
Deterministic boundary recognition and topology extraction

for large sensor networks

Alexander Kröller∗† Sándor P. Fekete∗ Dennis Pfisterer‡† Stefan Fischer‡

Abstract

We present a new framework for the crucial challenge of
self-organization of a large sensor network. The basic
scenario can be described as follows: Given a large swarm
of immobile sensor nodes that have been scattered in a
polygonal region, such as a street network. Nodes have
no knowledge of size or shape of the environment or the
position of other nodes. Moreover, they have no way of
measuring coordinates, geometric distances to other nodes,
or their direction. Their only way of interacting with other
nodes is to send or to receive messages from any node that
is within communication range. The objective is to develop
algorithms and protocols that allow self-organization of the
swarm into large-scale structures that reflect the structure
of the street network, setting the stage for global routing,
tracking and guiding algorithms.

Our algorithms work in two stages: boundary recog-

nition and topology extraction. All steps are strictly de-

terministic, yield fast distributed algorithms, and make no

assumption on the distribution of nodes in the environment,

other than sufficient density.

1 Introduction

In recent time, the study of wireless sensor networks
(WSN) has become a rapidly developing research area
that offers fascinating perspectives for combining tech-
nical progress with new applications of distributed com-
puting. Typical scenarios involve a large swarm of
small and inexpensive processor nodes, each with lim-
ited computing and communication resources, that are
distributed in some geometric region; communication is
performed by wireless radio with limited range. As en-
ergy consumption is a limiting factor for the lifetime of a
node, communication has to be minimized. Upon start-
up, the swarm forms a decentralized and self-organizing
network that surveys the region.

From an algorithmic point of view, the charac-
teristics of a sensor network require working under a

∗Department of Mathematical Optimization, Braunschweig
University of Technology, D-38106 Braunschweig, Germany.
Email: {a.kroeller, s.fekete} @tu-bs.de.

†Supported by DFG Focus Program 1126, “Algorithmic As-
pects of Large and Complex Networks”, Grants Fe 407/9-2 and
Fi 605/8-2.

‡Institute of Telematics, University of Lübeck, D-23538
Lübeck, Germany.
Email: {pfisterer, fischer} @itm.uni-luebeck.de.

paradigm that is different from classical models of com-
putation: absence of a central control unit, limited
capabilities of nodes, and limited communication be-
tween nodes require developing new algorithmic ideas
that combine methods of distributed computing and
network protocols with traditional centralized network
algorithms. In other words: How can we use a limited
amount of strictly local information in order to achieve
distributed knowledge of global network properties?

This task is much simpler if the exact location of
each node is known. Computing node coordinates has
received a considerable amount of attention. Unfortu-
nately, computing exact coordinates requires the use
of special location hardware like GPS, or alternatively,
scanning devices, imposing physical demands on size
and structure of sensor nodes. As we demonstrated in
our paper [10], current methods for computing coordi-
nates based on anchor points and distance estimates en-
counter serious difficulties in the presence of even small
inaccuracies, which are unavoidable in practice.

When trying to extract robust cluster structures
from a huge swarm of nodes scattered in a street network
of limited size, trying to obtain individual coordinates
for all nodes is not only extremely difficult, but may
indeed turn out to be a red-herring chase. As shown
in [9], there is a way to sidestep many of the above
difficulties, as some structural location aspects do not
depend on coordinates. This is particularly relevant for
sensor networks that are deployed in an environment
with interesting geometric features. (See [9] for a more
detailed discussion.) Obviously, scenarios as the one
shown in Figure 1 pose a number of interesting geo-
metric questions. Conversely, exploiting the basic fact
that the communication graph of a sensor network has
a number of geometric properties provides an elegant
way to extract structural information.

One key aspect of location awareness is boundary
recognition, making sensors close to the boundary of
the surveyed region aware of their position. This is of
major importance for keeping track of events entering
or leaving the region, as well as for communication with
the outside. More generally, any unoccupied part of the
region can be considered a hole, not necessary because

(a) 60,000 sensor nodes,
uniformly distributed in a
polygonal region.

(b) A zoom into (a)
shows the communication
graph.

(c) A further zoom shows the communication ranges.

Figure 1: Scenario of a geometric sensor network, ob-
tained by scattering sensor nodes in the street network
surrounding Braunschweig University of Technology.

of voids in the geometric region, but also because of
insufficient coverage, fluctuations in density, or node
failure due to catastrophic events. Neglecting the
existence of holes in the region may also cause problems
in communication, as routing along shortest paths tends
to put an increased load on nodes along boundaries,
exhausting their energy supply prematurely; thus, a
moderately-sized hole (caused by obstacles, by an event,
or by a cluster of failed nodes) may tend to grow larger
and larger. (See [7].) Therefore, it should be stressed
that even though in our basic street scenario holes in
the sensor network are due to holes in the filled region,
our approach works in other settings as well.

Once the boundary of the swarm is obtained, it can
be used as a stepping stone for extracting further struc-
tures. This is particularly appealing in our scenario, in
which the polygonal region is a street network: In that
scenario, we have a combination of interesting geomet-
ric features, a natural underlying structure of moderate
size, as well as a large supply of practical and relevant
benchmarks that are not just some random polygons,
but readily available from real life. More specifically,
we aim at identifying the graph in which intersections
are represented by vertices, and connecting streets are
represented by edges. This resulting cluster structure
is perfectly suited for obtaining useful information for
purposes like routing, tracking or guiding. Unlike an
arbitrary tree structure that relies on the performance
of individual nodes, it is robust.

