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The deterministic annealing approach to clustering and its
extensions has demonstrated substantial performance improve-
ment over standard supervised and unsupervised learning methods
in a variety of important applications including compression,
estimation, pattern recognition and classification, and statistical
regression. The method offers three important features: 1) the
ability to avoid many poor local optima; 2) applicability to many
different structures/architectures; and 3) the ability to minimize
the right cost function even when its gradients vanish almost
everywhere, as in the case of the empirical classification error. It
is derived within a probabilistic framework from basic information
theoretic principles (e.g., maximum entropy and random coding).
The application-specific cost is minimized subject to a constraint
on the randomness (Shannon entropy) of the solution, which is
gradually lowered. We emphasize intuition gained from analogy
to statistical physics, where this is an annealing process that
avoids many shallow local minima of the specified cost and, at
the limit of zero “temperature,” produces a nonrandom (hard)
solution. Alternatively, the method is derived within rate-distortion
theory, where the annealing process is equivalent to computation
of Shannon’s rate-distortion function, and the annealing temper-
ature is inversely proportional to the slope of the curve. This
provides new insights into the method and its performance, as
well as new insights into rate-distortion theory itself. The ba-
sic algorithm is extended by incorporating structural constraints
to allow optimization of numerous popular structures including
vector quantizers, decision trees, multilayer perceptrons, radial
basis functions, and mixtures of experts. Experimental results show
considerable performance gains over standard structure-specific
and application-specific training methods. The paper concludes
with a brief discussion of extensions of the method that are
currently under investigation.
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I. INTRODUCTION

There are several ways to motivate and introduce the
material described in this paper. Let us place it within
the neural network perspective, and particularly that of
learning. The area of neural networks has greatly benefited
from its unique position at the crossroads of several diverse
scientific and engineering disciplines including statistics
and probability theory, physics, biology, control and signal
processing, information theory, complexity theory, and psy-
chology (see [45]). Neural networks have provided a fertile
soil for the infusion (and occasionally confusion) of ideas,
as well as a meeting ground for comparing viewpoints,
sharing tools, and renovating approaches. It is within the
ill-defined boundaries of the field of neural networks that
researchers in traditionally distant fields have come to the
realization that they have been attacking fundamentally
similar optimization problems.

This paper is concerned with such a basic optimization
problem and its important variants or derivative problems.
The starting point is the problem of clustering, which
consists of optimal grouping of observed signal samples
(i.e., a training set) for the purpose of designing a signal
processing system. To solve the clustering problem one
seeks the partition of the training set, or of the space in
which it is defined, which minimizes a prescribed cost
function (e.g., the average cluster variance). The main
applications of clustering are in pattern recognition and
signal compression. Given training samples from an un-
known source, in the former application the objective is
to characterize the underlying statistical structure (identify
components of the mixture), while in the latter case a
quantizer is designed for the unknown source. This paper
describes the deterministic annealing (DA) approach to
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clustering and its extension via introduction of appropriate
constraints on the clustering solution, to attack a large and
important set of optimization problems.

Clustering belongs to the category of unsupervised learn-
ing problems, where during training we are only given
access to input samples for the system under design. The
desired system output is not available. The complementary
category of supervised learning involves a “teacher” who
provides, during the training phase, the desired output for
each input sample. After training, the system is expected to
emulate the teacher. Many important supervised learning
problems can also be viewed as problems of grouping or
partitioning and fall within the broad class that we cover
here. These include, in particular, problems of classification
and regression. We shall further see that the methods
described herein are also applicable to certain problems that
do not, strictly speaking, involve partitioning.

The design of a practical system must take into account
its complexity. Here we must, in general, restrict the
complexity of the allowed partitions. This is typically done
by imposing a particular structure for implementing the
partition. Rather than allowing any arbitrary partition of
the training set (or of the input space) we require that the
partition be determined by a prescribed parametric function
whose complexity is determined by the number of its
parameters. For example, a vector quantizer (VQ) structure
implements a Voronoi (nearest neighbor) partition of space
and its complexity may be measured by the number of
codevectors or prototypes. Another example is the partition
obtained by a multilayer perceptron, whose complexity is
determined by the number of neurons and synaptic weights.
It is evident, therefore, that the design method will normally
be specific to the structure, and this is indeed the case
for most known techniques. However, the approach we
describe here is applicable to a large and diverse set of
structures and problems.

It is always instructive to begin with the simplest non-
trivial problem instance in order to obtain an unobstructed
insight into the essentials. We therefore start with the
problem of clustering for quantizer design, where we seek
the optimal partition into a prescribed number of subsets,
which minimizes the average cluster variance or the mean
squared error (MSE). In this case, we need not even impose
a structural constraint. The Voronoi partition is optimal and
naturally emerges in the solution. (Structurally constrained
clustering is still of interest whenever one wants to impose
a different structure on the solution. One such example is
the tree-structured VQ which is used when lower quantizer
complexity is required.) Not having to explicitly impose
the structure is a significant simplification, yet even this
problem is not easy. It is well documented (e.g., [41])
that basic clustering suffers from poor local minima that
riddle the cost surface. A variety of heuristic approaches
have been proposed to tackle this difficulty, and they range
from repeated optimization with different initialization, and
heuristics to obtain good initialization, to heuristic rules
for cluster splits and merges, etc. Another approach was
to use stochastic gradient techniques [16], particularly in

conjunction with self-organizing feature maps, e.g., [22]
and [107]. Nevertheless, there is a substantial margin of
gains to be recouped by a methodical, principled attack
on the problem as will be demonstrated in this paper
for clustering, classification, regression, and other related
problems.

The observation of annealing processes in physical chem-
istry motivated the use of similar concepts to avoid local
minima of the optimization cost. Certain chemical systems
can be driven to their low-energy states by annealing,
which is a gradual reduction of temperature, spending a
long time at the vicinity of the phase transition points.
In the corresponding probabilistic framework, a Gibbs
distribution is defined over the set of all possible config-
urations which assigns higher probability to configurations
of lower energy. This distribution is parameterized by the
temperature, and as the temperature is lowered it becomes
more discriminating (concentrating most of the probability
in a smaller subset of low-energy configurations). At the
limit of low temperature it assigns nonzero probability only
to global minimum configurations. A known technique for
nonconvex optimization that capitalizes on this physical
analogy is stochastic relaxation or simulated annealing
[54] based on the Metropolis algorithm [68] for atomic
simulations. A sequence of random moves is generated
and the random decision to accept a move depends on the
cost of the resulting configuration relative to that of the
current state. However, one must be very careful with the
annealing schedule, i.e., the rate at which the temperature
is lowered. In their work on image restoration, Geman and
Geman [34] have shown that, in theory, the global minimum
can be achieved if the schedule obeys ,
where is the number of the current iteration (see also
the derivation of necessary and sufficient conditions for
asymptotic convergence of simulated annealing in [42]).
Such schedules are not realistic in many applications. In
[100] it was shown that perturbations of infinite variance
(e.g., the Cauchy distribution) provide better ability to
escape from minima and allow, in principle, the use of
faster schedules.

As its name suggests, DA tries to enjoy the best of both
worlds. On the one hand it is deterministic, meaning that
we do not want to be wandering randomly on the energy
surface while making incremental progress on the average,
as is the case for stochastic relaxation. On the other hand,
it is still an annealing method and aims at the global
minimum, instead of getting greedily attracted to a nearby
local minimum. One can view DA as replacing stochastic
simulations by the use of expectation. An effective energy
function, which is parameterized by a (pseudo) temperature,
is derived through expectation and is deterministically
optimized at successively reduced temperatures. This ap-
proach was adopted by various researchers in the fields
of graph-theoretic optimization and computer vision [10],
[26], [33], [37], [98], [99], [108]. Our starting point here
is the early work on clustering by deterministic annealing
which appeared in [86] and [88]–[90]. Although strongly
motivated by the physical analogy, the approach is formally
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based on principles of information theory and probability
theory, and it consists of minimizing the clustering cost at
prescribed levels of randomness (Shannon entropy).

The DA method provides clustering solutions at different
scales, where the scale is directly related to the temperature
parameter. There are “phase transitions” in the design
process, where phases correspond to the number of effective
clusters in the solution, which grows via splits as the tem-
perature is lowered. If a limitation on the number of clusters
is imposed, then at zero temperature a hard clustering
solution, or a quantizer, is obtained. The basic DA approach
to clustering has since inspired modifications, extensions,
and related work by numerous researchers including [6],
[14], [47], [64], [70], [72], [73], [82], [91], [103], [106].

This paper begins with a tutorial review of the basic
DA approach to clustering, and then goes into some of its
most significant extensions to handle various partition struc-
tures [69], as well as hard supervised learning problems
including classifier design [70], piecewise regression [78],
and mixture of experts [82]. Another important theoretical
aspect is the connection with Shannon’s rate distortion
(RD) theory, which leads to better understanding of the
method’s contribution to quantization and yields additional
contributions to information theory itself [87]. Some of the
currently investigated extensions, most notably for hidden
Markov models and speech recognition [80], [81], will be
briefly discussed.

II. DETERMINISTIC ANNEALING FOR

UNSUPERVISEDLEARNING

A. Clustering

Clustering can be informally stated as partitioning a
given set of data points into subgroups, each of which
should be as homogeneous as possible. The problem of
clustering is an important optimization problem in a large
variety of fields, such as pattern recognition, learning,
source coding, image, and signal processing. The exact
definition of the clustering problem differs slightly from
field to field, but in all of them it is a major tool for the
analysis or processing of data withouta priori knowledge of
the distribution. The clustering problem statement is usually
made mathematically precise by defining a cost criterion
to be minimized. In signal compression it is commonly
referred to as the distortion. Let denote a source vector,
and let denote its best reproduction codevector from
codebook . Denoting the distortion measure (typically, but
not necessarily, the squared Euclidean distance) by ,
the expected distortion is

(1)

where the right-hand side assumes that the source dis-
tribution may be approximated by a training set of
independent vectors.1 In this case, the clustering solution

1The approximation of expected distortion by empirical distortion is
practically unavoidable. In the sequel, whenever such approximation is
obvious from the context, it will be used without repeating this explicit
statement.

is specified in terms of the codebook and an encoding
rule for selecting the codevector which best matches an
input vector. Virtually all useful distortion functions are
not convex and are instead riddled with poor local minima
[41]. Thus, clustering is a nonconvex optimization problem.
While exhaustive search will find the global minimum, it
is hopelessly impractical for all nontrivial distributions and
reasonably large data sets.

As the clustering problem appears in very diverse appli-
cations, solution methods have been developed in different
disciplines. In the communications or information-theory
literature, an early clustering method was suggested for
scalar quantization, which is known as the Lloyd algorithm
[60] or the Max quantizer [65]. This method was later
generalized to vector quantization, and to a large family
of distortion measures [59], and the resulting algorithm is
commonly referred to as the generalized Lloyd algorithm
(GLA). For a comprehensive treatment of the subject within
the areas of compression and communications see [36]. In
the pattern-recognition literature, similar algorithms have
been introduced including the ISODATA [4] and the-
means [63] algorithms. Later, fuzzy relatives to these algo-
rithms were derived [9], [25]. All these iterative methods
alternate between two complementary steps: optimization of
the encoding rule for the current codebook, and optimiza-
tion of the codebook for the encoding rule. When operating
in “batch” mode (i.e., where the cost due to the entire
training set is considered before adjusting parameters), it
is easy to show that this iterative procedure is monotone
nonincreasing in the distortion. Hence, convergence to a
local minimum of the distortion (or of its fuzzy variant,
respectively) is ensured.

