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Determining what sets of trees can be the clique trees of a chordal graph

Pablo De Caria · Marisa Gutierrez

Abstract Chordal graphs have characteristic tree represen-
tations, the clique trees. The problems of finding one or enu-
merating them have already been solved in a satisfactory
way. In this paper, the following related problem is stud-
ied: given a family T of trees, all having the same vertex
set V , determine whether there exists a chordal graph whose
set of clique trees equals T . For that purpose, we undertake
a study of the structural properties, some already known and
some new, of the clique trees of a chordal graph and the char-
acteristics of the sets that induce subtrees of every clique
tree. Some necessary and sufficient conditions, and exam-
ples of how they can be applied, are found, eventually es-
tablishing that a positive or negative answer to the problem
can be obtained in polynomial time. If affirmative, a graph
whose set of clique trees equals T is also obtained. Finally,
all the chordal graphs with set of clique trees equal to T are
characterized.

Keywords Chordal graph · Clique tree · Minimal separa-
tor · Clique

1 Introduction

1.1 Definitions

For a graph G, V (G) denotes the set of its vertices and E(G)
that of its edges. A subset of V (G) is complete if its elements
are pairwise adjacent in G. A clique is a maximal complete
subset. The family of cliques of G is denoted by C (G).

The subgraph induced by A⊆V (G), G[A], has A as ver-
tex set, and two vertices are adjacent in G[A] if and only if
they are adjacent in G.
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Given two vertices u and v in the same connected com-
ponent of G, a uv-separator is a set S ⊆ V (G) such that u
and v are in different connected components of G− S :=
G[V (G)− S]. It is minimal if no proper subset of S has the
same property. We will just say minimal vertex separator to
refer to a minimal set separating some pair of nonadjacent
vertices. The family of minimal vertex separators of G will
be denoted by S (G).

Let F be a family of nonempty sets. F is intersecting
if every pair of members of F has nonempty intersection.
F is Helly if the intersection of all the members of each
intersecting subfamily of F is not empty. F is separating
if, for every v ∈ ⋃

F∈F
F , the intersection of all the members

of F containing v equals {v}. The intersection graph of F ,
L(F ), has the members of F as vertices and all the pairs
of members of F with nonempty intersection as edges. The
intersection graph of C (G), denoted by K(G), is called the
clique graph of G.

Let T be a tree and v,w ∈V (T ). T [v,w] is the set of ver-
tices in the path of T from v to w. If the edge vw is not in T
and v′w′ ∈E(T ) is such that v′,w′ ∈ T [v,w], the tree obtained
by removing v′w′ from T and adding vw to it is denoted by
T − v′w′+ vw.

Given a family T of trees with common set of vertices
V , E(T ) denotes the set of edges each of which is in at
least one tree of T . For u,v ∈ V , T [u,v] :=

⋃
T∈T

T [u,v].

The graph HT has vertex set equal to T , where T and T ′,
T 6= T ′, are adjacent in HT if and only if there exist edges
e and e′ such that T ′ = T − e + e′. Call H∗

T the graph such
that V (H∗

T ) = E(T ), in which e,e′ ∈ E(T ), e 6= e′, are ad-
jacent if and only if there exists T ∈T such that T−e+e′ ∈
T . For each connected component H ′ of H∗

T , we define
P(H ′) =

⋃
uv∈V (H ′)

{u,v}. For an example of the graphs HT

and H∗
T .
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Fig. 1 A family T of trees and the graphs HT and H∗
T . Each edge

of HT is labeled with the two elements of E(T ) that the trees must
exchange to get one from the other. Each edge ee′ of H∗

T is labeled
with all the pairs of trees that can exchange e and e′ to get one from the
other.

1.2 Notions on chordal graphs and clique trees

Given a cycle C, a chord is defined as an edge joining two
nonconsecutive vertices of C. Chordal graphs are mostly de-
fined as those for which every cycle of length greater than or
equal to four has a chord. Chordal graphs have been widely
studied, partially due to the fact that they arise in the solution
for many practical problems.

Many characterizations have been found for chordal graphs.
One of them says that a graph is chordal if and only if each
minimal vertex separator of the graph is complete [2].

Now we proceed to discuss the characterization most re-
lated to the subject of this paper.