Related Work: [2] is the first paper to introduce
a communication model based on quasi-unit disk graphs
(QUDGs). A number of articles deal with node co-
ordinates; most of the mathematical results are nega-
tive, even in a centralized model of computation. [3]
shows that unit disk graph (UDG) recognition is NP-
hard, while [1] shows NP-hardness for the more re-
stricted setting in which all edge lengths are known.
[12] shows that QUDG recognition, i.e., UDG approx-
imation, is also hard; finally, [4] show that UDG em-
bedding is hard, even when all angles between edges are
known. The first paper (and to the best of our knowl-
edge, the only one so far) describing an approximative
UDG embedding is [13]; however, the approach is cen-
tralized and probabilistic, yielding (with high probabil-
ity) a O(log2.5 n

√
log log n)-approximation.

There are various papers dealing with heuristic
localization algorithms; e.g., see [5, 6, 15, 16, 17]. In
this context, see our paper [10] for an experimental
study pointing out the serious deficiencies of some of
the resulting coordinates.

Main Results: Our main result is the construc-
tion of an overall framework that allows a sensor node
swarm to self-organize into a well-structured network
suited for performing tasks such as routing, tracking
or other challenges that result from popular visions of
what sensor networks will be able to do. The value of
the overall framework is based on the following aspects:

• We give a distributed, deterministic approach for
identifying nodes that are in the interior of the
polygonal region, or near its boundary. Our al-
gorithm is based on topological considerations and
geometric packing arguments.

• Using the boundary structure, we describe a dis-
tributed, deterministic approach for extracting the
street graph from the swarm. This module also
uses a combination of topology and geometry.

• The resulting framework has been implemented
and tested in our simulation environment Shawn;
we display some experimental results at the end of
the paper.

The rest of this paper is organized as follows. In
the following Section 2 we describe underlying models
and introduce necessary notation. Section 3 deals with
boundary recognition. This forms the basis for topo-
logical clustering, described in Section 4. Section 5 de-
scribes some computational experiments with a realistic
network.

2 Models and Notation

Sensor network: A Sensor Network is modeled
by a graph G = (V, E), with an edge between any two
nodes that can communicate with each other. For a
node v ∈ V , we define Nk(v) to be the set of all nodes
that can be reached from v within at most k edges. The
set N(v) = N1(v) contains the direct neighbors of v,
i.e., all nodes w ∈ V with vw ∈ E. For convenience we
assume that v ∈ N(v) ∀v ∈ V . For a set U ⊆ V , we
define Nk(U) := ∪u∈UNk(u). The size of the largest k-
hop neighborhood is denoted by ∆k := maxv∈V |Nk(v)|.
Notice that for geometric radio networks with even
distribution, ∆k = O(k2∆1) is a reasonable assumption.

Each node has a unique ID of size O(log |V |). The
identifier of a node v is simply v.

Every node has is equipped with local memory of
size O(∆2

O(1) log |V |). Therefore, each node can store

a subgraph consisting of nodes that are at most O(1)
hops away, but not the complete network.

Computation: Storage limitation is one of the
main reasons why sensor networks require different
algorithms: Because no node can store the whole
network, simple algorithms that collect the full problem
data at some node to perform centralized computations
are infeasible.

Due to the distributed nature of algorithms, the
classic means to describe runtime complexity are not
sufficient. Instead, we use separate message and time
complexities: The former describes the total number
of messages that are sent during algorithm execution.
The time complexity describes the total runtime of the
algorithm over the whole network.

Both complexities depend heavily on the compu-
tational model. For our theoretical analysis, we use a
variant of the well-established CONGEST model [14]:
All nodes start their local algorithms at the same time
(simultaneous wakeup). The nodes are synchronized,
i.e., time runs in rounds that are the same for all nodes.
In a single round, a node can perform any computation
for which it has complete data. All messages arrive at
the destination node at the beginning of the subsequent
round, even if they have the same source or destination.
There are no congestion or message loss effects. The size
of a message is limited to O(log |V |) bits. Notice that
this does only affect the message complexity, as there is
no congestion. We will use messages of larger sizes in
our algorithms, knowing that they can be broken down
into smaller fragments of feasible size.

Geometry: All sensor nodes are located in the
two-dimensional plane, according to some mapping p :
V → R

2. It is a common assumption that the ability
to communicate depends on the geometric arrangement
of the nodes. There exists a large number of different

models that formalize this assumption. Here we use the
following reasonable model:

We say p is a d-Quasi Unit Disk Embedding of G for
parameter d ≤ 1, if both

uv ∈ E =⇒ ‖p(u)− p(v)‖2 ≤ 1

uv ∈ E ⇐= ‖p(u)− p(v)‖2 ≤ d

hold. G itself is called a d-Quasi Unit Disk Graph (d-
QUDG) if an embedding exists. A 1-QUDG is called
a Unit Disk Graph (UDG). Throughout this paper we
assume that G is a d-QUDG for some d ≥ 1

2

√
2. The

reason for this particular bound lies in Lemma 3.1,
which is crucial for the feasibility of our boundary
recognition algorithm. The network nodes know the
value of d, and the fact that G is a d-QUDG. The
embedding p itself is not available to them.

An important property of our algorithms is that
they do not require a specific distribution of the nodes.
We only assume the existence of the embedding p.

