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Abstract. A method is proposed which computes the visible points
of surfaces in a 3-dimensional discrete space. The occlusion of surface
points of an object by other object points is determined by shooting
a discrete ray from each surface point towards the center of projection
considering the intersection of the ray with other object points. Since
the projection of points onto the viewing plane is done by a continuous
mapping, additionally to the discrete ray, the location of the continuous
projection ray is examined regarding its location to the surface points
that are intersected by the discrete ray.

1 Introduction

The growing interest of computer graphics in the three-dimensional discrete
space ZZ3 has led to new application fields of volume data: e.g. virtual reality
in medicine [19], volume-based interactive design and sculpturing [16,11]. For
such application fields, synthetic objects, i.e. geometrically defined objects in
ZZ3 or data sets obtained by rastering [1,15] geometric descriptions of objects
given in IR3, are generated and the boundaries of these objects are required to
be visualised.

Three principal approaches for rendering discrete objects can be distin-
guished: backward or image-order projection, forward or object-order projection
techniques, and hybrid techniques [14,10,9] that combine advantages of both the
backward and forward projection methods. Backward projection algorithms tra-
verse the pixels and solve the visibility problem for each pixel by casting a ray
from the viewing point through each pixel of the image into the data space. This
group includes ray-casting [5,6,3] and ray-tracing [18] techniques, which have
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been specifically developed for the rendering of volumes. Forward projection al-
gorithms, e.g. splatting [17,4], traverse the three-dimensional discrete scene and
project its components onto the viewing plane.

In contrast to splatting techniques, where a point of ZZ3 is represented by a
kernel function in the viewing plane, we assume that a point of ZZ3 is mapped to
the viewing plane such that its image is a point in IR2. Consequently, generally
the image of a discrete surface in the viewing plane is a set of scattered of
points. Moreover, assuming a continuous viewing plane requires a method for the
determination of visible points, which provides results independently from the
resolution of the final image. Therefore, rendering methods applying the z-buffer
algorithm are not suitable to solve the visibility problem. Instead, a technique
is needed which determines the visible points of a scene in object space, i.e. in
ZZ3. A similar problem has to be solved in discrete ray-tracing [2] when it has
to be determined if a point is in shadow, i.e. if the point cannot be seen from
the light source. After the visible points are mapped onto the viewing plane, the
final image could be obtained by applying a technique, e.g., as proposed in [12].

In this paper, a method is proposed which determines the visible points of
closed surfaces in ZZ3. Each surface forms the boundary of a discrete object. In
a first step, front facing points are computed in the common way, comparing the
normal vectors at the surface points with the viewing direction. The computation
of occluded front facing points is performed utilising the idea of forward ray-
casting: a discrete ray is shot from each surface point towards the centre of
projection considering the intersection with other non-empty points, i.e. points
which belong to objects of the scene. Since the actual projection of surface points
onto the viewing plane is done by a continuous mapping, additionally to the
discrete ray, the location of the continuous projection ray is examined regarding
its location to the surface points that are intersected by the discrete ray.

The paper is organised as follows: Section 2 states the definitions used
throughout the paper. In Sect. 3, at first the problem is examined in detail.
Afterwards, a solution is proposed in 2D which is then extended to 3D. Experi-
mental results are presented and discussed in Sect. 4. Finally, Sect. 5 summarises
the paper.