Given a graph G and v ∈ V (G), Cv denotes the set of
cliques of G containing v. The collection of the sets Cv, v ∈
V (G), receives the name of dual clique family of G. More
generally, given A⊆V (G), we define CA = {C∈C (G) : A⊆
C}. T is a clique tree of G if V (T ) = C (G) and, for every
v ∈V (G), Cv induces a subtree of T . It is not difficult to see
that clique trees can also be defined as those for which, for
every triple C1,C2,C3 of cliques of G, C3 ∈ T [C1,C2] implies
that C1∩C2 ⊆C3.

Clique trees are characteristic to chordal graphs, i.e., a
graph is chordal if and only it has at least one clique tree
[10]. The family of clique trees of G will be denoted by
τ (G).

It is our interest to mention some of the basic structural
properties of clique trees, as they will be necessary for the
remainder of the paper. First, we note that clique trees can
be characterized as maximum weight spanning trees:

Theorem 1 [9] Let G be a chordal graph and let K(G)w be
the graph obtained from K(G) by assigning each edge CC′

the weight |C∩C′|. Then, T is a is a clique tree of G if and
only if it is a maximum weight spanning tree of K(G)w.

Corollary 1 Let G be a chordal graph, T a clique tree of G,
C1C2 ∈E(T ) and C3,C4 ∈C (G) such that C1,C2 ∈ T [C3,C4]
and C1 ∩C2 ⊆ C3 ∩C4. Then, T −C1C2 + C3C4 is also a
clique tree of G.

Proof It is known from the definition of clique tree that
C1,C2 ∈ T [C3,C4] implies that C3∩C4 ⊆C1∩C2. Therefore,
C3 ∩C4 = C1 ∩C2. By Theorem 1, T is a maximum weight
spanning tree of K(G)w, so T −C1C2 +C3C4 is also a maxi-
mum weight spanning tree. Therefore, T −C1C2 +C3C4 is a
clique tree of G. ut

It is also useful to know what edges can be found in the
clique trees of the graph. Two cliques C1 and C2 are a sep-
arating pair if C1 ∩C2 separates each pair of vertices such
that one is in C1−C2 and the other is in C2−C1. As cliques
are complete subsets of vertices, this definition implies that
C1∩C2 is a minimal vertex separator. Then:

Theorem 2 [3] Let G be a chordal graph, S ∈ S (G) and
C1,C2 ∈ C (G). Then:

– S is the intersection of two cliques forming a separating
pair.

– C1C2 is an edge of at least one clique tree of G if and
only if C1 and C2 are a separating pair.

These and other properties appearing in [3] were funda-
mental to show the important role minimal vertex separators
play in analyzing clique trees. They were particularly use-
ful for us in the development of a work [1] focusing, among
other things, in the subsets that induce subtrees in clique
trees. This paper can be viewed as a sequel of it, with sev-
eral of its concepts and ideas being used below.

1.3 The problem to be studied

There are some efficient algorithms for computing maxi-
mum/minimum weight spanning trees of a given graph [8].
Thus, Theorem 1 makes it possible to find a clique tree of a
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chordal graph in a very efficient way. The problem of gen-
erating all the clique trees of a chordal graph has also been
considered [5]. Since the number of trees with given set of
vertices is exponential, so could be the case for the clique
trees of a chordal graph. However, there are polynomial al-
gorithms to count all the clique trees of a chordal graph [11].

To our knowledge, the reverse problem has not been stud-
ied and is of theoretical importance to us. More clearly, take
a family T of trees on the same vertex set V , the problem
being to find a chordal graph G such that τ (G) = T , when
possible. Our goal is to show that this can be done in poly-
nomial time with respect to |T | and |V | by exploiting the
structural properties of clique trees and the sets that induce
subtrees in them.

In Section 2, we find several necessary conditions which
are very effective in detecting many negative instances of the
problem. They are derived from several interesting proper-
ties of clique trees and its edges, which are listed and proved.

In section 3, the necessary and sufficient conditions on
which the exact solution of the problem is based are found,
and the structure of the graphs with given set of clique trees
is discussed. This requires, among others, two results that
we consider important in themselves. Namely, we find a new
way to characterize clique trees (see theorems 7 and 3) and
we give a necessary and sufficient condition for two graphs
to have the same clique trees (Theorem 6).

2 Necessary conditions

T will be a fixed tree family throughout this section. Several
properties about the clique trees of a chordal graph will be
listed and proved, and the necessary conditions for T to be
the family of clique trees of a chordal graph inferred from
them will appear below.