1) Principled Derivation of Deterministic Annealing:
Various earlier versions of the principled derivation of
DA appeared in [86], [89], and [90]. The derivation
was revised here to include more recent insights and to
provide the most natural foundation for the following
sections. A probabilistic framework for clustering is defined
here by randomization of the partition, or equivalently,
randomization of the encoding rule. Input vectors are
assigned to clusters in probability, which we call the
association probability. This viewpoint bears similarity
to fuzzy clustering, where each data point has partial
membership in clusters. However, our formulation is
purely probabilistic. While we consider clusters as regular
(nonfuzzy) sets whose exact membership is the outcome
of a random experiment, one may also consider the fuzzy
sets obtained by equating degree of membership with
the association probability in the former (probabilistic)
model. It is, thus, possible to utilize DA for both fuzzy and
“regular” clustering design. We will not, however, make
any use of tools or methods from fuzzy sets theory in
this paper. On the other hand, the traditional framework
for clustering is the marginal special case where all
association probabilities are either zero or one. In the
pattern recognition literature this is called “hard” clustering
in contradistinction with the more recent (“soft”) fuzzy
clustering.
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For the randomized partition we can rewrite the expected
distortion (1) as

(2)

where is the joint probability distribution, and the
conditional probability is the association probability
relating input vector with codevector . At the limit where
the association probabilities are hard and each input vector
is assigned to a unique codevector with probability one,
(2) becomes identical with the traditional hard clustering
distortion (1).

Minimization of of (2) with respect to the free pa-
rameters would immediately produce a hard
clustering solution, as it is always advantageous to fully
assign an input vector to the nearest2 codevector. However,
we recast this optimization problem as that of seeking
the distribution which minimizes subject to a specified
level of randomness. The level of randomness is, naturally,
measured by the Shannon entropy

(3)

This optimization is conveniently reformulated as mini-
mization of the Lagrangian

(4)

where is the Lagrange multiplier, is given by (2), and
is given by (3). Clearly, for large values of we mainly

attempt to maximize the entropy. Asis lowered we trade
entropy for reduction in distortion, and as approaches
zero, we minimize directly to obtain a hard (nonrandom)
solution.

At this point, it is instructive to pause and consider an
equivalent derivation based on the principle of maximum
entropy. Suppose we fix the level of expected distortion
and seek to estimate the underlying probability distribution.
The objective is to characterize the random solution at
gradually diminishing levels of distortion until minimal
distortion is reached. To estimate the distribution we appeal
to Jaynes’s maximum entropy principle [52] which states:
of all the probability distributions that satisfy a given set
of constraints, choose the one that maximizes the entropy.
The informal justification is that while this choice agrees
with what is known (the given constraints), it maintains
maximum uncertainty with respect to everything else. Had
we chosen another distribution satisfying the constraints,
we would have reduced the uncertainty and would have
therefore implicitly made some extra restrictive assumption.
For the problem at hand, we seek the distribution which
maximizes the Shannon entropy while satisfying the ex-
pected distortion constraint. The corresponding Lagrangian
to maximize is , with the Lagrange multiplier.

2The term “nearest” is used in the sense of the distortion measure
d(�; �), which is not necessarily the Euclidean distance.

The equivalence of the two derivation is obvious—both
Lagrangians are simultaneously optimized by the same
solution configuration for .

To analyze further the Lagrangian of (4) we note
that the joint entropy can be decomposed into two
terms: , where

is the source entropy, which is
independent of clustering. We may therefore drop the
constant from the Lagrangian definition, and focus
on the conditional entropy

(5)

Minimizing with respect to the association probabilities
is straightforward and gives the Gibbs distribution

(6)

where the normalization is

(7)

(which is the partition function of statistical physics). The
corresponding minimum of is obtained by plugging (6)
back into (4)

(8)

To minimize the Lagrangian with respect to the codevector
locations , its gradients are set to zero yielding the
condition

(9)

Note that the derivative notation here stands, in general, for
gradients. After normalization by the
condition can be rewritten as a centroid condition

(10)

(where denotes the posterior probability calculated
using Bayes’s rule), which for the squared error distortion
case takes the familiar form

(11)

While the above expressions convey most clearly the “cen-
troid” aspect of the result, the practical approximation of
the general condition (9) is

(12)

where is the Gibbs distribution of (6).
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The practical algorithm consists, therefore, of minimizing
with respect to the codevectors, starting at high value of

and tracking the minimum while lowering. The central
iteration consists of the following two steps:

1) fix the codevectors and use (6) to compute the asso-
ciation probabilities;

2) fix the associations and optimize the codevectors
according to (12).

Clearly, the procedure is monotone nonincreasing in
and converges to a minimum. At high levels of, the cost
is very smooth and, under mild assumptions,3 can be shown
to be convex, which implies that the global minimum of
is found. As tends to zero the association probabilities
become hard and a hard clustering solution is obtained. In
particular it is easy to see that the algorithm itself becomes
the known GLA method [59] at this limit.

Some intuitive notion of the workings of the system can
be obtained from observing the evolution of the association
probabilities (6). At infinite , these are uniform distri-
butions, i.e., each input vector is equally associated with
all clusters. These are extremely fuzzy associations. As
is lowered, the distributions become more discriminating
and the associations less fuzzy. At zero temperature the
classification is hard with each input sample assigned to
the nearest codevector with probability one.4 This is the
condition in which traditional techniques such as GLA
work. From the DA viewpoint, standard methods are “zero
temperature” methods. It is easy to visualize how the zero
temperature system cannot “sense” a better optimum farther
away, as each data point exercises its influence only on
the nearest codevector. On the other hand, by starting at
high and slowly “cooling” the system, we start with each
data point equally influencing all codevectors and gradually
localize the influence. This gives us some intuition as to
how the system senses, and settles into, a better optimum.

Another important aspect of the algorithm is seen if we
view the association probability as the expected
value of the random binary variable which
take the value one if input is assigned to codevector, and
zero if not. From this perspective one may recognize the
known expectation maximization (EM) algorithm [21] in
the above two step iteration. The first step, which computes
the association probabilities, is the “expectation” step, and
the second step which minimizes is the “maximization”
(of ) step. Note further that the EM algorithm is
applied here at each given level of. The emergence
of EM is not surprising given that for many choices of
distortion measure, can be given an interpretation as
a negative likelihood function. For example, in the case
of squared error distortion, the optimization of is
equivalent to maximum likelihood estimation of means in a
normal mixture, where the assumed variance is determined
by . It is important, however, to note that in general

3If d(x; y) is a differentiable, convex function ofy for all x, thenF �

has a unique minimum, asymptotically, at high temperatureT .
4More precisely, each input sample is uniformly associated with the set

of equidistant nearest representatives. We will ignore the pathologies of
encoding “ties” as they are of no significance in DA.

we do not necessarily assume an underlying probabilistic
model for the data. Our distributions are derived from
the distortion measure. In compression applications, in
particular, the distortion measure attempts to quantify the
perceptual significance of reconstruction error, independent
of the source statistics.

2) Statistical Physics Analogy:The above probabilistic
derivation is largely motivated by analogies to statistical
physics. In this section, we develop this analogy and
indicate more precisely how the method produces an
annealing process. Moreover, we will demonstrate that the
system undergoes a sequence of “phase transitions,” and
thereby we will obtain further insights into the process.

Consider a physical system whose energy is our distortion
and whose Shannon entropy is. The Lagrangian,

, which is central to the DA derivation, is exactly
the Helmholtz free energy of this system (strictly speaking
it is the Helmholtz thermodynamic potential). The Lagrange
multiplier is accordingly the temperature of the system
which governs its level of randomness. Note that our choice
of notation (with the exception of , which stands for
distortion) was made to agree with the traditional notation
of statistical mechanics, and it emphasizes this direct anal-
ogy. A fundamental principle of statistical mechanics (often
called the principle of minimal free energy) states that the
minimum of the free energy determines the distribution at
thermal equilibrium. Thus, is achieved by the system
when it reaches equilibrium, at which point the system
is governed by the Gibbs (or canonical) distribution. The
chemical procedure of annealing consists of maintaining
the system at thermal equilibrium while carefully lower-
ing the temperature. Compare this with the computational
procedure of DA: track the minimum of the free energy
while gradually lowering the temperature! In chemistry,
annealing is used to ensure that the ground state of the
system, that is, the state of minimum energy, is achieved
at the limit of low temperature. The method of simulated
annealing [54] directly simulates the stochastic evolution of
such a physical system. We, instead, derive its free energy
as the corresponding expectation, and deterministically (and
quickly) optimize it to characterize the equilibrium at the
given temperature.

In summary, the DA method performs annealing as it
maintains the free energy at its minimum (thermal equi-
librium) while gradually lowering the temperature; and
it is deterministic because it minimizes the free energy
directly rather than via stochastic simulation of the system
dynamics.

But there is much more to the physical analogy. We shall
next demonstrate that, as the temperature is lowered, the
system undergoes a sequence of “phase transitions,” which
consists of natural cluster splits where the clustering model
grows in size (number of clusters). This phenomenon is
highly significant for a number of reasons. First, it provides
a useful tool for controlling the size of the clustering model
and relating it to the scale of the solution, as will be
explained below. Second, these phase transitions are the
critical points of the process where one needs to be careful
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with the annealing (as is the case in physical annealing).
The “critical temperatures” are computable, as will be
shown next. This information allows us to accelerate the
procedure in between phase transitions without compro-
mising performance. Finally, the sequence of solutions at
various phases, which are solutions of increasing model
size, can be coupled with validation procedures to identify
the optimal model size for performance outside the training
set.

Let us begin by considering the case of very high
temperature . The association probabilities (6)
are uniform, and the optimality condition (12) is satisfied
by placing all codevectors at the same point—the centroid
of the training set determined by

(13)

(In the case of squared error distortion this optimal
is the sample mean of the training set.) Hence, at high
temperature, the codebook collapses on a single point.
We say, therefore, that there is effectively one codevector
and one cluster—the entire training set. As we lower the
temperature the cardinality of the codebook changes. We
consider the effective codebook cardinality, or model size,
as characterizing the phases of the physical system. The
system undergoes phase transitions as the model size grows.
An analysis of the phase transitions is fundamental in
obtaining an understanding of the evolution of the system.

In order to explicitly derive the “critical temperatures”
for the phase transitions, we will assume the squared error
distortion . The bifurcation occurs when
a set of coincident codevectors splits into separate subsets.
Mathematically, the existing solution above the critical
temperature is no longer the minimum of the free energy
as the temperature crosses the critical value. Although it
is natural to define this as the point at which the Hessian
of loses its positive definite property, the notational
complexity of working with this large and complex matrix
motivates the equivalent approach of variational calculus.
Let us denote by a perturbed codebook,
where is the perturbation vector applied to codevector

, and where the nonnegative scalaris used to scale the
magnitude of the perturbation. We can rewrite the necessary
condition for optimality of

(14)

for all choices of finite perturbation . This variational
statement of the optimality condition leads directly to
the earlier condition of (9). But we must also require a
condition on the second-order derivative

(15)

for all choices of finite perturbation . Bifurcation occurs
when equality is achieved in (15) and hence the minimum is

no longer stable.5 Applying straightforward differentiation
we obtain the following condition for equality in (15)

(16)

where denotes the identity matrix. The first term can be
rewritten more compactly and the equation becomes

(17)

where

(18)

is the covariance matrix of the posterior distribution
of the cluster corresponding to codevector. We claim that
the left-hand side of (17) is positive for all perturbations

if and only if the first term is positive. The “if” part is
trivial since the second term is obviously nonnegative. To
show the “only if” part, we first observe that the first term is
nonpositive only if there exists some with positive
probability such that the matrix is not
positive definite. In fact, we assume that there are several
coincident codevectors at this point to allow bifurcation. We
next show that in this case there always exists a perturbation
that makes the second term vanish. Select a perturbation
satisfying

(19)

and

(20)

With this perturbation the second term becomes

which equals zero by (20). Thus, whenever the first term is
nonpositive we can construct a perturbation such that the
second term vanishes. Hence, there is strict inequality in
(15) if and only if the first term of (17) is positive for all
choices of finite perturbation .