3 Boundary Recognition

This section introduces algorithms that detect the
boundary of the region that is covered by the sensor
nodes. First, we present some properties of QUDGs.
These allow deriving geometric knowledge from the net-
work graph without knowing the embedding p. Then
we define the Boundary Detection Problem, in which
solutions are geometric descriptions of the network ar-
rangement. Finally, we describe a start procedure and
an augmentation procedure. Together, they form a local
improvement algorithm for boundary detection.

3.1 QUDG Properties. We start this section with
a simple property of QUDGs. The special case where
d = 1 was originally proven by Breu and Kirkpatrick
[3]. Recall that we assume d ≥

√
2/2.

Lemma 3.1. Let u, v, w, x be four different nodes in V ,
where uv ∈ E and wx ∈ E. Assume the straight-line
embeddings of uv and wx intersect. Then at least one
of the edges in F := {uw, ux, vw, vx} is also in E.

Proof. We assume p(u) �= p(v); otherwise the lemma
is trivial. Let a := ‖p(u) − p(v)‖2 ≤ 1. Consider two
circles of common radius d with their centers at p(u),
resp. p(v). The distance between the two intersection

points of these circles is h := 2
√

d2 − 1
4a2 ≥ 1. If F

and E were distinct, p(w) and p(x) had both to be
outside the two circles. Because of the intersecting edge
embeddings, ‖p(w) − p(x)‖2 > h ≥ 1, which would
contradict wx ∈ E.

Lemma 3.1 allows to use edges in the graph to sep-
arate nodes in the embedding p, even without knowing

p. We can use this fact to certify that a node is inside
the geometric structure defined by some other nodes.
Let C ⊂ V be a chordless cycle in G, i.e., (C, E(C)) is
a connected 2-regular subgraph of G. P (C) denotes the
polygon with a vertex at each p(v), v ∈ C and an edge
between vertices whose corresponding nodes are adja-
cent in G. P (C) also defines a decomposition of the
plane into faces. A point in the infinite face is said to
be outside of P (C), all other points are inside.

Corollary 3.1. Let C be a chordless cycle in G, and
let U ⊂ V be connected. Also assume N(C) ∩ U = ∅.
Then either the nodes in U are all on the outside of
P (C), or all on the inside.

This follows directly from Lemma 3.1. So we can
use chordless cycles for defining cuts that separate inside
from outside nodes. Our objective is to certify that
a given node set is inside the cycle, thereby providing
insight into the network’s geometry. Unfortunately, this
is not trivial; however, it is possible to guarantee that a
node set is outside the cycle.

Note that simply using two node sets that are
separated by a chordless cycle C and proving that the
first set is outside the cycle does not guarantee that
the second set is on the inside. The two sets could be
on different sides of P (C). So we need more complex
arguments to certify insideness.

Now we present a certificate for being on the
outside. Define fitd(n) to be the maximum number
of independent nodes J that can be placed inside a
chordless cycle C of at most n nodes in any d-QUDG
embedding such that J ∩ N(C) = ∅. We say that
nodes are independent, if there is no edge between any
two of them. These numbers exist because independent
nodes are placed at least d from each other, so there
is a certain area needed to contain the nodes. On the
other hand, C defines a polygon of perimeter at most
|C|, which cannot enclose arbitrarily large areas. Also
define encd(m) := min{n : fitd(n) ≥ m}, the minimum
length needed to fit m nodes.

The first 20 values of fit1 and fit1−ε for some small
ε are shown in Table 1. They can be obtained by
considering hexagonal circle packings. Because these
are constants it is reasonable to assume that the first
few values of fitd are available to every node.

We are not aware of the exact values of fitd for all
d. However, our algorithms just need upper bounds for
fitd, and lower bounds for encd. (An implementation of
the following algorithms has to be slightly adjusted to
use bounds instead of exact values.)

Now we can give a simple criterion to decide that a
node set is outside a chordless cycle:

Lemma 3.2. Let C be a chordless cycle and I ⊂ V \
N(C) be a connected set that contains an independent
subset J ⊂ I. If |J | > fitd(|C|), then every node in I is
outside P (C).

Proof. By Corollary 3.1 and the definition of fitd.

3.2 Problem statement. In this section, we define
the Boundary Detection Problem. Essentially, we are
looking for node sets and chordless cycles, where the
former are guaranteed to be on the inside of the latter.
For the node sets to become large, the cycles have to
follow the perimeter of the network region. In addition,
we do not want holes in the network region on the inside
of the cycles, to ensure that each boundary is actually
reflected by some cycle.

We now give formal definitions for these concepts.
We begin with the definition of a hole: The graph
G and its straight-line embedding w.r.t. p defines a
decomposition of the plane into faces. A finite face F
of this decomposition is called h-hole with parameter h
if the boundary length of the convex hull of F strictly
exceeds h. An important property of an h-hole F is the
following fact: Let C be a chordless cycle with |C| ≤ h.
Then all points f ∈ F are on the outside of P (C).

To describe a region in the plane, we use chord-
less cycles in the graph that follow the perimeter of the
region. There is always one cycle for the outer perime-
ter. If the region has holes, there is an additional cycle
for each of them. We formalize this in the opposite di-
rection: Given the cycles, we define the region that is
enclosed by them. So let C := (Cb)b∈B be a family of
chordless cycles in the network. It describes the bound-
ary of the region A(C) ⊂ R

2, which is defined as follows.
First let Ã be the set of all points x ∈ R

2 for which the
cardinality of {b ∈ B : x is on the inside of P (Cb)} is
odd. This set gives the inner points of the region, which
are all points that are surrounded by an odd number of
boundaries. The resulting region is defined by

(3.1) A(C) :=
⋃

b∈B

P (Cb) ∪ Ã .

