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Abstract

Consider N particles, which merge into clusters according to the
rule: a cluster of size  and a cluster of size y merge at (stochastic)
rate K(z,y)/N, where K is a specified rate kernel. This Marcus-
Lushnikov model of stochastic coalescence, and the underlying deter-
ministic approximation given by the Smoluchowski coagulation equa-
tions, have an extensive scientific literature. Some mathematical liter-
ature (Kingman’s coalescent in population genetics; component sizes
in random graphs) implicitly studies the special cases K(z,y) = 1 and
K(z,y) = zy. We attempt a wide-ranging survey. General kernels are
only now starting to be studied rigorously, so many interesting open
problems appear.
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1 Introduction

Models, implicitly or explicitly stochastic, of coalescence (= coagulation,
gelation, aggregation, agglomeration, accretion ...) have been studied in
many scientific disciplines, but have only tangentially appeared in the “ap-
plied probability” literature. This is paradoxical, in that the “dual” process
of splitting or fragmentation is, in an analogous mean-field model, very close
to the classical topic of branching processesin applied probability. The pur-
pose of this survey is to bring the existence of this large body of scientific
literature to the attention of theoretical and applied probabilists. We shall
provide pointers to the science literature, outline some of the mathemati-
cal results developed therein, comment on the duality between coalescence
and branching processes, and pose some mathematical problems. That an
opportunity arises to outline recent work of the author and colleagues is, of
course, purely coincidental.

1.1 Verbal description of basic model

Clusters with different masses move through space. When two clusters
(masses z and y, say) are sufficiently close, there is some chance that they
merge into a single cluster of mass z+y. A completely detailed model would
incorporate mass, position, velocity (or diffusive rates) of each cluster, to-
gether with the exact rule for coalescence of two clusters. Such models seem
far too complicated for analysis, so a natural first approximation is the fol-
lowing. We may regard mass z as discrete (z = 1,2,3,..., so the cluster
consists of z particles of unit mass) or continuous (0 < z < co a real num-
ber). Imagine the process to be spatially-stationary in infinite d-dimensional
space, so that by stationarity there exist at time ¢ densities n(z,t) defined

by:
n(z,t) = average number of clusters of mass z per unit volume
in the discrete case; and

n(z,t)de = average number of clusters of mass € [z, 2z + dz]

per unit volume

in the continuous case. Next, there is a rate kernel K(z,y) whose interpre-
tation in the discrete setting is as follows. Consider a tagged cluster of mass
xz. We assume that the instantaneous rate at which it merges with some



cluster of mass y is proportional to the density n(y,?) of such clusters, and
take K(z,y) as the constant of proportionality. In other words, if we write
a coalescence {z,y} — z+y as (z,y) = 2+ yor (y,2) — = + y with equal
chance, then

average number of coalescences (z,y) — z+y per unit time per unit volume

= in(z,t)n(y,t) K(z,y). (1)
The idea is that the details of the local motion and local coalescence rule,
which arise from the physics of what is being modeled, are subsumed into
the rate function. In the continuous setting there is an obvious analog of
(1): 3n(z,t)n(y,t) K(z,y) dz dy is the average number of coalescences with
masses in (z,z +dz) and (y,y+dy). Based on this story we can write down
differential equations (2,3) for the densities n(z,t), and this is the starting
point of section 2. A physicist would call this the “infinite-volume mean-field
theory”.

Some minor comments.

(i) K(z,y) is not a “pure rate” because it has dimensions volume/time
instead of 1/time.

(ii) We may assume K to be symmetric: K(z,y) = K(y,z).

(iii) By scaling time, we can eliminate a multiplicative constant from the
kernel, so we talk about e.g. K(z,y) = zy instead of K(z,y) = czy for
constant c.

(iv) Throughout the paper, time t is always a continuous variable; discrete
and continuous refer to cluster masses.

Table 1 gives examples of kernels used in the physical chemistry litera-
ture. The table is taken from [74], who cite references to each case. Most
of these examples, and others, are explained in Drake [26] section 4.3. Note
that we parametrize the “size” of clusters by mass x rather than length /;

1/3

these kernels are often written in terms of [ o< z/° instead of z.



Table 1 [74] Some specific kernels

K(z,y) Comment

(2173 4 413 (2= 173 4 y~1/3) Brownian motion (continuum regime)

(x1/3 + y1/3)2(m_1 + y‘1)1/2 Brownian motion (free molecular regime)
(ml/S + y1/3)3 Shear (linear velocity profile)

(x1/3 + y1/3)7/3 Shear (non-linear velocity profile)

(213 4y /32213 — 4113 Gravitational settling

(213 4 y1/3)2|22/3 — 4213 Inertia and gravitational settling
(z—y)(z+y)! Analytic approximation of Berry’s kernel
(z4+c)y+c) Condensation/ branched-chain polymerization
(23 + y' 3 (zy)/*(z + y)~*/? Based on kinetic theory

1.2 Why should probabilists care?

Section 2 reviews the deterministic Smoluchowski coagulation equations
which formalize (1): this is the aspect of coalescence which has been most
intensely studied in the scientific literature. This aspect is not “probabilis-
tic”, but the remainder of the survey is. Section 3 gives “probabilistic”
interpretations of some deterministic results about the Smoluchowski co-
agulation equations, using duality with branching-type processes. But our
main focus (sections 4 and 5) is on the “finite-volume mean-field theory” of
the Marcus-Lushnikov process. This is a N-particle stochastic model, and
we seek to understand its large- N behavior. In section 4 we emphasize the
three simplest specific kernels K (constant, additive, and multiplicative), for
which a rich and fairly explicit theory exists, with connections to other parts
of mathematical probability (Kingman’s coalescent, discrete and continuum
random trees, random graphs). Section 5 discusses general kernels, where
open problems outnumber rigorous results.

1.3 Digression: TP and SM mathematics

To ask “what is known” in this subject leads inexorably to philosophical is-
sues concerning pure and applied mathematics. A typical paper [30, 35, 101]
we cite from the scientific literature would be described by a layman as
“mathematics” rather than “science”: it is devoted to analysis of a mathe-
matical model rather than description of experimental or observational re-
sults, although some reference to the latter is made in motivation and con-
clusion. I call this SM (scientific modeling) mathematics, as opposed to TP



(theorem-proof) mathematics, which is the style of all “pure” and much of
what is called “applied” mathematics. In SM mathematics, models may be
incompletely or inconsistently specified; the focus is on obtaining conclusions
about the model, allowing appeals to physical realism, unquantified approx-
imations, and arguments by analogy. In TP mathematics one is supposed
to have explicit assumptions and conclusions, as well as a rigorous argument
linking them. A lively recent debate on these matters can be found in the
discussion of [42]. Much of this survey deals with issues which have not
been studied systematically as TP mathematics, and our “open problems”
concern proofs of matters which mostly appear implicitly or explicitly in the
SM literature.

1.4 Fields of application

Where possible I cite papers giving an accessible overview of a field, rather
than the seminal paper in a field.
By far the largest application area is physical chemistry.

o Aerosols [26, 69]. That is, solid or liquid particles suspended in a gas:
such as smoke, smog, dust; water droplet or snowflake formation in
clouds.

o Phase separation in liquid miztures [1].
o Polymerization [30].
The kernels shown in table 1 arise in such areas. Other areas include

o Astronomy: formation of large-scale structure in the universe [73];
formation of protostellar clusters within galaxies [72, 14]; formation of
planets within solar systems [101]

e Biological entities, e.g. algae [2].
o Bubble swarms [79].

In all these settings, the clusters were physical entities in physical space,
and have been studied as SM mathematics. A different area of application,
which has caught the attention of TP mathematicians, is

o Mathematical population genetics [83].



Here the entities are ‘lines of descent”, i.e. number of ancestors in past
generations of a sample of genes in the current generation, and the specific
kernel K(z,y) = 1 arises (section 4.2). An area of TP mathematics which
turns out to be related to our topic is

e Random graph theory [18]

where the specific kernel K(z,y) = zy has implicitly been studied in great
detail: see section 4.4.

In addition to the SM study of particular physical phenomena, there is
a body of literature (e.g. [93, 87, 95] in J. Statistical Physics) devoted to
mathematical study, with varying levels of rigor, of the kind of models we
discuss here. When we get to discussing detailed mathematical results, we
shall most often be referring to that literature. Let us also mention the
graduate textbook of van Kampen [96] as a standard introduction to SM
stochastic processes.

1.5 One specific application

In some of the application areas mentioned above, the use of our mean-field
model would be regarded as old-fashioned: current research focuses on more
physically realistic models. But to show this topic is not completely mori-
bund, we mention recent experimental work of White and Wiltzius [103],
recounted for laymen in The Economist [1]. Certain liquids (e.g. olive oil
and alcohol) mix at high temperature but separate at low temperature; how
in detail does separation occur as temperature is lowered very slowly through
the critical point? At some point, microscopic droplets of one liquid form,
but what then? Omne theory is that these droplets tend to form, and to
dissolve back into the mixture, very quickly, except that two droplets which
form adjacent to each other may merge into one. In this theory the process
of pure droplets is rather like a branching process with immigration: above
the critical temperature this is a subcritical process and the droplets stay
small, but below the critical temperature the process becomes supercritical
and a large component very rapidly forms. An alternative theory is that
creation and dissolution of droplets occur comparatively slowly, and that
the dominant mechanism is diffusion of droplets, which coalesce when they
meet, and repeated coalescence creates large drops comparatively slowly.
This is the “Brownian motion — continuum regime” case of our model. And
[103] give experimental results showing (at least for a certain very viscous
pair of liquids) a better fit to the diffusion and coalescence model.



2 Deterministic models

2.1 The Smoluchowski coagulation equations

Equation (1) and its continuous analog can be rewritten without words as
the differential equations

Enle )=} 3 K(pa ~ 9nly, 00l — 90— (1) D K(r,)niy, )

(discrete z)

%n(m,t) = %/OIK(y, z—y)n(y,t)n(z —y,t)dy — n(z,t) /OOOK(:E, y)n(y,t)dy.

(continuous z)

We will refer to (2,3) jointly as the Smoluchowski coagulation equations.
(Note that the phrase “Smoluchowski equation” is used in a different con-
text, diffusion under a potential). These equations have been studied in
great detail in the SM community, and we outline some of their results.
Note that from the verbal description of the model we expect solutions to
have the property that mass density is preserved:

my(t) = Z zn(z,t) or /0 zn(z,t) dz is constant in ¢. (4)
r=1

We shall also use the cluster density mo(t) and the second moment my(?)
defined in the continuous case as

mo(t) = /OOO n(z,t)dz.

mo(t) = /OOO z?n(z,t)dz

Clearly m(t) is decreasing and my(?) is increasing.