In conclusion to the above derivation, the condition for
phase transition requires that the coincident codevectors

5For simplicity we ignore higher order derivatives, which should
be checked for mathematical completeness, but which are of minimal
practical importance. The result is a necessary condition for bifurcation.
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at some have a (posterior) data distribution
satisfying

(21)

The critical temperature is therefore determined as

(22)

where is the largest eigenvalue of . In other
words, phase transitions occur as the temperature is low-
ered to twice the variance along the principal axis of the
cluster. It can be further shown that the split (separation
of codevectors) is along this principal axis. We summarize
this result in the form of a theorem.

Theorem 1: For the squared error distortion measure,
a cluster centered at codevectorundergoes a splitting
phase transition when the temperature reaches the critical
value , where is the cluster’s principal
component.

Fig. 1 illustrates the annealing process with its phase
transitions on a simple example. The training set is gen-
erated from a mixture of six randomly displaced, equal
variance Gaussians whose centers are marked by. At high
temperature, there is only one effective cluster represented
by one codevector, marked by, at the center of mass of
the training set. As the temperature is lowered, the system
undergoes phase transitions which increase the number of
effective clusters as shown in the figure. Note that as
the partition is random, there are no precise boundaries.
Instead, we give “isoprobability curves,” or contours of
equal probability (typically 1/3) of belonging to the cluster.
In Fig. 2 we give the corresponding “phase diagram,” which
describes the variation of average distortion (energy) with

. Note, in particular, that when the temperature
reaches the value which corresponds to the variance of all
the isotropic Gaussians we get an “explosion” as there is
no preferred direction (principal component) for the split.
More on the analysis of phase transitions is given in a later
section on RD theory, but for a deeper treatment of the
condition for explosion, or continuum of codevectors, and
the special role of Gaussian distribution, see [87].

3) Mass-Constrained Clustering:The mass constrained
clustering approach [91] is the preferred implementation
of the DA clustering algorithm, and a detailed sketch of
the algorithm will be given at the end of this section.
We shall show that the annealing process, as described so
far, has a certain dependence on the number of coincident
codevectors in each effective cluster. This weakness is not
desirable and can be eliminated, leading to a method that
is totally independent of initialization.

We start by recalling a central characteristic of the DA
approach: no matter how many codevectors are “thrown
in,” the effective number emerges at each temperature. This
number is the model size, and it defines the phase of the
system. For example, even if we have thousands of code-
vectors, there is only one single effective codevector at very
high temperature. However, after a split occurs, the result

Fig. 1. Clustering at various phases. The lines are equiprobable
contours,p = 1=2 in (b), and p = 1=3 elsewhere. (a) one
cluster (� = 0), (b) two clusters (� = 0:0049), (c) three clusters
(� = 0:0056), (d) four clusters (� = 0:0100), (e) five clusters
(� = 0:0156), (f) six clusters (� = 0:0347), and (g) 19 clusters
(� = 0:0605). From [90].

may differ somewhat depending on the number of codevec-
tors in each of the resulting subgroups. Clearly, the initial
partition into subgroups depends on the perturbation. In
order to fix this shortcoming, let us reformulate the method
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Fig. 2. Phase diagram for the distribution shown in Fig. 1. The
number of effective clusters is shown for each phase. From [90].

in terms of effective clusters (or distinct codevectors). Let
us assume that there is an unlimited supply of codevectors,
and let denote the fraction of codevectors which represent
effective cluster and are therefore coincident at position.
Using this notation, the partition function of (7) is rewritten
equivalently as

(23)

where the summation is over distinct codevectors. The
probability of association (6) with distinct codevector
is the so-called tilted distribution

(24)

and the free energy (8) is

(25)

The free energy is to be minimized under the obvious
constraint that . The optimization is performed
as unconstrained minimization of the Lagrangian

(26)

with respect to the cluster parametersand . Note that
although we started with a countable number of codevectors
to be distributed among the clusters, we effectively view
them now as possibly uncountable, andis not required to
be rational. One may therefore visualize this as a “mass of
codevectors” which is divided among the effective clusters,
or simply as a distribution over the codevector space. (The
notion of inducing a possibly continuous distribution over

the codevector space provides a direct link to rate-distortion
theory, which is pursued in a later section.)

The optimal set of codevectors must satisfy

(27)

where the left equality is because the constraint is indepen-
dent of the positions . We thus get again the condition
of (9)

(28)

with the important distinction that now the association
probabilities are tilted according to (24).

On the other hand, the set which minimizes
satisfies

(29)

which yields

(30)

Taking the expectation of (30) with respect to the distribu-
tion we obtain

(31)

where the last equality uses the definition of in (23).
Thus

(32)

Substituting (32) in (30) we see that the optimal distribution
must satisfy

(33)

where are implicit in (23). Equation (33) is thus
the equation we solve while optimizing over . This
equation also arises from the Kuhn–Tucker conditions of
rate-distortion theory [7], [12], [40].

It is instructive to point out that (24) and (33) imply that

(34)

In other words, the optimal codevector distribution mimics
the training data set partition into the clusters. The distri-
bution is identical to the probability distribution induced
on the codevectors via the encoding rule which we have
denoted by . As an aside, note that
the results are also in perfect agreement with estimation
of priors (mixing coefficients) in parametric estimation of
mixture of densities. However, it must be kept in mind that
the mass-constrained algorithm is applicable to solving the
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simple VQ or clustering design problem where minimum
distortion is the ultimate objective.

The mass-constrained formulation only needs as many
codevectors as there are effective clusters at a given temper-
ature. The process is computationally efficient and increases
the model size only when it is needed, i.e., when a crit-
ical temperature has been reached. The mechanism can
be implemented by maintaining and perturbing pairs of
codevectors at each effective cluster so that they separate
only when a phase transition occurs. Another possibility is
to compute the critical temperature and supply an additional
codevector only when the condition is satisfied.

It should also be noted that at the limit of low temper-
ature ( ), both the unconstrained DA method and
the mass-constrained DA method, converge to the same
descent process, namely, GLA [59] (or basic ISODATA
[4] for the sum of squared distances). This is because
the association probabilities of the two DA methods are
identical at the limit, and they assign each data point to
the nearest codevector with probability one. The difference
between the two is in their behavior at intermediate,
where the mass-constrained clustering method takes the
cluster populations into account. This is illustrated by a
simple example in Fig. 3.

4) Preferred Implementation of the DA Clustering Algo-
rithm: We conclude the treatment of the basic clustering
problem with a sketch of a preferred implementation of
the clustering algorithm. This version incorporates the
mass-constrained approach. The squared error distortion is
assumed for simplicity, but the description is extendible
to other distortion measures. It is also assumed that the
objective is to find the hard (nonfuzzy) clustering solution
for a given number of clusters.

1) Set Limits: number of codevectors , minimum
temperature .

2) Initialize: , , ,
and .

3) Update for

where

4) Convergence Test: If not satisfied go to 3).
5) If , perform last iteration for and

STOP.
6) Cooling Step: , ( ).
7) If , check condition for phase transition

for . If critical is reached for cluster

(a)

(b)

Fig. 3. The effect of cluster mass (population) at intermediate�.
The data is sampled from two normal distributions whose centers
are marked byX. The computed representatives are marked byO.
(a) Nonconstrained clustering and (b) mass-constrained clustering.
From [91].

, add a new codevector ,
, and increment .

8) Go to 3).

Note that the test for critical in 7) may be replaced
by a simple perturbation if considered expensive for high
dimensions. In this case we always keep two codevectors
at each location and perturb them when we update. Until
the critical is reached they will be merged together by the
iterations. At phase transition they will move further apart.

The relation to the Lloyd algorithm for quantizer design is
easy to see. At a given, the iteration is a generalization
of the nearest neighbor and the centroid conditions. The
relation to maximum likelihood estimation of parameters
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in normal mixtures is also obvious. For a treatment of the
problem of covariance matrix estimation in DA see [55].

While the algorithm sketch was given for the typical
case of VQ design, it is easy to modify it to produce
cluster analysis solutions. In particular, fuzzy clustering
solutions are produced naturally at a sequence of scales (as
determined by the temperature). One simple approach is to
combine the algorithm with cluster validation techniques
to select a scale (and solution) from this sequence. It
is also easy to produce hard clustering solutions at the
different scales by adding quick “quenching” at each phase
to produce the required hard solutions which can then be
processed for validation.

5) Illustrative Examples:To further illustrate the perfor-
mance of mass-constrained clustering, we consider the
example shown in Fig. 4. This is a mixture of six Gaussian
densities of different masses and variances. We compare
the result of DA with the well known GLA method. Since
GLA yields results that depend on the initialization, we
have run it 25 times, each time with a different initial set of
representatives (randomly extracted from the training set).
In Fig. 4(a), we show the best result obtained by GLA,
where the MSE is 6.4. This result was obtained only once,
while for 80% of the runs it got trapped in local optima
of 12.5 MSE. In Fig. 4(b), we show the result obtained
by DA. The MSE is 5.7, and this solution is, of course,
independent of the initialization. The process of “annealing”
is illustrated in Fig. 5. Here we have a mixture of nine
overlapping Gaussian densities. The process undergoes a
sequence of phase transitions as is increased.
We show the results at some of the phases. Equiprobable
contours are used to emphasize the fuzzy nature of the
results at intermediate. At the limit of high , the MSE
is 32.854. Repeated runs of GLA on this example yielded
a variety of local optima with MSE from 33.5 to 40.3.

B. Extensions and Applications

In this section we consider several direct extensions
of the DA clustering method. First, we consider exten-
sions motivated by compression and communications ap-
plications including VQ design for transmission through
noisy channels, entropy-constrained vector quantization,
and structurally constrained clustering, which addresses
the encoding and storage complexity problem. Finally, we
briefly discuss straightforward extensions via constraints on
the codevectors and identify as special cases approaches
to the “traveling salesman problem” and self-organizing
feature maps.

1) Vector Quantization for Noisy Channels:The area of
source-channel coding is concerned with the joint design
of communication systems while taking into account
the distortion due to both compression and transmission
over a noisy channel. In the particular case of VQ-based
communications systems, it is advantageous to optimize
the quantizer while taking into account the effects of the
channel. A noisy channel is specified here by its transition
probabilities , which denote the probability that the
decoder decides on codevectorgiven that the encoder

(a)

(b)

Fig. 4. GLA versus DA: (a) best result of GLA out of 25 runs
with random initialization:D = 6:4 and (b) mass-constrained
clustering:D = 5:7. From [91].

transmitted the index of codevector.6 (As an aside, it
may be noted that there exist applications [61], [62], where
such noise models are used to model the distortion due

6The implicit simplifying assumption is that the channel is memoryless
or at least does not have significant temporal dependencies reaching
beyond the transmission of a codevector index.
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(a) (b)

(c) (d)

Fig. 5. Various phases in the annealing process. Random partition represented by equiprobable
contours (p) to emphasize the fuzzy nature of the results at intermediate�: (a) three clusters at
� = 0:005 contours atp = 0:45, (b) five clusters at� = 0:009, p = 0:33, (c) seven clusters at
� = 0:013, p = 0:33, and (d) nine clusters at� = 0:03, p = 0:33. From [91].

to hierarchical or topological constraints rather than a real
communication channel.)

A simple but important observation is the following: the
noisy-channel VQ design problem is in fact identical to the
regular VQ design, but with the modified distortion measure

(35)

which measures the expected distortion when codevector
is selected by the encoder. This observation allows direct
extension of the known VQ design algorithms to this case.
There is a long history of noisy-channel quantizer design.
In the 1960’s, a basic method was proposed for scalar
quantizers [58] and was extended in many papers since [3],
[24], [28], [30], [57], [109]. These papers basically describe
GLA-type methods which alternate between enforcing the
encoder and centroid (decoder) optimality conditions. One

can similarly extend the DA approach to the noisy channel
case [14], [72].

