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We characterize the long-time projective behavior of the stochastic master equation describing a continuous,

collective spin measurement of an atomic ensemble both analytically and numerically. By adding state-based

feedback, we show that it is possible to prepare highly entangled Dicke states deterministically.
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I. INTRODUCTION

It has long been recognized that measurement can be used

as a nondeterministic means of preparing quantum states that

are otherwise difficult to obtain. With projective measure-

ments that are truly discrete in time, the only way an experi-

mentalist can direct the outcome of the measurement is by

preparing the initial state to make the desired result most

probable. Generally, it is impossible to make this probability

equal to 1, as the measurement will, with some nonzero

probability, result in other undesirable states. If the experi-

mentalist can afford to be patient, then accepting a low effi-

ciency is not a problem, but this is not always the case. In
recent years, a theory of continuous quantum measurement
has been developed that fundamentally changes the nature of
state preparation via measurement [1]. When a measurement
and the corresponding acquisition of information are suffi-
ciently gradual, there exists a window of opportunity for the
experimentalist to affect the outcome of the measurement by
using feedback control [2]. In this paper, we demonstrate that
it is possible to deterministically prepare highly entangled
Dicke states [3,4] of an atomic spin ensemble by adding
state-based feedback to a continuous projective measure-
ment.

It has been shown that models of quantum state reduction
exist that exhibit the usual rules of projective measurement
except the state reduction occurs in a continuous, stochastic
manner [5]. These models are not without physical relevance
as they are the same as those derived to describe the condi-
tional evolution of atomic spin states under continuous quan-
tum nondemolition (QND) measurement [6–11]. By measur-
ing the collective angular momentum operator Jz of an
initially polarized coherent spin state via the phase shift of an
off-resonant probe beam, conditional spin-squeezed states
have been experimentally produced [12,13]. These states are
of considerable interest for applications in quantum informa-
tion processing and precision metrology [14,15].

In these models, the reduction in variance that initially
leads to conditional spin squeezing is the precursor of the
projection onto a random eigenstate of Jz at longer times.
Figure 1 demonstrates the projection process for a single

numerically simulated measurement trajectory.1 Like spin-
squeezed states, these Dicke states offer potential for quan-
tum information applications because of their unique en-
tanglement properties [16]. Although the experimental
difficulties in obtaining these states via QND measurement
or other experimental methods [17–19] are considerable, the
details of the continuous projective process that leads to
them are of fundamental interest.

Whenever the measurement is sufficiently slow, an ex-
perimentalist may steer the result by feeding back the mea-
surement results in real time to a Hamiltonian parameter.
Indeed, the measurement process, as a state preparation pro-
cess, can be made deterministic with the use of feedback
control. Recently, we have experimentally demonstrated this
concept by modulating a compensation magnetic field with
the measurement record to deterministically prepare spin-
squeezed states [12] as proposed in [6,7]. This is just one
example of the growing confluence of quantum measurement
with classical estimation and control theory [20,21]. Other
applications of quantum feedback include parameter estima-
tion, metrology, and quantum error correction [22–26].

In this paper, we focus on the long-time limit of the QND
measurement and feedback process. Just as spin-squeezed
states can be deterministically prepared at short times, we
numerically demonstrate that individual Dicke states can be
deterministically prepared at long times with the use of state-
based feedback [27]. While our proposed feedback laws are
nonoptimal, they demonstrate the adequacy of intuitive con-
trollers with finite gain for directing the diffusion of the
quantum state towards desirable regions of Hilbert space
with unity efficiency. This is in contrast to other proposed
schemes using measurements to prepare Dicke states proba-
bilistically [17,18]. A more systematic approach utilizing sto-
chastic notions of stability and convergence in the continu-
ous measurement and control of a single spin is presented in
Ref. [28].

This paper is organized as follows. In Sec. II, we intro-
duce the stochastic master equation which represents the rule
for updating the system state in real time via the incoming
measurement record. Here we discuss the various represen-

*URL: http://minty.caltech.edu/Ensemble. Electronic address:

jks@caltech.edu

1All numerical simulations shown were performed using the pa-

rameters {N=10, M =1, T=5, dt=0.001}. The stochastic integrator

used the norm-preserving, nonlinear SSE of Eq. (5) and a weak

second-order derivative-free predictor-corrector structure as can be

found in [39].
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tations of the dynamics in both the short- and long-time lim-
its. Section III describes the probabilistic preparation of
Dicke states via observation alone. The numerical demon-
stration of the open-loop projection process reveals statistical
features that clarify the details of the projection. Feedback is
added to the procedure in Sec. IV, where we show that state-
based control allows one to prepare the same Dicke state
deterministically on every measurement. Finally, in Sec. V,
we discuss future directions and imminent challenges regard-
ing quantum-state preparation via measurement and control.