See Figure 2 for an example with some cycles and the
corresponding region.

We can use this approach to introduce geometry
descriptions. These consist of some boundary cycles
(Cb)b∈B, and nodes sets (Ii)i∈I that are known to
reside within the described region. The sets are used
instead of direct representations of A(C), because we
seek descriptions that are completely independent of the
actual embedding of the network. There is a constant
K that limits the size of holes. We need K to be large
enough to find cycles in the graph that cannot contain
K-holes. Values K ≈ 15 fulfill these needs.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
fit1(n) 0 0 0 0 0 0 1 1 2 3 4 5 7 8 9 12 14 16 17 19
limd↑1 fitd(n) 0 0 0 0 0 1 1 2 3 4 5 7 8 9 12 14 16 17 19 23

Table 1: First values of fitd(n)

A(C)

P (Cb)

Figure 2: Area described by four boundary cycles.

Definition 3.1. A feasible geometry description
(FGD) is a pair (C, (Ii)i∈I) with C = (Cb)b∈B of node
set families that fulfills the following conditions:
(F1) Each Cb is a chordless cycle in G that does not
contain any node from the family (Ii)i∈I .
(F2) There is no edge between different cycles.
(F3) For each v ∈ Ii (i ∈ I), p(v) ∈ A(C).
(F4) For every component A′ of A(C), there is an
index i ∈ I, such that p(v) ∈ A′ ∀v ∈ Ii and p(v) /∈ A′

∀v ∈ Ij , j �= i.
(F5) A(C) does not contain an inner point of any
k-hole for k > K.

Note that condition (F4) correlates some cycles with a
component of A(C), which in turn can be identified by
an index i ∈ I. This index is denoted by IC(v), where
v ∈ V is part of such a cycle or the corresponding Ii.

See Figure 5 in the computational experience sec-
tion for an example network. Figures 6 and 7 show
different FGDs in this network.

We are looking for a FGD that has as many inside
nodes as possible, because that forces the boundary
cycles to follow the network boundary as closely as
possible. The optimization problem we consider for
boundary recognition is therefore

(3.2) (BD)

{

max | ∪i∈I Ii|
s.t. ((Cb)b∈B, (Ii)i∈I) is a FGD

.

3.3 Algorithm. We solve (BD) with local improve-
ment methods that switch from one FGD to another of
larger |∪i∈I Ii|. In addition to the FGD, our algorithms
maintain the following sets:

• The set C := ∪b∈BCb of cycle nodes.

• N(C), the cycle neighbors. Notice C ⊆ N(C).

• I := ∪i∈IIi, the inner nodes. Our algorithms
ensure I∩N(C) = ∅ (this is no FGD requirement),
and all Ii will be connected sets. This is needed in
several places for Lemma 3.2 to be applicable.

• J ⊆ I, consisting of so-called independent inners.
These nodes form an independent set in G.

• the set U := V \ (N(C) ∪ I) of unexplored nodes.

Initially, U = V , all other sets are empty.
We need to know how many independent nodes are

in a given Ii as proof that a cycle cannot accidently
surround Ii. Because all considered cycles consist of at
most K nodes, every count exceeding fitd(K) has the
same implications. So we measure the mass of an Ii by

(3.3) M(i) := min{|J ∩ Ii|, fitd(K) + 1} .

Because we are interested in distributed algorithms,
we have to consider what information is available at the
individual nodes. Our methods ensure (and require)
that each node knows to which of the above sets it
belongs. In addition, each cycle node v ∈ C knows
IC(v), M(IC(v)), and N(v)∩C, and each cycle neighbor
w ∈ N(C) knows N(w) ∩ C.

The two procedures are described in the following
two sections: First is an algorithm that produces
start solutions, second an augmentation method that
increases the number of inside nodes.

3.4 Flowers. So far, we have presented criteria by
which one can decide that some nodes are outside a
chordless cycle, based on a packing argument. Such a
criterion will not work for the inside, as any set of nodes
that fit in the inside can also be accomodated by the
unbounded outside. Instead, we now present a stronger
strcutural criterion that is based on a particular sub-
graph, an m-flower. For such a structure, we can prove
that there are some nodes on the inside of a chordless
cycle. Our methods start by searching for flowers, lead-
ing to a FGD. We begin by actually defining a flower,
see Figure 3 for a visualization.

Definition 3.2. An m-flower in G is an induced sub-
graph whose node set consists of a seed f0 ∈ V , indepen-
dent nodes f1,1, . . . , f1,m ∈ V , bridges f2,1, . . . , f2,m ∈
V , hooks f3,1, . . . , f3,m ∈ V , and chordless paths
W1, . . . , Wm, where each Wi = (wj,1, . . . , wj,�j

) ⊂ V .

f0 f1,1

f2,1
f1,5

f2,2
f1,2

f2,3

f1,3

f2,4
f1,4

f2,5

f3,5 f3,1

f3,2

f3,3

f3,4

W1

W2W3

W4

W5

Figure 3: A 5-flower.

(same X coordinates as Y)

0

+w

−w
−(1 +

√
2/2)w

−(1 +
√

2)w

(1 +
√

2/2)w
(1 +

√
2)w

Figure 4: Construction of a 4-
flower in a dense region.