The standard reference is the 1972 de facto monograph by Drake [26].
This cites 250 papers from the SM literature, and provides a very clear
exposition of both the science background and the (fairly unsophisticated)
mathematics being used at that time. I have not found any similarly wide-
ranging survey of subsequent research. The 1994 monograph by Dubovskii
[27] focuses narrowly on mathematical issues of existence and uniqueness of

(2)

(3)



solutions. Snapshots of recent research results and interests are provided by
the introductions to papers [70, 74, 85].

We now give a quick overview of three aspects of the Smoluchowski
coagulation equations; exact solutions, gelation and self-similar solutions.

2.2 Exact solutions

It has long been recognized that three particular kernels K(z,y) are math-
ematically tractable: 1, z + y and zy. Table 2 gives, for each of these three
kernels, a special solution to the equations (2,3). In the discrete case this
is the (“obviously unique”) solution with the monodisperse initial configu-
ration n(z,0) = 61(z); in the continuous case it is a solution arising from
infinitesimally small initial clusters (where uniqueness is hardly obvious).
Some involve the Borel distribution ([23] sec. 2.7), which for our purposes is
best regarded as the total population size 7, in a Galton-Watson branching
process with one progenitor and Poisson(A) offspring distribution. Explic-
itly,

B\, z)= P(Zy =z)=(A\2)" e /2!, 2=1,2,3,...;0< A< 1. (5)

table 2: formulas for n(z,1?)

K(z,y) 1 z+y zy
discrete (14 5)7%(gk5)"! e 'B(1 —e ', 1) 271 B(t,2)
0<t< oo [76] 0<t< oo [37] 0<t<1I[57]

continuous 4t~ Zexp(—2z/t) (2m) Y2tz 3267 /2  (27)"1/2p=5/2—10w/2
0<t<ool[67] —00 <t < o0 —00 <t<0

We included the conventional attributions of 4 of these formulas, which
have been rediscovered many times. The remaining two continuous solutions
arise by rescaling time in the corresponding discrete solutions and taking
limits as ¢ — oo or t — 1. These continuous solutions are more implicit than
explicit in the SM literature. The continuous z + y solution has mq(t) = 1



but infinite cluster density mg(¢). The continuous zy solution has both mg(t)
and my(t) infinite, and is therefore often called “unphysical”: see section 4.4
for its interpretation.

There has also been considerable attention paid to the general bilinear
kernel K(z,y) = A+ B(z + y) + Czy, for which some more complicated
explicit solutions are available [86, 90, 77, 78].

2.3 Gelation

Consider the second moment of cluster mass ma(t) = [5° z*n(z,t)dz. Be-
cause a coalescence {z,y} — z + y increases the sum-of-squares-of-masses
by 2zy, the continuous Smoluchowski coagulation equation implies

fimat) = [ [y Ko,9) nle,tyn(y,1) do dy (6)
and analogously in the discrete case. Now consider the assumption
K(z,y) < ko(l1+z+y). (7)
Inserting into (6),
() < ko(2ma(t)ma (1) + m2(1)).

For an initial configuration with mg(0) and m3(0) finite, this becomes (since
mo(t) is decreasing and mq (%) is constant)

frma(t) < ko(2ma(t)m1(0) + mi(0))

implying ma(t) < oo for all ¢ < <.

It is not difficult to make this type of argument rigorous. See White [102]
and Heilmann [39] for the discrete case, and chapters 3 and 4 of Dubovskii
[27] for the continuous case (in the more general setting of coagulation and
fragmentation), and extensive references to the literature. The exact re-
sults are rather technical in the continuous case, but can be summarized
informally as

Principle 1 For a kernel K satisfying (7) and extra technical conditions in
the continuous case, and an initial configuration n(z,0) such that

mq(t) =1, mo(t) < oo, ma(t) < 0o (8)

holds fort = 0, the Smoluchowski coagulation equation has a unique solution,
and this solution satisfies (8) for all 0 < t < cc.



In contrast, consider the case K(z,y) = zy. Here (6) reduces to

d 2
2m2(1) = (ma(1)) (9)

in both discrete and continuous cases. Thus in the monodisperse discrete
case (n(1,0) = 1) we have

mo(t) =(1-1)"', 0<t <1

while in the continuous case we have

1
may(t) = (#(0) —t) L 0<t< o

Note that the continuous case special solution in table 2 has my(t) =
1/]t|, —oo < t < 0, consistent with (9).

As discussed by numerous authors, this kernel zy is the prototype exam-
ple where the process exhibits a phase transition, typically called gelation in
the context of coalescence models. As the reader may know from a casual
acquaintance with percolation theory, there is a tendency in the scientific
literature to define such concepts via moment behavior. Thus one could
say gelation occurs, or K is a gelling kernel, if the discrete model with the
monodisperse initial condition has no solution with

mo(t) < 00, 0 <t < o00. (10)

Then one can define a critical time . as the largest time such that my(#) < oo
for all ¢ < 1., and seek e.g.
(i) proofs that, for discrete and continuous mass, no initial configuration has
a solution satisfying (10);
(ii) estimates of the critical time in terms of the initial configuration.
Mathematically, it is more natural to define critical times in terms of
existence of solutions of the Smoluchowski coagulation equations which have
the mass-conserving property (4): Ty is the largest time such that the
discrete model with the monodisperse initial condition has a solution with
mq(t) = 1 for all t < Tye. The SM literature tends to assume these two
definitions are equivalent. The physical interpretation of gelation is that
after the critical time, a strictly positive proportion of mass lies in infinite-
mass clusters, the gel. One can model post-gelation behavior by explicitly
modeling [106] interaction between the gel and the sol (finite-mass clusters),
but in this survey we shall only consider pre-gelation behavior, except for
brief comments on the K(z,y) = zy case in section 4.4.
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For probabilists, the interpretation of gelation in terms of stochastic mod-
els is a natural question, to be discussed in section 5.2.

In discussing general kernels, we shall often assume the kernel K is ho-
mogeneous with some exponent :

K(cx,cy)=c"K(z,y), 0 < c,z,y < cc. (11)
In fact one could use a weaker notion of asymptotic homogeneity:

lim ¢ "K(cz,cy)= K(z,y), 0 < z,y < 0. (12)
Note that all except one of the kernels in table 1 is homogeneous, with
exponents —%,0,%,%,1,%. Principle 1 says that for v < 1 the kernel is
non-gelling. For some time it has been widely accepted in the SM literature
[92, 95] that for 4 > 1 the kernel is gelling. The first general rigorous result

was given only recently by Jeon [44, 45], who showed that Tyel < oo provided
dy > 1, 0 < ¢1,¢9 < 0o such that cl(:zcy)w2 < K(z,y) < cazy.

Moreover it is believed that for v > 2 the kernel is instantaneously gelling,
that is Ty = 0. Precisely, an argument in [88] (rewritten rigorously in [22]
in the discrete case) shows that Ty = 0 provided

3y > 2a > 2 such that 2 + y* < K(z,y) < (333/)7/2 YV, y.

2.4 Self-similarity

Consider the continuous setting, and as above suppose the kernel K is ho-
mogeneous with some exponent +. It is natural [35] to seek a solution which
is self-similar (also called self-preserving or scaling), in the following sense.

n(z,1) = s~ (1)(a/s(t)) (13)
where (z) > 0 satisfies
/OOO v(z) dz = 1. (14)

Here the “1” is a normalization convention. As at (4), we want the mean
density [an(z,t) dz to be constant in time, which explains the s™% term in
(13). Of course, the interpretation of (13) is that clump mass scales with
time as s(t).

11



Following [95], here is a brief analysis of self-similarity. By substituting
into (3), routine manipulations show that (13) is a solution provided

3 | K=o -n dy — o) [T KGi) dy
= W)+ eE(z)  (15)
for some constant w # 0, and we may take s(¢) as the solution of
s'(t) = ws™(t). (16)

In fact the integrals may diverge at zero, in which case we simply replace
(15) by its integrated version (the 7 = 2 case of (20) later). Solving (16),

1

s(t)oct™7, —co <y <1 s(t)xe y=1. (17)

The SM literature tends to take for granted the existence and uniqueness
(up to scaling) of solutions of (15), and proceeds to speculations (see section
A.1) on the asymptotic (z — 0, 2 — oo0) form of ¥(z). Apparently nothing
has rigorously been proved, outside the realm of the exact solutions. The
solution in table 2 for K(z,y) = 1 (where v = 0) is of form (13,17), with
P(z) = e and s(t) = t/2. And the solution for K(z,y) = z +y, where v =
1, is also of form (13,17), with ¥(z) = (27)~1/22=3/2¢=/? and s(1) = €*.
In this connection, it has long been known that the two kernels z + y and
max(z,y) have no self-similar solution satisfying (14) and [;~ ¥(z)dz < oco:
see Drake [26] section 6.4 and Knight [48] respectively.

If a unique self-similar solution exists, it is natural to expect convergence
to self-similarity from rather general initial configurations. See section 3.1
for a simple proof for K(z,y) = 1.

It has long been noted by numerical methods that certain of the kernels
arising in table 1 (e.g. K(z,y) = (23 4+ y/3)(z=1/3 + y='/3) [35]) appear
to have self-similar solutions which are roughly log-Normal. See [61, 98,
49] for recent work. It is sometimes stated in the SM literature that this
is to be expected when large-small coalescences (rather than large-large)
predominate. I haven’t found any convincing mathematical elaboration of
this assertion: see Appendix A.4 for further comments.

For the record, let us state explicitly some open problems implicit in this
and previous sections.

Open Problem 2 Consider a homogeneous kernel K with exponent v < 1.
Give rigorous proofs, under explicitly stated extra hypotheses, that

12



(a) there exists a unique v satisfying (14) such that (13,17) is a solution
of the continuous Smoluchowski coagulation equation.

(b) For v < 1 we have [;° (z)dz < oo.

(¢) The solution n(z,t) of the discrete Smoluchowski coagulation equa-
tion with monodisperse initial configuration is asymptotically self-similar, in
the sense that

sup [$2(t)n(, — 1o) = $(a/s(1) = 0 as t — 0o, for some to.  (18)
xr

(d) (18) remains true for initial configurations n(xz,0) satisfying specified
“not too spread out” conditions, in continuous and discrete space, assuming
aperiodicity of n(z,0) in the discrete case.

In (18) we have asked for local (as in the local CLT) convergence of densities,
but proving the weaker notion of convergence of distributions would be just
as welcome.

