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Abstract - Protection schemes are modelled through 
Petri Nets, in order to carry out performance 
evaluation. Marked Petri Nets are suitable for 
qualitative evaluation, while Time Petri Nets and Timed 
Petri Nets are convenient for cycle time evaluations, 
and for deriving relationships between the time 
parameters of the primary and the secondary protection. 
Stochastic Petri nets are used for the modelling of the 
stochastic nature of protection; they enable the 
evaluation of probabilistic performance measures, and 
have advantages over simulation techniques. 

INTRODUCTION 

When a fault occurs in a power system, the 
protective relaying scheme has to carry out the tasks of 
detecting the fault,and isolating it, These tasks must 
be carried out reliably, with the minimum delay, and 
with minimum disruption of supply to the consumer loads. 
Traditionally, protection engineers have used their 
knowledge of the character of the power system, and a 
set of design rules,in order to design its protection 
scheme. With the development of very complex power 
systems, which have very stringent performance 
requirements, it is desirable that tools be developed 
for the systematic design of the protective schemes of 
such systems, as well as for the performance evaluation 
of alternative protection schemes. [1,2,31 Petri Net 
models are a means of representing protection schemes; 
they enable one to ensure that these schemes possess 
desirable qualities, they permit the comparison of 
different schemes, they enable one to specify 
coordination requirements between the timing parameters 
of the primary and backup protection, and they can be 
used for performance evaluation. The Petri Net model 
enables one to study the protection scheme independent 
of the dynamics of the power system. 

In this paper, we will establish the relevance of 
Petri Net modelling to protection studies; we will 
illustrate how the different Petri Net models capture 
the information that is of importance to both 
qualitative and quantitative evaluation of protection 
schemes. The marked Petri Nets allow one to evaluate 

conservativeness, safeness and properness: Time Petri 
Nets are able to represent the timing parameters of 
protection schemes, and serve as a tool for the 
establishment of relationships between these parameters, 
in order that the coordination between primary and 
backup protection is ensured. An alternative means of 
representing timing information is the timed Petri Net, 
which is useful in the computation of the cycle times of 
the operational cycles of protection schemes. 
Stochastic Petri Nets adequately represent the 
stochastic nature of protection; we will demonstrate 
their advantage over simulation techniques as a means of 
computing the mean sojourn time and the steady state 
probability of occupancy of each state of the protection 
scheme. 
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the qualitative performance measures of 

petri Nets were developed for the modelling of 
&mpl;ter systems and comnunication protocols [ 4 ~ 5 1 -  
3ucn systems are discrete - event systems; in such 
systems the state remains unchanged, until an event 
takes place, thereby causing the system to 
instantaneously switch to a different state. Although 

-the power system itself i s  a continuous time system, its 
protection scheme may De viewed as a discrete/event 
system, and modelled through Petri Nets. The occurrence 
of a fault is a discrete event which instantaneously 
changes the power system from a fault-free condition to 
a faulted condition. Similarly the clearing of a fault 
and the resetting of a relay are discrete events which 
change the state. 

Although formal definitions of Petri Nets (PN's) are 
available [61, we will find it convenient to visualize a 
PN as a directed bipartite graph, in which there are two 
disjoint sets of nodes, and two disjoint sets of edges. 
The set of n place nodes P=(pl,p2, ...,p n) are 
represented by circles, and the set of m transition 
nodes T=(tl,t2,. . .,tm)are represented by bars, as shown 
in Fig.1, where n=4 and m=3. The directed edges IN are 
incident out of place nodes and into transition nodes; 
individual members of this set are denoted by IN(pi,tj). 
The directed edges OUT are incident out of transition 
nodes and into place nodes; members of this set are 
denoted by OUT(pi,tj). In Fig.1, the set IN consists o f  
5 edges, and the set OUT has 6 edges. The set of input 
nodes of a transition tj is the set of places pi for 
which IN(pi,tj) is a member of IN; similarly, the set of 
output nodes is the set of places pi for which 
OUT(pi,tj) is a member of OUT. In Fig.1, the set of 
input places for transition tl is [p3,p4], and the set 
of output places is [pl,p2]. 
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Fig.1. Petri Net 