Remember that τ (G) is used to denote the family of
clique trees of a chordal graph G. The following result can
be proved as a consequence of Theorem 1:

Proposition 1 Let G be a chordal graph. Then Hτ(G) is con-
nected.

Necessary condition number 1 HT is connected.

For example, according to the first necessary condition,
the trees of Figure 2 cannot be the all the clique trees of a
chordal graph. For this family, the graph HT consists of two
vertices that are not adjacent, since we cannot get one tree
from the other by removing an edge an adding another.

We have already seen a necessary and sufficient condi-
tion for an edge to be in the set E(τ (G)) of edges each be-
ing in at least one clique tree of G (see Theorem 2). Now we
write another:

Fig. 2 This is not a family of clique trees of a chordal graph because
the first necessary condition is not satisfied

Proposition 2 [7] Let G be a chordal graph and T a clique
tree of G. Then, C1C2 ∈ E(τ (G)) if and only if there is an
edge C3C4 in T [C1,C2] such that C1∩C2 = C3∩C4.

The consequent necessary condition is:

Necessary condition number 2 For all T ∈T and e∈E(T ),
e = uv, there exists e′ ∈ E(T ), e′ = u′v′, such that u′,v′ ∈
T [u,v] and T − e′+ e ∈T .

The trees of Figure 2 do not satisfy this condition ei-
ther. In fact, if they satisfied the condition, the first condition
would have been satisfied too.

Now we proceed to characterize the graph H∗
τ(G):

Proposition 3 Let G be a chordal graph and C1C2,C3C4
two different elements of E(τ (G)). Then, C1C2 and C3C4
are adjacent in H∗

τ(G) if and only if C1∩C2 = C3∩C4.

Proof Suppose that C1C2 and C3C4 are adjacent in H∗
τ(G).

Let T be a clique tree of G such that T −C1C2 +C3C4 is
also a clique tree. Then, C1,C2 ∈ T [C3,C4], so C3 ∩C4 ⊆
C1 ∩C2. Furthermore, by Theorem 1, |C1 ∩C2| = |C3 ∩C4|.
Therefore, C1∩C2 = C3∩C4.

Conversely, suppose that C1 ∩C2 = C3 ∩C4. Let S =
C1∩C2 and A1,A2,A3,A4 the set of vertices of the connected
components of G−S intersecting C1,C2,C3,C4, respectively.
Also let B be the set with the vertices of the other con-
nected components, if any. Then, by Theorem 2, A1 6= A2
and A3 6= A4. We consider three cases:

1) A1,A2,A3,A4 are all different: Let T1 be a clique tree
of G[A1∪B∪S] and Ti, i = 2,3,4, a clique tree of G[Ai∪S].
Let T = T3 +C1C3 + T1 +C1C2 + T2 +C2C4 + T4. Now we
prove that T is a clique tree. Let v ∈ V (G). If v 6∈ S, then
v is in A1 ∪ B, A2, A3 or A4. If v ∈ A1 ∪ B, then T [Cv] =
T1[Cv], which is a subtree. If v ∈ Ai, i = 2,3,4, then T [Cv] =
Ti[Cv], also a subtree. If v ∈ S, then T [Cv] is formed by the
subtrees T1[Cv∩C (G[A1∪B∪S])] and Ti[Cv∩C (G[Ai∪S])],
i = 2,3,4, all joined together by the edges C1C3, C1C2 and
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C2C4. Therefore, T [Cv] is a subtree. We can conclude that T
is a clique tree. Similarly, T −C1C2 +C3C4 is also a clique
tree. Therefore, C1C2 and C3C4 are adjacent in H∗

τ(G).
2) Two of the sets are equal: Suppose without loss of

generality that A1 = A3. Let T = T1 +C1C2 +T2 +C2C4 +T4.
Then, T is a clique tree of G and so is T −C1C2 +C3C4.
Therefore, C1C2 and C3C4 are adjacent in H∗

τ(G).
3) There are two couples of equal sets: Suppose without

loss of generality that A1 = A3 and A2 = A4. Let T = T1 +
C1C2 +T2. Then, T is a clique tree of G and so is T−C1C2 +
C3C4. Therefore, C1C2 and C3C4 are adjacent in H∗

τ(G). ut

In combination with Theorem 2, we have:

Corollary 2 Let G be a chordal graph. Then, the number of
connected components of H∗

τ(G) equals |S (G)| and each of
them is a complete subgraph.