For gelling kernels, we can seek self-similarity as ¢ T Tge). The continuous
solution in table 2 for K (z,y) = zy can be written as the special case

P(z) = (2m) V27322 s(t) = 1|72, 7 = 5/2
of the general form
n(z,1) = s (t)(x/s(t)), —00 <t <0 (19)

In this case [z9(z) = oo, that is the mass density is infinite, so we cannot
(as in the non-gelling case) use conservation of mass density to say 7 = 2.
Substituting into the Smoluchowski coagulation equation shows that (19) is
a solution provided it satisfies the analog of (15) with 7 in place of 2; but
to avoid divergent integrals at zero we replace (15) by its integrated version

00 ) 00
w [ (rev@)+ et @) do= = [T [ dy oK (e @),
o ro—x
(20)
[95] give a non-rigorous analysis of the gelling case, and we incorporate their
conclusions into the following open problem.

Open Problem 3 Consider a homogeneous kernel K with exponent 1 <
7 < 2, and suppose 0 < Tgq < co0. (ive rigorous proofs, under explicitly
stated extra hypotheses, that

(a) There is a unique (up to scaling) solution ¥ of (20), and for this
solution T = (3+7)/2. And [;° x¢(z)dz = oo while [;° z*(x)dz < 00.

13



(b) The solution n(z,t) of the discrete Smoluchowski coagulation equa-
tion with monodisperse initial configuration is asymptotically self-similar as
t | Tyel; in the sense that for some a

34y

n(2,1) ~ A Tyel — )7 $(2(Tge — 1)77) as t | Ty, (21)

uniformly on {z(Tye — 15)72Tl > zo}.

(c) (21) remains true for initial configurations n(x,0) satisfying specified
“not too spread out” conditions, in continuous and discrete space, assuming
aperiodicity of n(z,0) in the discrete case, and where Tyel now depends on
the initial configuration.

To connect (b) with (a), the conclusion of (a) implies (by setting up and
solving the equation analogous to (16)) that

n(z,1) = [t/ (el ) (22)

is a self-similar solution of the Smoluchowski coagulation equation.

2.5 Other aspects of the Smoluchowski coagulation equa-
tions

(a) For the record, we mention some other aspects of the Smoluchowski
coagulation equations which we shall not pursue in this review.

o General polydisperse initial conditions. The solutions presented in ta-
ble 2 are the special solutions. Much of the literature studies solutions
of the Smoluchowski coagulation equations from general (“polydis-
perse”) initial configurations. Some explicit solutions for the three
special kernels in table 2 and the general bilinear kernel K(z,y) =
A+ B(z + y) + Czy, under polydisperse initial conditions, are dis-
cussed in [26] section 6.3., [17, 68, 71, 77, 78, 84]. Some discussion
of physically reasonable or mathematically tractable initial configu-
rations (e.g. in the continuous setting, the Gamma, log-Normal or
n(z,0) = 7%, 2 > x¢ densities) in the context of the “applied” ker-
nels in table 1 can be found in [26] section 4.5.

o Time to approach self-similarity [98].

o Numerical methods. See [49] for references, and [66] for Monte Carlo
procedures.

14



o The inverse problem. How to estimate the rate kernel K from experi-
mental or observational data. [2, 59, 75].

(b) This paper deals only with “pure coalescing” models. But much of
the scientific literature considers coalescence together with other effects, in
particular

o fragmentation (splitting) [27]
e removal of clusters (sedimentation, condensation, crystalization) [41]
e continuous addition of new particles. [74]

In fact, much of the literature we cite relating to existence of solutions of the
Smoluchowski coagulation equations deals with such more general settings.
Whittle [104] provides a mathematical introduction to reversible mean-field
models of coalescing and fragmentation, and Ernst [30] relates this topic to
broader topics in statistical physics.

(c) There has been much study, mostly using Monte Carlo simulation,
of fractal structure of cluster-cluster aggregation models, in the spirit of the
well known DLA model of cluster growth by adding single particles. See
Vicsek [99] Chapter 8 for a survey. In the setting of the Smoluchowski coag-
ulation equations this possibility has classically been ignored (in specifying
rate kernels, it is often assumed that clusters are spherical), but an assumed
fractal exponent could be built into the kernel.

2.6 Hydrodynamic limits and reaction-diffusion processes

From the viewpoint of TP mathematics, the verbal description of the Smolu-
chowski coagulation equations in section 1.1 is just motivation: we can use
the Smoluchowski coagulation equations as starting point for mathemati-
cal analysis, but we have not attempted to say that they arise as part of
a more detailed rigorous stochastic model. To establish these rigorously
as a limit of the type of model in section 1.1 is a topic called hydrody-
namics or propagation of chaos. Lang and Nguyen [52] study a model of
discrete particles performing Brownian motion in 3 dimensions, coalescing
when they approach within a fixed distance, the diffusion rate of clusters
being unaffected by cluster size. In an appropriate limit they justify that the
cluster-size distribution does converge to the solution of the Smoluchowski
coagulation equation with K'(z,y) = 1. Undoubtedly more general results of
this type can be proved, though there is a conceptual problem. Derivation

15



of specific rate kernels K often presupposes that physical parameters are
within certain ranges, so taking mathematical limits may not make much
sense if we cannot preserve such constraints.

Conversely, there is SM discussion [46, 85] of models in the spirit of
section 1.1 where the Smoluchowski coagulation equations do not provide
satisfactory solutions over time-intervals of interest.

A more substantial body of recent mathematical literature concerns hy-
drodynamic limits for reaction-diffusion processes, where several types of
particle diffuse and interact to produce new particles. But that work mostly
focuses on equilibrium behavior and on finite number of types (see section
5.1 for elaboration), so has a different flavor from our size-asymptotics in
irreversible coalescence.

3 Stochastic structures encoding solutions of the
Smoluchowski coagulation equations

One answer to the question “what is the relationship between the deter-
ministic Smoluchowski coagulation equations and stochastic models?” is to
seek the type of limit theorems indicated in section 2.6. But we can pose
the question differently: is there any rigorous stochastic model involving
coalescence in which the exact solutions of the Smoluchowski coagulation
equations appear as ergodic averages? It turns out that in 5 of the 6 cases
in table 2 there are special constructions, to be described in section 3.1.
Loosely, these involve replacing “physical space” of section 1.1 (in which we
imagine particle clusters moving) with an “artificial” spatial structure. In
section 3.2 we discuss duality (via time-reversal) between the deterministic
Smoluchowski coagulation equations and deterministic pure fragmentation
equations, which can be interpreted as expectations within branching-type
stochastic processes. This idea of coalescence as the time-reversal of splitting
is implicit in the special constructions of section 3.1, and is used explicitly
in section 3.3 to give a general constructions for general kernels.

3.1 Special constructions

Construction 4 K(z,y) = 1; continuous.

Take the line I = (—o00,00) as “space”. At each time ¢ create a Poisson
point process of marks on L, with rate r(t), where r(¢) > 0 is decreasing
with t. Couple the point processes as t varies in the natural way: each
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point present at time #; remains present at time t9 > t; with probability
r(t3)/r(t1), independently for different points.

Figure 1. Construction for K(z,y) = 1; continuous

At time ¢ there is a process of line segments (between successive marks).
Writing “mass” for “length” and “cluster” for “line segment”, the probability
density for mass z per cluster is pi(z) = r(t) exp(—zr(t)) and the density of
mass per unit length of L is

n(z,t) = r’(t) exp(—zr(t)). (23)

As t increases, a mark disappears at rate —r'(t)/r(¢), so a tagged cluster of
mass z will merge with a neighboring cluster of some mass y with rate

(1)
)

Here the “2” comes from the two endpoints, and we appeal to the fact
that adjacent line segments have independent lengths, as a property of the
Poisson process. Choosing r(t) = 2t to solve 7(t) = —1r?(t) makes
this rate equal n(y,?). So the n(z,t) satisfy the continuous Smoluchowski
coagulation equation with K (z,y) =1, and (23) is the density in table 2.
Remarks. Here L = (—o00,00) is our “artificial space”. Construction 4
describes a stochastic model with extra structure (an ordering of intervals)

pi(y) =2

and incorporating this extra structure gives a coalescing model rather differ-
ent from the Smoluchowski coagulation equation. But the point is that the
“ergodic densities” n(z,?) in the model do indeed satisfy the Smoluchowski
coagulation equation, even if this is not a priori obvious.

Construction 5 K(z,y) = 1; discrete.

This is the discrete analog of the previous construction. Put unit mass at
each integer —oco < ¢ < 0. Let an edge from ¢ to ¢ + 1 appear at a random
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time 7" with P(T > t) = 2/(t + 2) = G(t), say, independently for different
edges.

0 0 0 0 0 0 0 0 0 0 o t=20
—o 0 0 0 0 0 0 0 0 0 o t=2
—o o o o o o o o o o o— t=4
—o0 o o o o o o o o o o— t =

Figure 2. Construction for K(z,y) = 1; discrete

At time t a connected clusters has mass z with probability p«(z) = (1 +

z—1
%)_1 <t+%) and hence the density of mass-z clusters per unit length is

t r—1
z,t)= (1 i—2<—) r=1,2,3,.... 24
n(e )= (14972 () S e=1.23 (24)
Arguing as above, a tagged cluster of mass z will merge with a neighboring
cluster of some mass y with rate

~LP(T > 1)

TPTs1) p(y) = n(y,1).

So the n(z,t) satisfy the discrete Smoluchowski coagulation equation with
K(z,y) =1, and (24) is the density in table 2.

The general solution for K(z,y) = 1. We can use the same method
to show that for any initial configuration (discrete or continuous) with 0 <
m1(0) < oo and mp(0) = 1 we have asymptotic self-similarity in the following
sense:

at
t/ n(z,t)dz — 1 — e ™) a5 ¢ — 00, 0 < a < 0. (25)
0

Start at time ¢ = 0 with a stationary renewal process of marks on L =
(—00,00), with inter-renewal density n(z,0). Let the marks disappear at
independent times 7" with P(T > t) = 2/(t+2) = G/(t). At time ¢ the marks
form a renewal process with some inter-renewal distance L;. Writing the
density of L; as n(z,t)/G(t), the analysis above shows that n(z,t) satisfies
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the Smoluchowski coagulation equation. But classical (and easy) results
on thinning of renewal processes (see e.g. [24] Prop. 9.3.1) imply that
G/(t)Ls converges in distribution to the exponential(1/m4(0)) distribution,
establishing (25).

Without this easy probability argument, rather tedious analysis [50]
seems needed to prove (25).

