figure 6). The 25 

burned pixels in band 12 show the biggest correlation to normalization of any of the bands, but 26 

still being below 0.5 p-value. The NDVI and NDVI red edge bands all show a separation between 27 

the burned and unburned distribution, the unburned areas all show a large increase in 28 

normalization. The burned areas show no normalization at all. The NBR b11 and b12 show 29 

similar normalization effects for both burned and unburned areas. The NDVIre3n has the 30 

highest overall p-value with the burned being around 0.7. 31 

 32 

[FIGURE 6] 33 

Figure 6. Shaprio-Wilk’s normality test for the spectral bands and indices (abbreviations re1n, 34 

re2n, and re3n correspond to NDVI-based bands, while b11 and b12 correspond to NBR bands). 35 

 36 

The Transformed Divergence (TD) separability analysis was used to determine the separability 37 

of the different bands and indices. The boundaries were between 0 (no separability) and 2 38 

(completely separable). Figure 7 shows the spectral variability of unburned to burned (U – B) 39 
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pixels and unburned to unburned (U – U) reference pixels. All the Unburned – Unburned pixels 1 

show low separability with none being over 0.5. The visible spectrum bands 2, 3 and 4 show 2 

very low separability between the U - B pixels. The Red Edge bands show a moderate to good 3 

separability between the U – B being in the 1 – 1.5 range. The NIR and NIRn bands have almost 4 

complete separability. SWIR1 has a significantly better separability of burned pixels then 5 

SWIR2. The indices also show low separability between U – U, with the NDVI, NDVIre1n and the 6 

NBR_b12 having good 1.5+ separability. 7 

 8 

[FIGURE 7] 9 

Figure 7. Transformed Divergence class separability between burned and unburned images and 10 

between locations with both unburned to unburned images. 11 

 12 

The box plots in Figure 8 show the variation within each spectral band and indices. The 13 

unburned pixels are higher in each band although there is somewhat of similarity in band 12. 14 

The range of the unburned pixels tends to be slightly greater than that of the burned pixels. The 15 

variation within the visible part of the spectrum is very small, supporting the TD analysis, which 16 

showed a similar response. The variation between the Red Edge bands is very distinct with only 17 

minimal overlap of the outside values. The NIR shows a clear decrease in response for both 18 

Band 8 and 8a. 19 

 20 

[FIGURE 8] 21 

Figure 8. Box plots for all bands and spectral indices for burnt and unburnt areas. 22 

 23 

3.4. Spectral separability for burn severity 24 

The variation in the post-fire indices is shown in Figure 9. Once the severity map was created, 25 

the mean values for the different regions were extracted. Visually there is a clear variation 26 

between the differenced indices, as they all show a reduction in variability as severity decreases. 27 

The post-fire means for CD, HD and MD show a gradual increase in response for all the indices. 28 

The ND shows a similar response from post-fire to pre-fire. This could be expected as the area is 29 

designated as unburned or very low burn severity, so a smaller response would be expected for 30 

this region. The pre-fire response for ND is lowest across all the indices with a similar mean for 31 

CD, HD and MD. 32 

The responses from the three Red Edge bands are shown in Figure 10. The response to 33 

dNDVIre1 is similar to that of the NDVI and two NBR, with the post-fire ND being a similar value 34 

to the pre-fire ND, and the differential showing a clear downward trend as the burn severity 35 

decreases. NDVIre2 and NDVIre3 show almost no change in their variation both pre- and post-36 

fire. The differentiation between them is minimal and there is no indication of variation between 37 

severities. This supports the evidence found in the burnt area mapping technique that the 38 

variation between pre- and post-fire NDVIre2n and NDVIre3n is minimal and is not suited to 39 

distinguish burnt areas. 40 

 41 

[FIGURE 9] 42 
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Figure 9. Box and plot of spectral indices NDVI, NBRb11 and NBRb12 for the overall burned area 1 

based on fire grading. (HB: High Burn, MB: Moderate Burn, LB: Low Burn, VLB: Unburned or 2 

Very Low Burn). 3 

 4 

[FIGURE 10] 5 

Figure 10. Box and plot of spectral indices NDVIre1n, NDVIre2n and NDVIre3n for the overall 6 

burned area based on fire grading. 7 

 8 

3.5. Environmental variables 9 

The last part of this study aimed at exploring if any of the local environmental variables had an 10 

impact of the severity of the fire. NBR was used as a metric for fire severity. Scatter plots for the 11 

different environmental variables against the post-fire NBR did not show any strong 12 

relationship between any variable and NBR. Aspect appears to be very random with an almost 0 13 

R2 value, while none of the other variables have a strong R2 value. A statistical analysis including 14 the Pearson’s r correlation showed that most of the variables show a slight negative correlation.  15 