The topological information of each PN graph is 
contained in its incidence matrix, C, which has n rows 
and m columns. The element C[i,j] has the value -1 if 
the place pi is an input node of transition tj, it has a 
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Reachability is a useful concept of marked PNs. Eachi 
initial marking Mo has a reachability set associated 
with it; this set consists,.of all the markings which can 
be reached from MO through the firing of one or more 
transitions. 

value t1 if place pi is an output node of transition tj, 
and it has a value of 0 otherwise. The incidence matrix 
of the PN of Fig 1 is 

c = [ - ; : /  4 
-1 1 -1 

Obviously, C is defined only if no node is both an 
input node and an output node of the same transition. 

As it will be shown in the next section, the 
iincidence matrix is useful for checking whether the 
marked PN of a protection scheme is conservative; 
sthis will guarantee that the scheme possesses the, 
property of conservativeness. The incidence matrix; 
will also be shown to be of relevance in detecting 
the cycles in the PN model, thereby facilitating the 
evaluation of the cycle times of the protection scheme. 

MARKED PETRI NETS 

The marked PN consists of a PN graph G, along with a 
marking, M. This marking associates with each place pi 
a non-negative integral number mi of tokens, as 
represented by mi dots at the node pi. This marking is 
expressed as an n-vector, whose i th compoynt is mi. 
The PN of Fig2 has the marking (l,l,O,l,O,O). 

The simulation of a discrete event is simulated by 
the firing of the corresponding transition. The firing 
of a transition tj removes a token from each of its 
input places, and deposits a token in each of its output 
places; the markings of the remaining places are 
unaffected. For instance, if the original marking of 
the PN of Fig 2 is as shown. thgn the firing of tl 
produces the marking (0, 1 , 1 , 1 ,O.O) . 

--- 

F i g . 2 .  M a r k e d  PN of Protection Scheme 

Since no place can have a negative number of tokens, 
transitioa is not allowed to fire if any of its input 
places do not ! have at least one token. If arty 
transitiorhas a token at each of its input places,,then 
it is said to be 'endbled'; only' enabled transitions may 
fire. For instance, when one has the marking shown in 
Fig 2, the only enabled transition is tl. Each time a 
transition fires, it changes the marking, thereby 
enabling some more transitions, and disabling some 
others. For the PN of Fiq2, the firing of tl produces 
the marking (O,l,l,l,O,O), in which only t2 and t3 are 
enabled. If t2 fires, then we get the marking 
(O,O,O,l,l,O~, in which only t4 is enabled; the firing 
of t4 returns the PN to the original marking 
(l,l,O,l~O,O~ Otherwise, if t3 fires, the marking' 
(O,l,O,O,O,l~is produced; then t5 fires, to return the 
PN Ro the original marking. 

Each marking which can be reached from the initial 
marking is referred to as a state. The reachability 
information is represented through a reachability graph, 
in which each node corresponds to a state, and the edges 
are associated with transitions. A directed edge is 
incident out of node M1 and into node M2 if and only if 
there exists a transition ti whose firing changes the 
initial marking M1 to the marking M2; the edge bears the 
label is 
given in Fig 3. Reachability graphs enables us to find 
the reachability set of any state Mi; one merely locates 
all the nodes which can be reached from Mi by the 
traversal of directed paths. 

ti. The reachability graph of the PN in Fig 2 
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Fig. 3 .  Reachabil i ty Graph. 