2 Definitions

The three-dimensional discrete space is constituted by ZZ3, that is the 3D
array of points with integer coordinates in the Cartesian coordinate system.
Two points p(xp, yp, zp) and q(xq , yq, zq) of ZZ3 where (| xp − xq |≤ 1) ∧
(| yp−yq |≤ 1)∧(| zp−zq |≤ 1), are said to be 6-adjacent if | xp−xq | + | yp−yq |
+ | zp − zq |= 1, 18-adjacent if 0 <| xp − xq | + | yp − yq | + | zp − zq |≤ 2, and
26-adjacent if 0 <| xp −xq | + | yp− yq | + | zp − zq |≤ 3. Points k-adjacent to p,
where k ∈ {6, 18, 26}, are called k-neighbours of p. A k-component of a set A is a
maximal subset of A in which between each pair of points p, q exists a sequence
of distinct points P = {p = p0, p1, ..., pn = q} of A whereby two consecutive
points pi and pi+1 with 0 ≤ i < n along the sequence are k-adjacent.
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The surface S ⊂ ZZ3 to be rendered is assumed as a closed surface that forms
the boundary of a finite object O ⊂ ZZ3, whereby O is a 6-connected component.
The points of O are called object points. The surface S ⊂ O is constituted of all
points of O that are 6-adjacent to some point of O = ZZ3−O. Each point of S is
also required to be 26-adjacent to some point of O−S. Note that S may consist
of more than one component. The points of S are denoted as surface points. In
contrast, the points in O − S are called inside points and the points of O are
named empty points.

3 Determination of Visible Surface Points

In general, a point on a closed surface is visible only if it is front facing, i.e.
the surface in this point is oriented towards the observer, and the point is not
occluded by another point.

The computation of front facing points is rather trivial and can be done
as described in Sect. 3.1. In contrast, the determination of occluded points in
discrete space needs further investigations. Section 3.2 describes the basic dif-
ficulties of the solution of the occlusion problem, which arise while employing
the idea of discrete forward ray casting. In Sect. 3.3, an approach is introduced
to determine occluded points in 2D space. Then, in Sect. 3.4 this approach is
extended to 3D.

3.1 Front Facing Surface Points

The culling of back facing surface points in discrete space is done in the same
way as for polygons: the cosine of the angle δ between the normal vector at a
surface point and the vector representing the viewing direction is determined. If
cos(δ) ≤ 0 the point is back facing, otherwise it is front facing.

Clearly, a normal vector associated with each point of the discrete surface is
essential to cull back facing points. The normals are required to represent the
local surface geometry. The determination of normal vectors at discrete surfaces
is an active field of research. For example, the method introduced in [13] provides
results that are suitable for the purpose of this work. However, to deal with the
problem of visibility independently of the computation of the normal vectors,
one could also associate the discrete surface points with the true normals of the
underlying continuous surface.

3.2 Forward Ray-Casting

To determine the surface points that are not occluded by other points, the idea
of forward ray-casting is utilised: shoot a discrete ray, denoted as discrete view-
ing ray, from each front facing surface point along the viewing direction and
check if the ray intersects any other object point. A discrete viewing ray is the
rasterization of the straight line segment between a surface point and the centre
of projection.
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The basic problems, which arise for the discrete viewing rays and are matter
of this section, address the features of a ray in order to define a point as occluded
and the connectivity of the rays. There are two basic approaches possible to solve
the first problem: a point is not occluded only if its discrete viewing ray does
not intersect any other object point, or the ray is allowed to be tangent to the
surface, i.e. the ray may intersect other surface points but no inside point. These
two approaches and their related problems are discussed below.

Viewing Rays do not Intersect any Object Point. The following assump-
tion would be the simplest approach when solving the visibility problem in ZZ3

by forward ray-casting: a point is not occluded if its discrete viewing ray does not
intersect any object point. However, this assumption is too strict. Frequently,
the viewing ray of a surface point close to the contour of a surface is almost
tangent to the surface, i.e. the ray intersects surface points but no inside point.
Examples for this fact are shown in Fig. 1(a) and (b) for orthographic and per-
spective projection, respectively. For simplification, these examples are given in
2D. Clearly, the viewing rays shown in the Fig. 1 intersect other surface points.
The condition of non-occlusion, as stated above, would lead to a missing of such
points. A similar problem has been reported by Delfosse et al. [2] for shadow rays
in discrete ray-tracing. They solve the problem by considering the real bound-
ary of the underlying continuous object. This approach is not suitable for our
work since we consider only the discrete objects, without any assumption on the
underlying continuous objects. Consequently, we need a further specification of
the condition for non-occluded points to allow viewing rays to be tangent to the
surface, so that the discrete viewing ray of a visible point may intersect other
surface points.