The land cover spectral variations were extracted to establish if any relationships could be 16 

determined between them and burn severity. The spectral responses from the different spectral 17 

bands showed varying differences from burned - unburned. The Grasslands showed a small 18 

variation in B12 (SWIR2) with very little change from burned - unburned. The NIR showed large 19 

unburned to burned changes in all the land cover types (Figure 11). The responses from the 20 

individual land cover types to the various indices are displayed in Figure 12. None of the land 21 

cover types seemed to particularly respond to the NDVIre2 and NDVIre3n indices. The 22 

Grassland shows a limited variation in NDVI response with only a limited separability between 23 

burned and unburned areas. The Trees, Cropland and Scrub, all have a clear separation between 24 

burned and unburned areas. 25 

Finally, the histogram in Figure 13 displays the cumulative mean post-fire NBR for each land 26 

cover type collected from the 2000 random sample points. The Scrub was the largest area that 27 

was burnt, and this is evident by the amount of samples that were extracted as scrub. The -0.3 28 

was the largest cumulative response for Scrub, while Cropland showed a slightly lower response 29 

with very little in the -0.3 and more showing in the -0.2 to -0.1 range. The Grassland had a low 30 

throughout and the Trees was roughly evenly spread in the -0.3 to 0.10 range. 31 

 32 

[FIGURE 11] 33 

Figure 11. Wavelength Normalised (Um) spectral responses from burned and unburned images 34 

for the Sentinel-2A spectral bands. 35 

 36 

 37 

[FIGURE 12] 38 

Figure 12. Wavelength Normalised (Um) spectral responses from the indices created from the 39 

Sentinel-2A spectral bands, for the different land cover types present in the burnt area. 40 

 41 
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 1 

[FIGURE 13] 2 

Figure 13. Histogram of post-fire NBR responses to land cover types. 3 

 4 

4. Discussion 5 

The use of simple differentiation methods to delineate burned areas requires minimal effort to 6 

achieve with virtually no supervision to produce the map. The only interaction that may need to 7 

be done is for areas outside the actually delineated area that have been misclassified due to 8 

other environmental factors. This is backed up by many previous studies conducted on multi-9 

temporal analysis. The response from different spectral bands to wildfires is well-documented. 10 

Chuvieco et al. (2002) described the benefits of the NBR over NDVI, as the response from the 11 

SWIR region is more susceptible to burnt areas.  The technique proposed by the authors using 12 

the variation in the SWIR and NIR to map the burned area has been used for a long time. The 13 

comparison of post-fire indices patterns has yielded different results (Tanase et al., 2011; Jin & 14 

Roy, 2005). The false classification given in the differentiated indices appears to be due to the 15 

removal of vegetation from the agricultural areas of the image that has probably just ploughed 16 

during the pre- and post-fire images. These are less prominent in the NBR indices than the NDVI 17 

indices, due to the reduced responses from the red parts of the spectrum included in the NDVI 18 

indices. These parts of the image could probably be removed with observation by the user.  The 19 

growth in the fields or harvesting of the fields shows the removal of vegetation in the area. 20 

The dNBR b12 and dNDVI showed comparable results to the higher resolution reference data. 21 

The three Red Edge indices showed diminishing returns from the spectral indices, as they got 22 

closer to the short wave infra-red bands. The Red Edge 2 and Red Edge 3 when produced 23 

became very fuzzy between burned and not burned. Due to the size of the fields that have been 24 

ploughed, these remain intact and only the dense upper area of the high burn section of the 25 

burned image showed any consistency across the image. 26 

SAM for establishing burn severity is a time consuming and labor intensive method of 27 

classification. The need to define and select training areas requires detailed analysis of spectral 28 

signatures and a thorough understanding of burning severity responses. The accuracy of the 29 

SAM was at 73% overall, with a Kappa of 0.65 (Congalton & Green, 2008). The map produced by 30 

the SAM did not take into account surrounding pixels or any spatial relationships; this would 31 

have aided in its ability to relate severity levels in regions which produced a less speckled map 32 

caused by the per pixel classification. Petropoulos et al. (2011) comparing SAM to Support 33 

Vector Machines, showed that development of machine learning and decision tree based 34 

methods can result to producing improved classification results based on both spectral and 35 

spatial relationships. A possible reason for the lower accuracy is the grouped nature of the EMSR 36 

reference data. This raster data tends to be homogenous in areas of different burning severity. 37 

Homogenizing the SAM classification could have produced a higher accuracy. Finally, it should 38 

be noted that the results from the comparisons where the EMSR has been used, should be 39 

interpreted cautiously, given the limited knowledge on the detailed validation results on this 40 

product. 41 

The TD test undertaken showed a clear separability between unburned – burned areas. The 42 

