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Abstract— The analog placement algorithm Plantage, presented in
this paper, generates placements for analog circuits with comprehensive
placement constraints. Plantage is based on a hierarchically bounded
enumeration of basic building blocks, using B*-trees. The practically
relevant solution space is thereby enumerated quasi-complete. The sets
of possible placements of the basic building blocks are represented and
combined in a new efficient way, using enhanced shape functions. The
result of Plantage is the Pareto front of placements with respect to
different aspect ratios. The whole approach is deterministic, in contrast
to existing analog placement algorithms.

I. INTRODUCTION

In modern integrated circuits, analog parts gain more and more
importance. The function and performance of these analog parts are
heavily influenced by the placement of the modules of the circuit.
For digital circuits, many layout approaches are successfully used in
the semiconductor industry. For analog circuits, different approaches
are currently in research to avoid time-consuming and error-prone
manual design. The automation of analog layouts presents a different
problem, because such layouts must fulfill many constraints. These
constraints are necessary to meet the performance specifications. For
example, unbalanced parasitics due to an asymmetrical layout may be
detrimental to the power supply rejection ratio or the offset voltage
of an analog circuit.

A. Analog Circuit Placement Requirements

A common layout approach is to separate placement and routing.
This paper addresses the automation of the placement process of
analog circuits. Typical placement constraints of analog layouts are
considered. These placement constraints, listed below, are usually
formulated to reduce the impact of parasitics, process variations, and
different operating conditions on circuit performance.

• Device-proximity constraints are used for different reasons. Due
to local variations during the fabrication process, devices exhibit
unwanted deviations from each other (“mismatch”), which can
result in performance degradation. Variations in the operating
conditions, such as temperature or supply voltage, have the same
effect. The placement of matched devices in close proximity
reduces the impact of these variations [1].

• Symmetry constraints are used for geometric and electrical
issues. For example, symmetric placement reduces the sensitivity
to on-die thermal gradients. It is also used to balance parasitic
resistors and capacitors on both halves of a differential circuit.
Every placeable element of a circuit, such as a transistor or a
capacitor, is called module in this paper. Symmetry constraints
are formulated as linear equations. For some module i, the point
(xi, yi) denotes the lower left cooordinates of i in the layout. The
tuple (wi, hi) represents the width and height of i. The module
i′ denotes a second module that is to be placed symmetrically to
i. For modules, which are self symmetrical, i is equal to i′. An
example of symmetry constraints is shown in Fig. 1(a), where
all modules are arranged with respect to a vertical symmetry
axis. For a vertical symmetry, linear equations are formulated as
follows:
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Fig. 1. Placement with symmetry (a) and common centroid (b) constraint

The equations for a horizontal symmetry axis are defined anal-
ogously.

• A common centroid constraint is formulated to arrange the
centers of gravity for groups of modules. This improves the
beneficial effects of the symmetry constraint [2]. For example, a
differential pair can be formed by eight transistors and arranged
as shown in Fig. 1(b). The transistors A1, A2, A3, and A4 are
connected in parallel. The same applies for the transistors B1,
B2, B3, and B4. All transistors have the same size and the two
groups of transistors share the same center of gravity. For two
groups of modules, A and B, a common centroid constraint is
defined as follows:X
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• Minimum distance constraints are formulated if modules cannot
abut on each other directly, but need a minimum distance.
For example, some transistors sharing the same well may abut
directly, but a minimum distance is needed from transistors
outside of the common well. In addition, routing area has to
be considered during placement. Formally, this constraint can
be defined as a linear inequality.

• Variant constraints restrict the combination of possible real-
izations (variants) of circuit modules. For example, realization
variants are used for transistors, which may have a different
number of fingers, or for capacitors, which may have different
possible aspect ratios. Additionally, some modules can be rotated
or mirrored. When a module has a set of possible variants,
the placement algorithm has a higher degree of freedom. Better
placements can be achieved. In practice, however, the combina-
tion of the different variants is not completely free. For example,
the transistors of a differential pair must be realized using the
same number of fingers to ensure matching.