We can write the expected overall source-channel distor-
tion as

(36)

where defines the encoder, which is random during
the DA design. Note that we exploit the fact that
form a Markov chain. Alternatively, we may write that

(37)

where . The entropy is defined
over the encoding probabilities (the probabilities which are
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under our control)

(38)

Following the standard DA derivation we obtain the optimal
encoding probability at a given temperature

(39)

and the free energy

(40)

Optimizing with respect to the parameters yields the
centroid rule

(41)

which simplifies for the squared error distortion to

(42)

For a phase transition analysis of the DA process in the
noisy-channel VQ case see [38]. In [72] it is shown that
the DA approach avoids many local optima of the design
and outperforms standard design. Of particular interest is
how the design process converges to explicit error control
coding (ECC) at the limit of very noisy channels. At this
limit, certain encoding regions become empty, so that less
codevectors are used by the encoder. Some of the available
bit rate is thus reserved for channel protection. Note that the
system itself finds the optimal error correcting code which
need not (and does not, in general) satisfy any algebraic
constraints such as linearity, as typically required in ECC
design.

2) Entropy-Constrained VQ Design:Variable-length cod-
ing (also called entropy coding) is commonly used to further
reduce the rate required to transmit quantized signals. It
results in rates that are close to the quantized signal entropy,
which is the fundamental limit. The basic VQ design
approach, however, assumes fixed-length coding, thereby
simplifying the optimization problem to that of minimizing
distortion for the given codebook size. It is, however, of
much interest to derive a method for optimizing the VQ for
use in conjunction with variable-length coding. Here the
optimization must take into account both the distortion and
the rate costs of selecting a codevector. This fundamental
extension of the VQ problem was obtained by incorporation
of an entropy constraint within the design to produce
quantizers optimized for subsequent entropy coding. The
earlier work was concerned with scalar quantizers [8], [29].
The VQ design method was proposed by Chouet al. [19].
We refer to this paradigm as the entropy-constrained VQ
(ECVQ).

The cost function is the weighted cost

(43)

where determines the penalty for increase in rate relative
to increase in distortion. It can also be used as a Lagrange
multiplier for imposing a prescribed rate constraint while
minimizing the distortion (or, alternatively, imposing a
prescribed distortion while minimizing the rate). It follows
that this problem reverts to the regular VQ problem with
a modified cost function

(44)

subject to the additional constraint . This
observation leads directly to the ECVQ algorithm of Chou
et al. [19].

It can also be incorporated in a DA method for ECVQ
design, as was first pointed out by Buhmann and Kuhnel
[14]. The free energy is

(45)

Note that in ECVQ we do not use a mass-constrained
version of DA since the masses are already implicit in
the modified distortion measure (44). Moreover, the above
becomes equivalent to mass-constrained operation in the
special case .

The resulting update rules are derived from the free
energy. The following assumes, for simplicity, the squared
error distortion measure. The encoding rule is

(46)

The centroid rule is

(47)

where , and the mass rule is

(48)

At the DA iteration becomes identical to the standard
ECVQ algorithm of [19].

3) Structurally Constrained VQ Design:A major stum-
bling block in the way of VQ applications is the problem
of encoding complexity. The size of the codebook grows
exponentially with the vector dimension and rate (in
bits per sample). As the encoder has to find the best
codevector in the codebook, its complexity grows linearly
with the codebook size, and hence exponentially with
dimension and rate. In many practical applications, such
encoding complexity is not acceptable and low-complexity
alternatives are needed. The most common approach for
reducing encoding complexity involves the imposition
of a structural constraint on the VQ partition. A tree-
structured partition is a typical such structure consisting of
nested decision boundaries which can be represented by a
decision tree. Sibling nodes in the tree define a VQ that
partitions the region associated with their parent node. The
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reproduction codebook of the tree-structured VQ (TSVQ)
is, in fact, the set of leaves. The role of the internal nodes
is to provide a mechanism for fast encoding search. The
encoding operation is not an exhaustive search through
the leaves. Instead, one starts at the root of the tree and
determines a path to a leaf by a sequence of local decisions.
At each layer the decision is restricted to selecting one
of the descendants of the winning node in the previous
layer. Thus, the encoding search grows linearly, rather than
exponentially, with the dimension and the rate.

The design of TSVQ is, in general, a harder opti-
mization problem than the design of regular VQ. Typical
approaches [15], [44], [84] employ a greedy sequential
design, optimizing a local cost to grow the tree one node
(or layer) at a time. The reason for the greedy nature of
standard approaches is that, whereas in the unstructured
case an optimal partition design step is readily speci-
fied by the nearest neighbor rule, in the tree structured
case an optimal partition is determined only by solving
a formidable multiclass risk discrimination problem [23].
Thus, the heuristically determined high-level boundaries
may severely constrain the final partition at the leaf layer,
yet they are not readjusted when lower layers are being
designed.

The DA approach to clustering offers a way to optimize
the partition (i.e., all the parameters which define the final
partition) directly and, moreover, to escape many shallow
local minima traps. It should be noted that the new difficulty
here is the need to impose the structure on the partition.
Earlier work on this problem [73] appealed to the principle
of minimum cross-entropy (or minimum divergence) which
is a known generalization of the principle of maximum en-
tropy [97]. Minimum cross-entropy provides a probablistic
tool to gradually enforce the desired consistency between
the leaf layer, where the quantization cost is calculated,
and the rest of the tree—thereby imposing the structural
constraint on the partition at the limit of zero temperature.
This approach provided consistent substantial gains over
the standard approaches. Although this method worked
very well in all tests, it has two theoretical disadvantages.
First, alternate minimization of the cross-entropy and of
the cost at the leaf layer is not ensured to converge,
though in practice this has not been a problem. The second
undesired aspect is that it lacks the direct simplicity of
basic DA. More recent developments of the DA approach
in the context of supervised learning [69], [70] have since
opened the way for a simpler, more general way to impose
a structure on the partition, and which is also a more
direct extension of the basic DA approach to clustering.
A detailed description of this extension will be given in the
section on supervised learning. Here we shall only cover the
minimum required to develop the DA approach for TSVQ
design. It is appropriate to focus on the latter derivation
since it has none of the theoretical flaws of the earlier
approach. However, no simulation results for it exist as of
the time this paper was written. To illustrate the annealing
and the type of gains achievable we will include some
simulation results of the earlier approach [73] which, in

spite of its theoretical shortcomings, approximates closely
the optimal annealing process and achieves (apparently)
globally optimal solutions for these nontrivial examples.

We replace the hard encoding rule with a randomized
decision. The probability of encoding input with a leaf
(codevector) is in fact the probability of choosing the
entire path starting at the root of the tree and leading to
this leaf. This is a sequence of decisions where each node
on the path competes with its siblings. The probability of
choosing node given that its parent was chosen is Gibbs7

parent(s) (49)

where is a scale parameter. Thus, the selection of nodes at
sequential layers is viewed as a Markov chain, where the
transition probabilities obey the Gibbs distribution. Note
in particular that as , this Markov chain becomes a
hard decision tree, and the resulting partition corresponds to
a standard TSVQ. We have thus defined a randomized tree
partition which, at the limit, enforces the desired structure
on the solution.

We next wish to minimize the objective which is the
overall distortion at a specified level of randomness. We
again define the Lagrangian (the Helmholtz free energy)

(50)

where is the distortion at the leaf layer and is the en-
tropy of the Markov chain, both computed while employing
the explicit Gibbs form of (49). Then, by minimizing the
free energy over the tree parameters we obtain the
optimal random tree at this temperature. As the temperature
is lowered, reduction in entropy is traded for reduction in
distortion, and at the tree becomes hard. This process
also involves a sequence of phase transitions as the tree
grows, similar to the case of unconstrained VQ design. In
Fig. 6 we show the performance of the DA method from
[73] on a mixture example, as well as the sequence of
phase transitions and the manner in which the tree grows. In
Fig. 7 we show how TSVQ designed by DA outperforms
the unstructured VQ designed by standard methods. This
demonstrates the significant impact of poor local optima
which cause worse degradation than the structural constraint
itself.

Beside the tree structure, on which we focused here,
there are other important structures that are used in signal
compression and for which DA design methods have been
developed. One commonly used structure, particularly in
speech coding, is the multistage vector quantizer (see
[71] for an early DA approach). Another very important
structure is the trellis quantizer (as well as the trellis vector
quantizer) for which a DA approach has been proposed in
[74].

7The choice of the Gibbs distribution is not arbitrary and will be
explained in a fundamental and general setting in Section III. At this point
let it simply be noted that it is directly obtainable from the maximum
entropy principle.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 6. A hierarchy of tree-structured solutions generated by the annealing method for increasing�.
The source is a Gaussian mixture with eight components. To the right of each figure is the associated
tree structure. The lines in the figure are equiprobable contours with membership probability of
p = 0:33 in a given partition region, except for (a) and (g), for whichp = 0:5. “H” denotes the
highest level decision boundary in (g). From [73].

4) Graph-Theoretic and Other Optimization Problems:In
the deterministic annealing clustering algorithm, if we
throw in enough codevectors and let , then each
data point will become a natural cluster. This can be
viewed as a process of data association, where each data
point is exclusively associated with a “codevector.” As

it stands, there is no preference as to which codevector
is associated with which data point. However, by adding
appropriate constraints, which are easy to incorporate in
the Lagrangian derivation, we can encourage the process
to obtain associations that satisfy additional requirements
which embody the actual data assignment problem we
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(a)

(b)

(c)

Fig. 7. A Gaussian mixture example with 16 components. (a) The
best unconstrained GLA solution after 30 random initializations
within the data set, withD = 0:51. (b) A typical unconstrained
GLA solution, withD = 0:72. (c) The unbalanced tree-structured
DA solution with maximal depth of five andD = 0:49. From [73].

wish to solve. This allows exploiting DA as a framework
for solving a variety of hard graph-theoretic problems.
As an example, when applied to the famous “traveling
salesman” problem, such DA derivation becomes identical
to the “elastic net” method [26], [27]. The approach has
been applied to various data assignment problems such as
the module placement problem in computer-aided design
(CAD) and graph partitioning. Another variant with a
different constraint yields a DA approach for batch opti-
mization of self-organizing feature maps. For more details
see [91] and [92].

III. D ETERMINISTIC ANNEALING FOR

SUPERVISED LEARNING

In this section, we develop the deterministic annealing
approach for problems of supervised learning. We consider
first the general supervised learning or function approxi-
mation problem where, from a given parametric class of
functions, a function is selected which best captures the
input–output statistics of a training set. In the learning
literature, the given parametric class of functions is viewed
as the set of transfer functions implementable on a given
system structure by varying its parameters (e.g., the weights
of a multilayer perceptron). The ultimate performance eval-
uation is commonly performed on an independent test set
of samples.

The fundamental extension of DA to supervised learning
by inclusion of structural constraints [69], [70] led first
to the DA method for classification [70], then to the
DA method for piecewise regression [78], and was later
extended to address regression by mixture of experts [82].
Here, after formulating the problem in its general setting
and deriving a DA method for its solution, we show how it
specializes to various classical regression and classification
problems by defining the structure (parametric form of the
function/system) and the cost criterion. We demonstrate
that the DA approach results in a powerful technique for
classifier and regression function design for a variety of
popular system structures.