Remark. The key feature of these two constructions is that there is an
“invariance” property (stationarity under shifts of the line) which enables
us to define the deterministic quantities n(z,?) as ergodic averages. The
next constructions have more sophisticated invariance properties, which we
will not attempt to say precisely, but which enable the n(z,t) to be defined
rigorously as ergodic averages.

Construction 6 K(z,y) =z + y; discrete.

Take unit mass at positions 0,1,2,... and connect with edges (7,7 4+ 1).
Make each of these atoms the progenitor of a Galton-Watson branching
process with Poisson(1) offspring distribution, and draw the individuals as
unit masses and the parent-child relationships as edges. This construction
gives a random infinite tree, with root x at position 0, illustrated in the
bottom part of figure 3. Grimmett [38] first described this tree, and showed
that it arises as a n — oo limit of uniform random n-vertex trees. The
finite-n property that “the tree has the same distribution relative to each
vertex” extends to the limit infinite tree: see [3] for one statement of this
invariance property. Now regard each edge as appearing at a random time T
with exponential(1) distribution, independently for different edges. At times
0 <t < oo we see a configuration of “clusters” (finite trees), rooted at the
vertex nearest the path-to-infinity. By invariance, the distribution of cluster
size at time t is the distribution of the cluster rooted at x, given that x is
the root of a cluster, and this is just the size of total population in a Galton-
Watson branching process with Poisson(1—e~") offspring distribution. This
total population has mean e, and so the density of clusters of size z is

n(z,t)=e'B(l—e " 2); 2 =1,2,3,.... (26)

A computation ([10] Lemma 3.2(b)) shows that the way clusters merge in
this example follows the Smoluchowski coagulation equation with K (z,y) =
x + y. Section 4.3 elaborates this construction.
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Figure 3. Construction for K(z,y) = z + y; discrete

Construction 7 K(z,y) = z + y; continuous.

It is natural to regard Construction 4 as the continuous limit of Construction
5. It is true, but less obvious, that we can take an analogous continuous
limit in Construction 6. Recall the ¢ = oo random graph in Construction
6. We viewed each vertex as having mass 1, and each edge as having length
1. It turns out that the number of vertices withing distance d of a specified
vertex grows as order d2. So if we rescale by taking each vertex to have mass
1/n and each edge to have length 1/n1/2, then the mass of the region within
distance 1 of a specified point is bounded away from 0 and co, and we can
take a n — oo limit. The limit is called the self-similar continuum random
tree (SSCRT), and is described rigorously in [4], [5] section 2.5. Figure
4 illustrates the SSCRT: of course, by (statistical) self-similarity there are
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smaller and smaller branches not shown. The lines in figure 4 are part of
the “skeleton” of the SSCRT; all the mass is on the “leaves”.

—

|

*
Toot

Figure 4. The SSCRT

For our purposes here, the SSCRT plays the role that the line L = (—o0, 00)
plays in Construction 4. Take time interval —oo < t < 0. At each time ¢,
construct a Poisson process of marks on the skeleton, with rate |¢| per unit
length, coupled in the natural way as t varies. Cutting the SSCRT at these
marks splits it into subtrees of finite mass; write n(z,t) for the density of
mass-z subtrees. For fixed ¢, this is the rescaled limit of Construction 6 with
t' defined via e=% = e~*n~1/2. Taking limits in (26) gives

n(z,t) = (271')_1/2€_t$_3/2€_6_2tz/2

the formula we recorded in table 2.
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Construction 8 K(z,y) = zy; discrete.

This construction, illustrated in figure 5, was used for different purposes in

[6].
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Figure 5. An infinitary tree

©

Start with a distinguished edge between vertices ¢ and ¢. Let 0 < <
T2¢ < ... be the points of a Poisson (rate 1) point process on R*, create new
vertices 1,2, ...and create edges (¢, 1) with edge-weights T,fb. Recursively, for
each created vertex v let 0 < 77 < 7§ < ... be the points of a Poisson (rate
1) point process on RT, create new vertices v1,v2,...and create edges (v, vi)
with edge-weights 77. (Figure 5 shows only the first 3 children and early
generations.) Repeat for descendants of é. Finally, give the distinguished
edge a weight chosen from the uniform (Lebesgue) measure on (0, 00). This
construction yields a o-finite measure on the space of all edge-weights. As
explained rigorously in [6], we can view this random object as a n — oo limit
of a process of i.i.d. random edge-weights on the complete bipartite graph

22



on 2n vertices, and the finite-n invariance property extends to an invariance
property for the limit object: “the tree has the same distribution relative to
each vertex”.

At each time ¢ > 0 we may consider the subgraph consisting of only
those edges with weight < ¢, and let the clusters at time ¢ be the connected
components of this subgraph. Figure 6 illustrates ¢ = 0.75.

11 11

[\
—
[\
—

Figure 6. Construction for K(z,y) = zy; discrete

The cluster containing a specified vertex at time ¢ < 1 is a Galton-Watson
branching process with Poisson(?) offspring, and so has size distribution
B(t,z) given by (5). This is the size-biasing of the cluster-size density n(z,1),
and so

n(z,t) = 2 ' B(t, ).

For a cluster of size 2 at time ¢, as t increases each vertex grows a new edge
at rate 1, and so the rate of merging with some size-y cluster is

zB(t,y) = zyn(y,t).

So the n(z,t) satisfy the discrete Smoluchowski coagulation equation with
K(z,y) = zy,

Remark. In contrast to the previous constructions, there seems no easy
way to take limits to obtain a construction for the continuous case K(z,y) =
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zy. Rather sophisticated ideas are needed — see section 4.4.

Remark. There is a long history, going back to Flory [34], of using
branching process models in the theory of polymerization. The idea that
certain such models were equivalent to the Smoluchowski coagulation equa-
tion with certain kernels seems to have emerged slowly: a clear discussion is
given by Ziff [106]. Our three discrete constructions are in the same spirit
as the discussion in [106], but that paper has in mind some imprecise notion
of “ensemble of clusters”, while our point is that by using the constructions
with o-finite invariant measures we can rigorously define stochastic models
where ergodic averages evolve as the Smoluchowski coagulation equation.

3.2 Dual splitting models

In the spirit of the Smoluchowski coagulation equations for pure coalescence,
one can write down deterministic equations for pure fragmentation. We
adopt the continuous setting (the discrete case is analogous). Consider a
splitting kernel S(l;z), 0 < z < [. Assume that a cluster of mass [ splits at
rate S(/; z) into two fragments of masses = and [ — z, where the ordering of
{z,l—2}is random, so S(l;z) = S(I;] —z). Write as usual n(z,t)dz for the
average number of clusters of mass € [z, 2 4 dz] per unit volume. Then the
deterministic pure fragmentation equation is

Ln(l;1) = —n(l;1) /Olstu;m) do + 2 [ nll+yi0Sdl+ i) dy (2)

where we have more generally allowed time-dependence in the splitting ker-
nel.
Consider now the duality formula

n(z, t)n(y, ) Kz, y) = 2n(z + y,1)5(z + y; z). (28)

The duality relationship is as follows. If n(z,?) is a solution of the Smolu-
chowski coagulation equation with time-dependent kernel K, then (revers-
ing the direction of time) n(z,t) is a solution of (27) for S defined at (28);
and conversely. As we shall see, duality typically changes a time-independent
kernel to a time-dependent kernel, Table 3 gives the dual splitting kernels
for the special solutions in table 2. In these examples, the dual splitting
kernel has the form S¢(I;2) = a(?)S(l;z) and so the time-dependence can
be removed by a deterministic time-change.

Write b(i) = 1172 /i!.
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table 3: the dual splitting kernel S;(/;z)

K(z,y) 1 z+y zy

. e—t z(l—z)b(z)b(l—x z(l—z)b(z)b(l—x

discrete t(ti—?) 2(1—e~t) ( )bgl)) ( : % ( )b((l)) ( :
0<t< @ 0<t< @ 0<t<1

continuous 2t72 (87) =1/ 2e=t15/24=3/2(] — 2)=3/2 (87) 1215/ 22 =3/2(] — 2)=3/2

0<t< @ —0 <t< oo —00 <1<0

Given a splitting kernel 5, there is a natural stochastic model of frag-
mentation, the Markovian branching-type process where different clusters
fragment independently according to the rate kernel S. There is a simple
connection between the stochastic process and the deterministic equations
(27): the mean frequency of cluster-masses in the stochastic model evolves
exactly as (27). (We mention this because the analogous assertion for pure
coalescence is false — cf. section 4.1). The issue of self-similar solutions
(clearly analogous to stable type structure [60] for supercritical branching
processes) for pure fragmentation was studied by Brennan and Durrett [19].
We summarize their results in Appendix A.3. An initially promising idea
is to use branching process theory with tractable special splitting kernels to
obtain, via the duality relation (28), explicit solutions of the Smoluchowski
coagulation equation for further kernels K, but unfortunately (53) this leads
to time-dependent kernels. Appendix A.4 explores this idea further.

3.3 General constructions

In this section we outline one approach to the problem of defining abstract
probabilistic structures which encode the solutions of the Smoluchowski co-
agulation equation for a general kernel K. This approach is closely analogous
to the theory [3] of asymptotic fringe distributions. We consider the discrete
case, and abstract the idea of Construction 5. Figure 7 illustrates the con-
struction, where we imagine the initial ¢ = 0 configuration having a single
mass-1 particle at each integer position —oco < z < 00. At a typical time ¢
we see clusters, each cluster being an interval of particles (pictured as the
particles between successive vertical lines). Mathematically, such a process
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is succinctly represented by a sequence (&;;—00 < i < o), where & > 0
indicates the time at which the cluster ending with particle 7 coalesces with
the cluster beginning with particle ¢ + 1.

time

t Tal e} O O O O e} O O Ta Ta fe) Ta Ta o)

t=0 | o ol o o | o o ol o
3 4 5 6 7

o o o
5 -4 -3 -2 -1 0 1 2

oo
NeXe)

Figure 7. A general construction

It can be shown that such a construction is possible, for 0 < ¢ < Ty, with
the property:

(*) at each time ¢ the left endpoints of clusters form a stationary
ergodic process with cluster-size distribution mq(t)n(z,1).

In other words, the chance that particle 0 is the first particle in a size-z
cluster is n(z,t). To outline the construction, fix fo and create at time %
a stationary renewal process with inter-renewal distribution mq(#g)n(z, o).
Then run time backwards from g to 0, and split each cluster according to

the dual splitting kernel (28), independently for each cluster. This defines

a process with property (*) on 0 < ¢ < fp, representable as (f(to)

k3
fz(to) = oo if 7 is the final particle in a time-fy cluster, and otherwise is the

time at which particles 2 and ¢ + 1 are split into distinct clusters. We now

), where

let #g — oo and define (§;) as a subsequential weak limit of the (ffto)). It is
not hard to check that property (*) remains true in the limit.