In the representation of protection schemes through 
marked PNs, one maps each condition to a place node, and 
each event to a transition node; the initial marking is 
obtained by depositing a token in every place node which 
corresponds to an initial condition of the protection 
scheme. - 

B1 

Fig. 4. Over current Relaying Scheme 
In the overcurrent relaying scheme of Fig 4,the 

primary relay R1 trips breaker B1, to isolate the fault 
F1; relay R2 and breaker 82 correspond to backup 
protection. This scheme is modelled through the PN of 
- Fig 2. The>itialsndigcns are the absence of the 
fault, and the readiness of the relays R1 and R2 to 
respond to it; these correspond to the places ply 
p2 and p4 respectively. A token is deposited at each 
of these places, as shown in Fig. 2, to represent 
the initial condition. The other possible conditionk 
of the protestion s-y'tem are the presence of Fly and 
its being isolated through B1 and 82 respectively 
these conditions correspond to p3, p5 and p6. The 
occurrence of F1 is represented by the transition 
tl, which deposits a token at p3, to indicate that 
the fault is present. The new state (0,1,1,1,0,0~~ 
is as shown in Fig. 3. Now t2 and t3, corresponding 
to primary and backup relay operation respectively 
are both enabled. If t2 fires, then a token is deposi- 
ted at p5, and the system can be restored through 
primary protection, corresponding to the firing of 
t4, with the initial state being reached, as shown 
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in Fig. 3. If t3 fires, then restoration through 
backuo orotection takes olace, as reoresented bv the 
firing df t5. 

A protection scheme is conservative C7l if it does 
not lose any information which is of' relevance to 
protection, and if it does not generate any spurious 
information. This information consists of the presence 
of faults and the readiness of the protection elements 
to respond to faults. Since the marked PN represents 
these conditions through tokens in the place nodes, the 
protection scheme will be conservative if its marked PN 
model cannot either lose or generate tokens. This is 
the conservativeness property of PN's. A PN has this 
property if there exist positive integers wl,w2, 
such that for every transition tj, the markings M &Iy? 
prior to and after the firing of tj satisfy the 
relationship . 

wi. M(pi) = 2 wi. R(pi) 
i = l  

? 

This property can be determined from the incidence 
matrix C. If one can find a vector Y, all of whose 
components are positive integers, such that C'Y=O, then 
the PN has the conservativeness property. In the #ase 
of the PN of Fig 2, we can choose Y=~1,1,1,1,2,2) to 
satisfy this condition, and hence the protection scheme 
of Fig 4 is conservative. It has been shown [81 that 
unless care is taken to save all relevant information, 
one may not obtain conservativeness in more complicated 
protection schemes. 

A protection scheme is proper if it has the ability 
to return to its normal condition after it has 
experienced a fault. Since the normal condition 
corresponds to the initial marking of the PN model, the 
scheme will be proper if for each state that belongs 
to the reachability set of  the initial state in the 
PN model, there exists a sequence of transitions whose 
firing will return the system from this state to the, 
linitial state. This is the properness property of 
marked PN's. 

In the reachability graph of Fig. 3, there is 
a directed path of transition edges from each other 
state to the initial state. Hence the PN of Fig. 
2 has the properness property, and the protection 
scheme of Fig. 4 is proper. 

The third qualitative performance measure is 
safeness. A protection scheme is safe if there can never 
be an attempt to reset a relay which has already been 
reset. In the marked PN model, the resetting of a relay 
is represented by the depositing of a token in the 
appropriate place node; hence, safeness of the 
protection scheme i s  guaranteed if no sequence of 
transitions can deposit a token in any relay place node 
when it already has a token; this is the safeness 
property of the relay places of the PN model, which can 
be expressed as 

M(pi)$ 1 

where pi is a relay place. 

In Fig 2, the relay places are p2 and p4. From the 
reachability graph of Fig 3,  it can be seen that for 
every state,both M(p2) and M(p4) are equal to either 0 
or 1, and hence they have the safeness property. Hence 
the protection scheme of Fig 4 is safe. 

