Determining Time of Queries for Re-ranking Search Results

Nattiya Kanhabua and Kjetil Nørvåg

Database System Group Norwegian University of Science and Technology Trondheim, Norway

ECDL'2010, September 6 - 9, Glasgow, Scotland

・ 同 ト ・ ヨ ト ・ ヨ

Introduction

- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3

Evaluation

- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

∃ >

2

Introduction

- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

B) Evaluation

- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

T b

Introduction

- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3 Evaluation

- Experiment Setting
- Experimental Results

4 Conclusions

Conclusions and Future Work

Introduction

- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3 E

- Evaluation
- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

Introduction

• Temporal Information Retrieval

Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3) E

Evaluation

- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

Temporal IR

What is temporal IR?

- searching temporal document collections
- such as digital libraries, web archives and news repositories
- especially historians, librarians, journalists, and students

Temporal IR

What are challenges?

Semantic gaps in temporal IR: lacking knowledge about

- terminology changes over time
- 2 possible relevant time of queries

H 5

Temporal IR

What are challenges?

Semantic gaps in temporal IR: lacking knowledge about

- terminology changes over time
- 2 possible relevant time of queries

H 5

Queries composed of <u>named entities</u> (people, organization, location)

- very dynamic in appearance, i.e., relationships between terms changes over time
- e.g. changes of roles, name alterations, or semantic shift

Queries composed of <u>named entities</u> (people, organization, location)

- very dynamic in appearance, i.e., relationships between terms changes over time
- e.g. changes of roles, name alterations, or semantic shift

Scenario 1

- Query: "Pope Benedict XVI" and written before 2005
- Documents about "Joseph Alois Ratzinger" are relevant

Queries composed of <u>named entities</u> (people, organization, location)

- very dynamic in appearance, i.e., relationships between terms changes over time
- e.g. changes of roles, name alterations, or semantic shift

Scenario 2

- Query: "Hillary R. Clinton" and written from 1997 to 2002
- Documents about "New York Senator" and "First Lady of the United States" are relevant

4 10 10 4 10

Queries composed of <u>named entities</u> (people, organization, location)

- very dynamic in appearance, i.e., relationships between terms changes over time
- e.g. changes of roles, name alterations, or semantic shift

Our proposed approaches

"Exploit time-based synonyms in searching document archives" [JCDL'2010]

- Automatically extract synonyms over time from Wikipedia snapshots
- Expand a query using time-based synonyms to improve the accuracy

A B > A B >

Temporal IR (cont')

What are challenges?

Semantic gaps in temporal IR: lacking knowledge about

- terminology changes over time
- Possible relevant time of queries

Temporal IR (cont')

What are challenges?

Semantic gaps in temporal IR: lacking knowledge about

- terminology changes over time
- Ø possible relevant time of queries

Relevant time of query "tsunami"

1900s

- 1960: Valdivia, Chile
- 1964: Alaska, USA
- 1993: Hokkaido, Japan
- 1998: Papua New Guinea

2000s

- 2004: Indian Ocean
- 2007: Solomon Island
- 2009: Samoa, Pacific Ocean

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2010: Chile

Temporal IR (cont')

What are challenges?

Semantic gaps in temporal IR: lacking knowledge about

- terminology changes over time
- Possible relevant time of queries

Problem

- temporal queries that comprise only keywords
- difficult to achieve high accuracy using only keywords
- relevant documents are associated to particular time not given by the queries

・ 同 ト ・ ヨ ト ・ ヨ

Problem statement

- Time-dependent queries exist in both standard collections and the Web [Li and Croft 2003; Diaz and Jones 2004]
 - relevancy is dependent on time
 - documents are about events at a particular time period

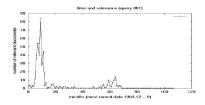
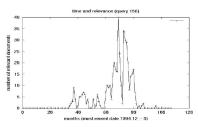
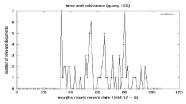
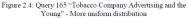


Figure 2.2: Query 301 "International Organized Crime" – A "recency" query.