The necessary condition can be expressed in very similar
terms:

Necessary condition number 3 The connected components
of H∗

T are complete subgraphs.

For example, we can clearly see that the family of trees
in Figure 1 satisfies this condition.

Proposition 4 Let G be a chordal graph, C1C2 ∈ E(τ (G))
and C3 another clique such that C1∩C2 ⊆C3. Then, C1C2 is
adjacent to C1C3 or to C2C3 in H∗

τ(G).

Proof Let T be a clique tree of G such that C1C2 ∈ E(T ).
Then, C1 ∈ T [C2,C3] or C2 ∈ T [C1,C3]. In the first case, T −
C1C2 +C2C3 is a clique tree, so C1C2 and C2C3 are adjacent
in H∗

τ(G). In the second case, T −C1C2 +C1C3 is a clique
tree. Thus, C1C2 and C1C3 are adjacent in H∗

τ(G). ut

Recall that, for a set A of vertices of a graph, the set CA
consists of all the cliques of the graph containing A. Then,

Proposition 5 Let G be a chordal graph, C1C2 ∈ E(τ (G)),
C1∩C2 = S, and H ′ the connected component of H∗

τ(G) con-
taining C1C2. Then, P(H ′) = CS.

Proof Let C ∈ P(H ′). Take C′ such that CC′ ∈V (H ′). Then,
by Proposition 3 and Corollary 2, C∩C′ = C1∩C2 = S and
hence C ∈ CS. Therefore, P(H ′)⊆ CS.

Conversely, let C ∈CS. If C = C1 or C = C2, then clearly
C ∈ P(H ′). Otherwise, by Proposition 4, C1C2 is adjacent
to CC1 in H∗

τ(G) or C1C2 is adjacent to CC2 in H∗
τ(G). Then,

CC1 ∈ V (H ′) or CC2 ∈ V (H ′). In either case, we conclude
that C ∈ P(H ′). It follows that CS ⊆ P(H ′).

Therefore, P(H ′) = CS. ut

A combination of propositions 4 and 5 gives the next
necessary condition:

Necessary condition number 4 For each connected com-
ponent H ′ of H∗

T , if uv ∈ V (H ′) and w ∈ P(H ′), then uw ∈
V (H ′) or vw ∈V (H ′).

Equivalently, for each connected component H ′ of H∗
T

and u,v ∈ P(H ′) such that uv 6∈ V (H ′), {w ∈ P(H ′) : uw ∈
V (H ′)}= {w ∈ P(H ′) : vw ∈V (H ′)}.

Proof We only prove that both statements are equivalent.
Suppose that the first one is true, and let H ′ be a connected
component of H∗

T and u,v ∈ P(H ′) such that uv 6∈ V (H ′).
Suppose that w ∈ P(H ′) satisfies that uw ∈V (H ′). Then, by
the hypothesis, uv ∈ V (H ′) or vw ∈ V (H ′). Since the first
possibility is not true, vw ∈ V (H ′). We conclude from this
reasoning that {w∈P(H ′) : uw∈V (H ′)}⊆{w∈P(H ′) : vw
∈ V (H ′)}. Similarly, {w ∈ P(H ′) : vw ∈ V (H ′)} ⊆ {w ∈
P(H ′) : uw ∈V (H ′)}. Therefore, the equality holds.

Now suppose that the second statement is true, and let
H ′ be a connected component of H∗

T , uv ∈ V (H ′) and w ∈
P(H ′). If uw ∈V (H ′), nothing else is necessary to conclude
that the first statement is true. Otherwise, by the hypothesis,
{x ∈ P(H ′) : ux ∈ V (H ′)} = {x ∈ P(H ′) : wx ∈ V (H ′)}.
Since v is in the first of these sets, it is also in the second.
Therefore, vw ∈V (H ′). ut

On the other hand, if G is a chordal graph and S is a min-
imal vertex separator of G, then CS =

⋂
v∈S

Cv. Therefore, CS

induces a subtree of every clique tree of G. In combination
with Proposition 5, we get one more necessary condition.

Necessary condition number 5 For all T ∈T and H ′ con-
nected component of H∗

T , P(H ′) induces a subtree of T .