Shapiro-Wilk normality test showed that most of the datasets were not normality distributed. 43 
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This indicated that the parametric TD test undertaken might not have been appropriate for the 1 

datasets. A non-parametric test such as decision tree base analysis, might have yielded more 2 

significant results (Huang et al., 2016). The training data collected through visual interaction 3 

with the datasets means that misidentification of spectral signatures is possible, leading to 4 

misrepresented samples. The analysis of spectral separability supported previous findings by 5 

Levin & Heimowitz (2012) and Huang et al. (2016), that the visible bands of the EM spectrum 6 

have a low burned to unburned spectral separability (Picotte et al., 2016). This is due to the 7 

similarity of non- photosynthetic vegetation, bare soils and the burned areas themselves 8 

(Lasaponara, 2006). The large area of scrubland present in the land cover type would add to the 9 

homogeneity of the response. The performance of the spectral indices showed a varying degree 10 

of separability, the NDVI indices showed a general relationship for this specific region area. The 11 

NDVI response can be limited by the canopy cover in certain land cover types (Zhang et al., 12 

2003). The response becomes saturated in denser canopies leading to limited separability 13 

(Huang et al., 2016). There are not many studies conducted on multiple red edge bands present 14 

on the Sentienl-2A sensor. The indices created for Red Edge 2 and 3 were not conducive to 15 

burned area mapping, but the bands themselves showed good separation between burned and 16 

unburned pixels. The use of just these bands may have been more suited for burned detection 17 

(Navarro et al., 2017). Fernández-Manso et al. (2016) have provided an initial investigation with 18 

the Sentinel-2A MSI, indicating that the Red Edge (B1) and its derived indices were the most 19 

suitable for deriving burn severity. This is due to its closeness to the Red (B4) wavelength. The 20 

low responses to the SWIR in some regions may have been due to the presence of the shrub and 21 

agricultural land in the area (Schepers et al., 2014). The presence of non-photosynthetic 22 

vegetation and the removal of soils by agriculture can influence the response from the SWIR. 23 

The environmental variables effect on the fire severity appeared to have low correlation within 24 

the study area. High FVC is normally associated with high burn severity as there is a relationship 25 

between FVC and the fuel available to a wildfire (Chu et al., 2016). The low correlation does not 26 

agree with other research by Epting and Verbyla (2005), who indicated that FVC was a key 27 

component in the severity of wildfires, due to the relationship between severity and the increase 28 

in fuel availability. The relatively small change in elevation from 283m to just over 1200m 29 

indicates that the site may not have been a large enough scale to influence burn severity. There 30 

have been several studies conducted on the influence of elevation on burn severity. Although all 31 

four severity types appear below 1000m, only the CD severity appears above the 1000m height. 32 

There appears to be no strong correlation between any environmental variable and severity, 33 

there is high variation within each variable with large areas of overlap within each category. 34 

There was poorly defined positive or negative trends in all the variables. With the lack of 35 

significant correlation in this category, it is appropriate to say that none of the variables had an 36 

influence on the burn severity. 37 

Finally, the use different of classification methods to produce the burn severity map could have 38 

aided in improved accuracy. The use of classifiers such as Support Vector Machines, Random 39 

Forests and various machine learning techniques have been studied and found to be effective at 40 

delineating both burned areas and burn severity (Whyte et al., 2018). In addition, the use of 41 

multiple study sites with varying attributes would have given a better scope for discerning the 42 

effects of landscape variables on the severity. Using a single study site limits the range and 43 

extent of variables that accessible to the user. Also, it should be noted that the obtained results 44 

concern the current study only, thus further studies in other regions (using the same dataset 45 

types and methods) should be implemented before generalizing the results. 46 
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 1 

5. Conclusions 2 

The objective of this work was to establish the suitability of the Sentinel-2A sensor to delineate 3 

the burnt area, burn severity and what the possible environmental effects are on the severity. 4 

The Sentinel-2 mission has a higher spatial, spectral and temporal resolution than most current 5 

orbiting sensors (Landsat-8, MODIS). The recent release of the Sentinel-2B MSI sensor will 6 

increase the temporal resolution to 6 days allowing for consistent global coverage. The study 7 

showed that it is possible to separate burned and unburned regions using specific spectral 8 

bands and indices. The NBRb12 was overall the best index to be used to delineate burned areas. 9 

The NDVI Red Edge bands did not compare well compared to ordinary NDVI. That being said, 10 

the individual Red Edge bands showed a better separation than the derived indices. Finally, the 11 

environmental influence on the wildfire was not well established, as it was limited by the size of 12 

the fire and the topographic properties present in the area. 13 

Finally, it should be noted that some important factors like downslope wind, abundance of fuel, 14 

and the moisture of fuel were not considered in this study, as it was not within its purpose to 15 

conduct this kind of investigation, and in addition, the necessary data to support such analysis 16 

were not available. However, future steps in relation to this study should incorporate the 17 

analysis of these factors. Also, further studies in different regions using the same dataset types 18 

and methods should be implemented before generalizing the results of the current study. 19 
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