II. REPRESENTATIONS OF THE CONDITIONAL

EVOLUTION

The physical system we will consider is an ensemble of N

spin-1 /2 particles contained within a cavity and interacting
with a far off-resonant single-mode field. We will denote the
conditional state of the spin ensemble as rstd and the homo-

dyne measurement record of the output as ystd. The stochas-

tic master equation (SME) describing the conditional evolu-
tion is [6,7]

drstd = − ifHstd,rstdgdt + DfÎMJzgrstddt + ÎhHfÎMJzgrstd

3h2ÎMhfystddt − kJzldtgj , s1d

where Hstd=gJybstd is the control Hamiltonian that we will

allow ourselves [without feedback bstd=0], g is the gyro-

magnetic ratio, M is the probe-parameter-dependent mea-
surement rate, and

Dfcgr ; crc† − sc†cr + rc†cd/2, s2d

Hfcgr ; cr + rc† − Trfsc + c†drgr . s3d

The (scaled) difference photocurrent is represented as

ystddt = kJzlstddt + dWstd/2ÎMh . s4d

The stochastic quantity dWstd;2ÎMhfystddt− kJzlstddtg is a

Wiener increment and dWstd /dt is a Gaussian white noise

that can be identified with the shot noise of the homodyne
local oscillator. [See [29,30] for an introduction to stochastic
differential equations (SDE’s).] The sensitivity of the photo-
detection per ÎHz is represented by 1/2ÎMh, where the
quantity hP f0,1g represents the quantum efficiency of the

detection. If h=0, we are essentially ignoring the measure-
ment result and the conditional SME becomes a determinis-
tic unconditional master equation. If h=1, the detectors are
maximally efficient. In this latter case, the conditioned state
will remain pure for the entire measurement, thus we can use
a state vector description, and the SME can be replaced with
a SSE

FIG. 1. The results of a single numerical simulation1 of the stochastic Schrödinger equation (SSE), Eq. (5), with M =1, h=1, and N

=10 spins initially aligned along the x axis. (A) In a quantization axis perpendicular to the polarization, the level distribution of a coherent

spin state (CSS) is Gaussian for large N. Under conditional measurements the state evolves at short times into a spin-squeezed state and,

eventually, into a random eigenstate of Jz. (B) A map of the state’s angular distribution on the Bloch sphere in spherical coordinates. The

uncertainty in the transverse direction to the measurement axis grows until there is no information about the perpendicular component

direction. (C) At long times, the population is at most divided among two levels that compete to be the final winner, which in this case

appears to be m=1. (D) All of the state information is obtained by properly filtering the noisy photocurrent.
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ducstdl = h− iHstd − MfJz − kJzlstdg
2/2jucstdldt

+ ÎMfJz − kJzlstdgucstdldWstd . s5d

This SSE was considered in [5] where the motivation was
more abstract and less concerned with the experimental fil-
tering perspective presented here. We emphasize that the
SME or SSE is physically derived and is an explicit function
of a measured photocurrent variable ystd, through which the

randomness enters. The states are considered as states of
knowledge and, in practice, an experimentalist updates the
description of the system, rstd [Figs. 1(A)—1(C)], as the

measurement results, ystd [Fig. 1(D)], arrive in time.

The stochastic master equation (1) describes only the dis-
persive part of the atom-field interaction. Physically, how-
ever, any dispersive phase shift must be accompanied by
some degree of decohering absorption and spontaneous
emission from the auxiliary excited-state level(s). Generally,
the dispersive SME will be valid until some time, at which
point spontaneous emission catches up to destroy the validity
of the above description. The resulting cutoff time will im-
pose a limit on the amount of observable squeezing or pro-
jection.

In free space measurements, e.g., free space Faraday ro-
tation [12,13,31,32], the effects of spontaneous emission
make this cutoff time relatively short. By surrounding the
atomic cloud with a cavity, however, spontaneous emission
can be suppressed and the validity of the SME correspond-
ingly extended.

For a cavity with decay rate k, N atoms with a decay rate
g, and an atom-cavity coupling constant g, the requirement
to see any spin squeezing is only g2 /kg.1/N. On the edge
of the strong-coupling regime, with g2 /kg<1, spin vari-
ances can be further decreased from initial values kDJz

2l~N

to levels ~ÎN [7,9,10]. (In free space, it is in principle pos-
sible to achieve this degree of squeezing with a maximally
focused probe beam, but one can do no better because of the
diffraction limit.) To further reduce the uncertainty to the
point where kDJz

2l~1 (i.e., the Heisenberg limit of spin

squeezing) the cavity needs to be in the very strong-coupling
regime with g2 /kg.N. If one requires that a single Jz eigen-
state becomes resolvable skDJz

2l!1d, the cavity coupling re-

quirements become even more stringent depending on the
degree of projection desired.

While there are currently few experimental systems even
in the strong-coupling regime, we expect this very-strong-
coupling regime to eventually be reached for moderate num-
bers of atoms. With this attitude we continue to focus on the
long-time limit of the pure dispersive SME in the interest of
understanding the idealized limits of continuous projective
measurement. For a more complete discussion of the realistic
physical limits of this type of QND measurement, see Refs.
[6–11].