(a) (b)

inside point
surface point
point of the viewing ray

viewing plane

Fig. 1. Discrete viewing rays intersecting a surface point for (a) orthographic
projection and (b) perspective projections

Connectivity of Viewing Rays. If there is no further restriction on the
topology of the surface, i.e. S is defined as in Sect. 2, the discrete viewing rays
have to be 6-connected to avoid a traversal of the object by the rays while
intersecting only surface points. In such cases, the viewing rays are not tangent
to the surface. An example in 2D is shown in Fig. 2(a). For the points p and q,
a 26-connected viewing ray would pass through the object, hitting only surface
points.
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(a)

viewing plane viewing plane

(b)

viewing ray
q

pp

q

inside point 
surface point

Fig. 2. 26-connected viewing rays and (a) a surface with no restriction and (b)
a surface satisfying the definition from discrete topology

The generation of 26-connected rays is twice as fast than that of 6-connected
rays since a 6-connected ray consists of about twice as many points as the 26-
connected ray. For optimisation purposes, a technique proposed in [18] can be
applied to speed up the usage of 6-connected rays: to traverse the empty space
between the objects of a scene quickly, the rays are 26-connected until they come
close to an object. Then the connectivity of the rays changes to 6-connectivity.
Nevertheless, 26-connected rays would be preferred for practical applications
because of performance reasons.

Assume S satisfies a surface definition as known from discrete topology [8,7].
Then S can be viewed as the discrete analog of a closed two-manifold surface,
and S is the minimal set which separates ZZ3−S into two non-empty 6-connected
sets. Thus, each point of S is 6-connected to some point of O − S and to some
point of O. Experiments have shown, that 26-connected viewing rays are suffi-
cient if S has these properties. Fig. 2(b) shows an example for this case in 2D. It
is beyond the scope of this paper to proof this fact. However, this will be a mat-
ter of future work. In Sect. 4, results are shown for both the cases 6-connected
and 26-connected viewing rays.

Viewing Rays may Intersect other Surface Points. Allowing the discrete
viewing rays to intersect surface points but no inside point may cause problems.
It cannot be ensured that the projection of the visible points leads to a correct
image. The problem is illustrated in Fig. 3. Consider a convex discrete object O,
i.e. O is the discrete representation of a convex continuous object Õ, located in
the viewing space with coordinate axes x and y. The image of O, denoted O′,
is the projection of O onto the x-axis. If viewing rays of visible points may hit
any surface point, the point p ∈ O would be visible. Since p bounds the set of
visible points of O shown in light grey in Fig. 3(a), one would expect that the
image p′ of p bounds O′, i.e. it should be the point of O′ with the smallest x-
value in Fig. 3(a). This case is illustrated for the continuous object Õ in Fig. 3(b).
However for the discrete object in Fig. 3(a), after the projection of the visible
points the image q′ of the visible point q forms the boundary of O′ instead.
This problem arises because discrete rays are applied to determine the visible
points in ZZ3 and, in contrast, a continuous mapping is used for the projection
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of the visible points onto the viewing plane. Therefore, a criterion is needed
which ensures that points like p are excluded from the set of visible points while
allowing viewing rays to intersect other surface points.

~
Oviewing ray

p
q

(a)

O x O

(b)

x
y y

pq

~

O

’

’’ ’

p

’

p

Fig. 3. Problem arising after mapping visible points onto the viewing plane: (a)
for the discrete case, the projection of the point p does not form an outline of
the image as it does in (b) the corresponding continuous case

3.3 Visibility in 2D

To solve the problem described in the previous section, a condition is introduced
to exclude points from the set of visible surface points whose projection would
lead to artefacts in the rendered image. This problem may arise only for surface
points whose discrete viewing rays intersect other surface points.

At first, the problem is examined in 2D. Consider a front facing surface
point p associated with a discrete viewing ray rp, which intersects only empty
points or other surface points. In case rp intersects any inside point, p is not
visible. The point p is not occluded if for each surface point q along rp the
continuous projection ray r̃p of p does not intersect O. Note that r̃p is the
continuous representation of rp. If r̃p is referred to as a vector subsequently then
it is considered as the normalised vector representing the projection ray of p
pointing towards the centre of projection.

