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1 Introduction

One of the most fundamental problems in optimization is that of maximizing
(or minimizing) a multivariate polynomial over the Euclidean ball or sphere.
Such a problem is certainly not foreign, as it captures the problem of find-
ing the spectral norm of a matrix, as well as the problem of deciding the
non–negativity of a homogeneous multivariate polynomial over the sphere, as
special cases (the latter is closely related to the classical Hilbert’s 17th prob-
lem in real algebraic geometry; see, e.g., [25,29,19]). More recently, sphere con-
strained polynomial optimization has also found applications in many different
areas of study. These include numerical multilinear algebra (see, e.g., [26,9,
10]), solid mechanics (see, e.g., [27,6]), signal processing (see, e.g., [15,20,31])
and combinatorics (see, e.g., [11]), just to name a few. Consequently, there has
been much research on the problem lately. From a computational complexity
perspective, the problem is already NP–hard in some very simple settings, such
as that of maximizing a cubic polynomial over the sphere [23] (see [13,8,9,21]
for related results). Many algorithms have been proposed to solve certain spe-
cial cases of the problem (see, e.g., [18,30,28,10]). However, almost all known
provable approximation guarantees are for problems that have a quadratic ob-
jective. In view of the above discussion, it is natural to ask whether one can
design efficient algorithms for a large class of sphere constrained polynomial
optimization problems with provable approximation guarantees.

As a first step towards answering that question, de Klerk et al. [14] con-
sidered the problem of optimizing a fixed degree even form (i.e., a homoge-
neous polynomial with only even exponents) over the sphere and designed
a polynomial–time approximation scheme (PTAS) for it. Later, Barvinok [1]
showed that the problem of optimizing a certain class of multivariate poly-
nomials over the sphere also admits a randomized PTAS. It should be noted
that the results of de Klerk et al. and Barvinok do not imply each other,
and they apply only when the polynomial objective function has some special
structure. The problem of optimizing a more general multivariate polynomial
over the Euclidean ball or sphere was not addressed until later, when Luo and
Zhang [22] designed the first polynomial–time approximation algorithm for op-
timizing a multivariate quartic polynomial over a region defined by quadratic
inequalities (which includes the Euclidean ball as a special case). Soon after-
wards, Ling et al. [21] designed polynomial–time approximation algorithms
for optimizing a biquadratic function over spheres. These results have set off a
flurry of research activities. In particular, He et al. [8,7] improved and extended
the results in [22] by designing polynomial–time approximation algorithms for
optimizing a multivariate polynomial or multilinear form over a region defined
by quadratic inequalities. On another front, Nie [24] obtained bounds on the
gap between the optimal value of a general polynomial optimization problem
and that of a certain SDP relaxation due to Lasserre [18]. However, Nie did
not discuss how to extract from the SDP relaxation a feasible solution to the
original problem and quantify the loss in objective value. Thus, the bounds
obtained by Nie are not approximation bounds in the usual sense.
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Although the aforementioned results do shed some light on the approxima-
bility of sphere constrained polynomial optimization problems, they are not
entirely satisfactory. On one hand, the approximation results developed in [14,
1] do not apply to general sphere constrained polynomial optimization prob-
lems. On the other hand, while the approximation bounds obtained in [22,21,
8] do apply to the general problem, the best among them is of order (1/n)d/2−1,
which is not known to be tight when d ≥ 3 (here, n is the number of variables
and d is the degree of the polynomial). In fact, only fully polynomial–time
approximation schemes (FPTAS) have been ruled out for general sphere con-
strained, fixed degree polynomial optimization problems [13]. This raises the
obvious question of whether the bounds in [22,21,8] can be improved or not.

In this paper, we address the above issues and design polynomial–time
approximation algorithms for sphere constrained homogeneous degree–d poly-
nomial optimization problems, where d ≥ 3 is assumed to be fixed. Our algo-
rithms are deterministic, which should be contrasted with the randomized algo-
rithms developed in [22,8,7]. Moreover, the approximation bounds we proved
have the form Ω((log n/n)d/2−1), which improves upon the bounds established
in [22,8]. Roughly speaking, our approach consists of two steps. First, we re-
late the objective value of our polynomial optimization problem to that of its
multilinear relaxation. Such an idea is fairly standard; see, e.g., [12,8]. Then,
we reduce the problem of maximizing a multilinear form over spheres to that
of maximizing a certain norm over the sphere, which, by standard duality
arguments, is equivalent to determining the L2–diameter of a certain convex
body. The upshot of this reduction is that the latter problem can be tackled
using powerful results from the algorithmic theory of convex bodies [5,2]. We
remark that a similar reduction has already appeared in a work by Khot and
Naor [12], who used it to design a randomized polynomial–time approximation
algorithm for maximizing a trilinear form over binary constraints. However,
the approach we use for approximating the diameter is very different from
that of Khot and Naor. Instead of adopting the random sampling approach
described in [12], we follow the idea of Brieden et al. [2] and use certain poly-
topal approximation of the sphere to approximate the L2–diameter. Under
this approach, it is still relatively straightforward to obtain an approximation
algorithm for maximizing a trilinear form over spheres. However, extending
this result to higher degree multilinear forms becomes much more challenging.
To achieve that goal, a natural idea is to apply our lower–degree results recur-
sively. Specifically, given a degree–d multilinear form F and any x1 ∈ Rn1 , let
Ĝd−1(x

1) be the value returned by our approximation algorithm when applied
to the degree–(d− 1) multilinear optimization problem

Gd−1(x
1) = max

{
F (x1, x2, . . . , xd) : ∥xi∥2 = 1 for i = 2, 3, . . . , d

}
.

Clearly, if we can approximate the maximum value of Ĝd−1 over the sphere,
then we can approximate the maximum value of F over spheres. One of the
main technical contributions of this paper is to show that under some mild
conditions, the function Ĝd−1 defines a norm on Rn1 for each d ≥ 3 (see
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Proposition 4). Consequently, the maximum value of the multilinear form F
over spheres can be approximated by the maximum value of the norm Ĝd−1

over the sphere, which by duality is equal to the L2–diameter of the polar of the
unit ball of Ĝd−1. In particular, we can apply our argument for the base case
to obtain an approximation algorithm for maximizing degree–d multilinear
forms over spheres. We remark that although our approach leads to a more
complicated construction than those in [12,22,8], it has the advantage that all
the resulting algorithms are deterministic.

To further demonstrate the power of our approach, we study the problem
of optimizing a multiquadratic form over spheres, which generalizes the sphere
constrained biquadratic optimization problem considered in [21]. We show that
our approach can be used to design a deterministic polynomial–time approx-
imation algorithm for the problem with a relative approximation guarantee
of Ω((log n/n)d/2−1). It should be noted that even in the case of biquadratic
optimization, our bound is sharper than that in [21].

The rest of the paper is organized as follows. In Section 2, we introduce
the notation that will be used throughout the paper. Then, in Section 3, we
study various sphere constrained polynomial optimization problems and de-
velop approximation algorithms for them. Finally, we end with some closing
remarks in Section 4.

2 Notation and Preliminaries

Our notation and definitions largely follow those in [16]. A tensor is a mul-
tidimensional array, and the order of a tensor is the number of dimensions.
Thus, for instance, a matrix is a tensor of order two. Let A = (ai1i2···id) ∈
Rn1×n2×···×nd be a tensor of order d. We say that A is non–zero if at least
one of its elements is non–zero, and is cubical if n1 = n2 = · · · = nd. A cubi-
cal tensor is said to be super–symmetric if every element ai1i2···id is invariant
under any permutation of the indices.

Now, let K and j1, . . . , jK be integers such that 1 ≤ K ≤ d and 1 ≤ j1 <
j2 < · · · < jK ≤ d. Furthermore, let xjk ∈ Rnjk , where k = 1, . . . ,K, be
given vectors. We use A(xj1 , xj2 , . . . , xjK ) to denote the order–(d−K) tensor
that is obtained from the order–d tensor A = (ai1i2···id) ∈ Rn1×n2×···×nd by
“summing out” the indices j1, . . . , jK . For instance, if K = 2, j1 = 2 and
j2 = 4, then we have

A
(
x2, x4

)
i1i3i5i6···id

=

n2∑
i2=1

n4∑
i4=1

ai1i2···idx
2
i2x

4
i4 .