RECOVERABILITY ANALYSIS 

The Time Petri Net is of relevance to recoverability 
analysis. This PN employs the graph structure and 
tokens of the marked PN, along with additional timing 
information [9] While it has the same restriction 
that only enabled transitions may f ire, there are 

additional constraints on the firing interval. Whenever 
a transition ti is enabled (by the firing of some other 
transition tj), at least Tmin,i time units must elapse 
before ti is allowed to fire; if it has not fired before 
the instant Tmax,i (measured from the instant of 
enabling), then at Tmax,i it must fire. 

We will use recoverability analysis to obtain the 
timing relationship between the primary and backup 
protection for the protection scheme of Fig 4. We use 
the time PN of Fig 5, which has a more detailed graph 
than that of Fig 2, we represent only the primary 
protection The places pl through p8 correspond 
respectively to the condition of absence o f  a fault, 
re'lay able to sense the fault, relay set, fault present, 
trin signal sent, fault isolated, system ready for 

t l  

Fig.5. Time Petri Net 

restoration,and relay tripped. The transitions tl 
through t6 correspond respectively to the occurrence of 
the fault, relay response, breaker opening, fault 
clearance, relay resetting and system restoration. 
Transition t7, shown with dotted lines, is ignored at 
this stage. The parameters Tmin,i and Tmax,i are chosen 
from physical considerations, or form part of the 
design . 

From Fig 5, we see that p4 receives a token at the 
same instant as does p2, and hence t4 is enabled as soon 
as' 6 receives a token. From the loops of the graph, 
one'$ets 

. Tmax5 < [Tmin3 t Tmin4 + Tmin6 + Tminl] 
If thts relationship is satisfied, then the relay is 

ready to r.espond to a fault whenever it can occur. 
Failure occurs if the malfunction I% a relay prevents it 
from detecting a fault; this is simulated by the loss of 
a token from place p2. Such behaviour is analyzed 
through an error token machine (ETM). The ETM of Fig 6 
is obtained from the reachability graph of the PN of Fig 
5 by the addition of the node (p3,p4), and the edge p2, 
which is incident out of node (p2,p3,p4) and into node 
(p3,p4); the edge shown with dotted lines will 
temporarily be ignored. State (p3,p4)is illegal, since 
it is reached by traversing the edge p2, which 
correspond to the illegal operation of the loss of a 
token; it is also a final state, because there are no 
edges (transitions) incident out of it Because the 
ETM has an illegal final state, recovery from the 
failure is not possible; this conforms with our 
understanding that a system with only primary protection 
cannot recover from the failure of the primary relay to 
respond [8]. 

The introduction of  the edge t7 in the ETM converts 
the illegal state (p3,p4) to a non-final state, thereby; 
facilitating recovery. This transition t7 must 
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f & P 3 ,  P4 

P2,P3,P4 

Fig. 7 .  l ime Petri Not o f  Two-line System. 
W 

and t22. and we require that t18 fires first, spurious 
breaker opening is prevented if one chooses Tmaxl8 to be 

Fig.6. ETM of Petri Net . less than both Tminl4 and Tmin22 
._ 

introduce a token at p2, to produce the state 
.(pZ,p3?p4); the implementation is shown by the dotted 
line in the PN of Fig 5. The firing of t7 activates 
the backup protection, by replacing the lost token in 
p2. Rather than complicate the PN model by introducing 
new places and transitions to correspond to backup 
protection, we use the ones that correspond to primary 
protection, with the understanding that after t7 fires, 
the timing parameters of transitions t2 through t6 will 

Tmaxl8 4 min[Tminl4, Tmin221 

Similarly,one selects a transition t28 to prevent the 
spurious tripping of line 1 when a fault occurs only on 
line 2. It has been shown [8] that in the comparatively 
infrequent case of occurrence of simultaneous faults on 
both the lines, the fault clearance will be delayed, 
but the behaviour of the system will be correct. 