Assume a continuous surface patch Sq of differential size with a normal vec-
tor Nq located at a surface point q ∈ rp and check the location of r̃p with respect
to Sq. The vector Nq is assumed to be oriented towards O. Thus, it gives us some
notion on which side of Sq the inside of the object O is located. Consequently,
it can be determined if r̃p crosses the inside of O in the neighbourhood of q.

The formal realization of this test is described in the following and is illus-
trated in Fig. 4. The straight line defined by r̃p separates the 2D space into two
half-planes. This is illustrated in Fig. 4(a). By translating the normal vector Nq

into p, it can be checked if r̃p intersects O in the neighbourhood of q depending
on which half-plane p+Nq belongs to and where q is located. If p+Nq and q are
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in different half-planes, p is not occluded by q. This case is shown Fig. 4(b). The
line through q represents the surface patch Sq in q. The projection ray of p goes
along the outside of the surface in the neighbourhood of q. This is additionally
illustrated by the projections p′, q′ and N ′

q of p, q and Nq, respectively, onto the
viewing plane. If p + Nq belongs to the same half-plane containing q or q ∈ r̃p, p
is not visible. In the first case, the projection ray of p goes along the inside of
the object in the neighbourhood of q as illustrated in Fig. 4(c). In the latter
case, the projections of p and q are identical, but q is closer to the observer and,
therefore, it occludes p.

~rp

O

SO
Nq

q q qqN
p

(a)

p+Nq

p

(c)(b)

p

q
p

q
p

r r~p

q
viewing plane viewing plane

p
~ Nq

qNq

N ’
’

’
’

’

’

Fig. 4. (a) Subdivision of the space by r̃p into half-planes, (b) and (c) location
of q in the half-planes with respect to the normal vector Nq of q

The two cases discussed above do not cover a normal vector Nq having the
same direction like r̃p, i.e. r̃p = Nq or r̃p = −Nq. If the normal vectors associated
with the discrete surface points reflect the local surface configurations correctly,
one can expect for r̃p = −Nq, that rp hits also some inside point of the object
since it crosses S with respect to Nq from the outside to the inside. If r̃p = Nq, rp

would pass through S in q from the inside to the outside and should also hit
some inside point. In fact, these cases could not appear for a discrete viewing
ray which is tangent to a closed surface. If they arise nevertheless in a practical
application, we assume for these cases that q occludes p as presented above.

3.4 Visibility in 3D

For the extension of the approach described in the previous section to 3D, an
additional dimension for the location of the local surface in q with respect to r̃p

has to be taken into account.
Consider the surface patch Sq in q and its projection onto the viewing plane.

Without loss of generality, assume the viewing plane is located in q. (More
generally, the viewing frustum is assumed to be bounded by a front clipping
plane located in q and parallel to the projection plane.) Unless the direction
of Nq or −Nq is equal to the projection ray r̃q of q, the intersection of the
projection plane and Sq leads to a curve γq with a normal vector N ′

q that is
the projection of Nq. This is illustrated in Fig. 5(a). Note, that for r̃p = Nq
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and r̃p = −Nq, we make the same assumption as in 2D, i.e. p is occluded by q.
For orthographic projection r̃p = r̃q. For perspective projection, the difference
between r̃p and r̃q are very small since q is intersected by rp. Thus, we neglect
this difference and assume in the following additionally if r̃q = Nq or r̃q = −Nq

that q occludes p.
To determine if r̃p intersects the surface in q, we translate the tangent line

at γq to p′. This line separates the viewing plane into half-planes and enables a
similar approach as described for 2D to determine if q occludes p: if p′+N ′

q and q′

are in the same half-plane, q occludes p. If they are in different half-planes, q
does not occlude p. The distance d shown in Fig. 5(a) between p′ and q′ depends
on the location of p and q in 3D and is limited since p and q belong to the same
discrete viewing ray, which in turn is the rasterization of the projection ray.
Consider the straight line that contains p and is perpendicular to the tangent
line at γq. If d is neglected, we obtain on this line the same scenario as illustrated
on the viewing plane of Fig. 4(c) and (d).