One might hope that we could arrange that the left endpoints of the
clusters formed a renewal process at each time ¢, but the following argument
shows this is impossible in general. Consider the kernel with K(1,2) > 0
and K(z,y) = 0 otherwise. Take an initial configuration with clusters of
masses 1 and 2. Suppose this process was represented as a renewal process
at time 0 and at time co. Then at time oo there would be clusters of masses
1,2 and 3, but there could be no successive clusters of masses (1,2), so it

could not be a renewal process.
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We pictured the clusters as linear chains, but it is perhaps more natural
to regard them as trees, by specifying that when two clusters merge we
pick at random (uniformly) one vertex from each cluster, and join these two
vertices by an edge. Thus the cluster containing vertex 0 in figure 7 merges
just after time ¢ with the cluster shown on its left, and this merger might
create a new edge — as follows.

:
H —12]

Figure 8. The general construction, pictured as a tree

We may define the stochastic process (7(¢);¢t > 0) where 7 (%) is the tree
containing vertex 0 at time ¢. This provides a rigorous formalization of the
notion of “the history of coalescences containing a typical particle in the
Smoluchowski coagulation equation”. Detailed study of the cases K(z,y) =
z+ yand zy is in [13].

The construction extends without essential change to the continuous
setting. Here property (*) becomes

at each time t there is a stationary ergodic point process on the
line, in which the inter-point distances have density mq(t)n(z,1).

And the tree-process (7(t)) becomes a process of “continuum trees” in the
spirit of Construction 7.
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4 Stochastic Models: the finite-volume setting

4.1 The stochastic coalescent

The Smoluchowski coagulation equations provide an infinite-volume mean-
field description of coalescence in terms of deterministic equations. The
corresponding finite-volume mean-field description is intrinsically stochas-
tic. In the discrete setting, fix N and consider a state-space consisting of
unordered (multi)-sets x = {z1,...,2,,} where the z; are positive integers
summing to N. So x represents a configuration with clusters of masses
Z1,...,T;,. We can now define a continuous-time finite-state Markov chain
by declaring

each pair {z;,z;},7 # i coalesces into a cluster of mass z; + z;

at rate K(z;,z;)/N. (29)

The elementary way to formalize this idea is by taking the state-space as
n = (ny,ng,...,ny5), where n, represents the number of mass-z clusters
and ", n,; = N. Then the transitions are of the form

(n1,...,nN) —

(nla . '7ni—17ni_17ni+17 .- '7nj—17nj_17nj+17 . '7ni+j—17ni+j+17ni+j+17 s

with rate K (¢, j)n;n; /N . This model was perhaps first introduced by Marcus
[56], and re-introduced by several authors [36, 81], in particular by Lush-
nikov [54] as a model of gelation. We call it the Marcus-Lushnikov pro-
cess MLN)(1). The state of this process at time ¢ may be written in two
equivalent ways. We may write ML) (z, 1) for the (random) number of

mass-z clusters. Alternatively, we may write MLEN)(t) for the mass of the
1’th largest cluster. The Marcus-Lushnikov process is the natural stochastic
analog of the discrete Smoluchowski coagulation equation, when we study
only finite-sized clusters (see section 5.1).

For developing a mathematical theory, a slightly different formulation
is often more convenient. For any model of coalescence with finite total
mass, the total mass is conserved over time, so we may rescale and assume
the total mass equals 1. So consider the state space consisting of finite or
infinite configurations x = {z;} with 1 > 29 > ... > 0 and ), z; = 1.
Define the stochastic coalescent with kernel K to be the Markov process
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X(t) = (X4(t);7 > 1) on this state space whose time-dynamics are described
informally by

each pair {z;,z;},7 # i coalesces into a cluster of mass z; + z;

at rate K(z;,z;). (30)

This differs from (29) in that the coalescence rate is does not depend on N.
But note that for a homogeneous kernel, i.e.

K(cx,cy)=c"K(z,y), 0 < c,z,y < o0,

the Marcus-Lushnikov process and the stochastic coalescent are the same
process up to time-space rescaling:

X;(t) = N'MLM (N1, (31)
Thus for a homogeneous kernel, whereas the Marcus-Lushnikov process is
formally a different process with different state-space for different N, (31)
permits rephrasing in terms of a single process with a single state-space,
the stochastic coalescent. In particular, the stochastic coalescent provides a
natural setting for studying N — oo asymptotics of Marcus-Lushnikov type
processes. Our discussion deals with homogeneous kernels for simplicity, but
one expects the same asymptotic behavior to hold for asymptotically homo-
geneous (12) kernels, using the limit K to specify the stochastic coalescent.

We defer to section 5.4 technical issues in making precise the definition
of stochastic coalescent. In the following three sections we discuss, from the
modern theoretical stochastic processes viewpoint, the standard stochastic
coalescent for the three special kernels 1, z + y and zy (Standard as in
“standard Brownian motion”, i.e. a scaling convention). These standard
stochastic coalescents have constructions closely related to those of section
3, and appear naturally as N — oo limits of the Marcus-Lushnikov processes.
The SM literature on Marcus-Lushnikov processes emphasizes combinatorial

methods, briefly reviewed in section 4.5.

4.2 Kingman’s coalescent

We start by giving a construction. Take independent exponential, rate (g),
r.v.s (§g, k> 2). Since EY 72,8k = 3 4y 1/(]2“) = 2 we can define random
times 0 < ... <73 < 7T <7 <o00byr =332 & Take (Uj,j > 1)
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independent uniform on (0,1). For each j, draw a vertical line from (U;, 7;)
down to (U;,0). See figure 9.

1

T2

T3
0.5
Ts
o ‘

Figure 9. Kingman’s coalescent

The vertical axis shows time. At time t the construction splits the unit
interval (0,1) into j subintervals, where j is defined by 7; < ¢t < 7;_1, and
where the endpoints of the subintervals are {0,1,Uy,...,U;_;}. Figure 9
illustrates ¢ = 0.5, with 5 subintervals. Writing X(¢) for the lengths of
these subintervals, the process X is a version of the stochastic coalescent
with K(z,y) = 1, and this version is called Kingman’s coalescent. The
construction goes back to Kingman [47]. Kingman’s coalescent has been used
extensively in mathematical population genetics [83], where the emphasis
is of the number of “lines of descent” (clusters, in our terminology) and
mutations along lines of descent. This emphasis is rather different from our
emphasis on masses of clusters.

It is easy to show (see Appendix A.5) that Kingman’s coalescent is the
unique version of the K (z,y) = 1 stochastic coalescent such that

Xi(t) = max X;(t) — 0 as. ast | 0. (32)

In our terminology, (32) singles out X as the standard K (z,y) = 1 stochastic
coalescent. The connection with the K(z,y) = 1 Marcus-Lushnikov process
is that, if the initial distributions satisfy

NIMLM(0) £ 0as N — (33)
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then
(NT'MLM(N1),0 < £ < 00) 2 (X(1),0 < t < x0) (34)

in the natural sense of weak convergence of /;-valued processes on the time-
interval (0, c0).
Note that

2
= k 2 i k 4
ET; = Z 1/(2) =—; var 7; = E 1/(2) ~ 38

and that 7; satisfies the assumptions of the (non-identically-distributed)
central limit theorem for independent sums. As in the CLT for renewal
processes, it follows that N(t), the number of clusters at time ¢, is asymp-
totically Normal(%, %) as t | 0. From this, and standard results about i.i.d.
uniform order statistics, it is routine to derive various ¢ | 0 asymptotics for
Kingman’s coalescent. Writing C'(z,t) for the number of clusters of mass

< z at time 7,

sup |C(zt, 1) — 2(1—e )] = 0 ass. . (35)
0<z<0

The first-order N — oo asymptotics of the K(z,y) = 1 Marcus-Lushnikov
process under initial assumption (33) are now rather clear. For fixed ¢ > 0,
(34) implies that for large N the Marcus-Lushnikov process at time Nt has
a finite number of clusters with masses distributed approximately as N X(?).
And (35) implies that, if {5 | 0 sufficiently slowly, then ML(N)(NtN) con-
sists of about 2/tx clusters with empirical mass distribution approximately
exponential (mean Nty /2). How fast can ty decrease, for this to remain
true? It is not hard to see that the following natural condition is sufficient:
the proportion of mass initially in mass Q(Nty) clusters is negligible, that
is
N7DST MLM(2,0) £ 0, eache > 0.
z>eNty

It is interesting to observe that a Gaussian limit for fluctuations of cluster
frequencies of X(¢) as t | 0 follows from classical results. Recall that Brow-
nian bridge B°(-) appears as a limit of empirical distributions for i.i.d.r.v.’s
(m;) with continuous distribution function F":

N2 (ilmsz) —NF(z); = 2 0) L (B(F(x));z > 0).

i=1
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Now the N spacings obtained from N — 1 independent uniform points
on [0,1] are distributed as (%,..., %), where the (7;) are independent
exponential(1) and § = "N 5. Tt follows that

A(z, N) = number of spacings of length < z
satisfies
N=Y2(A(z/N,N)= N(1-e®)) % B(1—e").

This is classical, e.g. [65] Theorem 6.4. Since C(z,t) = A(z, N(t)), we find

1/ (Clat,t) = 20— 7)) L BOO— 7)1\ /2/3(1 - e72)Z (36)

where Z is standard Normal, independent of BY.

Variance calculations of this type for the constant-rate stochastic coales-
cent can be found in [87, 25|, only the latter making the explicit connection
with Kingman’s coalescent.

There is a simple connection between Kingman’s coalescent and Con-
struction 4 (which exhibited the solution of the continuous Smoluchowski
coagulation equation for K(z,y) = 1 via a process of coalescing intervals on
the infinite line). Given Kingman’s construction, rescale the unit interval
[0,1] to the interval [, %] and rescale the times (7;) to (m7;). Then the
m — oo limit is the process in construction 5. Of course, the appearance of
the exponential distribution in (35) fits in with its appearance as the self-
similar solution of the continuous Smoluchowski coagulation equation. See
(49) for the corresponding conjecture for general non-gelling kernels.