"Recency query"




Figure 2.3: Query 156 "Efforts to Enact Gun Control Legislation"- Relevant documents mostly in the past.


"Time-dependent query"

∃ >

Problem statement

- Time-dependent queries exist in both standard collections and the Web [Li and Croft 2003; Diaz and Jones 2004]
 - relevancy is dependent on time
 - documents are about events at a particular time period

"Time-independent query"

T b

Problem statement

- 1.5% of web queries are <u>explicitly</u> provided with temporal expression [Nunes et al. 2008]
 - time is a part of query, "U.S. Presidential election 2008"
- about 7% of web queries have temporal intent <u>implicitly</u> provided [Metzler et al. 2009]
 - time is not a part of query, "Germany World Cup"

A The ball of

Introduction

- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3) E\

Evaluation

- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

Contributions

Formal models

- temporal document models
- temporal query models
- temporal language models

Proposed approaches

- determining the time of queries when no temporal criteria provides
- re-ranking search results using the determined time

Experiments

- evaluating our approach to determining the time of queries
- evaluating our approach to re-ranking search results

• (10) • (10)

Contributions

Formal models

- temporal document models
- temporal query models
- temporal language models

Proposed approaches

- determining the time of queries when no temporal criteria provides
- re-ranking search results using the determined time

Experiments

- evaluating our approach to determining the time of queries
- evaluating our approach to re-ranking search results

・回り ・ヨト ・ヨト

Contributions

Formal models

- temporal document models
- temporal query models
- temporal language models

Proposed approaches

- determining the time of queries when no temporal criteria provides
- re-ranking search results using the determined time

Experiments

- evaluating our approach to determining the time of queries
- evaluating our approach to re-ranking search results

- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3 Eva

2

- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

- Collection contains corpus documents $C = \{d_1, \ldots, d_n\}$
- Document *d_i* consists of bag-of-words and a creation date
 - $d_i = \{\{w_1, \ldots, w_n\}, Time(d_i)\}, where Time(d_i) \text{ is timestamp} \}$
 - $[t_k, t_{k+1}]$ is the associated time partition of d_i

Example

- partition the collection C with the 1-month granularity
- the document timestamp Time(d_i) is 05/03/2010
- the associated time partition of d_i is $Time(d_i) \in [01/03/2010,31/03/2010]$

・ 同 ト ・ ヨ ト ・ ヨ

- Collection contains corpus documents $C = \{d_1, \ldots, d_n\}$
- Document *d_i* consists of bag-of-words and a creation date
 - $d_i = \{\{w_1, \ldots, w_n\}, Time(d_i)\}, where Time(d_i) \text{ is timestamp} \}$
 - $[t_k, t_{k+1}]$ is the associated time partition of d_i

Example

- partition the collection C with the 1-month granularity
- the document timestamp Time(d_i) is 05/03/2010
- the associated time partition of d_i is $Time(d_i) \in [01/03/2010, 31/03/2010]$

< 回 > < 三 > < 三 >

- Collection contains corpus documents $C = \{d_1, \ldots, d_n\}$
- Document *d_i* consists of bag-of-words and a creation date
 - $d_i = \{\{w_1, \ldots, w_n\}, Time(d_i)\}, where Time(d_i) \text{ is timestamp} \}$
 - $[t_k, t_{k+1}]$ is the associated time partition of d_i

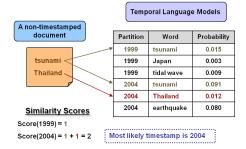
Example

- partition the collection C with the 1-month granularity
- the document timestamp $Time(d_i)$ is 05/03/2010
- the associated time partition of d_i is $Time(d_i) \in [01/03/2010, 31/03/2010]$

< 回 > < 回 > < 回 > -

- Temporal query q composed of two parts:
 - keywords $q_{word} = \{w_1, \ldots, w_m\}$
 - ▶ temporal criteria $q_{time} = \{t'_1, \dots, t'_i\}$, where $t'_i = [t_i, t_{i+1}]$