r~

viewing planeviewing plane

(a) (b)

T

p

q
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qd q

q
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q
p
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p

T

γ

’
’

’
’
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’
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Fig. 5. Computation of the plane T

For practical applications, we perform the test described above directly in 3D.
For this, a plane is needed in 3D that separates the space into half-spaces. Clearly
the plane, denoted with T in the following, must contain r̃p and the projection T ′

of T must be perpendicular to N ′
q. Then T can be computed as follows: determine

a plane T̂ containing the vectors r̃p and Nq, i.e. T̂ : r̃p ×Nq. Then T is the plane
perpendicular to T̂ containing r̃p. More formally: (T ⊥ T̂ ) ∧ (r̃p ∈ T ). This is
illustrated in Fig. 5(b). The point q occludes p, if q and p + Nq are in the same
half-space or q ∈ T . If they are in different half-spaces, p is not occluded by q.
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4 Experimental Results

Experimental results are shown below for the orthographic as well as the perspec-
tive projection. The normal vectors for the examples were computed employing
the method introduced in [13]. The images in Fig. 6 show the results for two
spheres using 26-connected viewing rays. The spheres were rastered in an array
of 753 points. The occlusion was checked only for front facing points. The re-
sults shown in Fig. 6 were obtained by applying our method (upper row), by
not allowing the discrete viewing rays to hit any object point (middle row) and,
finally by allowing the discrete viewing rays to hit any surface point without any
further restriction (lower row). Clearly for the second case, many points particu-
larly along the outline of the objects are missed. This leads to a gap between the
two spheres. In the last case, consider the part of the outline of the sphere in the
foreground which occludes the other sphere: especially for perspective projection
in the example, points of the occluded sphere were projected “into” the image
of the occluding sphere. In contrast, this problem does not arise for our method.
The lines near the outlines of the images in the upper and lower row of Fig. 6
are visible points which are very close to each other in the viewing plane such
that these points are represented in the final image by neighbouring pixels. If
more than one visible point would be represented by a pixel in the image, the
point closest to the observer is viewed.

Figure 7 shows the necessity of the application of 6-connected discrete viewing
rays, depending on the properties of the surface. The two cuboids were rastered
in an array of 503 points. The problem arising for 26-connected rays along the left
edge of the cuboid in the foreground corresponds with the situation illustrated
in Fig. 2(a) by the point p: viewing rays of points of the occluded cuboid pass
through the surface so that they are projected “into” the image of the occluding
cuboid. This can be avoided by using 6-connected viewing rays instead.

5 Summary

The determination of the visibility of points is a major task of rendering. In this
paper we have proposed a technique which determines the visibility of points
on a surface in ZZ3, which is defined as the boundary of an object. The method
introduced works in object space and employs the basic idea of discrete forward
ray-casting. The visibility of each point is computed in ZZ3 considering a con-
tinuous mapping for the projection of the points onto the viewing plane. This
assumption makes the results independent of the resolution of the final image
and enables an application of the method, e.g., for discrete ray-tracing to solve
the shadow problem. We have shown by examples, that our method is suitable to
solve the visibility problem and thus can be employed for rendering techniques
such as those proposed in [12].

A remaining problem of this work, that is matter of future work, is a proof
that 26-connected rays are sufficient if the surfaces to be rendered satisfy certain
conditions. This would lead to a performance increase by using 26-connected rays
instead of 6-connected rays for our method.
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Fig. 6. Visible points of two spheres determined for orthographic (left column)
and perspective projection (right column) by allowing discrete viewing rays to
hit other surface points only if the projection rays do not intersect the object
(upper row), not allowing intersections of any object point (middle row), and
allowing intersections of any surface point (lower row) by the discrete viewing
ray
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