Given an order–d tensor A = (ai1i2···id) ∈ Rn1×n2×···×nd , we can associate
with it a multilinear form FA : Rn1 × Rn2 × · · · × Rnd → R via

FA
(
x1, x2, . . . , xd

)
=

n1∑
i1=1

· · ·
nd∑

id=1

ai1i2···idx
1
i1x

2
i2 · · ·x

d
id
.
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Furthermore, if A is super–symmetric with n1 = n2 = · · · = nd = n, then we
can associate with it a homogeneous degree–d polynomial fA : Rn → R via

fA(x) = FA(x, x, . . . , x) =
∑

1≤i1,...,id≤n

ai1i2···idxi1xi2 · · ·xid .

In fact, it is well known (see, e.g., [16]) that super–symmetric tensors are
bijectively related to homogeneous polynomials. We shall drop the subscript
A from FA or fA if the meaning is clear from the context.

Now, let d ≥ 3 be given. Let A = (ai1i2···id) ∈ Rnd

be an arbitrary non–zero
super–symmetric tensor of order d, and let f : Rn → R be the correspond-
ing homogeneous polynomial. In this paper, we are mainly interested in the
following sphere constrained homogeneous polynomial optimization problem:

(HP)

v̄ = maximize fA(x) ≡
∑

1≤i1,...,id≤n

ai1i2···idxi1xi2 · · ·xid

subject to ∥x∥2 = 1.

Since problem (HP) is generally NP–hard, our goal is to design polynomial–
time approximation algorithms for it.

3 Sphere Constrained Homogeneous Polynomial Optimization

To begin, let us consider the following multilinear relaxation of (HP):

(ML)

maximize FA
(
x1, x2, . . . , xd

)
≡

∑
1≤i1,...,id≤n

ai1i2···idx
1
i1x

2
i2 · · ·x

d
id

subject to ∥xi∥2 = 1 for i = 1, . . . , d.

As observed in [8], one can relate the objective value of (HP) to that of (ML)
via the so–called polarization formula (see, e.g., [17]). Specifically, we have the
following proposition, whose proof can be found in [8, Lemma 3.5]:

Proposition 1 Let x1, x2, . . . , xd ∈ Rn be arbitrary, and let ξ1, ξ2, . . . , ξd be
i.i.d. Bernoulli random variables (i.e., Pr(ξi = 1) = Pr(ξi = −1) = 1/2 for
i = 1, . . . , d). Then, we have

E

( d∏
i=1

ξi

)
fA

 d∑
j=1

ξjx
j

 = d!FA
(
x1, x2, . . . , xd

)
.

Armed with Proposition 1, it can be shown that the problem of approximating
(HP) reduces to that of approximating (ML). Specifically, we have the following
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Theorem 1 (He et al. [8]) Suppose there is a polynomial–time algorithm
AML that, given any instance of (ML), returns a feasible solution whose objec-
tive value is at least α ∈ (0, 1] times the optimal value of (ML) (note that the
optimal value of (ML) is always non–negative). Then, there is a polynomial–
time algorithm AHP that, given any instance of (HP), returns a solution
x̂ ∈ Rn with ∥x̂∥2 = 1 and

fA(x̂) ≥ α · d! · d−d · v̄ for odd d ≥ 3, (1)

fA(x̂)− v ≥ α · d! · d−d · (v̄ − v) for even d ≥ 4, (2)

where v̄ = max∥x∥2=1 fA(x) and v = min∥x∥2=1 fA(x). Furthermore, if AML

is deterministic, then so is AHP . The factor α in (1) (resp. (2)) is known as
the approximation ratio (resp. relative approximation ratio).

Thus, in the sequel, we may just focus on the problem (ML).

3.1 Sphere Constrained Multilinear Optimization

Let us first investigate the case where d = 3. Specifically, let A = (aijk) ∈
Rn1×n2×n3 be an arbitrary non–zero order–3 tensor, and assume without loss
of generality that 1 ≤ n1 ≤ n2 ≤ n3. Consider the following optimization
problem:

v̄ml(A, 3) = maximize

n1∑
i=1

n2∑
j=1

n3∑
k=1

aijkx
1
ix

2
jx

3
k

subject to ∥x1∥2 = ∥x2∥2 = ∥x3∥2 = 1,

x1 ∈ Rn1 , x2 ∈ Rn2 , x3 ∈ Rn3 .

(3)

As shown in [8], problem (3) is still NP–hard. However, we can approximate it
in polynomial–time using an argument similar to that in Khot and Naor [12].
To begin, let∥∥A(x1)

∥∥
2
= max

u∈Rn3 :∥u∥2≤1

∥∥A(x1)u
∥∥
2
= max

∥u∥2≤1,∥v∥2≤1
vTA(x1)u

be the largest singular value of the n2 × n3 matrix A(x1). Clearly, we have

v̄ml(A, 3) = max
x1∈Rn1 :∥x1∥2≤1

∥∥A(x1)
∥∥
2
.

Observe that the function x 7→ ∥x∥A ≡ ∥A(x)∥2 defines a semi–norm on Rn1 .
However, in the context of problem (3), we may assume without loss that it
defines a norm on Rn1 . To see this, consider the set L = {x ∈ Rn1 : ∥x∥A = 0}.
Note that L is the nullspace of the (n2 × n3)× n1 matrix A, where

A(j,k),i = aijk for i = 1, . . . , n1; j = 1, . . . , n2; k = 1, . . . , n3. (4)
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As such, it is a linear subspace in Rn1 . Moreover, since A is non–zero, we have

v̄ml(A, 3) ≥ max
1≤i≤n1,1≤j≤n2,1≤k≤n3

|aijk| > 0. (5)

This implies that any optimal solution (x̄1, x̄2, x̄3) ∈ Rn1×n2×n3 to (3) must
satisfy x̄1 ∈ L⊥, where L⊥ is the orthogonal complement of L in Rn1 . Indeed,
suppose that x̄1 = y+z, where y ∈ L⊥, z ∈ L and y, z ̸= 0. Since x̄1 is feasible
for (3), we have ∥y∥22 + ∥z∥22 = 1 by the Pythagoras theorem, which implies
that ∥y∥2 < 1. Moreover, we have

0 < v̄ml(A, 3) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

aijkx̄
1
i x̄

2
j x̄

3
k =

n1∑
i=1

n2∑
j=1

n3∑
k=1

aijkyix̄
2
j x̄

3
k.

Now, consider the vector ȳ = y/∥y∥2 ∈ Rn1 . By construction, (ȳ, x̄2, x̄3) is a
feasible solution to (3), and

n1∑
i=1

n2∑
j=1

n3∑
k=1

aijkȳix̄
2
j x̄

3
k =

1

∥y∥2

n1∑
i=1

n2∑
j=1

n3∑
k=1

aijkyix̄
2
j x̄

3
k =

v̄ml(A, 3)

∥y∥2
> v̄ml(A, 3),

which contradicts the definition of v̄ml(A, 3). Hence, we have x̄1 ∈ L⊥, as
desired. In particular, if L ≠ {0}, then we can reduce the dimension of A and
obtain a problem that is equivalent to (3).

Now, consider the unit ball of the norm ∥ · ∥A, which is given by

BA = {x ∈ Rn1 : ∥x∥A ≤ 1} .

The set BA is clearly centrally symmetric and convex. The following proposi-
tion shows that it is also bounded and has a non–empty interior, i.e., it is a
centrally symmetric convex body. Consequently, we can use the ellipsoid algo-
rithm to answer various queries about BA and its polar efficiently. This will be
crucial to the development of our approximation algorithms. In the sequel, we
use Bn

2 (r) to denote the n–dimensional Euclidean ball centered at the origin
with radius r > 0.

Proposition 2 There exist rational numbers 0 < r ≤ R < ∞, whose encoding
lengths are polynomially bounded by the input size of problem (3), such that
Bn1

2 (r) ⊂ BA ⊂ Bn1
2 (R).