A successful routing of the layout will also depend on the place-
ment constraints being satisfied. For example, in a differential circuit,
the wires of both signal nets must have symmetric parasitic resistances
and capacitances [2][3]. This can be ensured if the connected modules
are laid out symmetrically as well. An economic criterion is the
compactness of the layout represented by the area usage of the
placement. In conclusion, analog layouts have to be as compact as
possible, while meeting all placement constraints. The minimization
of the netlength is regarded secondary to compactness.
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Fig. 2. B*-tree and its corresponding placement

B. Context of this work

For analog placement, existing approaches can be divided into
two classes: the positions of the modules are stored using ei-
ther absolute coordinates or topological representations. The ap-
proaches [4][5][6][7] use absolute coordinates. Using this represen-
tation, arbitrary constraints can be formulated using the coordinates
directly and every possible placement can be described. A disadvan-
tage is the high dimensionality of the solution space, which is R

2n

for n modules. The high dimensionality results in high computation
times for placement algorithms based on this representation.

The topological representations of placements, proposed during the
last years, show a much smaller solution space, while being able
to encode all admissible [8] placements. These encodings do not
allow module overlaps in contrast to absolute representations. Topo-
logical representations include Sequence Pair [9], Bounded Sliceline
Grid [10], O-Tree [8][11], Corner Block List [12][13], TCG-S [14],
and B*-tree [15][16] representations. As pointed out in [15][16], the
B*-tree has the lowest solution space redundancy. Therefore, the
presented placer Plantage is based on B*-trees.

Fig. 2 shows an example of a B*-tree and the corresponding
placement. Each node in a B*-tree represents a module. The algorithm
proposed in [15] forms the placement of a given B*-tree according to
the following rules: the module of a left child node is placed above its
parent module, the module of a right child node is placed to the right
of its parent module. If the y-projections of two modules overlap,
the module that comes first in the preorder traversal of the tree is
placed to the left of the other. The preorder traversal of the tree in
the example above is ABCD. A and B are placed to the left of C, B
is placed to the left of D. The resulting placement is compacted to
the lower left corner.

Constraints can be used efficiently to restrict the solution
space [17][11][16][18][19][20]. The authors of these papers propose
Simulated Annealing algorithms that consider symmetry constraints
with a restricted solution space using O-trees [11], B*-trees [16],
Sequence Pairs [18][19], and Sequence Pairs with Johnson’s Priority
Queue [20]. In [21], a different approach is presented, based on
two modifications of the B*-tree: the first is to handle symmetry
constraints with so-called Symmetry Islands and the second to
combine these Symmetry Islands with the rest of the modules. A
placement algorithm with symmetry and other placement constraints
is presented in [22]. The concept of dummy nodes in constraint graphs
is introduced to fulfill symmetry constraints. The authors of [13]
propose a Sequence Pair based approach for analog placement with
the capability of handling common centroid constraints. Modules
with common centroid constraints are clustered and placed with
either a modified Corner Block List or a grid based algorithm. All
previous works mentioned here use Simulated Annealing to optimize
placement. In contrast, Plantage is deterministic.

C. Contributions of this Paper

In this section, an overview of the approach will be given.
All admissible placements of a given circuit can be generated based

on B*-trees. A complete enumeration of all B*-trees would yield the
optimal solution. However, this would result in a impractically large
number of B*-trees to be evaluated. Hierarchy is used to solve this
complexity problem. For small parts of the circuit, all placements are
enumerated. These partial solutions are then combined to generate a

placement for the whole circuit. Joining the partial solutions together
using their bounding boxes would deteriorate the area usage. To avoid
this, a new concept, the enhanced shape function, is introduced. The
result of the proposed algorithm is a Pareto front of placements with
different aspect ratios.

Analog circuits show a hierarchical structure [1][23]. An analog
circuit can be decomposed into several building blocks [24][25], e.g.,
current mirrors or differential pairs. Thus, an analog circuit can be
described as a hierarchy tree, where the leaf nodes are the modules
and the root node represents the whole circuit.

The presented algorithm, Plantage, is a new and deterministic
approach for analog circuit placement. Plantage uses a hierarchy
tree and incorporates a bottom-up approach. The algorithm starts
with basic module sets, consisting of only a few leaf nodes of the
hierarchy tree, which share the same parent node. The algorithm
enumerates the complete solution space for the basic module sets.
This enumeration is done based on B*-trees. The enumeration is
accelerated using feasibility checks, as proposed in [16][20]. A new
algorithm is proposed in Section II to transform a given B*-tree into
a placement considering all constraints for analog circuit placement.
The Pareto optimal placements for the basic module sets are stored
using enhanced shape functions, also introduced in this paper.