The interwetation o f  transition t18 is that when correspond to backup protection. 
the relay on line 2 senses a fault,it ignores it 

Since backup protection not be actuated (removes the token) if it senses that the breaker on 
before the primary protection has had sufficient time to line has opened (token at p16). Hence maloperation is 
act, transition t7 must always take longer to fire than prevented only if the relay on line has information 
the largest possible time taken by the sequence t 2 ~ t 3 ~ t 4  with regard to the status of the breaker on line 1. 

CYCLE TIME EVALUATION Tmin77 [TmaxZ t Tmax3 t Tmax41 
-- 

where these parameters refer to primary protection. 
This constraint is consistent with known coordination 
,criteria, and demonstrates the relevance of time PN 
model 1 ing. 

We next consider a more complicated system, in which 
there are two parallel lines. Under light load, their 
protection schemes are independent. However, under 
heavy loads the tripping of the breaker on line 1 will 
overload line 2, perhaps causing it to trip, although it 
is fault-free. This undesirable behaviour must be 
avoided. We analyze the situation through the time PN 
of Fig 7, which is obtained by duplicating Fig 6, and 
using the additional index to distinguish the places and 
transitions of line 1 from those of line 2; for 
now,transition t18 will be ignored. 

nder light load,protection against a fault on line 
1 d simulated through the firin_g of transitions tll 
through t17. Under heavy load, a fault on line 1 
overloads line 2; this spurious behaviour is simulated 
by the depositing of a spurious token at p22 at the 
instant of the firing of t13. If there has been no 
fault on line 2, then p24 has no token, because t21 has 
not fired. The illegal token enables t22, whose firing 
corresponds to the illegal issue of a trip signal from 
the primary relay on line 2. To prevent this, one must 
remove the extra token from p22 by firing t18. Since 
the firing o f  t13 has simultaneously enabled t14, t18 

Every protection scheme has a collection o f  
operational cycles associated with it. Each relay is 
initially set; when a fault occurs within its zone of 
protection, it senses the fault, issues a trip signal, 
and then resets, thereby completing a cycle of 
operation. The power system itself has cyclic 
behaviour; it passes from the normal state to the 
faulted state, after which the fault is sensed and 
cleared, and then restoration takes place, once again 
obtaining normal operation. Cycle times can be 
associated with these cycles. The cycle times are a 
quantitative performance measure o f  the protection 
scheme. Since the time taken to locate and clear a 
fault will depend on its nature and location, the cycle 
time is not constant, but an estimate of the minimum 
value could be obtained from a Timed Petri Net model 

The timed PN has the same topological structure 
the marked PN, along with a single time parameter ;: 
being associated with each place pi. In the timed PN 
model, whenever a token is deposited in a place pi, it 
remains inactive in this place for an interval of zi' 
time units, at the end of which it becomes available. A 
transition fires at the first instant that it has a 
token available at each of its input places. The timed 
PN model of the protection scheme of Fig 4 is given in 
Fig 8. The places plYp2,p3,p4 and the transitions 

[lo]. 
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Fig. 8. limed Petri NZ Model 
tl,t2,t3 have the same significance as their- 
counterparts in the marked PN of Fig 2.  However,since 
the transition t4 of Fig 2 is associated with both the 
resetting of the relay and the restoration of the 
system, and these two operations require different 
amounts of time, we must replace t4 by two transitions 
t4 and t6 in the timed PN model of Fig 8, and we 
similarly replace p5 by the two places p5 and p6. The 
places p7 and p8 and the transitions t5 and t7 have the 
same justification. The time parameters are zl through 
28. 