Proof Let ei ∈ Rn1 be the i–th basis vector in Rn1 , where i = 1, . . . , n1.
Observe that for i = 1, . . . , n1, we have

0 < ∥A(ei)∥2 ≤ ri ≡
n2∑
j=1

n3∑
k=1

|aijk|.

Hence, we conclude that

1

r′
· conv

({
±e1, . . . ,±en1

})
=

{
x ∈ Rn1 : ∥x∥1 ≤ 1

r′

}
⊂ BA,
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where r′ = max1≤i≤n1 ri and conv(S) is the convex hull of the points in S ⊂
Rn1 . In particular, since ∥x∥1 ≤ √

n1 · ∥x∥2 for any x ∈ Rn1 , we have Bn1
2 (r) ⊂

BA, where r = 1/(⌈√n1⌉ · r′) > 0 is a rational number, whose encoding length
is polynomially bounded by the input size of problem (3).

On the other hand, we have

∥x∥A ≥ max
1≤j≤n2,1≤k≤n3

∣∣∣∣∣
n1∑
i=1

aijkxi

∣∣∣∣∣ = ∥Ax∥∞ ≥

√
λmin(ATA)

n2n3
· ∥x∥2,

whereA is the (n2×n3)×n1 matrix given by (4), and λmin(A
TA) is the smallest

eigenvalue of ATA. Since L = {0} and 1 ≤ n1 ≤ n2 ≤ n3 by assumption, the
matrix A has full column rank. In particular, we have λmin(A

TA) > 0. Thus,

it follows that BA ⊂ Bn1
2 (R), where R =

⌈√
n2n3/λmin(ATA)

⌉
is a finite

rational number. Moreover, the encoding length of R can be polynomially
bounded by the input size of problem (3); see [5]. This completes the proof.

⊔⊓

By Proposition 2, we conclude that the polar of BA, which is given by

B◦
A =

{
y ∈ Rn1 : xT y ≤ 1 for all x ∈ BA

}
,

is also a centrally symmetric convex body with Bn1
2 (1/R) ⊂ B◦

A ⊂ Bn1
2 (1/r).

Moreover, we have

v̄ml(A, 3) = max
x∈Rn1 :∥x∥2≤1

∥x∥A = max
x∈Rn1 :∥x∥2≤1

(
max
y∈B◦

A

xT y

)

= max
y∈B◦

A

(
max

x∈Rn1 :∥x∥2≤1
xT y

)
= max

y∈B◦
A

∥y∥2

=
1

2
diam2(B

◦
A), (6)

where diam2(B
◦
A) is the L2–diameter1 of B◦

A. Thus, we have reduced the prob-
lem of approximating the optimal value of problem (3) in polynomial time
to that of approximating diam2(B

◦
A) in polynomial time. The latter can be

achieved using the results in [5,2] if the so–called weak membership problem
associated with B◦

A can be solved in polynomial time. Before we formally state
our results, let us recall some definitions from the algorithmic theory of convex
bodies (see [5] for further details).

Let K be a centrally symmetric convex body in Rn. For any ϵ ≥ 0, the
outer parallel body and inner parallel body of K are given by

K(ϵ) = K +Bn
2 (ϵ) and K(−ϵ) = {x ∈ Rn : x+Bn

2 (ϵ) ⊂ K},

respectively. We say that K is well–bounded if there exist rational numbers
0 < r ≤ R < ∞ such that Bn

2 (r) ⊂ K ⊂ Bn
2 (R). The weak membership

problem associated with K is defined as follows:

1 Recall that the L2–diameter of a set S ⊂ Rn is given by diam2(S) = supx,y∈S ∥x− y∥2.
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Weak Membership Problem. Given a vector y ∈ Qn and a rational number
ϵ > 0, either (i) assert that y ∈ K(ϵ), or (ii) assert that y ̸∈ K(−ϵ).

A weak membership oracle for K is a black box that solves the weak member-
ship problem associated with K. By combining the results in [5] and [2], we
have the following theorem:

Theorem 2 (cf. Brieden et al. [2]) Given an integer n ≥ 1, one can construct
in deterministic polynomial time a centrally symmetric polytope P in Rn such
that (i) Bn

2 (1) ⊂ P ⊂ Bn
2 (O(

√
n/ log n)), and (ii) for any well–bounded cen-

trally symmetric convex body K in Rn, one has

Ω

(√
log n

n

)
· diam2(K) ≤ diamP (K) ≤ diam2(K),

where diamP (K) is the diameter of K with respect to the polytopal norm ∥ ·∥P
induced by P (i.e., for any x ∈ Rn, one has ∥x∥P = min{λ ≥ 0 : x ∈
λP}, and P is the unit ball of the induced norm). Moreover, if K is equipped
with a weak membership oracle, then for any given rational number ϵ > 0,
the quantity diamP (K) can be computed to an accuracy of ϵ in deterministic
oracle–polynomial time2, and a vector x ∈ K(ϵ) is delivered with ∥x∥P ≥
(1/2) · diamP (K)− ϵ.

Remarks.

1. Theorem 2 implies that if the weak membership oracle associated with K
can carry out its computation in deterministic polynomial time, then the
diameter of K can be approximated to arbitrary accuracy in deterministic
polynomial time.

2. The constant behind the O–notation depends on the number of facets in
P . Naturally, the more facets in P , the more accurate it can approximate
Bn

2 (1), and hence the smaller the constant behind the O–notation. Fol-
lowing the derivation in [2], a rough calculation shows that when P has
at most nc+1 facets (where c ≥ 2 is a constant), the constant behind the
O–notation is bounded above by

√
8 + 3/c ≤ 5/2.

Let us now return to the problem of approximating diam2(B
◦
A) in polynomial

time. By Proposition 2, both BA and B◦
A are well–bounded. Thus, in view of

Theorem 2, it suffices to prove the following

Proposition 3 The weak membership problem associated with B◦
A can be

solved in deterministic polynomial time.

Proof By the well–boundedness of BA and the results in [5, Chapter 4], it
suffices to show that the weak membership problem associated with BA can
be solved in deterministic polynomial time. This can be achieved as follows.
First, given a vector y ∈ Qn1\{0} and a rational number ϵ > 0, we can

2 An algorithm has oracle–polynomial time complexity if its runtime is polynomial in both
the input size and the number of calls to the oracle [5].
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compute in deterministic polynomial time a number β(y) such that β(y) ≤
∥y∥A ≤ β(y) + ϵ/∥y∥2 [5,3]. Now, suppose that β(y) ≤ 1. Then, we have
∥y∥A ≤ 1 + ϵ/∥y∥2. We claim that y ∈ BA(ϵ). Indeed, let δ ∈ R be such that

0 <
ϵ∥y∥2

∥y∥2 + ϵ
≤ δ < min{ϵ, ∥y∥2},

and consider the point u = (1− δ/∥y∥2)y. We have

∥u∥A ≤
(
1− δ

∥y∥2

)(
1 +

ϵ

∥y∥2

)
≤
(
1− ϵ

∥y∥2 + ϵ

)(
1 +

ϵ

∥y∥2

)
= 1.