Fig. 3 A family of trees not satisfying the fifth necessary condition

As an example, consider the trees of Figure 3. It is not
difficult to check that this family satisfies the first four nec-
essary conditions. However, the connected component H ′ of
H∗

T containing 25 has only one more vertex, namely, 45.
Then, P(H ′) = {2,4,5}. This set does not induce a subtree in
any of the trees. Therefore, there is no chordal graph whose
clique trees are just these two.
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Proposition 5 tells us that there is a way to find the sets
CS by only looking at the clique trees of the graph. Now we
find another way also based on the clique trees:

Proposition 6 Let G be a chordal graph, S ∈ S (G) and
C1C2 ∈ E(τ (G)) such that C1∩C2 = S. Define TG[C1,C2] =⋃
T∈τ(G)

T [C1,C2]. Then, TG[C1,C2] = CS.

Proof Let C be any element of TG[C1,C2] and T ∈τ (G)
such that C ∈ T [C1,C2]. Since T is a clique tree, C1∩C2 ⊆C
and hence C ∈ CS. Therefore, TG[C1,C2]⊆ CS.

Now suppose that C ∈ CS. If C = C1 or C = C2, it is
clear that C ∈TG[C1,C2]. Otherwise, by Proposition 4, C1C2
is adjacent to CC1 in H∗

τ(G) or C1C2 is adjacent to CC2 in
H∗

τ(G). Suppose without loss of generality that the first is
true. Let T be a clique tree of G such that T −CC1 +C1C2
is also a clique tree of G. Then, C ∈ T [C1,C2] and thus C ∈
TG[C1,C2]. Therefore, CS ⊆TG[C1,C2] and the equality fol-
lows. ut

Remember that the set T [u,v] was defined as T [u,v] =⋃
T∈T

T [u,v]. Then,

Necessary condition number 6 For all T ∈ T and uv ∈
E(T ), T [u,v] induces a subtree of T .

Necessary condition number 7 For all H ′ connected com-
ponent of H∗

T and uv ∈V (H ′), T [u,v] = P(H ′).

Consider again the trees in Figure 3. We see easily that
T [2,5] = {2,3,4,5}. Therefore, the trees of Figure 3 sat-
isfy the sixth necessary condition, but they do not satisfy the
seventh necessary condition.

3 Main results

The goal of this section is to find some necessary and suf-
ficient conditions for a family T to be equal to the family
of clique trees of a chordal graph, in the hope of deriving
a procedure, running in polynomial time with respect to the
number of members of T and the number of vertices the
trees in T have, to solve the decision problem.

Clique trees were defined by the fact that each set Cv
induces a subtree. But these are not necessarily the only
sets that induce subtrees in every clique tree of the chordal
graph. We define S C (G) as the family of subsets of C (G)
inducing a subtree in every clique tree of G. The symbol
to denote this family is derived from the initial letters of
the words subtree and chordal, and should not be confused
with a mixture between S (G) and C (G). Since any fam-
ily of subtrees of a tree is Helly [6], it can be deduced that
S C (G) is a Helly family. It is not difficult to see that the
intersection of members of S C (G) is in S C (G) and that,

if F1,F2, ...,Fn ∈S C (G) satisfy that for all 1 < i ≤ n there

exists j < i such that Fi∩Fj 6= /0, then
n⋃

i=1
Fi ∈S C (G). Such

unions are called connected. A subfamily B of S C (G) is
called generating if, for each F ∈S C (G) such that |F | ≥ 2,
F can be expressed as the connected union of some members
of B.

The first result about generating subfamilies is as fol-
lows:

Proposition 7 Let G be a chordal graph and B a generat-
ing subfamily of S C (G). Then:

(a) T is a clique tree of G if and only if each member of B
induces a subtree of T .

(b) Let F = B∪{{C} : C ∈C (G)}. Then, the intersection
graph of F is chordal and has the same clique trees as
G.

Proof (a): Let T be a clique tree of G. Then, since B ⊆
S C (G), each member of B induces a subtree of T .

Conversely, suppose that T is a tree with vertex set C (G)
such that every member of B induces a subtree of T . For
every v ∈V (G), either Cv is a unit set or it can be expressed
as the connected union of members of B. Thus, for every
v∈V (G), Cv induces a subtree of T . Therefore, T is a clique
tree.

(b) Set G′ = L(F ). L(F ) can be represented as the in-
tersection graph of subtrees of any clique tree of G, so it is a
chordal graph [4].