A. Hilbert space, coherent spin states, and Dicke states

Under certain idealizations, we can considerably reduce
the size of the Hilbert space needed to describe the condi-
tionally measured ensemble. Throughout this paper, the ini-
tial state rs0d will be made equal to a coherent spin state

(CSS) polarized along an arbitrary direction [4]. For ex-
ample, a CSS pointing along the z axis is denoted
u↑1↑2¯↑Nlz and all others can be prepared by rotating this
state with the angular momentum operators Ji, with i

P hx ,y ,zj. A CSS, typically obtained via a dissipative optical

pumping process, is an eigenstate of J2 with maximal eigen-
value JsJ+1d, where J=N /2. Because the SME works under

the QND approximation of negligible absorption (i.e., the
large detuning dispersive limit), no angular momentum will
be exchanged between the probe beam and the ensemble.
The only other allowed dynamics possible are rotations of
the angular momentum induced by applied magnetic fields;
thus, the state will maintain maximal kJ2l over the course of

the measurement.
The Dicke states are defined [4] as the states ul ,ml that are

simultaneous eigenstates of both J2 and Jz:

Jzul,ml = mul,ml , s6d

J2ul,ml = lsl + 1dul,ml , s7d

where

umu ø l ø J = N/2. s8d

Under the above approximations, we can neglect any state
with lÞJ. We then shorten the labelling of our complete
basis from uJ ,ml to uml so that

Jzuml = muml , s9d

J2uml = JsJ + 1duml , s10d

where mP h−N /2 ,−N /2+1, . . . ,N /2−1,N /2j.
When the physical evolution is such that the uml states

remain complete, we can limit ourselves to a density matrix
of size sN+1d3 sN+1d rather than the full size 2N32N. This

reduced space is referred to as the symmetric subspace, as its
states are invariant to particle exchange [33,34]. For the case
of two spins, the symmetric subspace contains the triplet
states, but not the singlet. States contained within the sym-
metric subspace can be described as a pseudospin of size J

=N /2.
In the z basis, the extremal values of m, ±N /2, are simply

the coherent spin states pointing along the z axis:

um = + N/2l = u↑1↑2 ¯ ↑Nl , s11d

um = − N/2l = u↓1↓2 ¯ ↓Nl . s12d

In terms of the constituent spins, these states are obviously
unentangled. In contrast, consider the state with m=0 (for N

even):

um = 0l = CSiPisu↑1 ¯ ↑N/2↓N/2+1 ¯ ↓Nld , s13d

where the Pi represent all permutations of the spins and C is
a normalization constant. This state is highly entangled in a
way that is robust to particle loss [16]. Even though the
expectation values kJil vanish for this state, it still has maxi-

mal J2 eigenvalue. Loosely, this state represents a state of
knowledge where the length of the spin vector is known and
the z component is known to be zero, but the direction of the
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spin vector in the x-y plane is completely indeterminate.
Similarly, the entangled states with 0, umu,N /2 can be
imagined as residing on cones aligned along the z axis with
projection m. The loss of pointing angle information from
the measurement process is diagrammed in Fig. 1(B).

Along with their unique entanglement and uncertainty
properties, Dicke states are also of interest for the important
role they play in descriptions of collective radiation pro-
cesses [4] and for their potential role in quantum information
processing tasks [17,18,35].

B. Short-time limit

Even when working within the symmetric subspace, for a
large number of spins the size of rstd may be too unwieldy

for computational efficiency. Because it is often desirable to
update our state description in real time (e.g., for optimal
feedback procedures), finding simple but sufficient descrip-
tors is of considerable importance.

We can derive a reduced model by employing a moment
expansion for the observable of interest. Extracting the con-
ditional expectation values of the first two moments of Jz

from the SME gives the following scalar stochastic differen-
tial equations:

dkJzlstd = gkJxlstdbstddt + 2ÎMhkDJz
2lstddWstd , s14d

dkDJz
2lstd = − 4MhkDJz

2l2stddt − igkfDJz
2,Jyglstdbstddt

+ 2ÎMhkDJz
3lstddWstd . s15d

Note that these equations are not closed because higher-order
moments couple to them.