Although in this case, it is easy to ideTitify the 
cycles of the PN, we will use the more general approach 
of computing them from the incidence matrix C, which.ps 
given by 

_ _ _  

- 1 0 0 0 0 i 1  

1 - 1 - 1  0 0 i;j 0 0 - 
C =  

0 0 1 0'-J 0 0 

Let us consider any solution X to the equation CX=O; 
this solution X is known as a transition invariant or T- 
invariant of the PN. In particular, let us select all 
such transitions whose entries are either 0 or 1. Each 
of these solutions corresponds to a set of transition 
whose firing returhs the PN to its original marking, 
thereby completing a cycle of operation. For instance, 
in this case the only two such T-invariants are 
(l,l,O,l,O,l,O~ and (l,O,l,O,l,O,l~, and these 
correspond to the sets of transitions (tl t2,t4,t6) and 
(tl,t3,t5,t7) respectively. 

Each of these sets of transitions can be used to 
construct a subnet, which consists of the corresponding 
transitions, and the places that are associated with 
them. The subnets of the PN of Fig 8 are shown in Fig 
9. Each subnet itself consists of a number of cycles, 
and the minimum cycle time of the subnet can be obtained 
by computing the largest of the cycle times of these 
cycles, since the cycle of the subnet can complete only 
after all the cycles in it complete. The cycles within 
each subnet are identified from its incidence matrix, 
which is obtained by selecting the appropriate columns 
o f  the incidence matrix C of the original PN. For 
instance, the incidence matrix C1 and C2 of the subnets 
of Fig 9 are obtained by selecting the lst, 2nd,4th,6th 

and lst,3rd,5th,7th columns respectively of C, since; 
these correspond to the 1 entries o f  the two selected T-, , 
invariants. 

c1= c2 = pq 0 1 0 - 1  

0 1 - 1  0 

I 

I 

I The all-zero rows of C1 and C2 correspond to those; 
places that do not belong to the subnet; although their' 
entries do not help to identify the cycles, we retain, 
them, to maintain consistency of notation. 

W 

' FTg. 9 .  Subnets of Timed Petri Net 

The cycles qthin subnet 1 are obtained by solving 
the equation C1 Y=O, such that the entries of Y are 
either 0 or 1. In this c a v ,  the only two su 
solutions are [1,0,1,0,0,1,0,01 and [O,l.O,O,l,O,O,O~ 
the corresponding cycles are (pl,p3,p6) and (p2,p:). 
For the other such subnet, one obtains the corresponding 
cycles (pl,p3,~7) and (~4,~8). 

We now compute cycle time for the primary 
protection, which corresponds to the first subnet of Fig 
9. In this subnet, the places are pl,pZ,p3,~5,p6, and 
their corresponding time parameters are zl,z2,z3,z5,z6 
Specifically, we wish to find the minimum time that can 
elapse between the restoration of the system by the 
operation of the protection scheme, and the next 
occurrence of a fault, in order that it be handled by 
the primary protection, i.e the minimum possible value 
of zl. Since it must be ensured that the primary relay 
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has to be reset after it has responded to the previous 
fault, the maximum value of z2 and z5 are chosen on the 
basis of the physics of the protection scheme, in order 
to compute (z2tz5); this cycle time must be less than, 
or equal to the cycle time (zltz3tz6). We choose 23 and 
26 to be respectively the maximum values of the breaker 
opening time and the fault clearing time, and thereby 
compute the value of zl. Similar computations for the 
backup protection use the cycles of the second subnet. 

' STOCHASTIC FIUDELS 

While the marked PN, time PN and timed PN do provide 
useful information with regard to protection schemes, 
they are deterministic models, and do not adequately 
reflect the stochastic nature of protection. The 
generalized stochastic Petri Net (GSPN) model provides a 
more realistic repr*ation [ll]. 

The GSPN has the same topology as the marked PN 
model with the firing times being random variables. The 
transitions are classified as immediate transitions and 
exponential transitions; immediate transitions must fire 
at the instant at which they are enabled, while the time 
that elapse between the enabling of an exponential 
transition and its firing is an exponentially 
distributed random variable. 