Now we find the cliques of L(F ). Let F ′ be a clique of
L(F ). Then, F ′ is an intersecting subfamily of F . Since
F can be represented as a family of subtrees of a tree, and
hence is Helly [6], we can conclude that there exists C ∈
C (G) such that F ′ = DC := {F ∈F : C ∈ F}. Conversely,
as F is separating, it is possible to prove that, for each
C ∈ C (G), DC is a clique of L(F ). Therefore, the family of
cliques of L(F ) consists of all the sets DC, C ∈ C(G). For
F ∈F , the set of cliques of L(F ) containing F is {DC : C ∈
F}. Therefore {Cv}v∈V (G′) ∼= F . By the construction of F ,
it is a consequence of part (a) that T is a clique tree of G
if and only if each member of F induces a subtree of T ,
that is, T is a clique tree of G′. Therefore, G and G′ have the
same clique trees. ut

In our context, Proposition 7 means that if someone found
a chordal graph making the answer to our decision prob-
lem affirmative, not revealing what the graph is but revealing
one family generating all the subtree-inducing subsets of the
clique trees of the graph, we would be able to verify it our-
selves by constructing another graph. Consequently, know-
ing the generating family is almost as important as knowing
the chordal graph itself. This also suggests that, given T ,
trying to derive from it a generating family for a potential
chordal graph with family of clique trees equal to T might
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be a very useful approach. Our next steps go in that direc-
tion.

Theorem 3 Let G be a chordal graph. Then, {CS : S ∈
S (G)} is a generating subfamily of S C (G).

Proof It is clear that, for each S ∈S (G), CS ∈S C (G).
Let A ∈ S C (G), |A| ≥ 2. In order to prove that A is

the connected union of sets of he form CS, we take T1 ∈
τ (G). Let C1C2 be an edge of T1[A]. Since C1,C2 ∈ A and
A∈S C (G), T [C1,C2]⊆ A for all T ∈ τ (G). Consequently,
we can apply the statement and terminology of Proposition 6
to get that CC1∩C2 = TG[C1,C2]⊆ A. As T1[A] is connected,
each element of A is the endpoint of an edge of T1[A], so
A =

⋃
C1C2∈E(T1[A])

CC1∩C2 . The fact that T1[A] is a subtree also

makes the union be connected.
Therefore, {CS : S ∈S (G)} is a generating subfamily

of S C (G). ut
In view of propositions 5 and 6, there is at least a cou-

ple of procedures based on looking at all the clique trees of
the graph for obtaining this generating subfamily, such as
finding the sets TG[u,v] or P(H ′). As a consequence, if we
followed the same procedures on a family T of trees, a po-
tential graph having T as its family of clique trees could be
obtained.

Theorem 4 Let T be a family of trees, all having the same
vertex set V , T1 ∈T , F = {T [u,v] : uv∈E(T1)} and F ′ =
F ∪ {{v} : v ∈ V}. Then, there exists a chordal graph G
such that τ (G) = T if and only if L(F ′) is chordal and
τ (L(F ′)) = T .

Proof Suppose that there exists a chordal graph G such that
τ (G) = T . Then, by Proposition 6 and Theorem 3, F is
a generating subfamily of S C (G) and, by Proposition 7,
L(F ′) is chordal and τ (L(F ′)) = T .

The converse is clearly true. We just need to set G =
L(F ′). ut

In view of Theorem 4, the answer to our problem solely
depends on whether L(F ′) is a solution or not. In order to
be a solution, two natural conditions arise, namely, all the
members of T must be clique trees of L(F ′) and no other
tree can be a clique tree of L(F ′).

If L(F ′) is a solution to the problem and we want to
apply to L(F ′) the procedure described in Theorem 1 to find
clique trees, we need to know what the family of cliques of
L(F ′) is. Reasoning as in the proof of Proposition 7, part
(b), the family of cliques of L(F ′) consists of all the sets
Dv = {F ∈F ′ : v ∈ F}, v ∈V .