At short times, t!1/hM, we can make this set of equa-
tions closed with the following approximations. If the spins
are initially fully polarized along x, then by using the evolu-
tion equation for the x component, we can show kJxlstd
<J expf−Mt /2g. Making the Gaussian approxima-

tion at short times, the third-order terms kDJz
3l and

−igkfDJz
2 ,Jyglstdbstd can be neglected. The Holstein-

Primakoff transformation makes it possible to derive this
Gaussian approximation as an expansion in 1/J [36]. Both of
the removed terms can be shown to be approximately 1/JÎJ

smaller than the retained nonlinear term. Thus we can ap-
proximate the optimal solution with

dkJzlsstd = gJ expf− Mt/2gbstddt + 2ÎMhkDJz
2lsstddWsstd ,

s16d

dkDJz
2lsstd = − 4MhkDJz

2ls
2stddt , s17d

where the s subscript denotes the short-time solution and
dWsstd;2ÎMhfystddt− kJzlsstddtg. Also bstd is assumed to be

of a form that keeps the total state nearly pointing along x.
The differential equation for the variance kDJz

2lsstd is now

deterministic. It can be solved to give

kDJz
2lsstd =

kDJz
2ls0d

1 + 4MhkDJz
2ls0dt

. s18d

The deterministically shrinking value of kDJz
2lsstd represents

the squeezing about the initially fluctuating value of kJzlsstd
as shown in the first two frames of Figs. 1(A) and 1(B). If
feedback is added, then the value of kJzlsstd can be zeroed via

Larmor precession due to a control field along y and the
same centered spin-squeezed state can be prepared on every
trial [6,7,12].

The resulting spin-squeezed states can be used in subse-
quent precision measurements [14,15]. It is also worth point-
ing out that a precision measurement can be performed dur-

ing the production of the conditional spin squeezing. For
example, we have shown that by properly estimating both
the spin state and an unknown classical field simultaneously
with continuous measurement and Kalman filtering tech-
niques, the field estimation can be improved over conven-
tional limits by the presence of the simultaneous squeezing
[22,23].

C. Long-time limit

The approximations made in the previous section are no
longer valid at times t@1/hM. The third-order terms be-
come non-negligible at long times; hence, the variance be-
comes stochastic. Subsequently, other high-order moments
couple to the problem and we are forced to consider the
stochastic differential equation for each. Eventually, any
finite-numbered moment description is no longer useful and
it initially appears that we must resort back to the full sym-
metric density matrix and the SME, Eq. (1) as our primary
description.

Fortunately, we can take another approach and describe
the state in terms of other sufficient statistics. Without a field,
the only statistic of the photocurrent needed to describe the
state at time t is its integral e0

t yssdds (see the Appendix or

[37]). Knowing that the state is only a function of this vari-
able and the initial state (prior information) makes the ex-
perimental design of a real-time estimator experimentally
convenient. For example, we could use an analog integrator
to create this sufficient statistic from the photocurrent, then
feed it into a possibly nonlinear device (like an FPGA [33])

to perform the estimation.
With the integrated photocurrent and the initial state

ucs0dl = o
m=−J

J

cmuml , s19d

we can calculate (see the Appendix) the conditional expecta-
tion value of any power of Jz with the expression

TrfJz
kr̃stdg = o

m=−J

J

mkucmu2expF− 2Mhm2t

+ 4mMhE
0

t

yssddsG , s20d

where r̃std is the unnormalized density matrix, and setting

k=0 represents its trace, so
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kJz
klstd = TrfJz

kr̃stdg/TrfJz
0r̃stdg . s21d

Consider the case when the system starts in the x-polarized
spin-coherent state. To very good approximation (with rea-
sonably large J) we can write for this state in the z basis,

ucmu2 ~ expF−
m2

J
G . s22d

Using these coefficients, we now have the rule for mapping
the photocurrent to the expectation of Jz:

kJzlstd = TrfJz
1r̃stdg/TrfJz

0r̃stdg . s23d

Other than the minor approximation of the initial coeffi-
cients, using this estimate is essentially the same as using
solution to the full SME, so we do not give it a new sub-
script.

To simplify further, we can change the sums to integrals,
giving

TrfJz
kr̃stdg . E

−J

J

mke−Am2+2Bmdm , s24d

with

A =
1

J
+ 2Mht, B = 2MhE

0

t

yssdds . s25d

This approximation produces an estimate

kJzlistd =

E
−J

J

me−Am2+2Bmdm

E
−J

J

e−Am2+2Bmdm

, s26d

which performs suboptimally when the distribution of states
becomes very narrow at long times. Interestingly, the integral
approximation here numerically appears to give the same
estimate as the one derived previously for short times when
no field is present—i.e.,

kJzlistd = kJzlsstd . s27d

This is not entirely surprising as both of these estimators
ignore the discreteness of the Dicke levels. Also, at long
times, it turns out that both of these estimates appear to be
numerically equivalent to the simplest of all estimates: aver-
aging the photocurrent. In other words, one simple and intui-
tive approximation to the optimal kJzlstd would be

kJzlastd =

E
0

t

yssdds

t
, s28d

which is an estimate one might guess from the form of the
photocurrent, Eq. (4). From simulation, it appears that this
estimate is the same as both kJzlistd and kJzlsstd for t

@1/hM. Despite the nonoptimality of these simple estima-
tors, they perform well enough to resolve the discretization
of the Dicke levels at long times.

Unfortunately, the addition of a feedback field makes
these simplified estimators inadequate at long times, and de-
riving simple reduced models with a field present is difficult,
thus forcing us to use the full SME in our state based con-
troller. Despite this difficulty, during our subsequent feed-
back analysis we assume sufficient control bandwidth that
the SME can be evolved by the observer in real time.