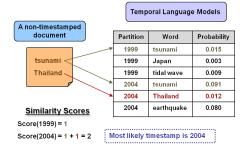
Example


"Boxing Day tsunami" $q_{time} = \{[01/01/2004,31/12/2004]\}$

"the U.S. presidential election" $q_{time} = \{[01/01/2000, 31/12/2000], [01/01/2004, 31/12/2004], [01/01/2008, 31/12/2008]\}$

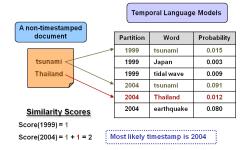
・ 同 ト ・ ヨ ト ・ ヨ ト

Model for dating documents


- Temporal Language Models in [de Jong, Rode and Hiemstra 2005]
- Assign a probability to a time partition according to word usage/statistics over time
- The determined time is a partition maximizes a score (mostly overlaps in terms)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Model for dating documents


- Temporal Language Models in [de Jong, Rode and Hiemstra 2005]
- Assign a probability to a time partition according to word usage/statistics over time
- The determined time is a partition maximizes a score (mostly overlaps in terms)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Model for dating documents

- Temporal Language Models in [de Jong, Rode and Hiemstra 2005]
- Assign a probability to a time partition according to word usage/statistics over time
- The determined time is a partition maximizes a score (mostly overlaps in terms)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Compute a similarity score

Normalized log-likelihood ratio [Kraaij 2005]

- a normalized variant of Kullback-Leibler divergence
- measure similarity between two language models: non-timestamped document and a reference corpus

$$Score(d_i, p_j) = \sum_{w \in d_i} P(w|d_i) \times \log \frac{P(w|p_j)}{P(w|C)}$$

- C is the background model estimated on the collection
- linear interpolation smoothing to avoid the zero probability of unseen words

Compute a similarity score

- Normalized log-likelihood ratio [Kraaij 2005]
 - a normalized variant of Kullback-Leibler divergence
 - measure similarity between two language models: non-timestamped document and a reference corpus

$$Score(d_i, p_j) = \sum_{w \in d_i} P(w|d_i) imes \log rac{P(w|p_j)}{P(w|C)}$$

C is the background model estimated on the collection
 linear interpolation smoothing to avoid the zero probability of unseen words

・ 同 ト ・ ヨ ト ・ ヨ

Compute a similarity score

- Normalized log-likelihood ratio [Kraaij 2005]
 - a normalized variant of Kullback-Leibler divergence
 - measure similarity between two language models: non-timestamped document and a reference corpus

$$Score(d_i, p_j) = \sum_{w \in d_i} P(w|d_i) imes \log rac{P(w|p_j)}{P(w|C)}$$

- C is the background model estimated on the collection
- linear interpolation smoothing to avoid the zero probability of unseen words

- Tomporal Informati
- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3 Eval

- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

∃ >

Proposed approaches

• Approach I. Dating query using keywords

- Approach II. Dating a query using top-k documents
 - in general, queries are short
 - inspired by pseudo-relevance feedback
- Approach III. Using timestamp of top-k documents
 - no temporal language models are used

• I > • = • •

Proposed approaches

Approach I. Dating query using keywords

• Approach II. Dating a query using top-k documents

- in general, queries are short
- inspired by pseudo-relevance feedback

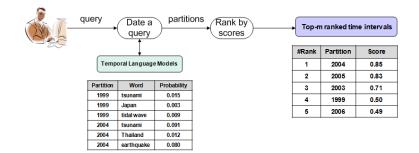
• Approach III. Using timestamp of top-k documents

no temporal language models are used

・ 同 ト ・ ヨ ト ・ ヨ

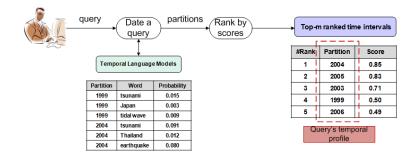
Proposed approaches

- Approach I. Dating query using keywords
- Approach II. Dating a query using top-k documents
 - in general, queries are short
 - inspired by pseudo-relevance feedback
- Approach III. Using timestamp of top-k documents
 no temporal language models are used