This shows that u ∈ BA, whence y = u+ δy/∥y∥2 ∈ BA(ϵ), as desired.
On the other hand, if β(y) > 1, then we have ∥y∥A > 1, which trivially

implies that y ̸∈ BA(−ϵ). This completes the proof. ⊔⊓

From equation (6), Theorem 2 and Proposition 3, we see that the optimal
value of problem (3) can be approximated to within a factor of Ω(

√
log n1/n1)

in deterministic polynomial time. We now show how to construct a feasible
solution (x̄1, x̄2, x̄3) ∈ Rn1×n2×n3 to problem (3) that attains the stated ap-
proximation ratio. To begin, let ϵ > 0 be such that

ϵ <
γ

4
·
√

log n1

n1
· max
1≤i≤n1,1≤j≤n2,1≤k≤n3

|aijk|,

where γ ≥ 2/5 is the constant behind the Ω–notation in Theorem 2 (see the
remarks after Theorem 2). Note that ϵ < (γ/4) ·

√
logn1/n1 · v̄ml(A, 3) by

(5). Using the algorithm stated in Theorem 2 and Proposition 3, we com-
pute a vector ȳ ∈ B◦

A(ϵ) in deterministic polynomial time such that ∥ȳ∥P ≥
(1/2) · diamP (B

◦
A) − ϵ. Furthermore, let ȳ′ ∈ B◦

A be such that ∥ȳ′∥2 =
(1/2) · diam2(B

◦
A). We remark that such a ȳ′ exists, since B◦

A is centrally
symmetric and compact. Now, by definition, we have

∥ȳ′∥P ≤ 1

2
diamP (B

◦
A) ≤ ∥ȳ∥P + ϵ. (7)

Moreover, Theorem 2 implies that

∥x∥P ≤ ∥x∥2 ≤ 1

γ
·
√

n1

log n1
· ∥x∥P for any x ∈ Rn1 . (8)

Hence, we conclude that

∥ȳ∥2 ≥ ∥ȳ′∥P − ϵ ≥ γ ·
√

logn1

n1
· ∥ȳ′∥2 − ϵ (9)

= γ ·
√

log n1

n1
· v̄ml(A, 3)− ϵ, (10)
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where (9) follows from (7) and (8), and (10) follows from the definition of ȳ′

and (6). Upon setting

x̄1 =
ȳ

∥ȳ∥2
, (x̄2, x̄3) = arg max

∥x2∥2≤1,∥x3∥2≤1
(x2)TA(x̄1)x3,

we see that (x̄1, x̄2, x̄3) ∈ Rn1×n2×n3 is feasible for problem (3). Moreover, by
(10) and our choice of ϵ, we have ϵ < ∥ȳ∥2, which implies that ȳ − ϵȳ/∥ȳ∥2 ∈
B◦

A. Hence, the solution (x̄1, x̄2, x̄3) satisfies

n1∑
i=1

n2∑
j=1

n3∑
k=1

aijkx̄
1
i x̄

2
j x̄

3
k = ∥x̄1∥A = max

y∈B◦
A

(x̄1)T y

≥ (x̄1)T ȳ − ϵ

≥ γ

2
·
√

log n1

n1
· v̄ml(A, 3),

where the last inequality follows from (10) and the definition of ϵ. In other
words, the objective value of the solution (x̄1, x̄2, x̄3) is at least Ω(

√
log n1/n1)

times the optimum. To summarize, we have proven the following

Theorem 3 There is a deterministic polynomial–time approximation algo-
rithm for problem (3) with approximation ratio Ω(

√
log n1/n1). In particular,

there is a deterministic polynomial–time approximation algorithm for (HP)
when d = 3, with approximation ratio Ω(

√
logn/n).

To obtain a polynomial–time approximation algorithm for (ML) (and hence
for (HP)) when d ≥ 4, a natural idea is to apply the above argument recur-
sively. Specifically, given a degree–d multilinear form F and any x1 ∈ Rn1 , let
Ĝd−1(x

1) be the value returned by our approximation algorithm when applied
to the degree–(d− 1) multilinear optimization problem

Gd−1(x
1) = max

{
F (x1, x2, . . . , xd) : ∥xi∥2 = 1 for i = 2, 3, . . . , d

}
.

If Ĝd−1 defines a norm on Rn1 , then we can repeat our earlier argument and
obtain an approximation algorithm for the problem max∥x1∥2=1 Ĝd−1(x

1). This
would then yield an approximation algorithm for the original problem

max
∥x1∥2=1

Gd−1(x
1) = max

{
F (x1, x2, . . . , xd) : ∥xi∥2 = 1 for i = 1, 2, . . . , d

}
.

To implement the above idea, we need the following proposition, which forms
the heart of our construction.

Proposition 4 Let d ≥ 3 be given, and let A = {ai1i2···id} ∈ Rn1×n2×···×nd

be an arbitrary non–zero order–d tensor. Let ∥ · ∥νi : Rni+1 → R+ be an
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arbitrary norm on Rni , where i = 1, . . . , d−3. Define the functions {ΛA,d
i }d−2

i=1

inductively as follows:

ΛA,d
d−2

(
x1, x2, . . . , xd−2

)
=
∥∥A (x1, x2, . . . , xd−2

)∥∥
2
,

ΛA,d
i

(
x1, x2, . . . , xi

)
= diamνi

[{
y ∈ Rni+1 : ΛA,d

i+1

(
x1, x2, . . . , xi, y

)
≤ 1
}◦]

for i = d− 3, d− 4, . . . , 1. Then, the following hold:

(a) For j = 1, 2, . . . , d − 2 and for any x̄1, . . . , x̄k−1, x̄k+1, . . . , x̄j, where x̄i ∈
Rni , the function Λ̄A,d

j,k : Rnk → R+ given by

Λ̄A,d
j,k (x) = ΛA,d

j

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j

)
is a semi–norm on Rnk for any k ∈ {1, . . . , j}.

(b) Suppose that the (n2 × · · · × nd)× n1 matrix A, where

A(i2,...,id),i1 = ai1i2···id , (11)

has full column rank. Then, the function ΛA,d
1 defines a norm on Rn1 .

Proof Let d ≥ 3 be given. We prove (a) by backward induction on j. The base
case (i.e., j = d− 2) is clear, since we have

Λ̄A,d
d−2,k(x) =

∥∥A (x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄d−2
)∥∥

2

for k = 1, . . . , d − 2. Now, suppose that j < d − 2. Let k ∈ {1, . . . , j} and
x̄1, . . . , x̄k−1, x̄k+1, . . . , x̄j be arbitrary, where x̄i ∈ Rni . Consider

Λ̄A,d
j,k (x) = ΛA,d

j

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j

)
= diamνj

[{
y ∈ Rnj+1 : ΛA,d

j+1

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j , y

)
≤ 1
}◦]

.

By the inductive hypothesis, for any given x ∈ Rnk , the function

y 7→ ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j , y

)
defines a semi–norm on Rnj+1 . Hence, the set

B̄j,k(x) =
{
y ∈ Rnj+1 : ΛA,d

j+1

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j , y

)
≤ 1
}

is centrally symmetric and convex. In particular, we have

Λ̄A,d
j,k (x) =

2

rνj (B̄j,k(x))
,

where rνj (B̄j,k(x)) is the radius of the largest ball B with respect to the norm
∥ · ∥νj that is contained in B̄j,k(x) (see [4]). We may assume that the center
of B coincides with the origin, since B̄j,k(x) is centrally symmetric. We now

claim that x 7→ Λ̄A,d
j,k (x) defines a semi–norm on Rnk . Observe that the only
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non–trivial task is to establish the convexity of Λ̄A,d
j,k . Towards that end, let

x, x′ ∈ Rnk be arbitrary, and set

x̄ =
x+ x′

2
, r = rνj

(B̄j,k(x)), r′ = rνj
(B̄j,k(x

′)).

Consider the following cases:

Case 1: r = r′ = ∞.

Then, we have

ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j , y

)
= ΛA,d

j+1

(
x̄1, . . . , x̄k−1, x′, x̄k+1, . . . , x̄j , y

)
= 0

for any y ∈ Rnj+1 . By the inductive hypothesis, the function

u 7→ ΛA,d
j+1

(
x̄1, . . . , x̄k−1, u, x̄k+1, . . . , x̄j , y

)
defines a semi–norm on Rnk . Hence, we have

0 ≤ ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x̄, x̄k+1, . . . , x̄j , y

)
≤ 1

2

[
ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j , y

)
+ΛA,d

j+1

(
x̄1, . . . , x̄k−1, x′, x̄k+1, . . . , x̄j , y

)]
= 0,

or equivalently,

ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x̄, x̄k+1, . . . , x̄j , y

)
= 0. (12)

Since (12) holds for all y ∈ Rnj+1 , we conclude that Λ̄A,d
j,k (x̄) = 0, as required.

Case 2: r′ ≥ r > 0, with r < ∞.