A. Problem Formulation

We define the objective of supervised learning as that
of approximating an unknown function from the observa-
tion of a limited sequence of (typically noise-corrupted)
input–output data pairs. Such function approximation is typ-
ically referred to as regression if the output is continuous,
and as classification if the output is discrete or categoric.
Regression and classification are important tools in diverse
areas of signal processing, statistics, applied mathematics,
business administration, computer science, and the social
sciences.

For concreteness, the problem formulation here will
employ the terminology and notation of the regression
problem. We will later show how the solution is, in fact,
applicable to classification and other related problems. The
regression problem is usually stated as the optimization of
an expected cost that measures how well the regression
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function , applied to random vector , approximates
the output over the joint distribution , or in
practice, over a sample set . Let us reformulate
the cost as

(51)

where the distortion measure is general, though the
squared error is most often in use. The cost is optimized
by searching for the best regression functionwithin a
given parametric class of functions. We shall first restrict
ourselves to space-partitioning regression functions. These
functions are often called piecewise regression functions be-
cause they approximate the desired function by partitioning
the space and matching a simple local model to each region.
Space-partitioning regression functions are constructed of
two components: a parametric space partition (structured
partition) and a parametric local model per partition cell.
Let the partition parameter set be denoted by. It may
consist of the nodes of a decision tree, the codevectors or
prototypes of a vector quantizer, the weights of a multilayer
perceptron, etc. Let denote the set of local model
parameters, where is the subset of parameters specifying
the model for region .

We can now write the regression function as

(52)

where denotes the local model. Note that is
implicit in the partition into cells . Typically, the
local parametric model has a simple form such as
constant, linear, or Gaussian. The average regression error
measured over a sample set is then

(53)

The regression function is learned by minimizing the
design cost, , measured over a training set, ,
but with the ultimate performance evaluation based on the
generalization cost, which is the error measured over
a test set. The mismatch between the design cost and the
generalization cost is a fundamental difficulty which is the
subject of much current research in statistics in general,
and in neural networks in particular. It is well known that
for most choices of , the cost measured during design
decreases as the complexity (size) of the learned regression
model is allowed to increase, while the generalization cost
will start to increase when the model size grows beyond a
certain point. In general, the optimal model size, or even
a favorable regime of model sizes, is unknown prior to
training the model. Thus, the search for the correct model
size must naturally be undertaken as an integral part of
the training. Most techniques for improving generalization
in learning are inspired by the well-known principle of
Occam’s razor,8 which essentially states that the simplest
model that accurately represents the data is most desirable.

8William of Occam (1285–1349): “Causes should not be multiplied
beyond necessity.”

From the perspective of the learning problem, this principle
suggests that the design should take into account some
measure of the simplicity, or parsimony, of the solution,
in addition to performance on the training set. In one basic
approach, penalty terms are added to the training cost, either
to directly favor the formation of a small model [1], [85], or
to do so indirectly via regularization/smoothness constraints
or other costs which measure overspecialization. A second
common approach is to build a large model, overspecialized
to the training set, and then attempt to “undo” some of
the training by retaining only the vital model structure,
removing extraneous parameters that have only learned
the nuances of a particular noisy training set. This latter
approach is adopted in the pruning methods for CART [13]
and in methods such as optimal brain surgeon [110] in the
context of neural networks.

While these techniques provide a way of generating par-
simonious models, there is an additional serious difficulty
that most methods do not address directly, which can also
severely limit the generalization achieved by learning. This
difficulty is the problem of nonglobal optima of the cost sur-
face, which can easily trap descent-based learning methods.
If the designed regression function performs poorly as a
result of a shallow, local minimum trap, the typical recourse
is to optimize a larger model under the assumption that the
model was not sufficiently powerful to characterize the data
well. The larger model will likely improve the design cost
but may result in overspecialization to the training set and
suboptimal performance outside the training set. Clearly,
a superior optimization method that finds better models of
smaller size will enhance the generalization performance of
the regression function. While conventional techniques for
parsimonious modeling control the model size, they do not
address this optimization difficulty. In particular, standard
methods such as classification and regression trees (CART)
[13] for tree-structured classification and regression employ
greedy heuristics in the “growing” phase of the model de-
sign which might lead to poorly designed trees. The subse-
quent pruning phase is then restricted in its search for parsi-
monious models to choosing pruned subtrees of this initial,
potentially suboptimal tree. Techniques which add penalty
terms to the cost can also suffer from problems of local
minima. In fact, in many cases the addition of a penalty
term can actually increase the complexity of the cost surface
and exacerbate the local minimum problem (e.g., [110]).

As an alternative approach, let us consider the DA opti-
mization technique for regression modeling which, through
its formulation of the problem, simultaneously embeds the
search for a parsimonious solution and for one that is
optimal in the design cost.

B. Basic Derivation

The design objective is minimization of the expected
regression cost of (53) which is repeated here for
convenience

(54)
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over the partition parameters (which are implicit in the
partition ) and the local model parameters. To
begin the derivation let us assume that the local model
parameters are known and fixed and focus on the
more difficult problem of optimizing the partition. The
partition is structurally constrained, that is, it is selected
from a family of partitions by assigning values to the
set of parameters . Note that a partition is, in fact, a
classifier as it assigns to each input a label indicating to
which partition cell it belongs. There are many popular
structures for the partition such as the vector quantizer, the
decision tree, the multilayer perceptron, and the radial basis
functions partitions. The operation of each of the above
distinct structures (or classifiers) is consistent with that of
the general (canonical) maximum discriminant model [23]:
given input the system produces competing outputs (one
per partition cell) via the discriminant functions ,
and the input is assigned to the largest, “winning” output.
It thus uses the “winner-take-all” partition rule

(55)

Any partition can be represented by this model, albeit
possibly with complicated discriminant functions. Note
that the discriminant functions in our case are
specified by the set of parameters, although we have
suppressed this dependence in the notation of (55). We
thus employ the maximum discriminant model to develop
a general optimization approach for regression. We will
later specialize the results to specific popular structures and
learning costs and give experimental results to demonstrate
the performance.

Let us write an objective function whose maximization
determines the hard partition for given

(56)

Note, in particular, that the winner-take-all rule (55) is
optimal in the sense of . Specifically, maximizing (56)
over all possible partitions captures the decision rule of
(55).

To derive a DA approach we wish to randomize the
partition similar to the earlier derivation for the problem
of clustering. The probabilistic generalization of (56) is

(57)

where the partition is now represented by association prob-
abilities and the corresponding entropy is

(58)

It is emphasized that measures the average level of
uncertainty in the partition decisions. We determine our
assignment distribution at a given level of randomness as
the one which maximizes while maintaining at a
prescribed level

subject to (59)

The result is the best probabilistic partition, in the sense
of the structural objective , at the specified level of
randomness. For we naturally revert to the hard
partition which maximizes (56) and thus employs the
winner-take-all rule. At any positive , the solution of (59)
is the Gibbs distribution

(60)

where is the Lagrange multiplier controlling the level of
entropy. For the associations become increasingly
uniform, while for they revert to the hard partition,
equivalent to application of the rule in (55). Thus, (60)
is a probabilistic generalization of the winner-take-all rule
which satisfies its structural constraint, specified by (55),
for the choice . Note that beside the obvious
dependence on the parameter, the discriminant functions

are determined by .
So far, we have formulated a controlled way of in-

troducing randomness into the partition while enforcing
its structural constraint. However, the derivation assumed
that the model parameters were given, and thus produced
only the form of the distribution , without actually
prescribing how to choose the values of its parameter set.
Moreover, the derivation did not consider the ultimate goal
of minimizing the expected regression cost. We next
remedy both shortcomings.

To apply the basic principles of DA design similar to
our treatment of clustering, we need to introduce ran-
domness into the partition while enforcing the required
structure, only now we must also explicitly minimize the
expected regression cost.A priori, satisfying these multiple
objectives may appear to be a formidable task, but the
problem is greatly simplified by restricting the choice of
random partitions to the set of distributions as
given in (60)—these random partitions naturally enforce the
structural constraint of (55) through, as explained earlier.
Thus, from the parameterized set (determined by
the implicit ), we seek that distribution which minimizes
the expected regression cost while constraining the entropy

(61)

subject to

(62)

The solution yields the best random partition and model
parameters in the sense of minimumfor a given entropy
level . At the limit of zero entropy, we should get a hard
partition which minimizes , yet has the desired structure,
as specified by (55).

We naturally reformulate (61) and (62) as minimization
of the unconstrained Lagrangian, or free energy

(63)

where the Lagrange parameteris the “temperature” and
emphasizes the intuitively compelling analogy to statistical
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physics, in parallel to the DA derivation in the earlier
sections. Virtually all the discussion on the analogy to sta-
tistical physics which appeared in the context of clustering
holds here too, and it provides strong motivation for use
of the DA method. For conciseness we shall not elaborate
on the analogy here.

We initialize the algorithm at (in practice, is
simply chosen large enough to be above the first critical
temperature). It is clear from (63) that the goal at this
temperature is to maximize the entropy of the partition.
The distributions are consequently uniform. The
same parameters are used for the local regression models
in all the regions—effectively, we have a single, global
regression model. As the temperature is gradually lowered,
optimization is carried out at each temperature to find the
partition parameters and local model parameters
that minimize the Lagrangian. As , the Lagrangian
reduces to the regression cost. Further, since we have
forced the entropy to go to zero, the randomized space
partition that we obtain becomes a hard partition satisfying
the imposed structure. In practice, we anneal the system
to a low temperature, where the entropy of the random
partition is sufficiently small. Further annealing will not
change the partition parameters significantly. Hence we fix
the partition parameters at this point and jump (quench) to

to perform a “zero entropy iteration,” where we
partition the training set according to the “hard” partition
rule and optimize the parameters of the local models

to minimize the regression cost . This approach
is consistent with our ultimate goal of optimizing the cost
constrained on using a (hard) structured space partition.

A brief sketch of the DA algorithm is as follows.

1) Initialize: .
2) .
3) Lower Temperature: .
4) If go to 2).
5) Zero Entropy Iteration: Partition using hard partition

rule .

In our simulations we used an exponential schedule for
reducing , i.e., , where , but other an-
nealing schedules are possible. The parameter optimization
of 2) may be performed by any local optimization method.

C. Generality and Wide Applicability of the DA Solution

1) Regression, Classification, and Clustering:In Section
III-B, we derived a DA method to design a regression
function subject to structural constraints on the partition. In
this section we pause to appreciate the general applicability
of the DA solution. We show that special cases of the
problem we defined include the problems of clustering and
vector quantization, as well as statistical classifier design.
These special cases are obtained by specifying appropriate
cost functions and local models. We also review a number
of popular structures from data compression and neural
networks and show how they are special cases of the

general maximum discriminant structure, and hence directly
handled by the DA approach we have derived.

Let us first restate the learning problem. Given a training
set of pairs , we wish to design a function which takes
in and estimates. The estimator function is constructed
by partitioning the input space and fitting a local model
within each region. The learning cost is defined as

(64)

where is the set of partition regions and
is the set of parameters which determine the local

models. Beside the obvious and direct interpretation of the
above as a regression problem with applications in function
approximation and curve fitting, it is easy to see that the
important problem of classifier design is another special
case of this learning problem: if the local model
is simply the class label assigned to the region, and if we
define the distortion measure as the error indicator function

, where the function takes the value
one when its arguments are equal and vanishes otherwise,
then the learning cost is exactly the rate of misclassification
or error rate of the classifier. Thus, statistical classifier
design is a special case of the general learning problem
we considered, albeit with a particularly difficult cost to
optimize due to its discrete nature. This is a very important
problem with numerous “hot” applications in conjunction
with various structures, and we will devote more space to
it in the sequel.