After calculating all possible placements for the basic module sets,
the algorithm steps up to next level in the hierarchy: it then combines
the results of the previously calculated placements for the basic mod-
ule sets. The Pareto optimal results are stored in an enhanced shape
function for the current hierarchy level. Suboptimal combinations are
discarded in every hierarchy level to limit the computational effort
in subsequent steps. This methodology is executed until the highest
hierarchy level is reached, covering the whole circuit. The enhanced
shape function of the whole circuit represents the Pareto front of
optimal layouts, in contrast to other state-of-the-art approaches which
produce a single layout. This enables the designer to select among
different valid designs having different aspect ratios.

Plantage has the following features:

• Analog circuit placement constraints (see Section I-A) are ful-
filled

• Computation of a set of possible placements with different aspect
ratios instead of a single solution

• Based upon a non-slicing topological placement structure, the
B*-tree

• Full enumeration of basic module sets, guided by the hierarchy
of the circuit

• Deterministic algorithm, suitable for parallelization
• Variant selection is integrated seamlessly in the enumeration

This paper is organized as follows: Section II describes the new
algorithm to generate a placement for a given B*-tree. In Section III,
enhanced shape functions are introduced. Section IV describes the
hierarchical placement based on enhanced shape functions. Section V
shows experimental results computed by the presented approach. A
conclusion is given in Section VI.

II. B*-TREE PLACEMENT CONSIDERING LINEAR CONSTRAINTS

Many different B*-trees have to be evaluated for parts of the circuit
as well as for the whole circuit. The evaluation of a B*-tree is based
on its corresponding placement. The proposed methodology is used
to generate placements with respect to arbitrary linear constraints
from a feasible B*-tree. Linear constraints are needed for symmetry
and common centroid constraints, as well as for minimum distance
constraints (see Section I-A).

To model the horizontal and vertical relationships between mod-
ules, two constraint graphs are used. A constraint graph (CG) is a
directed graph consisting of a set of nodes V and a set of directed
edges A. Directed edges are ordered pairs of nodes. In this approach,
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each module has a corresponding node in the horizontal and the
vertical constraint graph.

Fig. 3 shows an overview of the methodology. Algorithm 1 gener-
ates a vertical CG for the given B*-tree. For every edge (ni, nj) in the
vertical CG, an inequality yi +hi < yj is formulated, which requires
module j to be placed above i. Fig. 4 shows the vertical CG for the
example in Fig. 2. For this vertical CG, inequalities are formulated as
follows: yA ≥ yS , yB ≥ yA + hA, yC ≥ yS , yD ≥ yC + hC ,
yE ≥ yB + hB , yE ≥ yD + hD. Together with the linear
constraints (symmetry, common centroid, minimum distance), a linear
program (LP) is set up minimizing the height of the placement. The
results of the LP are the y coordinates of the modules. Algorithm 2
generates a horizontal CG based on the y coordinates and the given
B*-tree. A linear program is set up analogously to the vertical case,
with the results being the x coordinates.

Algorithm 1: buildVerticalCG(CGNode thisNode, predecessor)

begin
if B*-tree node of thisNode has a left child then

leftNode ← new CG node for left child;
add edge from thisNode to leftNode;
buildVerticalCG(leftNode, thisNode);

else
add edge from thisNode to the end node;

if B*-tree node of thisNode has a right child then
rightNode ← new CG node for right child;
add edge from predecessor to rightNode;
buildVerticalCG(rightNode, predecessor);

end

The vertical constraint graph is built as described in Algorithm 1:
if module i is a left child of module j in the B*-tree, then ni is the
direct successor of nj in the CG. If module i is a right child of module
j in the B*-tree, then ni and nj share the same predecessor. To start
Algorithm 1, a start node is created. Also, a node corresponding to
the root node of the B*-tree is added with the start node being its
predecessor. Both nodes are passed to the algorithm.

The CG for the vertical axis is used to formulate a linear program:

yopt = arg miny yE

s.t. Mv · y ≥ dv| {z }
Minimum distance constraints

, Cv · y = kv| {z }
Symmetry & common centroid constraints

(5)

The vector y is the vector of y coordinates for all modules and yE is
the y coordinate of the end node. The matrix Mv , together with dv ,
defines the minimum vertical distances between the modules. The
matrix Cv , together with the vector kv , define the symmetry and
common centroid constraints for the vertical axis. Minimizing yE is
equivalent to minimizing the total height of the placement. The vector
yopt contains the optimal y coordinates for the given B*-tree.

Based on the results of the vertical LP, the y coordinates of the
modules are known, and a list of y regions is set up. The modules are

then “registered” consecutively in the list of y regions and a CG for
the horizontal axis is formulated. This is described in Algorithm 2.