All of these 1 + 3m +
∑m

j=1 ℓj nodes have to be differ-
ent nodes. For convenience, we define fj,0 := fj,m and
fj,m+1 := fj,1 for j = 1, 2, 3.

The edges of the subgraph are the following: The
seed f0 is adjacent to all independent nodes: f0f1,j ∈
E for j = 1, . . . , m. Each independent node f1,j is
connected to two bridges: f1,jf2,j ∈ E and f1,jf2,j+1 ∈
E. The bridges connect to the hooks: f2,jf3,j ∈ E for
j = 1, . . . , m. Each path Wj connects two hooks, that
is, f3,jwj,1, wj,1wj,2, . . . , wj,�j

f3,j+1 are edges in E.
Finally, the path lengths ℓj, j = 1, . . . , m obey

fitd(5 + ℓj) < m − 2 ,(3.4)

fitd(7 + ℓj) <

⎡

⎢

⎢

⎢

1

2

⎛

⎝

∑

k �=i

ℓk + 1

⎞

⎠

⎤

⎥

⎥

⎥

.(3.5)

Notice that Equations (3.4) and (3.5) can be ful-
filled: for d = 1, m = 5 and ℓ1 = ℓ2 = . . . = ℓ5 = 3 are
feasible. This is the flower shown in Figure 3.

The beauty of flowers lies in the following fact:

Lemma 3.3. In every d-QUDG embedding of a m-
flower, the independent nodes are placed on the inside
of P (C), where C := {f3,1, . . . , f3,m} ∪ ⋃m

j=1 Wj is a
chordless cycle.

Proof. Let Pj := (f1,j , f2,j, f3,j, Wj , f3,j+1, f2,j+1) be a
petal of the flower. Pj defines a cycle of length 5 + ℓj .
The other nodes of the flower are connected and contain
m − 2 independent bridges. According to (3.4), this
structure is on the outside of P (Pj).

Therefore, the petals form a ring of connected
cycles, with the seed on either the inside or the outside
of the structure. Assume the seed is on the outside.
Consider the infinite face of the straight-line embedding
of the flower. The seed is part of the outer cycle, which
consists of 7 + ℓj nodes for some j ∈ {1, . . . , m}. This
cycle has to contain the remaining flower nodes, which
contradicts (3.5). Therefore, the seed is on the inside,
and the claim follows.

Because we do not assume a particular distribution
of the nodes, we cannot be sure that there is a flower
in the network. Intuitively, this is quite clear, as any
node may be close to the boundary, so that there are
no interior nodes; as the nodes can only make use of
the local graph structure, and have no direct way of
detecting region boundaries, this means that for low
densities everywhere, our criterion may fail. As we show
in the following, we can show the existence of a flower if
there is a densely populated region somewhere: We say
G is locally ε-dense in a region A ⊂ R

2, if every ε-ball
in A contains at least one node, i.e., ∀z ∈ R

2 : Bε(z) ⊂
A ⇒ ∃v ∈ V : ‖p(v) − z‖2 ≤ ε.

Lemma 3.4. Let 0 < ε < 3
2 −

√
2 ≈ 0.086. Assume

d = 1. If G is ε-dense on the disk B3(z) for some
z ∈ R

2, then G contains a 4-flower.

Proof. Let w := 2(
√

2 − 1). See Figure 4. Place an
ε-ball at all the indicated places and choose a node in
each. Then the induced subgraph will contain precisely
the drawn edges. Then m = 4 and ℓ1 = . . . = ℓ4 = 3,
so for d = 1, these ℓ-numbers are feasible.

Now we present the actual algorithm to detect
flowers. Notice that a flower is a strictly local structure,
so we use a very simple kind of algorithm. Each
node v ∈ V performs the following phases after the
simultaneous wakeup:

1. Collect the subgraph on N8(v).
2. Find a flower.
3. Announce update.
4. Update.
Collect: First, each node v ∈ V collects and stores

the local neighborhood graph N8(v). This can be done
in time O(∆1) and message complexity O(∆1∆8), if
every nodes broadcasts its direct neighborhood to its
8-neighborhood.

Find Flower: Then, every node decides for itself
whether it is the seed of a flower. This does not involve
any communication.

Announce update: Because there could be multi-
ple intersecting flowers, the final manifestation of flowers
has to be scheduled: Every seed of some flower broad-
casts an announcement to all nodes of the flower and
their neighbors. Nodes that receive multiple announce-
ments decide which seed has higher priority, e.g., higher
ID number. The seeds are then informed whether they
lost such a tie-break. This procedure has runtime O(1)
and message complexity O(∆9) per seed, giving a total
message complexity of O(∆9|V |).

Update: The winning seeds now inform their flow-
ers that the announced updates can take place. This is
done in the same manner as the announcements. The

nodes that are part of a flower store their new status
and the additional information described in Section 3.3.

3.5 Augmenting Cycles. Now that we have an
algorithm to construct an initial FGD in the network,
we seek an improvement method. For that, we employ
augmenting cycles. Consider an FGD ((Cb)b∈B, (Ii)i∈I).
Let U = (u1, u2, . . . , u|U|) ⊂ V be a (not necessarily
chordless) cycle. For convenience, define u0 := u|U| and
u|U|+1 := u1.