4.3 The additive coalescent and the continuum random tree

Cayley’s formula (see e.g. [97] Chapter 2) says there are NV=2 trees on
N labeled vertices. Pick such a tree T, at random. To the edges e of
Tw attach independent exponential(1) r.v.’s {.. Write F'(¢) for the forest
obtained from T, by retaining only the edges e with £, < ¢. Write Y(V)(¢)
for the vector of sizes of the trees comprising F'(¢). It can be shown that
(YN)(1);0 < ¢ < 00) is the Marcus-Lushnikov process associated with the
additive kernel K(z,y) = z + y, with monodisperse initial conditions. This
construction was apparently first explicitly given by Pitman [63], although
various formulas associated with it had previously been developed in the
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combinatorial literature [62, 105] and the SM literature [40]. Here are two
examples of simple formulas. The number DMV)(t) of clusters satisfies

DWM(1) -1 < Binomial(N — 1,e")

The cluster-sizes (in random order) of YV)(¢), given D(N)(¢) =
d, are distributed as (n;1 < ¢ < d| Zle n; = N), where the (7;)
are i.i.d. Borel(1).

Construction 6 was the discrete N — oo limit of this construction, and we
saw in (26) how the solution of the discrete Smoluchowski coagulation equa-
tion for K (z,y) = x+y arises in this limit. We can make a continuous-space
construction analogous to Construction 7. That is, take the construction
above and rescale by taking each vertex to have mass 1/N and each edge to
have length 1/N/2. The N — oo limit is called the continuum random tree
(CRT), and is described rigorously in [5, 7]. (In the SSCRT of Construction
7 the root is attached to an infinite baseline; the CRT here is compact, with
total mass 1). Now similarly to Construction 7, at each time —oo < ¢ < o0
construct a Poisson process of marks on the skeleton, with rate e~! per unit
length, coupled in the natural way as t varies. Figure 10 illustrates the CRT
and the marks, for some fixed ¢t. Cutting the CRT at these marks splits
it into subtrees of finite mass; write X(¢) for the vector of masses of these
subtrees at time ¢. Then (as we expect by analogy with the discrete case
above) the process (X(), —oo0 < t < 00) evolves as the stochastic coalescent
for K(z,y) = x+y. This process, the standard additive coalescent, is studied
in detail in [12].
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Figure 10. The CRT and the additive coalescent
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4.4 Random graphs and the multiplicative coalescent

In the random graph model G(N,p), there are N vertices, and each of the
(];7) possible edges is present with probability p, independently for different
edges. Study of this model goes back to Erdés and Rényi [28, 29], and the
monograph Bollobds [18] surveys results up to 1984. Sizes of the connected
components have been a classical topic of study. A moment’s thought shows
that for the kernel K(z,y) = zy the Marcus-Lushnikov process MLV)(z)
with monodisperse initial configuration is exactly the process of component
sizes in G(N,1—e~t/N). Recall from table 2 that n(z,t) = 2~ B(t, z) is the
solution of the Smoluchowski coagulation equation for K(z,y) = zy in the
discrete setting. The fact that expectations behave like the deterministic
solution in the pre-gelation interval, i.e. that

N7TVEMLM) (2, 4)(t) — n(z,t) as N — oo for fixed ¢ > 1,t <1 (37)

is classical [28] and easy (relative to a given vertex, the random graph looks
locally like a Galton-Watson branching process). Barbour [15] proved the
central limit theorem: for fixed z,

N-VEMLM (2, 4)(t) - Nn(z,1)) % Normal(0, n(z,t)(1+(t—1)2%n(z,1)))

(38)
and Pittel [64] established joint convergence to the mean-zero Gaussian pro-
cess with covariances

(t — Dayn(z,t)n(y,t), y # =. (39)

(Note that these results are stated in the literature for tree-components,
but for ¢ < 1 only O(1) vertices are outside tree-components: [18] p. 97).
Remarkably, van Dongen and Ernst [93] had previously given formula (39)
and its extension to two times (f1,%2), in the context of the multiplicative
Marcus-Lushnikov process.

It is interesting to probe more deeply into the behavior of the stochas-
tic model around the “critical time” corresponding to the gelation time
Tger = 1 in the deterministic model. Rather detailed rigorous results are
known: see [43] for recent exhaustive analysis. We give a probabilistic dis-
cussion, following [9]. Recall MLgN)(t) is the mass of the largest cluster in
the Marcus-Lushnikov process, that is the size of the largest component of
G(N,1 — e t/N). Tt is classical [28, 18] that

MLM () = 0(logN) ,t<1
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=O(N23) t=1
=0O(N) ,t>1.

The next step is the idea that the giant component emerges over the time
interval 1 £ @(N~1/3). That is, for large s, at time t = 1 — s/N'/3 there
are numerous components whose sizes are small constants times N2/3, and
no larger components, whereas at time ¢t = 1 + 5/1\71/3 there is a unique
component whose size is a large multiple of N2/3, and other components
whose sizes are small constants times N2/3, Bollobés [18] Chapter 6 develops
some aspects of this idea, via s — oo asymptotics. It was subsequently
realized that it is natural to study emergence of the giant component by
studying the process (Zy(t) : —0o <t < o), where Zy(?) is defined to be
N~=2/3 times the vector of component sizes of G(N, N1+ tN_4/3). Aside
from a negligible time-change, Zy(?) evolves as the stochastic coalescent,
started at time —N /3 with N clusters of masses N ~2/% each. We can now
let N — oo, and it turns out [9] that

Zy % Z (40)

where the limit process (Z(t); —co < t < o0) is defined to be the standard
multiplicative coalescent. The novel feature is that the total mass Y, Z(¢,7)
is infinite. As shown in [9], the natural state space is the space [y of config-
urations x = (z;) with 3, 22 < co. As remarked in section 3.1, we do not
have any simple “process” explanation of the special solution in table 2 for
the continuous kernel K(z,y) = zy

n(z,t) = (2r)" 22752 exp(—1%2/2). (41)

So it is surprising that there is a process description of the standard mul-
tiplicative coalescent Z, or at least of its distribution Z(¢) at fixed time
t. Take (B(s);0 < s < o) to be inhomogeneous reflecting Brownian mo-
tion on [0,00) with drift rate ¢ — s at time s, and with B(0) = 0. Then
the vector of lengths of excursions of B from 0 is distributed as Z(t) [9].
One simple corollary of this representation applies when ¢ is large and pos-
itive. There, the process B(s) initially stays close to the deterministic path
b(s) = ts — %52, over 0 < s < 2t, implying that the “giant component”
of Z(t) has mass approximately 2¢. The connection between the standard
multiplicative coalescent and the special solution (41) is as follows. Write

n(z,t)dz = E( number of clusters of Z(t) with mass € [z,z + dz]).
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Then as ¢ — —oo, the function 7a(-,¢) approaches n(-,t) in the following
sense: if z,(t) is defined by

/ n(z,t)dz = a

a(t)
then -
/ iz, t)dz — a. (42)
za(t)
In particular,
max Zi(t) — 0 a.s. as t — —o0. (43)

It is natural to guess that the standard multiplicative coalescent is in some
sense the “essentially unique” version of the multiplicative coalescent on
—00 < t < oo satisfying (43): the precise result is proved in [11].

The convergence (40) extends to polydisperse Marcus-Lushnikov pro-

cesses as follows. For r = 2,3 write o,(N) = Ei(ML(N)(O))T, and write

7

¢(N) = (03(N))*3/(09(N))?. The appropriate scaling is
Zn(t) = AN )MLN(N (e(N)t+ ix7))

and Proposition 4 of [9] shows that the conclusion

Zn % 7Z

remains valid provided
ML{M(0) = o(a2/ 3 (V). (44)

Note that in the case where ML")(z,0) ~ Np(z) for some p(z) not de-
pending on N, with p(z) = z=F+°() as 2 — oo, the condition f > 4 is
enough to imply (44).

Turning to the SM literature, the solution (41) of the Smoluchowski
coagulation equation is usually called “unphysical” because the total mass
density mq(t) is infinite. The description of the multiplicative coalescent
illuminates what’s going on: we are measuring mass relative to the size of
large clusters at the critical time, rather than in absolute terms.

The Smoluchowski coagulation equations with K(z,y) = zy have been
studied many times in the SM literature. In particular, Ziff et al [107, 31]
observe (41) arising as a “scaling limit” as ¢ T 1 for the monodisperse initial
conditions, and discuss the extent to which this remains true for more general
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initial conditions, and also discuss different models of post-gelation behavior.
McLeod [58] showed that with the initial configuration n(z,0) = ae™*" the
continuous Smoluchowski coagulation equation has explicit solution

ae~ o)z (2$a1/2$1/2)
2241/2

n(z,t) =

on 0 <t < a, where I; is the modified Bessel function. In the stochastic set-
ting, van Dongen and Ernst [93] gave a detailed study of the multiplicative
Marcus-Lushnikov process. They derived the variance-covariance formulas
(38,39), and also (p. 911) give a heuristic discussion of the 1 + @(N~1/3)
transition, from the viewpoint of the breakdown in the Gaussian approxima-
tion. It is not clear exactly when the explicit connection with random graph
theory was made in the SM literature: [21] is one account from 1991. Con-
versely, even present-day accounts of random graphs [43] make no mention
of the Smoluchowski coagulation equation connection.

Let us briefly discuss post-gelation behavior. For ¢ > 1, the deterministic
quantities n(z,t) derived as the limit (37) densities of size-z components
in the random graph model are no longer solutions of the Smoluchowski
coagulation equation, because in the random graph model the gel and the
sol are interacting. In physics terminology, these n(z,t) arise in a Flory
model of gelation. The Smoluchowski coagulation equation itself represents
the Stockmayer model in which sol and gel do not interact, and in this case
the post-gelation solution has the surprisingly simple form

n(z,t) = n(z, )7 t>1

which goes back to [80]. This hasn’t been studied in the random graphs
literature, but a probabilistic elaboration will be given in [10] section 3.7.

4.5 Combinatorial approaches

A different approach to the monodisperse Marcus-Lushnikov process is to
seek to write down and exploit a combinatorial expression for the exact
distribution p(n;t) = P(IML™)(2,1) = n,,2 > 1). For the multiplicative
kernel (i.e. the classical random graph process) this is easy because G(N,1—
e t/N ) has an intrinsic description which does not involve analyzing time-
evolution, and we obtain

1 q(k,1— e—t/INYe—th(N—k)/N Tk
A . .
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where ¢(k,p) is the chance that G(k,p) is connected. And q(k,p) is deter-
mined by an elementary recurrence formula ([18] exercise 7.1).

Similarly, there is a discrete reformulation of the construction of King-
man’s coalescent which enables one to write down a partition function [16].