III. MEASUREMENT EVOLUTION WITHOUT FEEDBACK

In this section, our goal is to describe how the estimates
of the last section probabilistically evolve at long times into
Dicke states via observation alone. First, we discuss steady-
state and statistical properties of the SME, Eq. (1). Then, we
examine the unconditional dynamical solution with h=0
which gives the average state preparation behavior when h
Þ0. We then consider in detail how individual trajectories
behave when hÞ0. Finally, we discuss the performance of
the nonoptimal estimators relative to the optimal projective
estimator.

A. Steady states of the SME and martingale properties

The fact that the SME eventually prepares eigenstates of
Jz is rather intuitive from a projection postulate perspective
because Jz is the quantity being measured. If we insert the
pure Dicke state r= umlkmu into the SME with no Hamil-

tonian (or only a field along z), we find that it is a steady
state, dr=0, no matter what happens with the subsequent
measurement record. Of course, this does not yet prove that
the state will eventually be obtained, as we have not dis-
cussed the stability of attractors in stochastic systems.

Without a field present, the SME has several convenient
properties. First of all, from the evolution equation for the
variance notice that the variance is a stochastic process that
decreases on average. In fact it is a supermartingale, in that
for times sø t we have

EsfkDJz
2lstdg ø kDJz

2lssd , s29d

where the notation Efxstdg denotes the average of the sto-

chastic variable xstd at time t and the s subscript represents

conditional expectation given a particular stochastic trajec-
tory up to the time s. Additionally, it can be shown [5] that
the average variance obeys the equation

EfkDJz
2lstdg =

kDJz
2ls0d

1 + 4MhkDJz
2ls0dft + jstdg

, s30d

where

jstd = E
0

t E†hkDJz
2lssd − EfkDJz

2lssdgj2‡

EfkDJz
2lssdg2

ds ù 0. s31d

A more explicit solution of jstd is not necessarily needed as

its positivity ensures that kDJz
2lstd stochastically approaches

zero. This implies that a Dicke state is eventually prepared.
The numerical simulation of Figs. 1 and 2 demonstrates this
behavior for an initially x-polarized state. As expected,
EfkDJz

2lstdg in Fig. 2(A) appears to be less than the short-
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time solution kDJz
2lsstd, Eq. (18), at long times.

Other useful properties of the stochastic evolution are evi-
dent from the moment equations. For example, we can show
that

dkJz
nl = 2ÎMhskJz

n+1l − kJz
nlkJzlddWstd s32d

for integer n; hence,

dEfkJz
nlg = 0 s33d

and for times sø t we have the martingale condition

EsfkJz
nlstdg = kJz

nlssd . s34d

This equation for n=1 gives us the useful identity

EfkJzlstdkJzlssdg = EfkJzlssd2g s35d

for sø t. Also, we can rewrite the expression for n=2 as

EsfkJzlstd
2 + kDJz

2lstdg = kJzlssd2 + kDJz
2lssd . s36d

This implies a sort of conservation of uncertainty as the dif-
fusion in the mean, shown in Fig. 1(B), makes up for the
decreasing value of the variance.

B. h=0

It is insightful to examine the behavior of the master
equation with h=0 which corresponds to ignoring the mea-
surement results and turns the SME, Eq. (1), into a determin-
istic unconditional master equation. We continue to consider
only those initial states that are polarized. This is because
these states are experimentally accessible (via optical pump-
ing) and provide some degree of selectivity for the final pre-
pared state. To see this, let us consider a spin-1 /2 ensemble
polarized in the x-z plane, making angle u with the positive z

axis, such that

kJxls0d = sinsudN/2,

kJyls0d = 0,

kJzls0d = cossudN/2,

kDJx
2ls0d = cos2sudN/4,

kDJy
2ls0d = N/4,

kDJz
2ls0d = sin2sudN/4. s37d

Solving the unconditional moment equations and labeling
them with u subscripts, we get

kJxlustd = sinsudexps− Mt/2dN/2,

kJylustd = 0,

kJzlustd = cossudN/2,

kDJx
2lustd = sin2sudfN2 − N − 2N2 exps− Mtd

+ sN2 − Ndexps− 2Mtdg/8

+ N/4 → sin2sudsN2 − Nd/8 + N/4,

kDJy
2lustd = sin2sudfN2 − N + sN − N2dexps− 2Mtdg/8 + N/4

→ sin2sudsN2 − Nd/8 + N/4,

kDJz
2lustd = sin2sudN/4. s38d

Note that, because the unconditional solutions represent the
average of the conditional solution—i.e., rustd=Efrstdg—we

have

EfkJzlstdg = kJzlustd = kJzls0d = cossudN/2. s39d

This also follows from the martingale condition for kJzlstd.
From the martingale condition for kJz

2lstd we get

EfskJzlstd − EfkJzlstdgd
2g = kDJz

2ls0d − EfkDJz
2lstdg

→ kDJz
2ls0d = sin2sudN/4.

s40d

Thus, when 0,hø1, we expect the final random condi-
tional Dicke state on a given trial to fall within the initial z

distribution. Given u, the distribution will have spread
usinsuduÎN /2 about the value cossudN /2. Although the final

state is generally random, starting with a polarized state
clearly gives us some degree of selectivity for the final Dicke
state because ÎN!N.