Algorithm 2: buildHorizontalCG()

begin
startNode ← new CG node as start;
endNode ← new CG node as end;
create list of y regions of all modules;
initialize all y regions with startNode;
forall modules in preorder do

modNode ← new CG node for module;
forall regions r in region list from module.y to module.y
+ module.height do

shadowNode ← node of the module which is
registered in r;
add edge to modNode from shadowNode;
register module in r; // Shadow that segment

remove multiple edges;
add edges from all nodes in region list to endNode;

end

Fig. 5 demonstrates this algorithm for a simple example. On the left
side in the Figs. 5(a) to 5(f), the list of y regions is shown. To set up
this list of y regions, yN as well as yN +hN is stored for each module
in a list of borders. This list of borders is then sorted in ascending
order and multiple entries at the same y coordinate are removed. The
regions between two borders form the y regions list. A module can
be registered in a y region if its y projection overlaps the region. The
modules are registered in the order defined by the preorder traversal
of the B*-tree. In Fig. 5(a), no module is registered yet, and all entries
of the region list are initialized with S, denoting the startNode of the
CG. Module A is registered as shown in Fig. 5(b). Module A is now
an entry in the region list, and an edge from the start node to the
module node is added. The same is done for module B in Fig. 5(c).
In Fig. 5(d), module C is registered. The y projection of this module
shadows module A and parts of module B. As a result, two edges
are added from A to C and from B to C. The two shadowed entries
of the region list are then replaced by C. Module D is then added,
shadowing parts of module B. An edge is added from B to D and the
upper entry of the region list is replaced by D. After all modules are
registered, CG nodes which have corresponding entries in the region
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Fig. 4. Example: B*-tree and its corresponding vertical CG.
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list are connected to the end node.
A horizontal LP is then set up according to the horizontal CG. This

LP is defined similarly to the LP for the vertical axis, as defined in (5).
After solving the horizontal LP subject to the linear constraints of the
horizontal axis, the x and y coordinates of all modules with nodes in
the B*-tree are known. These coordinates represent the corresponding
placement.

III. ENHANCED SHAPE FUNCTIONS

In this section, enhanced shape functions are introduced to handle
the combination of different partial placements efficiently. A short
overview of standard shape functions is given in the next section. The
enhanced shape function and the enhanced combination of shapes is
described in the subsequent sections.

A. Overview of Shape Functions

Shape functions [26] are conventionally used to calculate compact
placements for a set of rectangular modules. A shape function is
defined as an ordered set of shapes, representing placements with
different aspect ratios. Each shape describes one possible placement
of a module set by its bounding rectangle size, formulated as a tuple
(w, h), where w and h denote the width and height, respectively.

To determine placements, the shape function of the module set
is calculated recursively: The set of modules is partitioned into two
subsets. A shape function is calculated for each subset. If the subset
only contains one module, the shape function only has one shape,
representing the size of this module. To combine the shape functions
of the two subsets, all possible combinations of the shapes of both
shape functions are evaluated. This can be done quickly. Since shapes
represent the bounding rectangles of their corresponding placement,
combining two shapes means finding a common bounding rectangle
for the two corresponding placements. It is possible to combine two
placements horizontally and vertically. This is called horizontal and
vertical addition. The result of a horizontal addition of two shapes
(w1, h1) and (w2, h2) is (w1 + w2, max(h1, h2)). An example of
horizontal addition is shown in Fig. 6. The result of a vertical addition
is (max(w1, w2), h1 + h2). Fig. 7 shows an example of a shape
function after all combinations have been evaluated. In this plot, there
are suboptimal shapes which have a bigger height than other shapes
having the same or even lower width, and are removed before further
calculations are performed. Removing suboptimal shapes dramatically
reduces the time needed in subsequent steps, while the quality of the
solution remains unchanged. This is a key feature of shape functions.
A continuous shape function can be drawn based on the remaining
shapes, as shown in Fig. 7, which can be considered the Pareto front
of possible placements.

After the recursive algorithm has terminated, the final result is a
shape function for the circuit, representing different placements with
different aspect ratios. This is a key feature of shape functions.

B. Definition of Enhanced Shape Functions

A corresponding placement of a shape can be described as a slicing
tree, because it is built by horizontal and vertical additions of other
placements [27]. A slicing tree cannot handle non-slicing placements.
This limits the solution space and degrades the solution quality.