Let ȳ ∈ B̄j,k(x) be such that ∥ȳ∥νj = r. By the inductive hypothesis, we have

ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x̄, x̄k+1, . . . , x̄j , ȳ

)
≤ 1

2

[
ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j , ȳ

)
+ΛA,d

j+1

(
x̄1, . . . , x̄k−1, x′, x̄k+1, . . . , x̄j , ȳ

)]
. (13)

Since ȳ ∈ B̄j,k(x), it follows from the definition of B̄j,k(x) that

ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j , ȳ

)
≤ 1. (14)

Consider now the following sub–cases:

Case 2a: r′ = ∞.
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Then, we have ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x′, x̄k+1, . . . , x̄j , ȳ

)
= 0. It follows from (13)

and (14) that

ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x̄, x̄k+1, . . . , x̄j , ȳ

)
≤ 1

2
.

In particular, we have 2ȳ ∈ B̄j,k(x̄). Upon noting that ∥2ȳ∥νj = 2r, we obtain
rνj (B̄j,k(x̄)) ≥ 2r, which implies that

Λ̄A,d
j,k (x̄) =

2

rνj (B̄j,k(x̄))
≤ 1

r
=

1

2

[
Λ̄A,d
j,k (x) + Λ̄A,d

j,k (x′)
]
,

as required.

Case 2b: r′ < ∞.

Since rνj (B̄j,k(x
′)) = r′, we have r−1r′ȳ ∈ B̄j,k(x

′), or equivalently,

ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x′, x̄k+1, . . . , x̄j , ȳ

)
≤ r

r′
. (15)

It then follows from (13), (14) and (15) that

ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x̄, x̄k+1, . . . , x̄j , ȳ

)
≤ 1

2

(
1 +

r

r′

)
=

r + r′

2r′
.

Now, set y′ = 2(r + r′)−1r′ȳ ∈ Rnj+1 . Then, we have

ΛA,d
j+1

(
x̄1, . . . , x̄k−1, x̄, x̄k+1, . . . , x̄j , y′

)
≤ 1,

i.e., y′ ∈ B̄j,k(x̄). Moreover, we have ∥y′∥νj = 2rr′/(r + r′), whence

rνj (B̄j,k(x̄)) ≥
2rr′

r + r′
.

However, this implies that

Λ̄A,d
j,k (x̄) =

2

rνj (B̄j,k(x̄))
≤ 1

2
· 2(r + r′)

rr′

=
1

2

(
2

r
+

2

r′

)
=

1

2

[
Λ̄A,d
j,k (x) + Λ̄A,d

j,k (x′)
]
,

which completes the proof of (a).

We now proceed to prove (b). Note that ΛA,d
1 (x) = Λ̄A,d

1,1 (x) for all x ∈ Rn1 .

Thus, in view of (a), it suffices to show that ΛA,d
1 (x) > 0 for all x ∈ Rn1\{0}.

Suppose that this is not the case, i.e., there exists an x̄ ∈ Rn1\{0} such that

ΛA,d
1 (x̄) = 0. Since

ΛA,d
1 (x̄) = diamν1

[{
x2 ∈ Rn2 : ΛA,d

2

(
x̄, x2

)
≤ 1
}◦]
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and x2 7→ ΛA,d
2 (x̄, x2) defines a semi–norm on Rn2 , it follows that ΛA,d

2 (x̄, x2) =

0 for all x2 ∈ Rn2 . By using the definitions of ΛA,d
2 , . . . , ΛA,d

d−2 and iterating,
we see that

ΛA,d
d−2

(
x̄, x2, . . . , xd−2

)
=
∥∥A (x̄, x2, . . . , xd−2

)∥∥
2
= 0

for any xi ∈ Rni , i = 2, 3, . . . , d − 2. However, this implies that A(x̄) = 0,
or equivalently, x̄ belongs to the nullspace of the matrix A. This contradicts
the fact that A has full column rank. Hence, we have ΛA,d

1 (x) > 0 for all
x ∈ Rn1\{0}, as desired. ⊔⊓

Armed with Proposition 4, we can now design a polynomial–time approx-
imation algorithm for the following multilinear optimization problem:

v̄ml(A, d) = maximize

n1∑
i1=1

· · ·
nd∑

id=1

ai1i2···idx
1
i1x

2
i2 · · ·x

d
id

subject to ∥xi∥2 = 1 for i = 1, . . . , d,

xi ∈ Rni for i = 1, . . . , d,

(16)

where d ≥ 3 is a given integer. Specifically, we prove the following

Theorem 4 For any given d ≥ 3, let 1 ≤ n1 ≤ n2 ≤ . . . ≤ nd be arbitrary
integers, and let ∥·∥Pi : Rnd−1−i → R+, where i = d−2, d−3, . . . , 1, be polytopal
norms possessing the properties guaranteed in Theorem 2. Furthermore, let
A = (ai1i2···id) ∈ Rn1×n2×···×nd be an arbitrary non–zero order–d tensor, and
let A be the (n2 × · · · ×nd)×n1 matrix given by (11). Suppose that A has full

column rank. Then, the functions {ΛA,d
j }d−2

j=1 , where ΛA,d
j : Rn1×n2×···×nj →

R+ is given by

ΛA,d
j

(
x1, . . . , xj

)

=


diamPd−2−j

({
x ∈ Rnj+1 : ΛA,d

j+1

(
x1, . . . , xj , x

)
≤ 1
}◦)

for j = 1, . . . , d− 3,∥∥A (x1, . . . , xd−2
)∥∥

2
for j = d− 2,

satisfy

Ω

(
d−2∏
i=1

√
log ni

ni

)
· v̄ml(A, d) ≤ 1

2
diamPd−2

({
x ∈ Rn1 : ΛA,d

1 (x) ≤ 1
}◦)

≤ v̄ml(A, d),

and ΛA,d
1 is an efficiently computable norm on Rn1 . Moreover, there exist

rational numbers 0 < r ≤ R < ∞, whose encoding lengths are polynomially
bounded by the input size of problem (16), such that

Bn1
2 (r) ⊂

{
x ∈ Rn1 : ΛA,d

1 (x) ≤ 1
}
⊂ Bn1

2 (R).
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Consequently, the quantity diamPd−2

({
x ∈ Rn1 : ΛA,d

1 (x) ≤ 1
}◦)

can also be

efficiently computed.

Remarks.

1. The assumption that A has full column rank can be made without loss
of generality, since vectors in the nullspace of A can never be part of an
optimal solution to problem (16) (unless A = 0).

2. When we say that a quantity is efficiently computable, we mean that it can
be computed to any desired accuracy by a deterministic algorithm whose
runtime is polynomial in the input size of (16) and the level of accuracy,
provided that d ≥ 3 is fixed.

3. Theorem 4 states that the optimal value of problem (16) can be approxi-

mated to within a factor of Ω(
∏d−2

i=1

√
log ni/ni). Using an argument sim-

ilar to that in the paragraph preceding Theorem 3, one can find a feasible
solution to problem (16) that attains the stated approximation ratio.

Proof We proceed by induction on d ≥ 3. The base case follows from the results
of Theorem 3. Now, suppose that d > 3. Let x1 ∈ Rn1\{0} be arbitrary,
and consider the order–(d − 1) tensor A(x1) ∈ Rn2×n3×···×nd . Without loss
of generality, we may assume that the (n3 × · · · × nd) × n2 matrix A(x1),
where

[
A(x1)

]
(i3,...,id),i2

=
[
A(x1)

]
i2i3···id

, has full column rank. Then, by

the inductive hypothesis, the functions {ΛA(x1),d−1
j }d−3

j=1 , where Λ
A(x1),d−1
j :

Rn2×···×nj+1 → R+ is given by

Λ
A(x1),d−1
j

(
x2, . . . , xj+1

)

=


diamPd−3−j

({
x ∈ Rnj+2 : Λ

A(x1),d−1
j+1

(
x2, . . . , xj+1, x

)
≤ 1
}◦)

for j = 1, . . . , d− 4,∥∥[A (x1
)] (

x2, x3, . . . , xd−2
)∥∥

2
for j = d− 3,

satisfy

Ω

(
d−2∏
i=2

√
log ni

ni

)
· v̄ml(A(x1), d− 1)