A somewhat contrived, yet important, special case of the
above regression problem is that of unsupervised clustering.
Here we consider the degenerate case of where
the local regression models are constant. In other words,
we approximate the training set with a piecewise-constant
function. We partition the space into regions, and each
region is represented by a constant vector (the codevector)
so as to minimize the cost (e.g., MSE). This is clearly the
vector quantization problem. If we apply our DA regression
method to this problem, and assume a vector quantizer
structure, we will get exactly the clustering approach we
had derived directly, and more simply, earlier on. The
simpler derivation of a DA clustering method was only
possible because the VQ structure emerges by itself from
minimization of the clustering distortion, and need not
be externally imposed as in the case of the general DA
regression method. Although the latter derivation seems
unnecessarily cumbersome for clustering problems, it does
in fact open the door to important clustering applications.
We are often interested in solving the clustering problem
while imposing a different structure. The typical motivation
is that of reducing encoding or storage complexity, but it
may also be that of discerning hierarchical information,
or because a certain structure better fits prior information
on the underlying distribution. We have already considered
in detail tree-structured clustering within the unsupervised
learning section, however we had to postpone the complete
description of the mechanism for enforcing the structure
until the supervised learning section.
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Fig. 8. The VQ classifier architecture. From [70].

2) Structures: We next consider the applicability of the
approach to a variety of structures. Recall that the ap-
proach was generally derived for the maximum discriminant
partition structure which is defined by

(65)

This general structure can be specialized to specific popular
structures such as the vector quantizer (or nearest prototype
classifier), the multilayer perceptron, and the radial basis
functions classifier. It is important to note that known
design methods are structure specific, while the DA ap-
proach is directly applicable to virtually all structures. In the
remainder of this section we describe these three structures.
The choice of presentation is such that the applicability
of the general design procedure is evident. For detailed
structure-specific derivation see [70].

a) The VQ classifier:The VQ structure is shown in
Fig. 8. The partition is specified by the parameter set

where is the th prototype associated
with class . The VQ classifier maps a vector in to the
class associated with the nearest prototype, specifying a
partition of into the regions

with

(66)

i.e., each region is the union of Voronoi cells . Here,
is the “distance measure” used for classification.

For consistency with the maximum discriminant classifier
(“winner takes all”) we note trivially that the classification
rule can also be written as

with

(67)

by choosing .

Fig. 9. The RBF classifier architecture. From [70].

b) The radial basis functions (RBF) classifier:The RBF
classifier structure is shown in Fig. 9. The classifier is
specified by a set of Gaussian receptive field functions

and by a set of scalar weights
which connect each of the receptive fields to the class out-
puts of the network. Thus, , , . The
parameter is the “center” vector for the receptive field
and is its “width.” In the “normalized” representation for
RBF’s [75] which we will adopt here, the network output
for each class is written in the form

(68)

where

(69)

Since can be viewed as a probability mass function,
each network output is effectively an average of weights
emanating from each of the receptive fields. The classifier
maps the vector to the class with the largest output

(70)

c) The multilayer perceptron (MLP) classifier:The MLP
classifier structure is shown in Fig. 10. We restrict ourselves
to the MLP structure with a binary output unit per class. The
classification rule for MLP’s is the same as that for RBF’s
(70), but the output functions are parametrized
differently.

The input passes through layers with neurons
in layer . We define to be the output of hidden unit

in layer , with the convention that layer zero is the
input layer and layer is the output layer

. To avoid special notation for thresholds,
we define the augmented output vector of layeras

. This is a standard notation
allowing us to replace thresholds by synaptic weights which
multiply a fixed input value of unity. The weight matrix

connects the augmented outputs of layer and
the neurons of layer . The activation function of theth
layer is the vector valued function :
defined as where
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Fig. 10. The MLP classifier architecture. From [70].

is the scalar activation function used by all neurons
in the th layer. In our experiments, we used the logistic
activation function for the hidden
layers , and the linear activation function

for the output layer. The activity level at the
input of the th layer is given by

(71)

Thus, the network’s operation can be described by the
following recursion formula

(72)

D. Experimental Results

The general DA method for supervised learning has
been specialized to specific design problems and tested.
In particular, results are given for classifier design for the
VQ, RBF, and MLP structures, piecewise regression, and
mixture of experts regression. The exact equations used in
the iteration depend on the structure, and can be derived in a
straightforward manner from the general design approach.
For more details on specific DA design refer to [70] for
classifier design, [78] for piecewise regression, and [82]
for mixture of experts.

1) VQ Classifier Design:The DA approach to VQ clas-
sifier design [70] is compared with the learning VQ (LVQ)
method [56]. Note that here LVQ will refer narrowly to
that design method, not to the structure itself which we
call VQ. The first simulation result is on the “synthetic”
example from [83], where DA design achieved %
on the test set using eight prototypes and % using
12 prototypes, in comparison to LVQ’s % based
on 12 prototypes. (For general reference, an MLP with
six hidden units achieved %.) For complicated
mixture examples, with possibly 20 or more overlapping
mixture components and multiple classes, the DA method
was found to consistently achieve substantial performance
gains over LVQ. As an example, consider the training data
for a four-class problem involving 24 overlapping, non-
isotropic mixture components in two dimensions, shown in
Figs. 11 and 12. VQ-classifiers with 16 prototypes (four per
class) were designed using both LVQ and DA. Figs. 11(a)
and 12(a) display the data and partitions formed by the

two methods. Figs. 11(b) and 12(b) display the prototype
locations along with the partitions. The best LVQ solution
based on ten random initializations, shown in Fig. 11,
achieved %. Note that the method has failed to
distinguish a component of class 0 in the upper left of
Fig. 11(a), as well as a component of class 1 near the lower
right of the figure. By contrast, the DA solution shown in
Fig. 12 succeeds in discriminating these components, and
achieves %.

Another benchmark test data is the Finnish phoneme
data set that accompanies the standard LVQ package. The
training set consists of 1962 vectors of 20 dimensions
each. Each vector represents speech attributes extracted
from a short segment of continuous Finnish speech. These
vectors are labeled according to the phoneme uttered by
the speaker. There are 20 classes of phonemes in the
training set. In both LVQ and DA approaches, the number
of prototypes associated with a particular class was set to
be proportional to the relative population of that class in the
training set. This is referred to as thepropinit initialization
in the standard LVQ package. The experimental results are
shown in Table 1. Note that the DA method consistently
outperformed LVQ over the entire range.

2) RBF Classifier Design:The DA approach to RBF de-
sign [70] is compared here with the method of Moody
and Darken [75] (MD-RBF), with a method described
by Tarassenko and Roberts [10] (TR-RBF), and with the
gradient method of steepest descent on (G-RBF).
MD-RBF combines unsupervised learning of receptive field
parameters with supervised learning of to minimize
the squared distance to target class outputs. The primary
advantage of this approach is its modest design complexity.
However, the receptive fields are not optimized in a super-
vised fashion, which can cause performance degradation.
TR-RBF, one of the methods described in [101], optimizes
all of the RBF parameters to approximate target class
outputs in a squared error sense. This design is more
complex than MD-RBF and achieves better performance
for a given model size (the number of receptive fields the
classifier uses). However, the TR-RBF design objective
is not equivalent to minimizing , but as in the case
of back propagation, it effectively aims to approximate
the Bayes-optimal discriminant. While direct descent on
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(a)

(b)

Fig. 11. (a) A four-class Gaussian mixture training set for a VQ
classifier design and the partition produced by LVQ and (b) the
LVQ partition, with the 16-class prototype. Locations of prototypes
shown. The error rate isPe = 31%. From [70].

may minimize the “right” objective, problems of local
optima may be quite severe. In fact, we have found that
the performance of all of these methods can be quite
poor without a judicious initialization. For all of these
methods, we have employed the unsupervised learning
phase described in [75] (based on Isodata clustering and
variance estimation) as model initialization. Then, steepest
descent was performed on the respective cost surface. We
have found that the complexity of our design is typically
1–5 that of TR-RBF or G-RBF (though occasionally our
design is actually faster than G-RBF). Accordingly, we have
chosen the best results based on five random initializations
for these techniques and compared with the single DA
design run.

To illustrate that increasing may not help to improve
performance on the test set, we compared DA with the

(a)

(b)

Fig. 12. (a) The four-class Gaussian mixture training set for a
VQ classifier design and the partition produced by DA and (b) the
DA partition with the 16-class prototypes shown. The error rate is
Pe = 23%. From [70].

Table 1 Error Probability Comparison of the DA and
LVQ Methods for the Design of VQ Classifiers on the
20-Dimensional, 20-Class Finnish Phoneme Data Set
That Accompanies the Standard LVQ Package.M

Represents the Total Number of Prototypes

results reported in [76] for two-dimensional (2-D) and
eight-dimensional (8-D) mixture examples. For the 2-D
example, DA achieved % for a 400-point
training set and % on a 20 000-point test set,
using units. (These results are near-optimal, based
on the Bayes rate.) By contrast, the method in [76] used
86 receptive fields and achieved %. For the
8-D example and , DA achieved % and
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Table 2 Error Probability Comparison of DA and Other Design
Techniques for RBF Classification on the 21-Dimensional
Waveform Data from [13].M is the Number of Receptive Fields.
DA is compared with TR-RBF [101], MD-RBF [75],
and with G-RBF, Which Is Gradient Descent onhPei.
The Test Set Performance Results Have 95% Confidence
Intervals of Half-Length Less Than 2%

Table 3 Error Probability Comparison of DA with Known
Design Techniques for RBF Classification on the 40-Dimensional
Noisy Waveform Data from [13]. The Test Set Performance Results
Have 95% Confidence Intervals of Half-Length Less Than 3.0%

% (again near-optimal), while the method in
[76] achieved % using .

More comprehensive tests on higher dimensional data
have also been performed. Two examples reported here
are the 21-dimensional (21-D) waveform data and the 40-
dimensional (40-D) “noisy” waveform data used in [13]
(obtained from the UC-Irvine machine learning database
repository). Rather than duplicate the experiments con-
ducted in [13], we split the 5000 vectors into equal size
training and test sets. Our results in Tables 2 and 3
demonstrate quite substantial performance gains over all the
other methods, and performance quite close to the estimated
Bayes rate of 14% [13]. Note in particular that the other
methods perform quite poorly for small and need to
increase to achieve training set performance comparable
to our approach. However, performance on the test set does
not necessarily improve, and may degrade for large.

3) MLP Classifier Design:The DA approach for de-
signing MLP’s [70] is compared with two other ap-
proaches—the standard back propagation (BP) algorithm
of [94] and gradient descent on the cost surface (G-
MLP). The BP weights were initialized to random numbers
uniformly distributed between 0.01. A total of 50 000
epochs of a batch gradient descent algorithm were run to
minimize the MSE between the desired and actual outputs
of the MLP. BP, however, descends on a cost surface
mismatched to the minimum objective. Further, its
performance is dependent on the choice of initial weights.
In G-MLP the performance of BP is improved by taking
the BP solution as initialization and then descending on

. However, in practice, the gains achieved by G-MLP
over BP are only marginal, as the optimization performance
sensitively depends on the choice of initialization.

The performance is tested on the 19-dimensional 7-class
image segmentation data from the University of California-
Irvine machine learning database. The training set contains
210 vectors and the test set contains 2100 vectors, each 19-
dimensional. The features represent various attributes of a
3 3 block of pixels. The classes correspond to textures
(brickface, sky, foliage, cement, window, path, grass). A se-

Table 4 Error Probability Comparison of the BP and G-MLP
Design Approaches on the 19-Dimensional 7-Class Segmentation
Data Example. The Test Set Performance Results Have 95%
Confidence Intervals of Half-Length Less Than 2.1%

quence of single hidden layer neural networks was designed
based on this data set. Table 4 summarizes the results for
various hidden layer sizes (). Networks designed by DA
significantly outperformed the other approaches over the
entire range of network sizes.