Enhanced shape functions, proposed here, have the key features
of shape functions while at the same time being able to handle
non-slicing placements. An enhanced shape is defined as (w, h, α).

h

w

Continuous SF

Shapes forming the SF

Suboptimal Shapes

α

β

γ

δ

Fig. 7. All shapes of a resulting shape function (SF), denoting the
corresponding B*-trees by Greek letters
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In contrast to standard shapes, the corresponding B*-tree α of a
placement is stored in addition to the placement’s bounding box
(w, h). The B*-tree allows efficient combination of the enhanced
shape functions and their underlying modules, as described in the
subsequent section. The widths and heights are used to calculate
the Pareto front, and to select the suboptimal enhanced shapes to
be removed. An enhanced shape is suboptimal in two cases:

• It has a bigger height than other enhanced shapes having the
same or even lower width.

• It has a higher netlength than other enhanced shapes, having the
same width and height.

In this paper, B*-trees are denoted by Greek lower case letters.

C. Enhanced Shape Function Combination

To combine two enhanced shape functions, their enhanced shapes
are combined in pairs. In contrast to standard shapes, the combination
of two enhanced shapes (wi, hi, α) and (wj , hj , β) is done using the
B*-trees. The widths wi, wj and the heights hi, hj can be used to
estimate the resulting enhanced shape. For a horizontal addition, an
upper bound for the size of the resulting placement can be defined as
(wi +wj , max(hi, hj)). Using the B*-trees α and β, the size of the
resulting placement can be smaller than (wi + wj , max(hi, hj)).

Figs. 6 and 8 show the differences between the horizontal addition
of conventional and enhanced shapes for a simple example. Compar-
ing these figures, it is obvious that w1 + w2 is greater than wsum.
Generally speaking, better placements can be reached if the enhanced
shape function combination is used.

Two methods are proposed to add the B*-trees of enhanced shapes
horizontally and vertically. They are described in the following
paragraphs. It is shown, that the outcome of adding two feasible B*-
trees is also a feasible B*-tree for both methods.

Horizontal Addition: Given two B*-trees α and β, a horizontal
addition is performed by attaching the root node of β to the lowest,
rightmost node of α. The lowest, rightmost node of a B*-tree is
defined as the node with no right child, while the node itself as well
as all its predecessors are either right children or the root node.

The resulting placement is compact to the lower left corner, due to
the characteristics of the placement algorithm for B*-trees. Horizontal
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Fig. 9. An arbitrary B*-tree to define the in- and preorder traversal
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addition has a notable property. Any constraint, which was satisfied
by α and β before the addition is also satisfied by the resulting B*-
tree1. This can be derived from the in- and preorder traversals of the
B*-trees. The in- and preorder traversals of an arbitrary B*-tree, as
shown in Fig. 9, are defined as ordered lists recursively by in(A) :=
in(B), A, in(C) and pre(A) := A, pre(B), pre(C), respectively. Two

order relations are defined on the traversals: The order relation A
IN≺ B

means “A is a predecessor of B in the inorder traversal”, while A
PRE≺ B

means “A is a predecessor of B in the preorder traversal.”
The topologies of the B*-trees α and β are not changed by the

horizontal addition. Only one edge is added to connect the two B*-
trees. The feasibility of the constraints can be checked using the rel-
ative positions of the modules in the in- and preorder traversals [16].
Without loss of generality, the node C can be considered the root node
of β, and A the lowest, rightmost node of α. Due to this fact, the
relative positions of the modules in α and β in the in- and preorder
traversals do not change. Thus, any constraint, which was satisfied
before, is also satisfied after the addition of the two B*-trees. The
example given by Fig. 8 illustrates a horizontal addition.

Vertical Addition: A vertical addition is intended to arrange
two partial placements vertically, generating compact results. Fig. 10
shows a compact result of a vertical addition and its corresponding
B*-tree γ. Unlike the horizontal addition, the resulting B*-tree γ
cannot be generated by adding an edge from α to β. For this reason
an algorithm is proposed which iteratively forms a new B*-tree to
be the result of the addition of α and β. The topology is changed in
order to achieve better placements.

In a B*-tree, all modules, which can be reached from the root node
traversing right edges only are placed close to the baseline. These
modules are denoted as baseline modules in this paper. The proposed
approach segments the B*-tree β, with the root node of each segment
being a baseline module. Fig. 11 shows the baseline modules and the
segments of a B*-tree. Adequate nodes of α are then determined to
serve as the new parents of the segment root nodes, using a contour
based algorithm. This is done one segment after the other, from “left
to right,” in the order given in Fig. 11.