≤ 1

2
diamPd−3

({
x ∈ Rn2 : Λ

A(x1),d−1
1 (x) ≤ 1

}◦)
≤ v̄ml(A(x1), d− 1). (17)

Now, define the functions {ΛA,d
j }d−2

j=1 by

ΛA,d
1

(
x1
)
= diamPd−3

({
x ∈ Rn2 : ΛA,d

2 (x1, x) ≤ 1
}◦)

,

ΛA,d
j

(
x1, x2, . . . , xj

)
= Λ

A(x1),d−1
j−1

(
x2, . . . , xj

)
for j = 2, . . . , d− 2.
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Then, by construction, we have

ΛA,d
d−2

(
x1, x2, . . . , xd−2

)
=
∥∥[A (x1

)] (
x2, x3, . . . , xd−2

)∥∥
2

=
∥∥A (x1, x2, . . . , xd−2

)∥∥
2

and

ΛA,d
j

(
x1, x2, . . . , xj

)
= diamPd−2−j

({
x ∈ Rnj+1 : Λ

A(x1),d−1
j

(
x2, . . . , xj , x

)
≤ 1
}◦)

= diamPd−2−j

({
x ∈ Rnj+1 : ΛA,d

j+1

(
x1, . . . , xj , x

)
≤ 1
}◦)

for j = d− 3, d− 4, . . . , 1. Thus, by Proposition 4 and the fact that A has full
column rank, the function ΛA,d

1 : Rn1 → R+ defines a norm on Rn1 . Moreover,
by the inductive hypothesis and the fact that d ≥ 4 is fixed, the function

x 7→ ΛA,d
2 (x1, x) = Λ

A(x1),d−1
1 (x) is an efficiently computable norm on Rn2 ,

and there exist rational numbers 0 < r1 ≤ R1 < ∞, whose encoding lengths
can be polynomially bounded by the input size of the multilinear optimization
problem associated with A(x1), such that

Bn2
2 (r1) ⊂

{
x ∈ Rn2 : ΛA,d

2 (x1, x) ≤ 1
}
⊂ Bn2

2 (R1).

Hence, by arguing as in the proof of Proposition 3 and applying Theorem 2,
we conclude that ΛA,d

1 is efficiently computable.

Now, let BΛA,d
1

=
{
x ∈ Rn1 : ΛA,d

1 (x) ≤ 1
}

be the unit ball of the norm

ΛA,d
1 . To show that BΛA,d

1
is well–bounded, we first recall from (17) and the

definition of ΛA,d
1 that

Ω

(
d−2∏
i=2

√
log ni

ni

)
· v̄ml(A(x), d− 1) ≤ 1

2
ΛA,d
1 (x) ≤ v̄ml(A(x), d− 1)

for any x ∈ Rn1 . Let ei ∈ Rn1 be the i–th basis vector in Rn1 , where i =
1, . . . , n1. Then, we have

ΛA,d
1 (ei) ≤ 2v̄ml(A(ei), d− 1) ≤ ri ≡ 2

n2∑
i2=1

· · ·
nd∑

id=1

|ai,i2···id |.

Upon setting r′ = max1≤i≤n1 ri, we see that

1

r′
· conv

({
±e1, . . . ,±en1

})
=

{
x ∈ Rn1 : ∥x∥1 ≤ 1

r′

}
⊂ BΛA,d

1
.

In particular, we have Bn1
2 (r) ⊂ BΛA,d

1
, where r = 1/(⌈√n1⌉ · r′) > 0 is a

rational number, whose encoding length is polynomially bounded by the input
size of problem (16).
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On the other hand, for any x ∈ Rn1 , we compute

v̄ml(A(x), d− 1) ≥ max
1≤i2≤n2,...,1≤id≤nd

∣∣∣∣∣
n1∑

i1=1

ai1i2···idxi1

∣∣∣∣∣ = ∥Ax∥∞

≥

√
λmin(ATA)

n2 · · ·nd
· ∥x∥2.

Since A has full column rank, we conclude that BΛA,d
1

⊂ Bn1
2 (R), where

R = O


√√√√ n2 · · ·nd

λmin(ATA)
·
d−2∏
i=2

ni

log ni


can be chosen as a finite rational number. Moreover, the encoding length of R
can be polynomially bounded by the input size of problem (16). Now, by argu-
ing as in the proof of Proposition 3 and applying Theorem 2, we conclude that

the quantity diamPd−2

({
x ∈ Rn1 : ΛA,d

1 (x) ≤ 1
}◦)

is efficiently computable.

Finally, by maximizing the terms in (17) over x1, we have

Ω

(
d−2∏
i=2

√
log ni

ni

)
· v̄ml(A, d) ≤ 1

2
max

x∈Rn1 :∥x∥2=1
ΛA,d
1 (x) ≤ v̄ml(A, d). (18)

In particular, we have reduced the problem of approximating v̄ml(A, d) to that

of approximating maxx∈Rn1 :∥x∥2=1 Λ
A,d
1 (x). Now, by mimicking the derivation

of (6), it can be shown that

max
x∈Rn1 :∥x∥2=1

ΛA,d
1 (x) =

1

2
diam2

(
B◦

ΛA,d
1

)
. (19)

Moreover, by Theorem 2 and the definition of ∥ · ∥Pd−2
, we have

Ω

(√
log n1

n1

)
·diam2

(
B◦

ΛA,d
1

)
≤ diamPd−2

(
B◦

ΛA,d
1

)
≤ diam2

(
B◦

ΛA,d
1

)
. (20)

It then follows from (18), (19) and (20) that

Ω

(
d−2∏
i=1

√
log ni

ni

)
· v̄ml(A, d) ≤ 1

2
diamPd−2

({
x ∈ Rn1 : ΛA,d

1 (x) ≤ 1
}◦)

≤ v̄ml(A, d).

This completes the inductive step and also the proof of Theorem 4. ⊔⊓

Upon combining the results of Theorem 4 with that of Theorem 1, we have
the following
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Corollary 1 Let d ≥ 3 be given. Then, there is a deterministic polynomial–
time approximation algorithm for (HP) with approximation ratio (resp. relative

approximation ratio) α = Ω
(
log

d
2−1 n

/
n

d
2−1
)
when d is odd (resp. even).

The bound on α in Corollary 1 improves upon the Ω((1/n)d/2−1) bound es-
tablished in [8].

3.2 Sphere Constrained Multiquadratic Optimization

The techniques introduced in the previous section can also be used to de-
sign a polynomial–time approximation algorithm for sphere constrained mul-
tiquadratic optimization problems. Specifically, let d ≥ 2 be a given integer.
Let A = (ai1i2···i2d−1i2d) ∈ Rn2

1×···×n2
d be a non–zero order–2d tensor that is

partially symmetric, i.e.,

ai1i2···i2j−1i2j ···i2d−1i2d = ai1i2···i2ji2j−1···i2d−1i2d

for j = 1, . . . , d and i2k−1, i2k = 1, . . . , nk, where k = 1, . . . , d. Without loss of
generality, we assume that 1 ≤ n1 ≤ · · · ≤ nd. Let

f
(
x1, . . . , xd

)
≡

∑
1≤i1,i2≤n1

· · ·
∑

1≤i2d−1,i2d≤nd

ai1i2···i2d−1i2dx
1
i1x

1
i2 · · ·x

d
i2d−1

xd
i2d

,

and consider the following multiquadratic optimization problem:

(MQ)

v̄mq = maximize f
(
x1, . . . , xd

)
subject to ∥xi∥2 = 1 for i = 1, . . . , d,

xi ∈ Rni for i = 1, . . . , d.

Note that when d = 2, problem (MQ) is simply the biquadratic optimization
problem introduced in [21]. Similar to the approach we used for the homo-
geneous polynomial optimization problem (HP), we begin by studying the
following multilinear relaxation of (MQ):

(MQL)

maximize F
(
x1, . . . , x2d

)
subject to ∥xi∥2 = 1 for i = 1, . . . , 2d,

x2i−1, x2i ∈ Rni for i = 1, . . . , d,

where

F
(
x1, . . . , x2d

)
≡

∑
1≤i1,i2≤n1

· · ·
∑

1≤i2d−1,i2d≤nd

ai1i2···i2d−1i2dx
1
i1x

2
i2 · · ·x

2d−1
i2d−1

x2d
i2d

.