When augmenting, we open the cycles (Cb)b∈B

where they follow U , and reconnect the ends according
to U . Let U− := {ui ∈ U : ui−1, ui, ui+1 ∈ C}
and U+ := U \ C. The resulting cycle nodes of the
augmentation operation are then C′ := C ∪ U+ \ U−.
If N(U) ∩ I = ∅, this will not affect inside nodes, and
it may open some new space for the inside nodes to
discover. In addition, as the new cycle cannot contain a
|U |-hole, we can limit |U | to guarantee condition (F5).

We use a method that will search for an augmenting
cycle that will lead to another FGD with a larger num-
ber of inside nodes, thereby performing one improve-
ment step. The method is described for a single node
v1 ∈ C that searches for an augmenting cycle containing
itself. This node is called initiator of the search.

It runs in the following phases:
1. Cycle search.
2. Check solution.

(a) Backtrack.
(b) Query feasibility.

3. Announce update.
4. Update.
Cycle search: v1 initiates the search by passing

around a token. It begins with the token T = (v1).
Each node that receives this token adds itself to the
end of it and forwards it to a neighbor. When the token
returns from there, the node forwards it to the next
feasible neighbor. If there are no more neighbors, the
node removes itself from the list end and returns the
token to its predecessor.

The feasible neighbors to which T gets forwarded
are all nodes in V \ I. The only node that may
appear twice in the token is v1, which starts the
“check solution” phase upon reception of the token. In
addition, T must not contain a cycle node between two
cycle neighbors. The token is limited to contain

|T | < min
v∈T∩C

encd(M(IC(v)))(3.6)

≤ K(3.7)

nodes. This phase can be implemented such that no
node (except for v1) has to store any information about
the search. When this phase terminates unsuccessfully,

i.e., without an identified augmenting cycle, the initiator
exits the algorithm.

Check Solution: When the token gets forwarded
to v1, it describes a cycle. v1 then sends a backtrack
message backwards along T :

Backtrack: While the token travels backwards,
each node performs the following: If it is a cycle node,
it broadcasts a query containing T to its neighbors,
which in turn respond whether they would become
inside nodes after the update. Such nodes are called
new inners. Then, the cycle node stores the number of
positive responses in the token.

A non-cycle node checks whether it would have any
chords after the update. In that case, it cancels the
backtrack phase and informs v1 to continue the cycle
search phase.

Query Feasibility: When the backtrack message
reaches v1, feasibility is partially checked by previous
steps. Now, v1 checks the remaining conditions.

Let I ′ := {IC(v) : v ∈ C ∩ T }. First, it confirms
that for every i ∈ I there is a matching cycle node in the
token that has a nonzero new inner count. Then it picks
a i′ ∈ I. All new inners of cycle nodes of this IC value
then explore the new inner region that will exist after
the update. This can be done by a BFS that carries the
token. The nodes report back to v1 the IC values of new
inner nodes that could be reached. If this reported set
equals I ′, T is a feasible candidate for an update and
phase “announce update” begins. Otherwise, the cycle
search phase continues.

Announce update: Now T contains a feasible
augmenting cycle. v1 informs all involved nodes that
an update is coming up. These nodes are T , N(T) and
all nodes that can be reached from any new inner in
the new region. This is done by a distributed BFS as
in the “query feasibility” phase. Let I ′ be the set of all
nodes that will become inner nodes after the update.
During this step, the set J of independent nodes is also
extended in a simple greedy fashion.

If any node receives multiple update announce-
ments, the initiator node of higher ID wins. The loser
is then informed that its announcement failed.

Update: When the announcement successfully
reached all nodes without losing a tie-break somewhere,
the update is performed.

If there is just one component involved, i.e., |I′| = 1,
the update can take place immediatly.

If |I′| > 1, there might be problems keeping
M(IC(·)) accurate if multiple augmentations happen si-
multaneously. So v1 first decides that the new ID of the
merged component will be v1. It then determines what
value M(IC(v1)) will take after the update. If this value
strictly exceeds fitd(K), M(IC(v1)) is independent of

potential other updates; the update can take place im-
mediately. However, M(IC(v1)) ≤ fitd(K), concurrent
updates have to be schedules. So v1 floods the involved
components with an update announcement, and per-
forms its update after all others of higher prioity, i.e.,
higher initiator ID.

Finally, all nodes in T flood their K
2 -hop neigh-

borhood so that cycle nodes whose cycle search phase
was unsuccessful can start a new attempt, because their
search space has changed.

Lemma 3.5. If the augmenting cycle algorithm per-
forms an update on a FGD, it produces another FGD
with strictly more inner nodes.

Proof. We need to show that all five FGD conditions are
met: (F1) and (F2) are checked in the backtrack phase,
(F3) follows from (3.6), (F4) from the connectivity test
in the feasibility check phase, and (F5) follows from
(3.7). The increase in inner nodes is assured in the
query feasibility phase.

Lemma 3.6. One iteration of the augmenting cycle al-
gorithm for a given initiator nodes has message com-
plexity O(∆K

K |V |) and time complexity O(∆K
K∆1 + |V |).

Proof. There at at most ∆K
K cycles that are checked.

For one cycle, the backtrack phase takes O(∆1) message
and time complexity. The query feasibility phase
involves flooding the part of the new inside that is
contained in the cycle. Because there can be any
number of nodes in this region, message complexity
for this flood is O(|V |). The flood will be finished
after at most 2fitd(K) communication rounds, the time
complexity is therefore O(1). After a feasible cycle was
found, the announce update and update phases happen
once. Both involve a constant number of floods over
the network, their message and time complexities are
therefore O(|V |). Combining these complexities results
in the claimed values.