In order to give weights to the edges of the clique graph,
we note that |Du ∩Dv| = |{F ∈ F : {u,v} ⊆ F}|. Con-
sequently, if T and T ′ are two trees in T such that T ′ =
T −wx + uv, we must have that Du ∩Dv = Dw ∩Dx. This
motivates the following result:

Theorem 5 Let T be a family of trees, all having the same
vertex set V , T1 ∈ T and F = {T [u,v] : uv ∈ E(T1)}. For
u,v ∈ V , u 6= v, define Duv = {F ∈F : {u,v} ⊆ F}. Then,
there is a chordal graph G such that τ(G) = T if and only
if the following conditions are satisfied:

1. For all F ∈F and T ∈T , T [F ] is a subtree of T .
2. For all u,v ∈V , u 6= v, T ∈ T and wx ∈ E(T ) such that
{w,x} ⊆ T [u,v] and Duv = Dwx, T −wx+uv ∈T .

Proof Suppose that there is a chordal graph G such that
τ (G) = T . Define F ′ as in Theorem 4. Then, τ (L(F ′)) =
T . As the dual clique family of L(F ′) is isomorphic to F ′

(see proof of Proposition 7), condition 1. is satisfied.
Let T be any tree in T and suppose that w,x are two

vertices in T [u,v] such that Duv = Dwx. Then, by Theorem
1 and the remark previous to this theorem, T + uv−wx is a
clique tree of L(F ′), that is, T +uv−wx ∈T .

Conversely, suppose that conditions 1. and 2. hold. Then,
by 1., L(F ′) is a chordal graph such that T ⊆τ (L(F ′)).
Now, let T ∈T and T ′ adjacent to T in Hτ (L(F ′)). Take the
edges uv and wx such that T ′ = T −wx + uv. Then, Duv =
Dwx and, by 2., T ′ ∈ T . From this reasoning and the fact
that, by Proposition 1, Hτ (L(F ′)) is connected, we conclude
that T =τ (L(F ′)). ut

It is clear that F and the sets Duv can be found in poly-
nomial time with respect to |T | and |V |. Condition 1. can
also be tested in polynomial time. Moreover, for each pair of
different vertices u,v and T ∈T , the number of edges wx in
T such that Duv = Dwx cannot be larger than |V |−1. There-
fore, the number of operations necessary to test condition
2. is polynomial. As a conclusion, the whole problem can
be solved polynomially. However, developing an algorithm
that could reduce the complexity of the solution is outside
the scope of this paper.

Now let us discuss some examples. Consider the trees of
Figure 3. For them, F = {{1,3},{2,3},{3,4},{2,3,4,5}}.
This family clearly satisfies condition 1 of Theorem 5. How-
ever, D25 = D35 and the tree obtained by removing edge 25
from the first tree of Figure 3 and adding 35 to it is not in
the family.

Now we offer an example where condition 2 is satis-
fied but condition 1 is not. Let T be the family of trees in
Figure 4. Then, F = {{1,2,3},{2,3,4},{1,2,3,4}}. The
only equalities between sets Duv are given by D12 = D13
and D24 = D34. The fact that T1 − 12 + 13, T1 − 34 + 24,
T3−13+12, T3−24+34, T4−12+13, T4−24+34, T5−
13 + 12 and T5−34 + 24 are all in T means that condition
2 is satisfied. However, T2[{1,2,3}] and T2[{2,3,4}] are not
subtrees. Therefore, condition 1 is not satisfied.

Finally, let T be the family of trees in Figure 5, which
had already been considered in Figure 1. We leave it to the
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Fig. 4 A family of trees satisfying condition 2 of Theorem 5 but not
satisfying condition 1

reader to verify that conditions 1 and 2 are satisfied. F =
{{1,3},{3,5},{1,2,3},{3,4,5}}, and the graph L(F ′) ap-
pears in the lower part of Figure 5. It is easy to use Theorem
1 to check that T =τ (L(F ′)).

We end the paper by finding an expression for all the
graphs that can solve the general problem.

As a first step, given a chordal graph G, we characterize
the graphs with the same clique trees as G. Every graph can
be determined by its dual clique family, since its intersec-
tion graph is the graph itself. For the case of G, the sets CS,
with S minimal vertex separator, can be expressed as inter-
section of members of the dual clique family. If G′ is another
chordal graph with the same clique trees as G, then the sets
of the form CS are the same as in G because, as we saw by
Proposition 6, there is an expression for them in terms of the
clique trees and again can be expressed as the intersection
of members of the dual clique family of G′. These ideas and
some others lead to the following theorem:

Theorem 6 Let G and G′ be two chordal graphs. Then, G
and G′ have the same clique trees if and only if G′ = L(F ),
where F is a separating subfamily of S C (G) such that, for
each S ∈S (G),

⋂

F∈F ,CS⊆F

F = CS.