< 6 ×

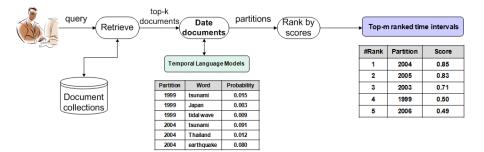
→ Ξ → +

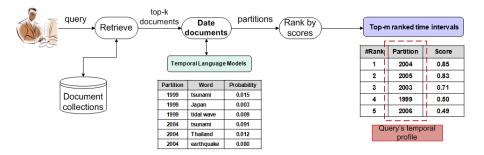
Proposed approaches


- Approach I. Dating query using keywords
- Approach II. Dating a query using top-k documents
 - in general, queries are short
 - inspired by pseudo-relevance feedback
- Approach III. Using timestamp of top-k documents
 - no temporal language models are used

Approach I. Dating query using keywords

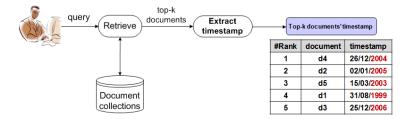
▲ ■ ト ■ つへの ECDL'2010 16/30

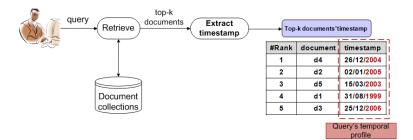

Approach I. Dating query using keywords


Determining Time of Queries for Re-ranking

Kanhabua and Nørvåg (NTNU)

Approach II. Dating a query using *top-k* documents


Approach II. Dating a query using *top-k* documents


Determining Time of Queries for Re-ranking

▲ ■ ▶ ■ • つ Q C ECDĽ2010 17/30

Approach III. Using timestamp of top-k documents

Approach III. Using timestamp of top-k documents

イロト イヨト イヨト イヨト

Outline

- Temporal Information Retrieval

Proposed Approaches

- Formal Models
- **Re-ranking Search Results** •

- Experiment Setting

Conclusions and Euture Work

∃ >

Intuition: documents with creation dates that closely match with the *implicit* time of queries are more relevant

a mixture model of a keyword score and a time score

Definition

 $S(q, d) = (1 - \alpha) \cdot S'(q_{word}, d_{word}) + \alpha \cdot S''(q_{time}, d_{time})$

 α underlining the importance of a keyword score and a time score

・ 何 ト ・ ヨ ト ・ ヨ

Intuition: documents with creation dates that closely match with the *implicit* time of queries are more relevant

a mixture model of a keyword score and a time score

Definition

$$S(q, d) = (1 - \alpha) \cdot S'(q_{word}, d_{word}) + \alpha \cdot S''(q_{time}, d_{time})$$

 $\boldsymbol{\alpha}$ underlining the importance of a keyword score and a time score

Definition

$$\mathcal{S}(\textbf{q}, \textbf{d}) = (1 - lpha) \cdot \mathcal{S}'(\textbf{q}_{\textit{word}}, \textbf{d}_{\textit{word}}) + lpha \cdot \mathcal{S}''(\textbf{q}_{\textit{time}}, \textbf{d}_{\textit{time}})$$

$$S''(q_{time}, d_{time}) = P(q_{time} | d_{time})$$

= $P(\{t'_1, \dots, t'_n\} | d_{time})$
= $\frac{1}{|q_{time}|} \sum_{t'_j \in q_{time}} P(t'_j | d_{time})$ (2)

where q_{time} is a set of time intervals and $(t'_1 \cap t'_2 \cap \ldots \cap t'_n) = \emptyset$

Kanhabua and Nørvåg (NTNU) Determining Time of Queries for Re-ranking

ECDĽ2010 20/30

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(1)

Definition

• $P(t'_i | d_{time})$ with <u>uncertainty-ignorant</u>:

$$P(t'_{j}|d_{time}) = \begin{cases} 0 & \text{if } d_{time} \neq t'_{j}, \\ 1 & \text{if } d_{time} = t'_{j}. \end{cases}$$
(1)

2 $P(t'_i | d_{time})$ with uncertainty-aware:

$$\mathsf{P}(t'_{j}|d_{time}) = \mathsf{DecayRate}^{\lambda \cdot |t'_{j} - d_{time}|}$$
(2)