4 Topological Clustering

This section deals with constructing clusters that follow
the geometric network topology. We use the working
boundary detection from the previous section and add
a method for clustering.

4.1 Problem statement. We assume the boundary
cycle nodes are numbered, i.e., Cb = (cb,1, . . . , cb,|Cb|) for

b ∈ B. We use a measure d̃ that describes the distance
of nodes in the subgraph (C, E(C)):

d̃(cb,j , cb′,j′) :=

{

+∞ if b �= b′

min{|j′ − j|, |Cb| − |j′ − j|} if b = b′

That is, d̃ assigns nodes on the same boundary their
distance within this boundary, and ∞ to nodes on
different boundaries.

For each node v ∈ V , let Qv ∈ C be the set of cycle
nodes that have minimal hop-distance to v, and let sv be
this distance. These nodes are called anchors of v. Let
v ∈ V and u, w ∈ N(v). We say u and w have distant
anchors w.r.t. v, if there are qu ∈ Qu and qv ∈ Qv such
that d̃(qu, qw) > π(sv + 1) holds (with π = 3.14 . . .).
This generalizes closeness to multiple boundaries to the
closeness to two separate pieces of the same boundary.
(Here “separate pieces” means that there is sufficient
distance along the boundary between the nodes to form
a half-circle around v.)

v is called k-Voronoi node, if N(v) contains at
least k nodes with pairwise distant anchors. We use
these nodes to identify nodes that are precisely in the
middle between some boundaries. Let Vk be the set
of all k-Voronoi nodes. Our methods are based on the
observation that V2 forms strips that run between two
boundaries, and V3 contains nodes where these strips
meet.

The connected components of V3 are called intersec-
tion cores. We build intersection clusters around them
that extend to the boundary. The remaining strips are
the base for street clusters connecting the intersections.

4.2 Algorithms. We use the following algorithm for
the clustering:

1. Synchronize end of boundary detection.
2. Label boundaries.
3. Identify intersection cores.
4. Cluster intersections and streets.
Synchronize: The second phase needs to be

started at all cycle nodes simultaneously, after the
boundary detection terminates. For that matter, we use
a synchronization tree in the network, i.e., a spanning
tree. Every node in the tree keeps track of whether there
are any active initiator nodes in their subtree. When the
synchronization tree root detects that there are no more
initiators, it informs the cycle nodes to start the second
phase. Because the root knows the tree depth, it can
ensure the second phase starts in sync.

Label: Now the cycle nodes assign themselves con-
secutive numbers. Within each cycle Cb, this starts at
the initiator node of the last augmentation step. If Cb

stems from a flower that has not been augmented, some
node that has been chosen by the flower’s seed takes
this role. This start node becomes cb,1. It then sends
a message around the cycle so that each node knows
its position. Afterwards, it sends another message with
the total number of nodes in the cycle. In the end, each
node cb,j knows b, j, and |Cb|. Finally, the root of the

synchronization tree gets informed about the comple-
tion of this phase.

Intersection cores: This phase identifies the in-
tersection cores. It starts simultaneously at all cycle
nodes. This is scheduled via the synchronization tree.
This tree’s root knows the tree depth. Therefore, it can
define a start time for this phase and broadcast a mes-
sage over the tree that reaches all nodes shortly before
this time. Then the cycle nodes start a BFS so that ev-
ery node v knows one qv ∈ Qv and sv. The BFS carries
information about the anchors so that v also knows b
and j for which qv = cb,j . Also, each nodes stores this
information for all of its neighbors.

Each node v checks whether there are three nodes
u1, u2, u3 ∈ N(v) whose known anchors are distant, i.e.,
d̃(quj

, quk
) > π(sv +1) for j �= k. In that case, v declares

itself to be a 3-Voronoi node. This constructs a set
Ṽ3 ⊆ V3.

Finally, the nodes in Ṽ3 determine their connected
components and the maximal value of sv within each
component by constructing a tree within each compo-
nent, and assign each component an unique ID number.

Cluster: Now each intersection core starts BFS up
to the chosen depth. Each node receiving a BFS mes-
sage associates with the closest intersection core. This
constructs the intersection clusters. Afterwards, the re-
maining nodes determine their connected components
by constructing a tree within each component, thereby
forming street clusters.

Because the synchronization phase runs in parallel
to the boundary detection algorithm, it makes sense to
analyze the runtime behaviour of this phase separately:

Theorem 4.1. The synchronization phase of the algo-
rithm has both message and time complexity O(|V |3).

Proof. We do not separate between time and message
complexity, because here they are the same. Construct-
ing the tree takes O(|V | log |V |), and the final flood is
linear. However, keeping track of the initiators is more
complex: There can be O(|V |) augmentation steps. In
each step, O(|V |) may change their status, which has to
be broadcast over O(|V |) nodes.

Theorem 4.2. The remaining phases have message
and time complexity O(|V | log |V |).

Proof. The most expensive operation in any of the
phases is a BFS over the whole network, which takes
O(|V | log |V |).

5 Computational Experience

We have implemented and tested our methods with
our large-scale network simulator Shawn [11]. We

Figure 5: Example net-
work.

Figure 6: Boundary cycles
and inside nodes identified
by the flower procedure.

Figure 7: Two snapshots and final state of the Aug-
menting Cycle algorithm.

demonstrate the performance on a complex scenario,
shown in Figure 5: The network consists of 60,000 nodes
that are scattered over a street map. To show that
the procedures do not require a nice distribution, we
included fuzzy boundaries and varying densities. Notice
that this network is in fact very sparse: The average
neighborhood size is approximatly 20 in the lightly
populated and 30 in the heavily populated area.