An important concern is the issue of design complexity.
In the above experiments the DA learning complexity was
roughly 4–8 higher than that of back propagation and
roughly the same as that of G-MLP. This suggests that the
potential for performance improvement would, in typical
applications, greatly outweigh the somewhat higher design
complexity of the DA approach.

4) Piecewise Regression:Here we summarize experi-
ments comparing the performance of the DA approach for
VQ-based piecewise regression [78] with the conventional
piecewise regression approach of CART [13]. Note that
regular CART is severely restricted in that its partition is
constrained to be tree-structured with partition boundaries
that are parallel to the coordinate axes. The latter restriction
which prevents regular CART from exploiting dependencies
between the features of can be overcome by adopting an
extension of CART that allows the boundaries between
regions to be arbitrary linear hyperplanes. While this
extension allows better partitioning of the input space
and hence smaller approximation error, the complexity of
the design method for the extended structure [46] grows as

, where is the size of the training set. Consequently,
the extended form of CART is impractical unless the
training set is short. In this section, we will refer to regular
CART as CART1, and its extended form as CART2. Our
implementation of CART consists of growing a large “full
tree” and then pruning it down to the root node using
the Breiman–Friedman–Olshen–Stone algorithm (see e.g.,
[18]). The sequence of CART regression trees is obtained
during the pruning process. It is known that the pruning
phase is optimal given the fully grown tree. Unlike CART2,
the complexity of the DA method is linear in the size of
the training set. Further, the DA algorithm optimizes all
the parameters of the regression function simultaneously,
while avoiding many shallow local minima that trap greedy
methods.

In all the following comparisons, the models are piece-
wise constant, which is the simplest example of piecewise
regression. In our implementation of the DA method we
used an annealing schedule given by .

The first experiment involves synthetic datasets, where
the regression input is 2-D and the output
is one-dimensional. The input components are each
uniformly distributed in the interval, (0, 1). The output
is a sum of six normalized Gaussian-shaped functions of
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Table 5 Mean Squared Approximation Error Measured over
the Test Set and Model Order for the Best Solutions Produced by
Cart1 and by DA for Multimodal Gaussian Data Sets

each with an individual center, variance, and magnitude.
By choosing different sets of parameters (centers, variances,
and magnitudes) for the Gaussians, we created a number of
data sets, each consisting of a training and a validation set
of size 1000 each and a test set of size 3000. The output
samples were corrupted by a zero-mean Gaussian noise with
variance 10.0. To compare the design approaches, DA and
CART were applied to design regression functions for each
dataset using the training and validation sets (validation
was used to select the best model size for generalization)
and the performance was evaluated on the independent test
sets. The experiments were conducted over more than 40
different data sets. Table 5 provides a randomly selected
subset of the results. Note that in this case DA is only
compared with standard CART1, since CART2 is too
complex for training sets of this size. Clearly, for all the
examples, DA demonstrates consistent improvements over
CART1.

We next compare CART with DA over a few data sets
from real-world regression applications. This data is taken
from the StatLib database9 and has been extensively used
by researchers in benchmarking the relative performance
of competing regression methods. However, due to the
unavailability of sufficient data for proper validation, we
simply compare the performance of the two regression
models versus model size.

One benchmark problem is concerned with predicting
the value of homes in the Boston area from a variety of
parameters [43]. The training set consists of data from 506
homes. The output in this case is the median price of a
home, with the input consisting of a vector of 13 scalar
features believed to influence the price. The objective is
to minimize the average squared error in price prediction.
Since the features have different dynamic ranges, they were
normalized to unit variance prior to application of DA and
CART. Piecewise constant regression models of different
model sizes were generated by the design methods. Table
6 compares the squared-error in predicting the house price
using the standard CART1 and its extended form CART2,
with the performance of the proposed DA method. Clearly,
the DA method substantially outperforms both CART1 and
CART2 over the entire range of model sizes. This example
illustrates that DA find substantially better solutions for
the design objective. Also note that CART1 outperforms
CART2 in several cases, despite the fact that CART2 is

9Available WWW: http://lib.stat.cmu.edu/data sets/.

Table 6 Mean Squared Prediciton Error for Housing Price in
the Boston, MA Area. Comparison of Training Set Errors for the
Standard Cart1, Its Extension Cart2, and the DA Method.K Is
the Number of Regions Allowed for Each Model

Table 7 Mean-Squared Prediction Error for the Age-Adjusted
Mortality Rate Per 100 000 Inhabitants from Various
Environmental Factors. Comparison of Cart1, Cart2, and DA.K

Is the Number of Regions Allowed for Each Model

a potentially more powerful regression structure. These
results are indicative of the difficulties due to local minima.

The data set for the next example was taken from the
environmental sciences. This problem is concerned with
predicting the age-adjusted mortality rate per 100 000 in-
habitants of a locality from 15 factors that have presumably
influenced it. Some of these factors are related to the
levels of environmental pollution in the locality, while
others are measurements of nonenvironmental, mainly so-
cial parameters. This data set has been used by numerous
researchers since its introduction in the early 1970’s [66].
As data are only available for 60 localities, they were not
divided into separate training and test sets. We only show
performance on the training set. Table 7 shows that the
VQ-based regression function designed by DA offers a
consistent substantial advantage over CART for the entire
range of model sizes.

The third regression data set is drawn from an application
in the food sciences. The problem is that of efficient
estimation of the fat content of a sample of meat. (Tech-
niques of analytical chemistry can be used to measure
this quantity directly, but it is a slow and time-consuming
process.) We used a data set of quick measurements by the
Tecator Infratec Food and Feed Analyzer which measures
the absorption of electromagnetic waves in 100 different
frequency bands, and the corresponding fat content as de-
termined by analytical chemistry. As suggested by the data
providers, we divided the data into a training set of size 172
and a test set of size 43. We then applied CART1, CART2,
and DA to the training set for different model sizes. Table
8 compares the mean-squared approximation error obtained
over the training and test sets for all the methods. DA
significantly outperformed the CART regression functions
that used the same number of regions in the input space.
In fact, using five prototype DA’s produced a regression
function that outperformed both of the CART regression
function with ten regions. The excellent performance of the
DA method outside the training set confirms its expected
good generalization capabilities. Note also that the CART2
method exhibits overfitting with the test set performance
deteriorating from to .
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Table 8 Mean-Squared Approximation Error for the
Fat Content of a Meat Sample from 100 Spectroscopic
Measurements. The Performance of Cart1 and Cart2 Is
Compared with that of the Proposed DA Method, Both
Inside (TR) and Outside (TE) the Training Set.K Is the
Number of Regiouns Used to Represent the Data

5) Mixture of Experts:Mixture of experts is an important
type of structures that was inspired by mixture models
from statistics [67], [102]. This class includes the structures
known as “mixture of experts” [51] and “hierarchical mix-
ture of experts” (HME) [53], as well as normalized radial
basis functions (NRBF) [75]. We refer to this class generally
as mixture of experts (ME) models. ME’s have been
suggested for a variety of problems, including classification
[48], [51], control [50], [53], and regression tasks [53],
[104], [105].

We define the “local expert” regression function
, where is the set of model parameters for

local model . The ME regression function is defined as

(73)

where, is a nonnegative weight of association be-
tween input and expert that effectively determines the
degree to which expert contributes to the overall model
output. In the literature, these weights are often called
gating units [51], and obey some prespecified parametric
form. We further impose , which leads to the
natural interpretation of the weight of association or gating
unit as a probability of association.

ME is an effective compromise between purely piece-
wise regression models discussed earlier, such as CART
[13], and “global” models such as the MLP [94]. By
“purely piecewise” it is meant that the input space is hard-
partitioned to regions, each with its own exclusive expert
model. Effectively, the piecewise regression function is
composed of a patchwork of local regression functions that
collectively cover the input space. In addition to partitioning
the input space, the model parameter set is partitioned into
submodels which are only “active” for a particular local
input region. By contrast, in global models such as MLP’s
there is a single regression function that must fit the data
well everywhere, with no explicit partitioning of the input
space nor subdivision of the parameter set. ME exploits
a partition of the space but produces a function which
combines the contributions of the various experts with some
appropriate weighting.

The DA design approach [82] is based on controlling the
entropy of the association probabilities . In this case,
these probabilities are part of the problem definition rather
than an artificial addition to avoid nonglobal minima. It is

important to note that as we approach zero temperature,
the entropic constraint simply disappears and we find the
solution which minimizes the cost regardless of its entropy.
Annealing consists of starting at high temperature (high
entropy) and gradually allowing the entropy to drop to its
optimal level (where the cost is minimized).

The following results compare the DA approach with
conventional design methods for NRBF and HME regres-
sion functions. The experiments were performed over some
popular benchmark data sets from the regression literature.
In each experiment, we compare the average squared-error
obtained over the training set using the DA design method
and the alternative design methods. The comparisons are
repeated for different network sizes. The network size
refers to the number of local experts used in the mixture
model. For the case of binary HME trees withlevels

, and for the case of NRBF regression functions
is the number of Gaussian basis functions used. Following
the most common implementation, the local models are
constant functions in the NRBF case and linear functions
in the HME case. The alternative design approaches used
for comparing our HME design algorithm are:

GD: a gradient descent algorithm to simultaneously op-
timize all HME parameters for the squared-error
cost;

ML: Jordan and Jacobs’s maximum likelihood approach
[53].

For the NRBF regression function, we have compared
the DA design approach [82] with the GD algorithm,
which is an enhanced version of the method suggested in
[75] (see [82] for details). For fair comparison, we take
a conservative (worst case) estimate that the complexity
of the DA approach is 10 greater than that of the
competing methods (in fact the complexity of DA was
higher by a factor of two–ten in these experiments). To
compensate for the complexity, we allow each competing
method to generate results based on ten different random
initializations, with the best result obtained among those
runs selected for comparison with the DA result. Since the
regression function obtained by DA is generally indepen-
dent of initialization, a single DA run sufficed.

Let us first consider the results for the real-world ex-
amples that had been used in the piecewise regression
subsection. Results for the Boston home-value prediction
problem are given in Tables 9 and 10 and demonstrate
that for both mixture models the DA approach achieves
a significantly smaller regression error compared with the
other approaches over a variety of network sizes. Results
for the mortality rate example are given in Tables 11 and
12; and the meat fat-content results (measurements were
obtained by the Tecator Infratec Food and Feed Analyzer)
are given in Tables 13 and 14.

Finally, results are given for synthetic data. Here,
is 2-D and the training set is generated according

to a uniform distribution in the unit square. The output
is scalar. We created five different data sets based on

the functions specified in [17] and
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Table 9 Comparison of Regression Error Obtained Using DA
and GD Algorithms for NRBF Design for the Boston Home Value
Problem.K Is the number of Gaussian Basis Functions Used

Table 10 Comparison of Regression Error Obtained
Using DA, GD, and ML Algorithms for HME Function
Design for the Boston Home Value Problem.K Is
the Number of Leaves in teh Binary Tree

Table 11 Comparison of Regression Error Obtained
Using DA and GD Algorithms for NRBF Design for
the Mortality Rate Prediction Problem.K Is the
Number of Gaussian Basis Functions Used

Table 12 Comparison of Regression Error Obtained Using DA,
GD, and ML Algorithms for HME Design for the Mortality Rate
Prediction Problem.K Is the Number of Leaves in the Binary Tree

Table 13 Comparison of Regression Error Obtained Using DA
and GD Algorithms for NRBF Design for the Fat Content
Prediction Problem.K Is the Number of Gaussian Basis Functions
Used. “TR” and “TE” Refer to Training and Test Sets, Respecively

[49]. Each function was used to generate both a training
set and test set of size 225. We designed NRBF and HME
regression estimates for each data set using both DA and
the competitive design approaches. The results shown in
Tables 15 and 16 show improved performance of the DA
method that is consistent with the results obtained for the
other benchmark sets.