Proof Suppose that G′ = L(F ), where F satisfies the state-
ment of the theorem.

If we repeat the reasoning of Proposition 7, part (b), then
we also get that {Cv}v∈V (G′) ∼= F . Therefore, since F ⊆
S C (G), every clique tree of G is a clique tree of G′.

Now, let T be a clique tree of G′. Then, each member of
F induces a subtree of T . The condition that, for each S ∈
S (G),

⋂

F∈F ,CS⊆F

F = CS, implies that CS induces a subtree

of T . Therefore, by Proposition 7 and Theorem 3, T is a
clique tree of G. It follows that G and G′ have the same
clique trees.

Fig. 5 A family of trees for which the answer to the problem is affir-
mative and the chordal graph, given by Theorem 4, having them as all
its clique trees

Conversely, suppose that G and G′ are two graphs with
the same clique trees. Then, S C (G) = S C (G′). Set F =
{Cv}v∈V (G′). Thus, G′ ∼= L(F ) and, by the previous state-
ment, F ⊆S C (G). Now, let S∈S (G) and C1C2 ∈E(τ (G))
such that C1 ∩C2 = S. The equality of clique trees for both
graphs implies that TG[C1,C2] = TG′ [C1,C2]. By Proposi-
tion 6, TG[C1,C2] = CS. On the other hand, also by Propo-
sition 6, TG′ [C1,C2] can be expressed as an intersection of
members of the dual clique family of G′, that is, as an inter-
section of members of F . The equality

⋂

F∈F ,CS⊆F

F = CS

immediately follows. ut
We know that when, given T , the question whether there

is a chordal graph whose family of clique trees equals T has
an affirmative answer, we can use Theorem 4 to construct
a graph with the required clique trees. If we combine this
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with Theorem 6, then we will be able to characterize all the
chordal graphs with family of clique trees equal to T .

Let T , T1, F and F ′ be the same as in Theorem 4,
i.e., T a family of trees on the same set V of vertices, T1 ∈
T , F = {T [u,v] : uv ∈ E(T1)} and F ′ = F ∪{{v} : v ∈
V}. Define the span of F , Sp(F ), as the family of unit
sets contained in V plus all the sets that can be obtained as
connected unions of members of F . Then:

Theorem 7 Let Ch(T ) = {G : τ (G) = T }. Then, one of
the following is true:

∗ Ch(T ) = /0.
∗ G ∈Ch(T ) if and only if G = L(F ′′), where F ′′ a sepa-

rating subfamily of Sp(F ) such that, for all uv ∈ E(T1),⋂

F∈F ′′,{u,v}⊆F

F = T [u,v].

Proof Suppose that Ch(T ) 6= /0. Then, by Theorem 4, L(F ′)∈
Ch(T ), and, by Proposition 6 and Theorem 3, Sp(F ) =
S C (L(F ′)). Now let uv ∈ E(T1) and F ∈ Sp(F ) such
that {u,v} ⊆ F . By the above, F induces a subtree of every
T ∈T . Thus, T [u,v]⊆ F for every T ∈T and T [u,v]⊆ F .
Therefore, for F ∈ Sp(F ), {u,v}⊆ F if an only if T [u,v]⊆
F .

The conclusion of the theorem follows if we apply The-
orem 6 to L(F ′). ut

As an example, consider the family T in Figure 6. It
holds that Ch(T ) 6= /0. F = {{1,3},{2,3},{3,4},{2,3,4,5}}
and L(F ′) equals the graph G in the figure. The figure also
displays another graph G′ ∈Ch(T ). G′ can be viewed as the
intersection graph of the family F ′′ = {{1},{2},{4},{5},
{1,2,3},{1,3,4},{2,3,4,5}}. It is not hard to check that
F ′′ ⊆ Sp(F ).

Let T1 be the tree in the upper left of the figure.
The members of F ′′ that contain {1,3} are {1,2,3} and

{1,3,4}. Their intersection equals T [1,3].
The members of F ′′ that contain {2,3} are {1,2,3} and

{2,3,4,5}. Their intersection equals T [2,3].
The members of F ′′ that contain {3,4} are {1,3,4} and

{2,3,4,5}. Their intersection equals T [3,4].
The only member of F ′′ that contains {2,5} is {2,3,4,5},

which is equal to T [2,5].
Therefore, we see that this example is in agreement with

Theorem 7.
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