Fig. 12 illustrates how the B*-tree γ of Fig. 10 was built by the
algorithm. In Fig. 12(a), no segment of β is added to α. A contour
is drawn as a thick line above the placement for α. Then, the first
segment of β, the node D, is added in Fig. 12(b). The x projection
of D shadows B and parts of A. Node D is added as a left child
of module B, which limits the y coordinate of D when shifting it
downwards. According to the same rules, C is appended as a left
child of A, shown in Fig. 12(c).

1This is true as long as no additional constraints apply for the superset of
the modules of the two B*-trees.
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Fig. 12. Iteratively changing the B*-tree topology for a vertical addition

Also for the vertical addition, the constraints remain satisfied: The
ith and (i + 1)th segments of β are denoted as βi and βi+1, and
root(βi) denotes the root node of βi. The segments are added in
ascending order, as defined in Fig. 11. Before the addition, the in-
and preorder positions of the segments fulfill the following conditions:

in(root(βi))
IN≺ in(root(βi+1)) and pre(root(βi))

PRE≺ pre(root(βi+1)).
The root node of βi is then added to a node of α, denoted as
parent(βi), as a left child. Since the segments are added “from left to

right”, the parents fulfill the condition parent(βi)
IN≺ parent(βi+1) and

parent(βi)
PRE≺ parent(βi+1). As a consequence, the relative positions

of the modules in the in- and preorder traversals of α, βi and βi+1

do not change. Therefore, the feasibility of the constraints remains
unchanged2.

The key advantages of standard shape functions are retained by this
approach. After the addition of enhanced shape functions, all subop-
timal enhanced shapes are stripped. This reduces the computational
effort in subsequent steps. Furthermore, a set of possible placements
is stored, instead of a single solution.

IV. HIERARCHICALLY GUIDED ENUMERATION

The enumeration of the complete solution space yields the optimal
result. However, this cannot be performed for most circuits because
of long run times. This becomes clear when considering the number
of different B*-Trees for n modules [16]. There are 336 different
B*-Trees for 4 modules, while for 8 modules, there are 57, 657, 600
different B*-Trees. Thus, a complete enumeration is impossible in
practical cases. As a consequence, the presented enumeration ap-
proach is guided by hierarchy to limit the number of elements which
are considered in an enumeration run. The hierarchy can be illustrated
as a hierarchy tree, where the root represents the whole circuit.
The leaf nodes represent the modules, their parents represent analog
structures, such as differential pairs (DP) or current mirrors (CM).
Fig. 13 shows a typical schematic of a Miller operational amplifier,
together with its hierarchy tree. In this approach, the hierarchy tree is
generated automatically from the netlist. This is done by an algorithm
similar to the one proposed in [24][25] for the automatic generation
of sizing rules for analog circuits.

The hierarchy tree is used to perform a bottom-up enumeration.
First, all possible placements for the basic module sets are evaluated.
These basic module sets are formed by the modules of leaf nodes
having the same parent node in the hierarchy tree. In the given
example of Fig. 13, these sets are {P1, P2}, {N3, N4}, {P5, P6,
P7}, and {C, N8}.

The enumeration of all possible placements of a basic module set is
done by evaluating all possible B*-Trees for the modules of this set.
This procedure is called basic enumeration. For all feasible B*-Trees,
basic enumeration evaluates all possible variants of the modules, e.g.,
different numbers of fingers for a transistor, or different aspect ratios

2Similar to the horizontal addition, this is true as long as no additional
constraints apply for the superset of the modules of the two B*-trees.
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Algorithm 3: enumerateOnHierarchyLevelOf(element)

begin
resultESF ← empty enhanced shape function;
if element’s children are modules only then

basicEnumeration(element’s modules);
store resulting enhanced shape function in resultESF;

else
ESFList ← empty list of enhanced shape functions;
// Generate enhanced shape functions for the children
forall children of element do

childESF ← enumerateOnHierarchyLevelOf(child);
store childESF in ESFList;

// Try all combinations of the enhanced shape functions
forall combination sequences of the enhanced shape
functions in ESFList do

forall enhanced shapes in two enhanced shape
functions to be added do

combine B*-trees of the enhanced shapes
(Section III-C);
generate placements for B*-trees for evaluation
(Section II);
append resulting enhanced shapes to resultESF;

drop suboptimals from resultESF;
return resultESF;

end

for a capacitor. Variant constraints are considered in this step. The
result of the basic enumeration is an enhanced shape function storing
only the placements which potentially contribute to a good result for
the whole circuit. Since the basic enumerations are independent of
each other, they can be parallelized easily.