FIG. 2. Many open-loop moment trajectories1 of the SSE, Eq. (5). The trajectory of Fig. 1 is darkened. (A) At short times, the evolution

of the variance (shown on a log scale) is deterministic and given by kDJz
2lsstd. At long times, the variances become stochastic but bounded

(above by 1/4 and below by expf−2sMt−1dg /4). The average of all 10 000 trajectories (only 10 are shown) gives. EfkDJz
2lstdg. (B) The

projective nature of the measurement is made clear by the evolution of 100 trajectories of kJzlstd. The distribution of the final results is given

by the first histogram of Fig. 1(A). (C) The evolution of the 100 trajectories all starting in an x-polarized CSS. When h=1, certain regions

of Hilbert space are forbidden by the evolution.
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C. 0,hÏ1

When hÞ0, the measurement record is used to condition
the state, and we can determine which Dicke state the system
diffuses into. Given the task of preparing the state umdl, the
above analysis suggests the following experimental proce-
dure. First, polarize the ensemble (via optical pumping) into
an unentangled coherent state along any direction. Then ro-
tate the spin vector (with a magnetic field) so that the z

component is approximately equal to md. Finally, continu-
ously measure z until a time t@1/hM. The final estimate
will be a random Dicke state in the neighborhood of md.
When the trial is repeated, the final states will make up
a distribution described by the initial moments of
Jz (kJzls0d , kDJz

2ls0d , . . . ). To reduce the effects of stray field

fluctuations and gradients, a strong holding field could be
applied along the z axis. Because this Hamiltonian commutes
with the observable Jz, the final open-loop measurement re-
sults would be unchanged.

This process (with zero field) is shown schematically in
Fig. 1 for md=0 where the initial state is polarized along x.
Because kJzls0d=0, the final state with the highest probabil-

ity is the entangled Dicke state md=0. In contrast, if
kJzls0d=J, the state would start in an unentangled CSS po-

larized along z and would not subsequently evolve.
One way of characterizing how close the state is to a

Dicke state is through the variance kDJz
2lstd. Figure 2(A) dis-

plays many trajectories for the variance as a function of time.
For times t!1/hM the variance is approximately determin-
istic and obeys the short-time solution of Eq. (18). During
this period, the mean kJxlstd is decreasing at rate M /2. Be-

fore this mean has completely disappeared, a conditional
spin-squeezed state is created. However, for larger times the
mean and variance stochastically approach zero, and the
state, while still entangled, no longer satisfies the spin
squeezing criterion [16].

There are several features to notice about the approach to
a Dicke state that are evident in Figs. 1 and 2. The variance
at time t=1/hM is already of order unity. Thus, at this point,
only a few neighboring m levels contain any population, as
can be seen in Fig. 1(C). Also, it can be numerically shown
that, for x-polarized initial states, the diffusion of the vari-
ance at long times t@1/hM is bounded above and below by

expf− 2shMt − 1dg/4 , kDJz
2lstd ø 1/4, s41d

which is evident from Fig. 2(A). These facts indicate that the
population is divided among at most two levels at long times
which “compete” to be the final winner. If we assume that
only two neighboring levels are occupied and apply the SSE
(with h=1), the probability p to be in one level obeys the
stochastic equation

dp = − 2Mps1 − pddWstd s42d

and the variance takes the form kDJz
2lstd= ps1− pd. As simple

as it looks, this SDE is not analytically solvable [29,30]. The
maximum variance is 1 /4 and it can be shown that, for p

;1−e, with e small, the lower bound is of the exponential
form stated above, so the two-level assumption seems to be a
good one. The fact that occupied Hilbert space becomes

small at long times is also evident in Fig. 2(C), where the
allowed states are seen to be excluded from certain regions
when h=1. The arclike boundaries of the forbidden space
are where the two-level competition occurs.

In practice, an experimentalist does not always have an
infinite amount of time to prepare a state. Eventually spon-
taneous emission and other decoherence effects will destroy
the dispersive QND approximation that the present analysis
is based upon. Suppose our task were to prepare a Dicke
state with, on average, a desired uncertainty, kDJz

2ld!1, such

that one level was distinguishable from the next. From Eq.
(30), we see that the time that it would take to do this on
average is given by

td = F 1

kDJz
2ld

−
1

kDJz
2ls0d

GY 4Mh . s43d

Thus, if kDJz
2ld!1 is our goal, then td is how long the state

must remain coherent. The larger kDJz
2ls0d is, the more en-

tangled the final states are likely to be sm<0d [16], and

hence, by Eq. (43), the longer it takes to prepare the state for
a given kDJz

2ld. Hence, we arrive at the intuitively satisfying

conclusion that conditional measurement produces entangled
states more slowly than unentangled states. Of course, Eq.
(43) is an average performance limit. In a best case scenario,
the variance would attain the lower bound of Eq. (41) where
the state reduction happens exponentially fast.