DecayRate and λ are constants, 0 < DecayRate < 1 and $\lambda > 0$

Kanhabua and Nørvåg (NTNU) Determining Time of Queries for Re-ranking

ECDĽ2010 20/30

A (10) A (10)

Outline

Introduction

- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3

Evaluation

- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

∃ >

Overview of experiments

Our experimental evaluation is divided into two parts:

- Determining the time of queries
- Peranking search results using the determined time

Determining the time of queries

Temporal document collection:

 New York Time Annotated Corpus contains over 1.8 million articles from January 1987 to June 2007

Tools:

• Oracle Berkeley DB version 4.7.25

Queries:

 randomly selected 30 strongly time-related queries from the Robust2004

ECDL'2010

23/30

Parameters: m = 5, g and k are varied

Measurement: precision, recall and F_2

Re-ranking of search results

Data collection:

- TREC Robust Track (2004)
 - 30 strongly time-related topics
- New York Time Annotated Corpus
 - 24 queries from the Google zeitgeist

Tools:

- Terrier an open source search engine developed by University of Glasgow
- BM25 probabilistic model with Generic Divergence From Randomness (DFR) weighting
- Alter scores for retrieved documents by giving prior scores

 $\mathcal{S}''(q_{\textit{time}}, d_{\textit{time}}) = \mathcal{P}(q_{\textit{time}} | d_{\textit{time}})$

Parameters: DecayRate = 0.5, $\lambda = 0.5$, $\alpha = 0.05$ for uncertainty-ignore, $\alpha = 0.10$ for uncertainty-aware Measurement: MAP, R-precision, P@5, P@10, and P@15

A (10) + A (10) +

Re-ranking of search results

Examples of the Google zeitgeist queries and associated time periods

Query	Time	Query	Time
diana car crash	1997	madrid bombing	2005
world trade center	2001	pope john paul ii	2005
osama bin laden	2001	tsunami	2005
london congestion charges	2003	germany soccer world cup	2006
john kerry	2004	torino games	2006
tsa guidelines liquids	2004	subprime crisis	2007
athens olympics games	2004	obama presidential campaign	2008

Outline

Introduction

- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3

Evaluation

- Experiment Setting
- Experimental Results

Conclusions

• Conclusions and Future Work

∃ >

Performance of query dating methods

Table: Query dating performance using precision, recall and F-score

Method	Precision		Recall		F ₂	
	6-month	12-month	6-month	12-month	6-month	12-month
QW	.56	.67	.34	.64	.37	.65
PRF (k=5)	.55	.63	.47	.79	.48	.75
PRF (k=10)	.56	.60	.46	.74	.48	.71
PRF (k=15)	.54	.60	.42	.70	.44	.68
NLM (k=5)	.92	.97	.35	.44	.40	.49
NLM (k=10)	.90	.95	.48	.56	.53	.61
NLM (k=15)	.89	.93	.56	.63	.61	.67

QW determines time using keywords plus uncertainty-ignorant re-ranking

- PRF determines time using top-k retrieved documents *plus* uncertainty-ignorant re-ranking
- NLM assumes creation dates of top-k documents (no language models) plus uncertainty-ignorant re-ranking

(a)

Performance of re-ranking methods

Table: Re-ranking performance with the baseline performance 0.3568 and0.3909 respectively (the Robust2004 collection)

Method	MAP		R-precision		
wiethod	6-month	12-month	6-month	12-month	
QW	.3565	.3576	.3897	.3924	
QW-U	.3556	.3573	.3925	.3943	
PRF (k=5)	.3564	.3570	.3885	.3926	
PRF (k=10)	.3568	.3570	.3913	.3919	
PRF (k=15)	.3566	.3567	.3912	.3921	
PRF-U (k=5)	.3548	.3574	.3903	.3950	
PRF-U (k=10)	.3538	.3576	.3904	.3935	
PRF-U <i>(k=15)</i>	.3538	.3572	.3893	.3940	
NLM (k=5)	.3585	.3589	.3924	.3917	
NLM (k=10)	.3586	.3591	.3918	.3925	
NLM (k=15)	.3584	.3596	.3898	.3934	
NLM-U (k=5)	.3604	.3608	.3975	.3978	
NLM-U (k=10)	.3604	.3610	.3953	.3961	
NLM-U (k=15)	.3606	.3620	.3943	.3967	