In the additive case, such results go back to Lushnikov [55], and have two
somewhat different extensions. Hendricks et al. [40] give an expression for
the partition function for the kernel K(z,y) = A + B(z 4+ y). And implicit
in [55] (see [40, 20] for clearer expositions) is the following result.

Lemma 9 Consider the Marcus-Lushnikov process with K(z,y) = zf(y) +
yf(z) for some f, with monodisperse initial configuration. Then

p(n;t) = N! H M
S !

where (by(t)) are the solutions of the differential equations

k-1
Chu(t) = 30 i1k — Db 0bsi(1) — (N — KR (1)

=1
with by (0) = 1(k:1)-

van Dongen and Ernst [93, 87] give the most detailed SM treatment of
the special cases of the stochastic coalescent: see also Tanaka and Nagazawa
[81, 82].

5 Stochastic coalescence with general kernels

In sections 4.2 - 4.4 we saw that the behavior of the Marcus-Lushnikov
process and the stochastic coalescent for the three special kernels is mostly
well understood. In contrast, very little is rigorously known about general
kernels. Qur main purpose in this section is to pose explicit open problems
for general kernels.

5.1 The WLLN for the Marcus-Lushnikov process

In looking at the SM literature from a TP viewpoint, perhaps the most strik-
ing feature is the lack of attention paid to the fundamental “weak law of
large numbers” issue: does the discrete Smoluchowski coagulation equation
really represent a limit in the Marcus-Lushnikov process? We state this in
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the simplest setting of monodisperse initial configurations, though there are
parallel problems in the polydisperse and the continuous-space settings. To
see why the problem arises at all, note that (in contrast to the setting of
pure fragmentation — section 3.2) the mean frequencies N=' EMLM™)(z, 1)
in the Marcus-Lushnikov process do not evolve exactly as the discrete Smolu-
chowski coagulation equation.

Open Problem 10 For a general kernel K, let n(z,t) be the solution of the
discrete Smoluchowski coagulation equation and let ML) (1) be the Marcus-
Lushnikov process, each with monodisperse initial conditions. Prove that, as
N — oo for fized t,

N7 ML (z,1) & n(z,t), 2>1 (45)

provided either of the following hold.
(a) K(z,y) = o(zy).
(b)t < Tgel

This problem is closely related to the question of uniqueness of the solution
n(z,t), which in section 2 we implicitly assumed, but in fact the only general
result [39] proving uniqueness assumes K(z,y) = O(z + y), which implies
non-gelling. In case (a), recent results of Jeon [44, 45] imply (45), assuming
uniqueness. Tom Kurtz (personal communication) outlines similar results.
Note that in the multiplicative case (45) fails for ¢ > Tge = 1, so that the
hypothesis “(a) or (b)” is about as weak as possible.

Open Problem 10 is related to standard results on density-dependent
population processes ([32] Chapter 11). Roughly, such a process has a finite
number of types of “molecules” which react in some finite number of ways,
the total number N of “atoms” being constant in time. For such a process
one has not only a weak law of large numbers but also Gaussian approx-
imations (see section 5.5). But the “finite number of types” condition is
essential, and hence in our setting (interpret a cluster of mass z as a type-z
molecule) these standard results can seldom be applied. The recent results
mentioned above rely on truncation arguments to approximate by the finite
case. Note that the kernel K(z,y) = zy has the special property that the
evolution of (ML) (z,1),1 < & < x¢) is itself Markov (in other words, we
can lump together clusters of mass > ), so that the standard results do
imply Gaussian asymptotics of form (38,39) for fixed z,y as noted in [93].
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5.2 Gelling kernels

Perhaps the most interesting aspect of the subject is the general interpre-
tation of gelation in terms of stochastic models of coalescence. The natural
counterpart to Open Problem 10, dealing with post-gelation behavior, is as
follows.

Open Problem 11 In the setting of Open Problem 10, prove that for fized
t > Tyel there exists e(t) > 0 such that

lim lim sup P (N_l > eMLM (1) > S(t)) =1

IOTOO N—oo r>x)

In words, after gelation some non-vanishing proportion of the total mass is
in clusters whose size is not O(1).

Open Problem 11 is one weak interpretation of gelation, but further con-
jectures are pure speculation concerning how much of the well-understood
qualitative behavior for the multiplicative coalescent extends to more gen-
eral gelling kernels. Consider the following three known properties of the
Marcus-Lushnikov process for K(z,y) = zy.

(a) At time ¢ > Tyq the giant component has mass Q(N).

(b) At time ¢ > Tye the WLLN assertion of Open Problem 10 no longer
holds.

(c) The times Tn (resp. Tj) at which N_lMLgN)(t) first exceeds ¢

(resp. 1 —¢) satisfy (T4 — Tn)/Tn = 0.
Property (c) is too weak to use as a criterion for gelation, because it holds
for K(z,y) = x+y. I conjecture that (a) and (b) are too strong, in that they
do not hold for gelling kernels with exponent 1 < v < 2. A more plausible
stochastic interpretation of gelation is

a unique “giant cluster” of ML(")(¢) can be identified while its
mass is still o( V).

More precisely:

Open Problem 12 If Tye) < oo, prove there exist random times Ty 2

Toer such that

sup MLV (1) ML (1) 2 0
t>Ty

N ML (Ty) 2 0.
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Lemma 9 suggests one approach to studying the issues in Open Problems
11 and 12 for kernels of the special form K(z,y) = zf(y) + yf(z). An
alternative special form of kernel (noted in [106]) is

2f(=)f(y)
flz+y) = f(z) - f(y)

where f(1) =1 and f(z 4+ y) > f(z)+ f(y). Consider the solution n(z,?)
of the discrete Smoluchowski coagulation equation for such a kernel with
monodisperse initial configuration, and consider

s(t) = Zf(x)n(x,t)

K(z,y)= (46)

It is easy to check £s(t) = s%(¢) and hence s(t) = (1—¢)~%, 0 < ¢ < 1. This
suggests (but does not quite prove) that Ty = 1. It is shown in [8] that for
kernels of this special form (46) one can use stochastic calculus to analyze
the Marcus-Lusnikov process and prove the conclusion of Open Problem 12.

5.3 Dynamical scaling and entrance boundaries

We digress to mention an issue of mathematical formulation. When study-
ing stochastic processes, a natural way to take limits is as time increases to
infinity or to a critical point, as in Open Problems 2 and 3, which in the lan-
guage of statistical physics assert dynamical scaling under the monodisperse
initial distribution, and assert universality when the same behavior holds in
the polydisperse setting. In the context of a finite-volume stochastic model
such as the Marcus-Lushnikov process, as t — oo the mass ultimately forms
a single cluster; the interesting question to study is how this happens. For
a N — oo limit stochastic coalescent process, this question asks for the
behavior at small time rather than at large time. We saw in sections 4.2
- 4.4 the existence of a standard stochastic coalescent for the three special
kernels 1, z + y and zy, which originates with the mass in infinitesimally
small clusters. Parts of Open Problems 14 and 15 below seek generalizations
of this behavior. In the language of theoretical stochastic processes, we are
seeking the entrance boundary for the general stochastic coalescent. Phys-
ically, the underlying story from section 1.1 will typically make sense only
when cluster-masses are in some finite range [2g, z1], so neither of the limit
procedures (zg | 0 or z1 T 00) corresponding to small-time and large-time
limits seems more natural than the other.
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5.4 Open problems for the general stochastic coalescent

Intuitively, the state space for the stochastic coalescent X(t) specified at (30)
consists of unordered sets {z;} of cluster-masses, with z; > 0 and )", z; = 1.
We can formalize this in several ways, e.g.

(i) by taking the decreasing ordering z1 > x2 > ... of cluster-masses, so the
state space becomes the infinite-dimensional simplex;

(ii) identifying {2;} with the measure }_ z;6,,(-).

Evans and Pitman [33] give a careful account of the “technical bookkeeping”
issues involved in formalization (e.g. one wishes to track the previous history
of mergers of a particular cluster at time ¢). The details are not important
for us: we shall just write /; for the state space. To use general theory of
continuous-space Markov processes we desire some regularity property, and
it seems natural to expect the Feller property: the distribution at a fixed
time ¢ varies continuously with the initial distribution. Evans and Pitman
[33] prove the Feller property under the conditions

K(0,0)=0; |K(z1,31)— K(z2,92)| < ko(|lza—z1]+|y2—w1|) VO < 4,9 < 1.

This condition holds for 6 of the 9 kernels in table 1. A natural minimal
assumption, satisfied by all 9 kernels, is

K(z,y) is a symmetric, continuous function (0,1)* — [0, 00). (47)

Open Problem 13 Prove that, under assumption (47), the stochastic co-
alescent exists as a Feller process on [y.

This is conceptually just a technical issue: of more substance are the follow-

ing open problems, representing the stochastic analogs of Open Problems 2
and 3. Write

F(z,1) = ZXi(t)l(Xi(t)>l‘)

for the total mass in clusters of mass > z, in some version X(¢) of the
stochastic coalescent. Write X(V) for the stochastic coalescent started with
N clusters of mass 1/N each, i.e. the rescaling (31) of the monodisperse
Marcus-Lushnikov process. As usual, we also seek analogs of convergence
assertions for suitable polydisperse initial distributions.

Open Problem 14 Consider a homogeneous kernel K with exponent v <
1. Suppose there exists a unique 1 satisfying (14) such that n(z,t) =
s72(t)(x/s(t)) is a solution of the continuous Smoluchowski coagulation
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equation, for s(t) satisfying (17). Write Tinie = 0 if v < 1, Tipgy = —o0 if
~v = 1. Glive rigorous proofs, under explicitly stated extra hypotheses, that

(a) there exists a version (X(t),Tiniy < t < 00) of the stochastic coales-
cent such that

[e.e]

sup |F(os(0),1) = [ yo(y)dy| = 0 as. as t | T,

T

and so in particular
max X;(t) — 0 a.s. as t | Tipj- (48)

(b) If v < 1 then the version in (a) is the unique version satisfying (48).
(c) As N — oo,

- — d
(XM (=57 (F) + )57 () <1 < 00) = (X(t); Tinig < ¢ < 0)
for some to, where s is the inverse function of s(t).

For Kingman’s coalescent, these results are straightforward, and indeed
contained (in slightly different form) in our section 4.2 discussion. For the
additive coalescent see [12].