D. Performance of suboptimal estimators

Now we consider the performance of the suboptimal esti-
mators discussed previously, in particular the current average
kJzlastd of Eq. (28). It makes sense to associate the overall

“error” of this estimator, denoted Va, to be the average
squared distance of the estimator from the optimal estimator
plus the average uncertainty of the optimal estimator itself,
EfkDJz

2lstdg. Using the martingale properties of the optimal

estimate and the definition of the photocurrent gives this
quantity as

Va ; EfskJzlastd − kJzlstdd
2g + EfkDJz

2lstdg =
1

4Mht
.

s44d

This is just the error in estimating a constant masked by
additive white noise with the same signal-to-noise ratio [23].
The optimal estimator is better than this suboptimal estima-
tor at long times only through the quantity jstd, Eq. (31).

In the open-loop experimental procedure described at the
beginning of the last section, the above observation indicates
that we can replace the optimal estimator with the photocur-
rent average and still resolve the projective behavior (given
sufficient elimination of extraneous noise). The price paid for
the simplicity of the averaging estimator is that it converges
more slowly and it only works when a field is not present
(hence without control).

IV. CLOSED-LOOP EVOLUTION

The primary problem with the open-loop state preparation
scheme (and other approaches [17–19]) is that it is probabi-
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listic. For a single measurement, there exists some degree of
control, by adjusting the initial angle of rotation u, but the
final state is a priori unpredictable within the variance of the
initial state. In this section, we show that the state prepara-
tion can be made deterministic with the use of feedback. Just
as the control scheme of [6,7] produces deterministically
centered spin-squeezed states, we present a simple feedback
controller that will prepare the same desired Dicke state (par-
ticularly md=0) on every measurement trial.

We choose to work with y-axis magnetic field actuator
corresponding to the Hamiltonian, Hstd=gbstdJy. If the CSS
initial state begins in the x-z plane, this will ensure that the

vector kJWlstd remains in this plane. This actuator is natural for

the control of spin-squeezed states at short times, where the

linear moments of kJWlstd are large and allow intuitive rotation

of the spin vector. However, at long times the field will
mostly be affecting nonlinear terms in the moment expansion
and the dynamics are less intuitive as can be seen by the
structure near the z axis in Fig. 2(C). Still, we continue to
give ourselves only these rotations to work with as they are
the most experimentally accessible actuation variable.

In principle, the fact that Dicke states can be prepared
deterministically with feedback should not be surprising.
Given the aforementioned characteristics of the noncon-
trolled measurement one could imagine preparing a particu-
lar state by alternating measurement and control periods. For
example, an initial measurement (lasting for a time Dt
!1/hM) would determine the fluctuation of kJzl while the

uncertainty kDJz
2l simultaneously decreased (on average).

Then the measurement would be turned off and the state
would be rotated with a control field to nullify the condi-
tional quantity kJzl−md (if preparing umdl). The process of

alternating measurement and control could then be repeated
and would eventually clamp down on the desired state. No-
tice that, unlike the preparation of spin-squeezed states [6,7],
this procedure could not be performed with a single measure-
ment and control cycle. In other words, if we measure for a
time t@1/hM and prepare a probabilistic Dicke state, then a
single postmeasurement rotation cannot prepare a different
desired Dicke state in the same basis.

With this intuitive picture in mind, now consider the con-
tinuous limit of this process, where the measurement and
control are performed simultaneously. We wish to find a
mapping from the photocurrent history to the control field
that prepares our state of interest in a satisfactory manner on
every trial. For simplicity, we work with h=1 and use the
SSE of Eq. (5) for all simulations.1 In selecting a controller,
we could choose one of several strategies, including either
direct current feedback or a feedback rule based on the state
(i.e., what has been called Markovian and Bayesian feed-
back, respectively [27,38]). While direct current feedback
possesses certain advantages, mainly simplicity that allows
practical implementation, and is capable of working ad-
equately at short times, any constant gain procedure would
never prepare a Dicke state with confidence. If the current is
directly fed back, a finite amount of noise will unnecessarily
drive the system away from its target, even if the state starts
there. Of course the gain could be ramped to zero in time,
but unlike the short-time case, it is not clear how to tailor the
gain intelligently.

Another alternative would be to prepare a spin-squeezed
state with this approach and then turn off the feedback at
some intermediate time. This would certainly enhance the
probability of obtaining a certain Dicke state, but the process
would remain probabilistic to some degree. For these rea-
sons, we continue considering only state-based feedback, de-
spite the fact that updating the state in real time is experi-
mentally challenging.