Clearly, we have f
(
x1, . . . , xd

)
= F

(
x1, x1, . . . , xd, xd

)
for any xi ∈ Rni ,

i = 1, . . . , d. Similar to Proposition 1, the following polarization–type for-
mula establishes the relationship between the objective values of (MQ) and
(MQL). We relegate its proof to the appendix (see Appendix A).
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Proposition 5 Let x2i−1, x2i ∈ Rni , where i = 1, . . . , d, be arbitrary vectors.
Let ξ1, . . . , ξ2d be i.i.d. Bernoulli random variables. Then, we have

E

[(
2d∏
l=1

ξl

)
f

(
2∑

i=1

ξix
i,

4∑
i=3

ξix
i, . . . ,

2d∑
i=2d−1

ξix
i

)]
= 2dF

(
x1, . . . , x2d

)
.

Proposition 5 allows us to focus on the multilinear optimization problem
(MQL), for which a deterministic polynomial–time approximation algorithm is
available by the results in the previous section. Now, by adapting an argument
of He et al. [8] and using Proposition 5, we can prove the following

Theorem 5 Let d ≥ 2 be given. Then, there is a deterministic polynomial–
time approximation algorithm for (MQ) with relative approximation ratio 2−d ·
Ω
(∏d−1

i=1

(
log ni

/
ni

))
.

Remark. When d = 2, the approximation bound we obtain is Ω(log n1/n1),
which improves upon the Ω(1/n2

2) bound established in [21] (recall that n1 ≤
n2 by assumption).

Proof Define the functions H : Rn2
1×···×n2

d → R and h : Rn1×···×nd → R+ by

H
(
x1, x2, . . . , x2d−1, x2d

)
=

d∏
i=1

(
x2i−1

)T (
x2i
)
,

h
(
x1, . . . , xd

)
= H

(
x1, x1, . . . , xd, xd

)
=

d∏
i=1

∥xi∥22.

Note that H (resp. h) is a multilinear (resp. multiquadratic) form. Now, let
x̄i ∈ Rni be such that ∥x̄i∥2 = 1 for i = 1, . . . , d, and define the function

G : Rn2
1×···×n2

d → R by

G
(
x1, x2, . . . , x2d−1, x2d

)
= F

(
x1, x2, . . . , x2d−1, x2d

)
− f

(
x̄1, . . . , x̄d

)
H
(
x1, x2, . . . , x2d−1, x2d

)
.

Consider the following auxiliary optimization problem:

(AUX)

v̄aux = maximize G
(
x1, x2, . . . , x2d−1, x2d

)
subject to ∥xi∥2 = 1 for i = 1, . . . , 2d,

x2i−1, x2i ∈ Rni for i = 1, . . . , d.

Since (AUX) is a sphere constrained multilinear optimization problem, by The-
orem 4, we can find a feasible solution {x̂i}2di=1 to it with

G
(
x̂1, x̂2, . . . , x̂2d−1, x̂2d

)
≥ α · v̄aux, where α = Ω

(
d−1∏
i=1

logni

ni

)
.
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Now, let vmq be the optimal value of the problem obtained from (MQ) by
changing the word “maximize” to “minimize”. Consider first the case where

f
(
x̄1, . . . , x̄d

)
− vmq ≤ α

4

(
v̄mq − vmq

)
. (21)

Since
∣∣H (x̂1, x̂2, . . . , x̂2d−1, x̂2d

)∣∣ ≤ 1 by the Cauchy–Schwarz inequality, we
have

F
(
x̂1, x̂2, . . . , x̂2d−1, x̂2d

)
− vmq ·H

(
x̂1, x̂2, . . . , x̂2d−1, x̂2d

)
= G

(
x̂1, x̂2, . . . , x̂2d−1, x̂2d

)
+
[
f
(
x̄1, . . . , x̄d

)
− vmq

]
H
(
x̂1, . . . , x̂2d

)
≥ α · v̄aux −

[
f
(
x̄1, . . . , x̄d

)
− vmq

]
≥ α ·

[
v̄mq − f

(
x̄1, . . . , x̄d

)]
− α

4

(
v̄mq − vmq

)
(22)

≥ α

2

(
v̄mq − vmq

)
, (23)

where (22) follows from (21) and the fact that the optimal solution to (MQ)
is feasible for (AUX), and (23) follows since

f
(
x̄1, . . . , x̄d

)
≤ α

4
v̄mq +

(
1− α

4

)
vmq

by (21). Upon letting ui =
∑2i

j=2i−1 ξj x̂
j for i = 1, . . . , d and using Proposition

5, we have

2d
[
F
(
x̂1, x̂2, . . . , x̂2d−1, x̂2d

)
− vmq ·H

(
x̂1, x̂2, . . . , x̂2d−1, x̂2d

)]
= E

[(
2d∏
l=1

ξl

)[
f
(
u1, u2, . . . , ud

)
− vmq · h

(
u1, u2, . . . , ud

)]]

= Pr

(
2d∏
l=1

ξl = 1

)
· E

[
f
(
u1, u2, . . . , ud

)
− vmq ·

d∏
i=1

∥ui∥22

∣∣∣∣∣
2d∏
l=1

ξl = 1

]

−Pr

(
2d∏
l=1

ξl = −1

)
· E

[
f
(
u1, u2, . . . , ud

)
− vmq ·

d∏
i=1

∥ui∥22

∣∣∣∣∣
2d∏
l=1

ξl = −1

]

≤ 1

2
E

[
f
(
u1, u2, . . . , ud

)
− vmq ·

d∏
i=1

∥ui∥22

∣∣∣∣∣
2d∏
l=1

ξl = 1

]
,

where the last inequality follows from the fact that the solution
{
ui/∥ui∥2

}d
i=1

satisfies the constraints in (MQ), and hence

f
(
u1, u2, . . . , ud

)
− vmq ·

d∏
i=1

∥ui∥22 ≥ 0.
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In particular, we see that there exists a vector β ∈ {−1, 1}2d such that∏2d
l=1 βl = 1 and

1

2

f ( 2∑
i=1

βix̂
i,

4∑
i=3

βix̂
i, . . . ,

2d∑
i=2d−1

βix̂
i

)
− vmq ·

d∏
i=1

∥∥∥∥∥∥
2i∑

j=2i−1

βj x̂
j

∥∥∥∥∥∥
2

2


≥ α · 2d−1 ·

(
v̄mq − vmq

)
. (24)

Moreover, since d ≥ 2 is fixed, such a vector can be found in constant time.
Upon setting

x̃j =

2j∑
i=2j−1

βix̂
i

/∥∥∥∥∥∥
2j∑

i=2j−1

βix̂
i

∥∥∥∥∥∥
2

for j = 1, . . . , d

and noting that
∥∥∥∑2j

i=2j−1 βix̂
i
∥∥∥
2
≤ 2 for j = 1, . . . , d, we conclude from (24)

that

f
(
x̃1, . . . , x̃d

)
− vmq ≥ α · 2−d ·

(
v̄mq − vmq

)
,

as desired. Now, suppose that the condition in (21) does not hold. Then, we
have

f
(
x̄1, . . . , x̄d

)
− vmq >

α

4

(
v̄mq − vmq

)
≥ α · 2−d ·

(
v̄mq − vmq

)
,

and the claim in the theorem statement is trivially satisfied. This completes
the proof. ⊔⊓

4 Concluding Remarks

It has been known that the approximability of various polynomial optimization
problems is closely related to the approximability of their multilinear relax-
ations. By reducing the problem of optimizing a multilinear form over spheres
to that of determining the L2–diameter of a certain convex body, we were
able to utilize powerful results from the algorithmic theory of convex bod-
ies to develop deterministic polynomial–time approximation algorithms for a
host of sphere constrained polynomial optimization problems. Moreover, our
algorithms have the best known approximation guarantees to date. We believe
that our approach will find further applications in the design of approximation
algorithms for other norm constrained polynomial optimization problems.