Note that Open Problems 10 and 14 involve the behavior of the Marcus-
Lushnikov process for non-gelling kernels over different time-regimes. Specif-
ically, for a homogeneous kernel with v < 1, Open Problem 10 involves
t = Q(1) whereas Open Problem 14 involves ¢ = Q(N'™7). The cor-
responding conjecture for intermediate times, that is for {y — oo with
ty = o( N'77), is that

sup |N~* Z m’ML(N)(a;’,tN)—/ yib(y)dy] 2 0as N — co. (49)

z'>xzs(t) z

The next Open Problem seeks to generalize deeper structure of the mul-
tiplicative coalescent. Recall that the multiplicative coalescent took values
in {s.

Open Problem 15 Consider a homogeneous kernel K with exponent 1 <
7 < 2. Suppose 0 < Ty < 00, and suppose the conclusions (a,b) of Open
Problem 3 hold. Give rigorous proofs, under explicitly stated extra hypothe-
ses, that there exists a version (X(t); —oo < t < 00) of the ly-valued stochas-
tic coalescent with the following properties.
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(a) Writing X(1) = (X(1)(t), X(2)(1),...) in decreasing order of cluster-
masses,

Xqy(t) = 0 as. ast | —o0
X1)(t) = o0 and X(5)(t) — 0 a.s. ast | oo.

(b) There is a self-similar solution (22) of the Smoluchowski coagulation
equation

3+
n(z,t) = [{|7 p(z]t]77)

which satisfies the analog of (42).
(c) As N — o

(o8 XMty + ont); —2 <t <o) L (X(1);—00 <t < )

for certain constants ty,on.

One expects the constants ¢y,on in (c) to grow as powers of N, with ex-
ponents depending on «, but it is not clear (even heuristically) whether
these exponents can be obtained from the exponent in Open Problem 3
which relates only to the behavior near the critical point. Uniqueness of the
stochastic coalescent is a subtle issue even in the multiplicative and additive
cases [11, 12], so we hesitate to speculate about general kernels.

5.5 Gaussian fluctuations

The weak law of large numbers (Open Problem 10) asserts that the solution
of the Smoluchowski coagulation equation gives the first-order approxima-
tion of the Marcus-Lushnikov process for large N. It is natural to seek a
second-order approximation involving Gaussian fluctuations of order N2,
As noted in section 5.1, in the restricted case where there are only a finite
number of different cluster-sizes (so the limit Gaussian process takes values
in some Rd), such a result is part of the general weak convergence theory of
[32] Chapter 11. But presumably the conclusions continue to hold without
that restriction, at least under mild extra assumptions.

Open Problem 16 In the setting of Open Problem 10 (with perhaps extra
regularity hypotheses), show that

N=VEMLM(2,¢) — Nn(z,1) % Z(z,1)
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in the sense of weak convergence of R* -valued processes, where (Z(z,t);z =
1,2,...,0<t < Tgel) is the mean-zero R™ -valued Gaussian diffusion speci-

fied by

dZ(z,t) = —ZI&'(ac,y)Z(m,t)n(y,t) dt

+3° /(e ym(e, Only. 1) dBuy () (50)

where the By, \(t) are independent standard Brownian motions.

See van Dongen [87] for SM discussion of approximations in the spirit of
Open Problem 16.

Another way to think about Gaussian approximations is in the context
of the (continuous-space) stochastic coalescent at small times — cf. (36) for
the case of the constant kernel.

Open Problem 17 Suppose, as in Open Problem 1}(a), that (X (1), Tinis <
t < 00) is the standard version of the stochastic coalescent for a kernel K
which is homogeneous with exponent v < 1. Prove that as t | Ty,

(i (Pes0 = [T wwiiy) 0 < <) £ (20 <2 < )

where Z(x) is a certain mean-zero Gaussian process.

As stated, this involves looking at single times, but there is a natural exten-
sion to a time-indexed Gaussian process (Z(z,t")). Finally, is the spirit of
the intermediate-time empirical WLLN (49) there is a corresponding Gaus-
sian approximation conjecture, featuring the same limit Gaussian process
(Z(z)) as in Open Problem 17. Ways of secking to calculate the covariance
structure of Z(z) are mentioned in section A.6.

6 Envoi

With gross oversimplification, we can point to two waves of interest in our
topic. The first was the deterministic theory developed by physical chemists
in the 1960s and surveyed by Drake [26]. The second was the stochastic
theory developed by statistical physicists in the early 1980s, culminating in
the work of van Dongen, Ernst, Hendriks and others. Perhaps the open
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problems in this survey and concurrent technical work such as [9, 33, 45]
will stimulate a third wave of interest amongst theoretical probabilists.
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A Appendix

A.1 Self-similarity and tail behavior

In the settings where one expects self-similar solutions of the Smoluchowski
coagulation equation (section 2.4), there is some SM literature ([53, 89, 91,
94] — surveyed in [95]) on the ¢ — oo behavior of n(z,t) for fized z, or for
z(t) > s(t). To illustrate the type of result, in the homogeneous setting [94]
argues that for fixed ¢ < Ty, as © — o0

n(z,t) ~ Az, t)e" 1)

where

(v<1) Az, t)~ A(t)z™°

and when v = 1 there is also the possibility
A(z,t) & exp(—d(t)z”), some 0 < 5 < 1.
Here v is the “balance” parameter
K(l,y)~ g’ a5y — .

This result is derived from heuristic self-consistency arguments: essentially,
what is shown is that

n(z,t) ~ A(:U,t)e_zwz(t)
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is not possible for w # 1.

It is generally believed that these “large deviation” results reflect z —
0 or co behavior of the presumed self-similar solution #(z). This is far from
clear from the TP viewpoint.

See [51] for numerical results for the kernels (z + y)? and (2y)/2.

A.2 Synthesizing self-similar solutions

A way of synthesizing self-similar solutions is described in [26] section 6.4
and attributed to Wang [100]. Write

F(z,y)
P(2)Y(y)

and substitute into (15). Then (15) becomes

K(,y) = (51)

Thus if we start with some arbitrary positive kernel function F, and if we
can solve (52) for ¥ which can be normalized to (14), then % is a self-similar
solution to the Smoluchowski coagulation equation with kernel K defined at

(51).
A.3 Self-similar solutions for the pure fragmentation equa-
tion

We summarize results in Brennan and Durrett [19], promised from section
3.2. Consider a splitting kernel which is homogeneous

S(elyex) =715 (l;x)

for some @ > 0. Then the pure fragmentation equation (27) has a self-similar
solution

n(z,t) = /(')

where % is defined as follows. Let ... < V_; < 0 < V5 < V§ < ... be the
renewal times of a stationary renewal process with inter-renewal density

P(Vign —Viedv)=e""S(1;e7").
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Let ¢ be the probability density function of the random variable
Y = Z & exp(—aVy,)
m=0

where the (£,,) are independent exponential(1) r.v.’s. Then

b(x) = az”~2g(a”).

Moreover in the special case S(I;z) = [“~! we have

$(x) = aexp(—a®)/T(2/a).

This looks promising, suggesting that by duality we can get coalescing ker-
nels K with these 9 as self-similar solutions. Unfortunately, applying the
duality formula (28) gives

21(2/a)(x + y)*~!

](t(‘ray) = atg/a

exp ((z% + y* — (z + y)™)1) (53)

and we cannot time-change to a time-independent kernel, except in the case
a = 1 which corresponds to the familiar kernel K(z,y) = constant.

A.4 Constant-rate interval-splitting

Recall from section 3.2 the notion of dual splitting kernel S¢(l;z). Here
is another example. Take [0,1] as our “artificial space”. At time ¢t = 0
we see the unit interval; as ¢ increases, the interval is split into subintervals
according to the rule: each interval [a, b] splits at rate 1 at a uniform random
position. Thus the splitting kernel is

Se(lyz) =171 (54)

Write L; for the size-biased interval length density at time ¢, so that the
density of L; is

fi(l)y =In(l,t)/a(t) (55)
where a(t) = [In(l,t) dl. Tt is easy to see that log L; has exactly the dis-
tribution of HZQ:tl log &;, where @), has Poisson(?) distribution and &; has the
“size-biased uniform” density 22 on 0 < z < 1. So for large ¢ the distribu-
tion of log L; is approximately Normal(—put,o?t) for certain constants u,o.
Combining with (55) gives an approximation

n(z,1) ~ Mexp (_M) _

oV2nt 202
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Combining with (54) and substituting into (28) shows that the dual coales-
cence rate kernel is approximately of the form b(¢) K (z,y) for

K(z,y) = 2*y*(z +y)7°. (56)

This calculation suggests that kernel (56) may have a self-similar density
which is approximately log-Normal.

A.5 Embedding the K(z,y) =1 coalescent

A special feature of the K(z,y) = 1 setting is that asymptotics for the
Marcus-Lushnikov process can be obtained by embedding into Kingman’s
coalescent. More exactly, let us consider the standard stochastic coales-
cent (X(t);t > 0) constructed in section 4.2, and let X*) be the stochastic

coalescent started with configuration (asgk), 1<i<k), where
Z ajgk) =1. (57)

Recall the definition of 7. At time 75, we attach the weights (xfk)) to the k
clusters of X(73,), in random order, and then define X(*)(¢) to be the weights
of the clusters of X(7x+1). This provides an embedding of X*) into X. Now
recall the functional WLLN for sampling without replacement.

(%)

Lemma 18 Suppose (.rfk)) satisfies (57) and max;z;’ — 0 as k — oc.

Let S(k)(t) = D i<kt ‘765:2')’ where T is a uniform random permutation of

{1,...,k}. Then supgc,cqr |S¥(t) — 1] & 0.

Applying the lemma to the embedding, we deduce (34) and the uniqueness
property (32) of Kingman’s coalescent.

A.6 Variance calculations

Open Problem 17 involves a Gaussian process (Z(z);0 < z < co) intended to
represent fluctuations of cluster-size counts in the intermediate-time regime.
For the three special kernels, explicit description of this process is most
easily done by exploiting special structure (36,39). For a general K, a di-
rect approach is to write down the differential equations implied by (50) for
EZ(z,1)Z(y,t), pass to the continuous-space limit, and then use the pre-
sumed scaling invariance to derive an equation in the spirit of (15) for the
covariance function of Z(z).
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A different approach to variance calculations is to use the general con-
struction in section 3.3, in which cluster sizes at time ¢ in a certain model are
represented as a stationary one-dimensional process. Perhaps one can use
a suitable CLT for stationary processes to obtain a rigorous Gaussian limit
in this model, and then relate this model to the Marcus-Lushnikov process
featured in Open Problem 16.

A.7 What was new in this paper?

As befits a survey, little in this paper is new. In the big picture, the general
viewpoint of section 3 does seem rather novel, as does the sketched general
construction in section 3.3. In details, the sketched “slick proofs” of (25)
and (36) seem novel.
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