Figure 6 shows the FGD that is produced by the
flower procedure. It includes about 70 flowers, where
a single one would suffice to start the augmentation.
Figure 7 shows some snapshots of the augmenting
cycle method and its final state. In the beginning,
many extensions to single cycles lead to growing zones.
In the end, they get merged together by multi-cycle
augmentations. It is obvious that the final state indeed
consists of a FGD that describes the real network
boundaries well.

Figure 8 shows the Voronoi sets V2 and V3. One can
clearly see the strips running between the boundaries
and the intersection cluster cores that are in the middle
of intersections. Finally, Figure 9 shows the clustering
that is computed by our method. It consists of the
intersection clusters around the 3-Voronois, and street
clusters in the remaining parts. The geometric shape of
the network area is reflected very closely, even though
the network had no access to geometric information.

Figure 8: Identified 2-Voronoi and 3-Voronoi nodes.

Figure 9: The final clustering.

6 Conclusions

In this paper we have described an integrated frame-
work for the deterministic self-organization of a large
swarm of sensor nodes. Our approach makes very few
assumptions and is guaranteed to produce correct re-
sults; the price is dealing with relatively complex combi-
natorial structures such as flowers. Obviously, stronger
assumptions on the network properties, the boundary
structure or the distribution of nodes allow faster and
simpler boundary recognition; see our papers [8] and [9]
for probabilistic ideas.

Our framework can be seen as a first step towards
robust routing, tracking and guiding algorithms. We
are currently working on extending our framework in
this direction.

References

[1] J. Aspnes, D. Goldenberg, and Y. Yang. On the com-
putational complexity of sensor network localization.
In ALGOSENSORS, volume 3121 of Lecture Notes in
Computer Science, pages 32–44. Springer Verlag, 2004.

[2] L. Barrière, P. Fraigniaud, and L. Narayanan. Robust
position-based routing in wireless ad hoc networks with
unstable transmission ranges. In DIALM ’01, pages
19–27, New York, NY, USA, 2001. ACM Press.

[3] H. Breu and D. Kirkpatrick. Unit disk graph recog-

nition is NP-hard. Comp. Geom.: Theory Appl., 9(1-
2):3–24, 1998.

[4] J. Bruck, J. Gao, and A. A. Jiang. Localization and
routing in sensor networks by local angle information.
In Proc. of the 6th ACM int. symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC), pages
181–192, New York, NY, USA, 2005. ACM Press.

[5] S. Čapkun, M. Hamdi, and J. Hubaux. GPS-free
positioning in mobile ad-hoc networks. In Proc. IEEE
HICSS-34—vol.9, page 9008, 2001.

[6] L. Doherty, K. Pister, and L. E. Ghaoui. Convex
position estimation in wireless sensor networks. In
Proc. IEEE Infocom ’01, pages 1655–1663, 2001.

[7] Q. Fang, J. Gao, and L. J. Guibas. Locating and
bypassing routing holes in sensor networks. In The
23rd Conference of the IEEE Communications Society
(INFOCOM), volume 23, pages 2458–2468, 2004.

[8] S. P. Fekete, M. Kaufmann, A. Kröller, and
N. Lehmann. A new approach for boundary recog-
nition in geometric sensor networks. In Proceedings
17th Canadian Conference on Computational Geome-
try, pages 82–85, 2005.

[9] S. P. Fekete, A. Kröller, D. Pfisterer, S. Fischer,
and C. Buschmann. Neighborhood-based topology
recognition in sensor networks. In ALGOSENSORS,
volume 3121 of Lecture Notes in Computer Science,
pages 123–136. Springer Verlag, 2004.

[10] A. Kröller, S. P. Fekete, D. Pfisterer, S. Fischer, and
C. Buschmann. Koordinatenfreies Lokationsbewusst-
sein. Information Technology, 47:70–78, 2005.

[11] A. Kröller, D. Pfisterer, C. Buschmann, S. P. Fekete,
and S. Fischer. Shawn: A new approach to simulating
wireless sensor networks. In Proceedings Design, Anal-
ysis, and Simulation of Distributed Systems (DASD05),
pages 117–124, 2005.

[12] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit
disk graph approximation. In DIALM-POMC ’04,
pages 17–23, New York, NY, USA, 2004. ACM Press.

[13] T. Moscibroda, R. O’Dell, M. Wattenhofer, and
R. Wattenhofer. Virtual coordinates for ad hoc and
sensor networks. In DIALM-POMC ’04, pages 8–16,
New York, NY, USA, 2004. ACM Press.

[14] D. Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 2000.

[15] N. Priyantha, H. Balakrishnan, E. Demaine, and
S. Teller. Anchor-free distributed localization in sensor
networks. Technical Report MIT-LCS-TR-892, MIT
Laboratory for Computer Science, APR 2003.

[16] C. Savarese, J. Rabaey, and K. Langendoen. Robust
positioning algorithms for distributed ad-hoc wireless
sensor networks. In Proc. 2002 USENIX Ann. Tech.
Conf., pages 317–327, 2002.

[17] N. Sundaram and P. Ramanathan. Connectivity-
based location estimation scheme for wireless ad hoc
networks. In Proc. IEEE Globecom ’02, volume 1,
pages 143–147, 2002.