After Plantage has determined the enhanced shape functions of all
basic module sets, the algorithm steps up to the next hierarchy level.
At this level, the enhanced shape functions of the basic module sets
are combined in every possible sequence (see Section III-C). This is
described in Algorithm 3, which is the key algorithm in this approach.
In the example given by Fig. 13, the algorithm combines the enhanced
shape functions of the differential pair DP and the two current mirrors
CM1 and CM2 in every possible sequence3. These sequences are
DP+CM1+CM2, DP+CM2+CM1, CM1+DP+CM2, CM2+DP+CM1,
CM1+CM2+DP, CM2+CM1+DP. Then, the resulting enhanced shape
function is combined in every possible sequence with the enhanced
shape function of the basic module set {C, N8}.

The hierarchy is also used to fulfill proximity constraints. Because
the addition is performed based on a sequence defined by the
hierarchy, modules will be placed in close proximity, which are close
to each other in hierarchy.

Finally, the result of the presented approach is a set of possible
placements for the circuit, having different aspect ratios.

3Enhanced shape function additions are not commutative.

V. EXPERIMENTAL RESULTS

The approach proposed in this paper was implemented in C++.
All results were computed on a Pentium 4, running at 3.2GHz with
1024 MB RAM on Fedora Linux. To demonstrate the approach, place-
ments for different circuits are shown and discussed in Section V-A.
Publicly available benchmark circuits for analog placement do not
yet exist. To compare Plantage with other placement methods, two
circuits extracted from [18] are used. The comparison is discussed in
Section V-B.

A. Discussion of the Presented Approach

To demonstrate the effectiveness of the proposed approach, four
different circuits were placed. The results of the conducted experi-
ments are summarized in Table I. The Examples 3 and 4 are discussed
in more detail describing their constraints and where they can be seen
in the placements. The sizings of the modules originate from a large
semiconductor manufacturer and are taken from an up-to-date process
library. Thus, they can be considered representative of current analog
circuits.

Example 3 is a folded cascode op amp, consisting of 22 modules.
The schematic of this circuit and its constraints are shown in Fig. 14,
together with the hierarchy tree. There are three device proximity
constraints, a symmetry constraint, nine variant constraints, and a min-
imum distance constraint between the nMOS and pMOS transistors.
Plantage generates 12 different placements with different aspect ratios
in 44 seconds. Building the hierarchy tree takes 0.5 seconds. Fig. 15
shows the Pareto front and three placements. The symmetry group is
colored light gray. The placement is dominated by four big modules
P7-P10, causing a corner in the Pareto front, marked with a “�”. An
example of the close proximity constraints is that N1-N6 must always
be placed close to each other. The area usages of the placements are
always above 121%, because of empty areas caused by the minimum
distance constraints between nMOS and pMOS transistors.

Example 4 is a CMOS buffer amplifier similar to [28], shown
in Fig. 16. The complete circuit consists of 46 modules. The two
differential pairs DP1 (N1, N2) and DP2 (P3, P4) are replaced by
2 common centroid structures (N1a, N1b, N2a, N2b) and (P3a, P3b,
P4a, P4b), respectively. For this circuit, two common centroid con-
straints, twelve variant constraints, two device proximity constraints,
as well as a minimum distance constraint between the nMOS and
pMOS transistors are formulated. Three placements are shown in the
Figs. 17(b), (c), and (d). As demonstrated by the figures, a minimum
distance constraint is kept between nMOS and pMOS transistors. In
the placements, DP1 and DP2 are colored light gray. Since DP1
and DP2 are close to each other in hierarchy, they are placed in

Example 1 2 3 4
Name Miller Comparator Folded cascode Buffer

# of modules 13 10 22 46
# of variants per module 3-6 2 2-4 2-7
Constraints
# Device proximity 3 1 3 2
# Symmetry 2 1 1 0
# Common centroid 1 1 0 2
# Minimum distance 2 1 1 1
# Variant 3 5 9 12

Results
# of placements 35 4 12 114
Best area usage 115% 110% 121% 111%
Runtimes in seconds
Plantage 14 1 44 134
Building the hierarchy tree 0.3 0.3 0.5 1.2

TABLE I
SUMMARY OF EXAMPLE CIRCUITS AND RESULTS GENERATED BY THE

PROPOSED APPROACH.
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Fig. 15. Example 3: Placements and the corresponding Pareto front

close proximity. The same applies to the modules P22 and N24, as
well as P25, N26, P27, N28, all of them are marked dark gray. For
several transistors, different variants with different sizings are given
representing different numbers of fingers of the transistor gate. For
example, P39 has three different sizes in the shown placements. The
Pareto front is depicted for this circuit in Fig. 17(a). It represents
114 different placements, having different aspect ratios. Plantage
calculates these placements in 134 seconds. The hierarchy tree was
built in 1.2 seconds.