Acknowledgements The author would like to thank the reviewers for their comments and
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Sphere Constrained Homogeneous Polynomial Optimization 23

References

1. Barvinok, A.: Integration and Optimization of Multivariate Polynomials by Restriction
onto a Random Subspace. Foundations of Computational Mathematics 7(2), 229–244
(2007)

2. Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Deter-
ministic and Randomized Polynomial–Time Approximation of Radii. Mathematika 48,
63–105 (2001)

3. Golub, G.H., Van Loan, C.F.: Matrix Computations, third edn. The Johns Hopkins
University Press, Baltimore, Maryland (1996)

4. Gritzmann, P., Klee, V.: Inner and Outer j–Radii of Convex Bodies in Finite–
Dimensional Normed Spaces. Discrete and Computational Geometry 7(1), 255–280
(1992)

5. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-
mization, Algorithms and Combinatorics, vol. 2, second corrected edn. Springer–Verlag,
Berlin Heidelberg (1993)

6. Han, D., Dai, H.H., Qi, L.: Conditions for Strong Ellipticity of Anisotropic Elastic
Materials. Journal of Elasticity 97(1), 1–13 (2009)

7. He, S., Li, Z., Zhang, S.: General Constrained Polynomial Optimization: an Approxi-
mation Approach. Tech. Rep. SEEM2009–06, Department of Systems Engineering and
Engineering Management, The Chinese University of Hong Kong, Shatin, N. T., Hong
Kong (2009)

8. He, S., Li, Z., Zhang, S.: Approximation Algorithms for Homogeneous Polynomial Op-
timization with Quadratic Constraints. Mathematical Programming, Series B 125(2),
353–383 (2010)

9. Hillar, C.J., Lim, L.H.: Most Tensor Problems are NP Hard (2009). Preprint
10. Ishteva, M., Absil, P.A., van Huffel, S., de Lathauwer, L.: On the Best Low Multilinear

Rank Approximation of Higher–Order Tensors. In: M. Diehl, F. Glineur, E. Jarlebring,
W. Michiels (eds.) Recent Advances in Optimization and its Applications in Engineer-
ing, pp. 145–164. Springer–Verlag, Berlin Heidelberg (2010)

11. Kannan, R.: Spectral Methods for Matrices and Tensors. In: Proceedings of the 42nd
Annual ACM Symposium on Theory of Computing (STOC 2010), pp. 1–12 (2010)

12. Khot, S., Naor, A.: Linear Equations Modulo 2 and the L1 Diameter of Convex Bodies.
SIAM Journal on Computing 38(4), 1448–1463 (2008)

13. de Klerk, E.: The Complexity of Optimizing over a Simplex, Hypercube or Sphere: a
Short Survey. Central European Journal of Operations Research 16(2), 111–125 (2008)

14. de Klerk, E., Laurent, M., Parrilo, P.A.: A PTAS for the Minimization of Polynomials
of Fixed Degree over the Simplex. Theoretical Computer Science 361(2–3), 210–225
(2006)

15. Kofidis, E., Regalia, P.A.: Tensor Approximation and Signal Processing Applications.
In: V. Olshevsky (ed.) Structured Matrices in Mathematics, Computer Science and
Engineering I: Proceedings of an AMS–IMS–SIAM Joint Summer Research Conference,
Contemporary Mathematics, vol. 280, pp. 103–133. American Mathematical Society,
Providence, Rhode Island (2001)

16. Kolda, T.G., Bader, B.W.: Tensor Decompositions and Applications. SIAM Review
51(3), 455–500 (2009)

17. Kwapien, S.: Decoupling Inequalities for Polynomial Chaos. The Annals of Probability
15(3), 1062–1071 (1987)

18. Lasserre, J.B.: Global Optimization with Polynomials and the Problem of Moments.
SIAM Journal on Optimization 11(3), 796–817 (2001)

19. Laurent, M.: Sums of Squares, Moment Matrices and Optimization over Polynomials.
In: M. Putinar, S. Sullivant (eds.) Emerging Applications of Algebraic Geometry, The
IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 157–270. Springer
Science+Business Media, LLC, New York (2009)

20. Lim, L.H., Comon, P.: Multiarray Signal Processing: Tensor Decomposition Meets Com-
pressed Sensing. Comptes Rendus Mécanique 338(6), 311–320 (2010)
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Appendix

A Polarization–Type Formula for Multiquadratic Optimization

In this section, we prove Proposition 5. For the reader’s convenience, we reproduce the
statement here:

Proposition 5 Let x2i−1, x2i ∈ Rni , where i = 1, . . . , d, be arbitrary vectors. Let ξ1, . . . , ξ2d
be i.i.d. Bernoulli random variables. Then, we have

E

( 2d∏
u=1

ξu

)
f

 2∑
i=1

ξix
i,

4∑
i=3

ξix
i, . . . ,

2d∑
i=2d−1

ξix
i

 = 2dF
(
x1, . . . , x2d

)
.

Proof Let S =
{
(i1, i2, . . . , i2d−1, i2d) ∈ Z2d : 1 ≤ i1, i2 ≤ n1; . . . ; 1 ≤ i2d−1, i2d ≤ nd

}
. By

definition, we have

f

 2∑
i=1

ξix
i,

4∑
i=3

ξix
i, . . . ,

2d∑
i=2d−1

ξix
i



=
∑

(i1,i2,...,i2d−1,i2d)∈S
ai1···i2d

d∏
j=1

(
ξ2j−1x

2j−1
i2j−1

+ ξ2jx
2j
i2j−1

)(
ξ2j−1x

2j−1
i2j

+ ξ2jx
2j
i2j

)
.

Since (
ξ2j−1x

2j−1
i2j−1

+ ξ2jx
2j
i2j−1

)(
ξ2j−1x

2j−1
i2j

+ ξ2jx
2j
i2j

)

=

2j∑
β2j−1,β2j=2j−1

ξβ2j−1
ξβ2j

x
β2j−1

i2j−1
x
β2j

i2j
,
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it follows that

f

 2∑
i=1

ξix
i,

4∑
i=3

ξix
i, . . . ,

2d∑
i=2d−1

ξix
i



=
∑

(i1,i2,...,i2d−1,i2d)∈S
ai1i2···i2d−1i2d

d∏
j=1

 2j∑
β2j−1,β2j=2j−1

ξβ2j−1
ξβ2j

x
β2j−1

i2j−1
x
β2j

i2j



=
∑

1≤β1,β2≤2

· · ·
∑

2d−1≤β2d−1,β2d≤2d

[(
2d∏
v=1

ξβv

)
×

∑
(i1,i2,...,i2d−1,i2d)∈S

ai1i2···i2d−1i2dx
β1
i1

xβ2
i2

· · ·xβ2d−1
i2d−1

x
β2d
i2d



=
∑

1≤β1,β2≤2

· · ·
∑

2d−1≤β2d−1,β2d≤2d

(
2d∏
v=1

ξβv

)
F
(
xβ1 , xβ2 , . . . , xβ2d

)
.

In particular, we obtain

E

( 2d∏
u=1

ξu

)
f

 2∑
i=1

ξix
i,

4∑
i=3

ξix
i, . . . ,

2d∑
i=2d−1

ξix
i



=
∑

1≤β1,β2≤2

· · ·
∑

2d−1≤β2d−1,β2d≤2d

F
(
xβ1 , xβ2 , . . . , xβ2d

)
E

[
2d∏

u=1

ξu ·
2d∏
v=1

ξβv

]

=
∑

1≤β1 ̸=β2≤2

· · ·
∑

2d−1≤β2d−1 ̸=β2d≤2d

F
(
xβ1 , xβ2 , . . . , xβ2d

)
(25)

= 2dF
(
x1, x2, . . . , x2d

)
, (26)

where (25) follows from the fact that

E

[
2d∏

u=1

ξu ·
2d∏
v=1

ξβv

]
=

{
0 if β2j−1 = β2j for some j = 1, . . . , d,

1 otherwise,

and (26) follows from the partial symmetry of the tensor A. This completes the proof. ⊔⊓