IV. THE RATE-DISTORTION CONNECTION

Rate-distortion theory is the branch of information theory
which is concerned with source coding. Its fundamental

Table 14 Comparison of Regression Error Obtained
Using DA, GD, and ML Algorithms for HME Function
Design for the Fat Content Prediction Problem.K Is the
Number of Leaves in the Binary Tree. “TR” and “TE” Refer
to Training and Test Sets, Respectively

Table 15 Comparison of Regression Error Obtained by DA
and GD on the Training (TR) and Test (TE) Sets, for
NRBF Design to Approximate Functions,f1() . . . f5(). K
Denotes the Number of Basis Functions

Table 16 Regression Error Obtained by DA, GD, and ML on
the Training (TR) and Test (TE) Sets, for HME Design
to Approximate Functions,f1() . . . f5(). K Denotes
the Number of Leaves in the Binary Tree

results are due to Shannon [95], [96]. These are the coding
theorems which provide an (asymptotically) achievable
bound on the performance of source coding methods. This
bound is often expressed as an RD function for a
given source, whose curve separates the region of feasible
operating points , from the region that cannot be
attained by any coding system. Important extensions of
the theory to more general classes of sources than those
originally considered by Shannon have been developed
since (see, e.g., [7] and [32]).

Explicit analytical evaluation of the function has
been generally elusive, except for very few examples of
sources and distortion measures. Two main approaches
were taken to address this problem. The first was to
develop bounds on . An important example is the
Shannon lower bound [96] which is useful for difference
distortion measures. The second main approach was to
develop a numerical algorithm, the Blahut–Arimoto (BA)
algorithm [2], [11] to evaluate RD functions. The power
of the second approach is in that the function can be
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approximated arbitrarily closely at the cost of complexity.
The disadvantage is that the complexity may become over-
whelming, particularly in the case of continuous alphabets,
and even more so for continuous vector alphabets where the
complexity could grow exponentially with the dimensions.
Another disadvantage is, of course, that no closed-form
expression is obtained for the function, even if a simple
one happens to exist.

We shall restrict our attention here to continuous alphabet
sources. The RD curve is obtained by minimizing the mu-
tual information subject to an average distortion constraint.
Formally stated, given a continuous source alphabet,
random variable with a probability measure given by the
density , and a reproduction alphabet, the problem
is of that optimizing the mutual information

(74)

over the random encoders , subject to

(75)

where is the distortion measure. By replacing the
above minimization with parametric variational equations
(see [7], [12], [32], or [40]), this problem can be reformu-
lated as a problem of optimization over the reproduction
density . The functional to be minimized is

(76)

where is a positive parameter that is varied to compute
different points on the RD curve. But this criterion is
easily recognizable as a continuous version of the free
energy (25) we have developed in our (mass constrained)
DA derivation! Much intuition can be obtained from this
realization. In particular, the computation of the RD func-
tion is equivalent to a process of annealing; the effective
reproduction alphabet is almost always discrete and grows
via a sequence of phase transitions; and an efficient DA
method can be used to compute the RD curve. Thus, the
result is of importance to both rate-distortion theory and
the basic DA approach itself. A detailed treatment of the
relations between RD theory and DA is given in [87]. Here
we only give a superficial outline.

To see more clearly the connection with the DA deriva-
tion we note that the objective of the optimization in (76)
is to determine a probability measure on the reproduction
space . We may consider an alternative “mapping” ap-
proach which, instead of searching for the optimal
directly, searches for the optimal mapping: ,
where to the unit interval we assign the Lebesgue measure
denoted by . The equivalence of the approaches is ensured
by the theory of general measures in topological spaces (see

for example [93, ch. 15] or [39, ch. 2 and 3]). We thus have
to minimize the functional

(77)

over the mapping . We replace direct optimization of a
density defined over the reproduction space with mapping
of “codevectors” with their probabilities onto this space.
This is exactly what the mass-constrained DA method does.

Recall that in the basic DA derivation, at high tem-
perature (small ), no matter how many codevectors are
“thrown in” they all converge to a single point and are
viewed as one effective codevector. In the RD case we have
a “continuum of codevectors,” yet it is easy to see that they
all collapse on the centroid of the source distribution. The
reproduction support (or effective alphabet) is therefore of
cardinality one. Moreover, as we lower the temperature,
the output remains discrete and its cardinality grows via a
sequence of phase transitions exactly as we have seen in our
treatment of DA for clustering. Using this approach, it was
shown in [87] for the RD problem that the reproduction
random variable is continuous only if the Shannon
lower bound (see e.g., [7]) is tight, which for the case
of squared error distortion happens only when the source
is Gaussian (or a sum of Gaussians). This is a surprising
result in rate-distortion theory because the only analytically
solved cases were exactly those where the Shannon lower
bound is tight, which led to the implicit assumption that the
optimal reproduction random variable is always continuous.
(It should, however, be noted that the result was anticipated
by Fix in an early paper [31] that, unfortunately, went
relatively unnoticed.) From the DA viewpoint this is an
obvious direct observation. It is summarized in a theorem
[87].

Theorem 2: If the Shannon lower bound does not hold
with equality, then the support of the optimal reproduction
random variable consists of isolated singularities. Further,
if this support is bounded (as is always the case in practice)
then is discrete and finite.

For the practical problem of RD computation, we see two
approaches, namely BA and DA, whose equivalence fol-
lows from the Borel Isomorphism Theorem. However, these
approaches are substantially different in their computational
complexity and performance if we need to discretize (as we
always do). When using BA, discretization means defining
a grid on the output space . In DA we “discretize
the unit interval” (i.e., replace it by a set of indexes) and
induce an adaptive grid on by our mapping. Instead of a
fixed grid in the output space, DA effectively optimizes a
codebook of codevectors with their respective masses. This
difference between the approaches is crucial because the
output distributions are almost always discrete and finite.
This gives DA the theoretical capability of producing exact
solutions at finite model complexity, while BA can only
approach exact solutions at the limit of infinite resolution.
The mass-constrained DA algorithm (given in Section II)
can be used to compute the RD curve [87].
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It is a known result from RD theory that the parameter
as defined above is simply related to the slope

of the (convex) RD curve

(78)

This gives a new interpretation of the DA approach to
clustering and to the temperature parameter. The process of
annealing is simply the process of RD computation which
is started at maximum distortion and consists of “climbing”
up the RD curve by optimally trading decrease in distortion
for increase in rate. The position on the curve is determined
by the temperature level which specifies the slope at this
point. The process follows the RD curve as long as there
are as many available codevectors as needed for the output
cardinality. If the number of codevectors isa priori limited
(as is the case in standard VQ design) then DA separates
from, but attempts to stay as close as possible to, the
RD curve after reaching the phase corresponding to the
maximum allowed codebook size. Another important aspect
of the annealing process, which is raised and demonstrated
through the RD analysis, is the existence of two types
of continuous phase transitions. One type is the cluster-
splitting transition which we have analyzed and computed
its critical temperature. The other kind is that of “mass
growing,” where a cluster is born first with zero mass and
gradually gains in mass. The latter type of phase transition
is more difficult to handle, and only preliminary results exist
at this point. If, or when, we will be able to ensure that such
phase transitions are always detected as well, we will have
ensured that DA finds the global optimum. Note that, in
practice, if a mass-growing phase transition is “missed” by
the algorithm, this is often compensated by a corresponding
splitting phase transition which occurs shortly afterwards,
and optimality is regained.

V. RECENT DA EXTENSIONS

In this section, a couple of recent extensions of the DA
approach are briefly mentioned.

One important extension is to a method for the design of
classifiers based on hidden Markov models, with obvious
applications in speech recognition. Preliminary results for
this work appeared in [81]. It is shown that DA can be
applied to time sequences, and further, can be implemented
efficiently by a forward-backward algorithm similar to the
Baum–Welch reestimation algorithm [5]. The DA method
allows joint optimization of the classifier components to di-
rectly minimize the classification error, rather than separate
modeling of speech utterances via the maximum likelihood
approach. Results so far [77], [80], [81] show substantial
gains over standard methods. These preliminary results
suggest that speech recognition may turn out to be the most
important application of DA. Work in progress includes
extensions to continuous speech, robustness of the classifier,
etc.

Another advance was the application of DA to the
problem of generalized vector quantization (GVQ). GVQ
extends the VQ problem to handle joint quantization and

estimation [35]. The GVQ observes random vectorand
provides a quantized value for a statistically related, but
unobservable, random vector. Of course, the special case

is the regular VQ problem. One typical application
is in noisy source coding (often referred to as remote
source coding in the information theory literature). Another
application is concerned with the need to combine VQ with
interpolation (e.g., when the vectors were down-sampled for
complexity or other reasons). Preliminary results showing
substantial gains due to the use of DA are given in [79].

VI. SUMMARY

DA is a useful approach to clustering and related opti-
mization problems. The approach is strongly motivated by
analogies to statistical physics, but it is formally derived
within information theory and probability theory. It enables
escaping many poor local optima that plague traditional
techniques without the slow schedules typically required
by stochastic methods. The solutions obtained by DA are
totally independent of the choice of initial configuration.
The main objectives of this paper were: to derive DA
from basic principles; to emphasize its generality; to il-
lustrate its wide applicability to problems of supervised
and unsupervised learning; and to demonstrate its ability to
provide substantial gains over existing methods that were
specifically tailored to the particular problem.

Most problems addressed were concerned with data as-
signment, via supervised or unsupervised learning, and
the most basic of all is the problem of clustering. A
probabilistic framework was constructed by randomization
of the partition, which is based on the principle of maximum
entropy at a given level of distortion, or equivalently,
minimum expected distortion at a given level of entropy.
The Lagrangian was shown to be the Helmholtz free energy
in the physical analogy, and the Lagrange multiplier
is the temperature. The minimization of the free energy
determines isothermal equilibrium and yields the solution
for the given temperature. The resulting association proba-
bilities are Gibbs distributions parameterized by. Within
this probabilistic framework, annealing was introduced by
controlling the Lagrange multiplier . This annealing is
interpreted as gradually trading entropy of the associations
for reduction in distortion. Phase transitions were identified
in the process which are, in fact, cluster splits. A sequence
of phase transitions produces a hierarchy of fuzzy-clustering
solutions. Critical temperatures for the onset of phase
transitions were derived. At the limit of zero temperature,
DA converges to a known descent method, the GLA or-
means, which in standard implementations is arbitrarily or
heuristically initialized. Consistent substantial performance
gains were obtained.

The method was first extended to a variety of related un-
supervised learning problems by incorporating constraints
on the clustering solutions. In particular, DA methods were
derived for noisy-channel VQ, entropy constrained VQ, and
structurally constrained VQ design. Additional constraints
may be applied to address graph-theoretic problems.
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A highly significant extension is to supervised learning
problems. The DA approach was rederived while allowing
the imposition of structures on the partition, and while
optimizing the ultimate optimization cost. This extension
enables the DA approach to optimize complicated dis-
crete costs for a large variety of popular structures. The
method’s performance was demonstrated on the problem
of classification with the vector quantizer, radial basis
functions, and multilayer perceptron structures, and on the
problem of regression with the VQ, hierarchical mixture
of experts, and normalized radial basis functions. For
each one of the examples, the DA approach significantly
outperformed standard design methods that were developed
for the specific structure.

The relations to information theory, and in particular
to RD theory, were discussed. It was shown that the DA
method for clustering is equivalent to the computation of
the RD function. This observation led to contributions to
rate-distortion theory itself, and to further insights into the
workings of DA.

A couple of extensions, which are currently under in-
vestigation, were briefly introduced. One extension is to
the design of hidden Markov model-based classifiers. This
work extends DA to handle time sequences and is directly
applicable to the important problem of speech recogni-
tion. Another extension is concerned with the problem of
generalized vector quantizer design.
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