B. Comparison with Other Approaches

In the following, the presented approach is compared with other ap-
proaches. For that reason, placements were generated using Plantage
for the circuits “biasynth 2p4g” and “lnamixbias 2p4g” used in [18],
[16], [29], [22], [21], and [20]. The module sizings were extracted
from [16]. For “biasynth 2p4g”, Plantage generates 10 placements in
337 seconds. For “lnamixbias 2p4g”, 32 placements are generated in
387 seconds. Since no netlist information is given, balanced trees with
4-6 children per node are taken as the hierarchy trees. The placements
with the lowest area usages are shown in Figs. 18 and 19, respectively.
The symmetry groups within these circuits are colored in different
shades of gray. The runtimes and area usages of other approaches are
taken from [21] and [20]. The area usage is taken as a quality metric.

The results, summarized in Table II, show, that the area usages of
the presented approach are approximately equal to the area usages of
the best recently-published placers. The area usage of Plantage is 1%
and 2% higher than the best for the two examples, respectively, but
about 10% lower than area usage of other approaches.

It is hard to compare the runtimes of the presented approach with
the runtimes of other approaches, because they were measured on
different computers. Additionally, other approaches use Simulated
Annealing. Their runtimes may vary from run to run for different
seeds, but no mean values and standard deviations are known for the
runtimes of other approaches. In contrast, Plantage is deterministic,
and the runtimes are constant for each example. On all accounts, the
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Fig. 17. Example 4: Placements and the corresponding Pareto front

runtimes of Plantage, even for the big circuit “lnamixbias 2p4g” (110
modules), allow industrial application.

VI. CONCLUSION

In this paper, a new deterministic approach for analog circuit place-
ment, called Plantage, was introduced. The hierarchy of an analog
circuit is used to guide a bottom-up enumeration efficiently. For small
parts of the circuit all placements are enumerated. A new concept, the
enhanced shape function, is used to combine these placements effi-
ciently with a recursive algorithm based on the hierarchy. In contrast
to other approaches, the final result of Plantage is a set of placements
instead of a single solution. A new algorithm is presented, which
generates a placement for a B*-tree considering linear constraints.
Plantage considers device-proximity, symmetry, common centroid,
minimum distance, and variant constraints. The presented approach is
the first to handle all these constraints deterministically. The results
of the presented approach show an area usage which is comparable to
the best-published results of other placers. Plantage generates results
in reasonable time allowing industrial application.
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Circuit description Approaches
Name # of # of Mod. Area SP [18] ST [16] SP+LP [29] SPwD [22] SymIs [21] SP+JPQ [20] This work

Modules Sym. Mods. (103μm2) Area Time� Area Time� Area Time† Area Time† Area Time† Area Time� Area Time†

biasynth 2p4g 65 8 + 12 + 5 4.70b=100% 114.89 780 114.89 246 106.38 403 118.51 134 104.68 22 N/A N/A 104.96 337
lnamixbias 2p4g 110 16 + 6 + 6 + 12 + 4 46.00b=100% 110.43 2824 109.35 726 108.59 3252 113.50 227 105.72 43 109 480 107.68 387

TABLE II
COMPARISON OF AREA USAGE AND RUNTIMES FOR DIFFERENT APPROACHES: THE SEQUENCE PAIR (SP), SEGMENT TREE (ST), SEQUENCE PAIR AND

LINEAR PROGRAMMING (SP+LP), SEQUENCE PAIR WITH DUMMY NODES (SPWD), SYMMETRY ISLANDS (SYMIS), SEQUENCE PAIR WITH JOHNSON’S
PRIORITY QUEUE(SP+JPQ)4, AND THE PRESENTED APPROACH, BASED ON TWO INDUSTRIAL CIRCUITS. ALL TIMES ARE MEASURED IN SECONDS5 AND

ALL AREA USAGES IN % OF THE TOTAL MODULE AREA.
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Fig. 18. Result of “biasynth 2p4g” obtained by the approach of this paper.
(Time: 5.6min, Area usage: 104.96%)
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Fig. 19. Result of “lnamixbias 2p4g” obtained by the approach of this paper
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