The reachability graph of a GSPN is the same as that 
of the underlying marked PN; it i s  assumed that the PN 
possesses the properties of boundedness and properness. 
The states of the system, as observed from the 
reachability graph, are categorized as either vanishing 
or tangible. If the marking of the state is such that 
an immediate transition is enabled, then it is a 
vanishing state, with the time spent in it being zero. 
Each tangible state is occupied for a finite, 
exponentially distributed interval of time. Computation 

performance involves the followinq steps: 

the occupancy of the j th state, we compute the sum of 
the terms (m(k,j).qk), where m ( k j )  is mean sojourn time 
of state j in the k th cycle, the summation being over 
all cycles to which this state belongs; the ratio of 
this sum to R gives the desired steady-state 
probability. 

We now illustrate these -computations for the 
protection scheme of Fig. 4. Its stochastic PN model 
Is obtained by assigning transition rates and firing 
probabilities to the transition of Fig. 2. The transi- 
tion tl has a transition rate which is the reciprocal 
of the mean time to failure of the system. Transitions 
t2 and t3 have rates that are the reciprocal of the 
mean operating times of the relays and t4 and t5 use 
the reciprocal of the mean restoration rates. For 
the study, we will assume firing rates as shown in 
the REMC of Fig. 10, which is obtained from the reach- 
ability graph of Fig. 3. Transitions tl, t4 and t5 
are the only possible transitions out of states Ml, 
M3 and M4 respectively, so they are assigned probabi- 
lities of 1. Transition t2 has firing probability 
equal to that of the operation of primary protection; 
we assume a value of 0.9. Obviously t3 has a corres- 
ponding value of 0.1. This system has no vanishing' 
states, so the REMC is identical to the EMC. Its 
states are- listed in Table 1. 

A & M 2  

The reachability graph is obtained. .. ' 
The embedded Markov chain (EMC) of the PN is found, 
by assigning to each edge of the reachability graph 
the firing rate of the corresponding transition. For 
inediate- transitions, the corresponding edges are 
appropriately marked. 
The vanishing states, which have an occupancy time of 
zero, are removed from the EMC, to produce a reduced 
embedded Markov chain (REMC) in which all edges Fig.10. REMC of  Stochastic Petri Net 
correspond to exponential transitions. 
The mean sojourn time of each tangible state is Table 1 
computed. The steady state probability distribution of tangible pl p2 p3 p4 p5 p6 mst ssp 



The state M1 occurs in both cycles, with a mean 
sojourn time of 5. Hence the steady state probability 
of the system being normal is 5/7.75, or 0.645. The 
state M3 occurs in cycle 1 only, with probability 0.9, 
and mean sojourn time of 1.667, and hence its steady 
state probability is 0.9x1.667/7.75, or 0.193. 
Similarly, the steady state probability o f  state M4 is 
(O.lx1.667)/7.75, or 0.022. State M2 occurs in cycle 1 
with probability 0.9, and mean sojourn time 0.833, and 
in cycle 2 with probability 0.1 and mean sojourn time 
3.333, Hence the steady state probability of M2 is given 
by (0.833~0.9+3.333~0.1)/7.75, or 0.140. These values 
have been entered in the last column of Table 1. 

CONCLUSION 

Petri Net models of power system protection schemes 
have been developed, and the relevance of these models 
to performance evaluation of the schemes has been 
demonstrated. While marked Petri Nets enable one to 
evaluate qua1 itative performance measures, time Petri 
Nets are useful in recoverability analysis, to obtain 
relationships between the time parameters of the 
protection scheme, Timed Petri Nets are a means of 
identifying the cycles of the protection scheme, and of 
computing the cycle times. Stochastic Petri Nets 
capture the stochastic nature of protection, and serve 
as a means of computing the statistics of protective 
operations. A number of examples have been provided, 
to illustrate the concepts, and to demonstrate their 
relevance to the performance evaluation of protection 
schemes. 
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