QW-U, PRF-U, NLM-U determines time using uncertainty-aware re-ranking

Kanhabua and Nørvåg (NTNU)

Performance of re-ranking methods

Table: Re-ranking performance using P@5, P@10, and P@15 with the baseline performance 0.35, 0.30 and 0.27 (the NYT collection)

Method	P@5		P@10		P@15	
	6-month	12-month	6-month	12-month	6-month	12-month
QW	.42	.45	.37	.39	.32	.33
QW-U	.40	.42	.35	.36	.30	.32
PRF (k=15)	.42	.46	.38	.42	.35	.39
PRF-U (k=15)	.41	.45	.36	.40	.33	.37
NLM (k=15)	.50	.52	.47	.49	.42	.44
NLM-U (k=15)	.53	.55*	.48	.50*	.45	.46*

Note: * indicates statistically improvement over the baselines using *t-test* (p < 0.05)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

- Introduction
- Temporal Information Retrieval
- Contributions

Proposed Approaches

- Formal Models
- Determining the Time of Queries
- Re-ranking Search Results

3

Evaluation

- Experiment Setting
- Experimental Results

Conclusions

Conclusions and Future Work

• Study implicit temporal queries (no temporal criteria)

- Determine the implicit time of the queries
- Employ the determined time to re-rank the search results
- Conduct extensive experiments and show the improvement in retrieval effectiveness
- Future work:
 - ► The quality of the query dating is limited when aiming at further increase in effectiveness
 - Improvement on the query dating based on external knowledge from sources like Wikipedia

・ 何 ト ・ ヨ ト ・ ヨ

ECDI'2010

29/30

- Study implicit temporal queries (no temporal criteria)
- Determine the implicit time of the queries
- Employ the determined time to re-rank the search results
- Conduct extensive experiments and show the improvement in retrieval effectiveness
- Future work:
 - ► The quality of the query dating is limited when aiming at further increase in effectiveness
 - Improvement on the query dating based on external knowledge from sources like Wikipedia

・ 同 ト ・ ヨ ト ・ ヨ

- Study implicit temporal queries (no temporal criteria)
- Determine the implicit time of the queries
- Employ the determined time to re-rank the search results
- Conduct extensive experiments and show the improvement in retrieval effectiveness
- Future work:
 - ► The quality of the query dating is limited when aiming at further increase in effectiveness
 - Improvement on the query dating based on external knowledge from sources like Wikipedia

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Study implicit temporal queries (no temporal criteria)
- Determine the implicit time of the queries
- Employ the determined time to re-rank the search results
- Conduct extensive experiments and show the improvement in retrieval effectiveness
- Future work:
 - The quality of the query dating is limited when aiming at further increase in effectiveness
 - Improvement on the query dating based on external knowledge from sources like Wikipedia

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ECDL'2010

29/30

- Study implicit temporal queries (no temporal criteria)
- Determine the implicit time of the queries
- Employ the determined time to re-rank the search results
- Conduct extensive experiments and show the improvement in retrieval effectiveness
- Future work:
 - The quality of the query dating is limited when aiming at further increase in effectiveness
 - Improvement on the query dating based on external knowledge from sources like Wikipedia

A (10) × (10) × (10) ×

ECDL'2010

29/30

- Study implicit temporal queries (no temporal criteria)
- Determine the implicit time of the queries
- Employ the determined time to re-rank the search results
- Conduct extensive experiments and show the improvement in retrieval effectiveness
- Future work:
 - The quality of the query dating is limited when aiming at further increase in effectiveness
 - Improvement on the query dating based on external knowledge from sources like Wikipedia

A (10) + A (10) +

Thank you. Question?

 Image: Note that the second second

< □ > < □ > < □ > < □ > < □ >