A. Defining a cost

A useful first step in the design of any controller is to
define the quantity that the ideal controller should minimize:
the cost function. For example, consider a state preparation
application where the controller aims to produce the desired
target state ucdl. In this case, one possible cost function is the
quantity

U f ; 1 − kcdurucdl ù 0, s45d

evaluated at the stopping time, which is zero iff the fidelity
of the state with respect to the target is unity. In the current
application, where we desire a final Dicke state umdl, we
wish to minimize a different quantity

U ; skJzl − mdd2 + kDJz
2l = Smkmuruml2sm − mdd2 ù 0,

s46d

which is zero iff r= umdlkmdu. Notice that U gives a higher

penalty than U f to states that are largely supported by Dicke
states far removed from the target. In general, U will evolve
stochastically and we may be more interested in the mean
behavior, denoted EfUg. In the uncontrolled case, it can be

shown that this quantity remains constant, EfUstdg=Us0d.
For the controlled case, we wish for EfUg→0 as time ad-

vances, which, because Uù0, implies that every trajectory
approaches the target state umdl.

In general, the cost function could also include an integral
of the quantity Ustd instead of just the final value. As in

classical control theory [23], it is also practical to include a
function of bstd in the cost as a way of expressing our ex-

perimental feedback gain and bandwidth constraints. Ana-
lytically proceeding in this way by optimizing the average
cost is too difficult for the current problem, but with this
perspective in mind, we proceed by proposing controllers
according to related considerations.

B. Control law 1

Now consider the average evolution of the above cost
function, which is given by

dEfUstdg = − 2gEFbstdS kJxJz + JzJxlstd

2
− mdkJxlstdDGdt .

s47d

Because we want this function to continuously decrease, the
right-hand side should be negative at all times. If we have
full access to the density matrix and minimal feedback delay,
we could use the controller
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b1std = lS kJxJz + JzJxlstd

2
− mdkJxlstdD , s48d

where l is a constant positive gain factor. This law guaran-
tees that dEfUstdgø0. Still, this does not yet prove that U

=0 is obtained because dEfUstdg=0 for states other than the

target state. Furthermore, even with this control law applied,
all Dicke states remain fixed points.

Regardless of these issues, we proceed by analyzing the
performance of this control law numerically with md=0. In
principle, the gain could be chosen arbitrarily large. Here we
choose to work with a gain that is large enough to be effec-
tive but small enough to keep the numerical simulation re-
sults valid.1 The choice of a limited gain is a necessity in
both simulation and experiment; thus, we wish to find a con-
trol law that works within this constraint. For the parameters
used in our simulation, we use a gain of l=10 which pro-
duces the results shown in Fig. 3.

In Fig. 3(A), we now plot the figure of merit for md=0,
Ustd= kJz

2lstd. In open-loop configuration, only 25% of all

trajectories are attracted to m=0, whereas with this controller
the percentage reaches 90%. Furthermore, most of these tra-
jectories approach the state at an exponential rate close to M,
as indicated by the curve under which 80% of the trajectories
lie. Interestingly, this is at the expense of those trajectories
that in open loop approached the target state at an exponen-
tial rate of 2M. There is a trade-off by which the control
slightly compromises the convergence of the best case tra-
jectories.

Unfortunately, because all other Dicke states are still fixed
points of the controlled SSE and the gain is finite, a small
fraction (10%) of trajectories are attracted to those states
neighboring the target state. Thus this controller does not
appear to deterministically prepare all trajectories into the
target state and the mean EfkJz

2lstdg flattens at a level deter-

mined by the unsuccessful fraction of trials.

C. Control law 2

The obvious solution to the above problem is to try a
controller that ensures the target state is the only fixed point

of the SME on SSE. In this section we propose the control
law

b2std = lfkJzlstd − mdg , s49d

for which the state umdl is the only fixed point. However,
unlike b1std this controller lacks the x symmetry that ensures

dEfUstdgø0. Also, while the symmetry of b1std will allow it

to lock to both sides of the Bloch sphere, b2std will only lock

to one side of the sphere.
Again, we proceed by numerically analyzing the perfor-

mance of this controller for md=0, with the results displayed
in Fig. 4. The gain is chosen in the same manner as before,
which leads to the same reasonable choice of l=10. In Fig.
4(C) the fundamental nature of the dynamics can be seen.
Close to 90% of the trajectories are directly transported to-
wards the target state, but the remaining “misses” on the first
pass. Instead of being attracted towards other fixed points
though, this unsuccessful fraction is recycled and rotated
back onto the positive x axis where they can reattempt con-
vergence onto the target state. These large excursions can be
seen in Figs. 4(A) and 4(B) as well, but they do not appear to
dominate the net flow. The average of 10 000 trajectories
gives a quantity EfkJz

2lstdg which appears to exponentially

descend towards zero, implying that the state preparation has
been made deterministic. As with the control of b1std there is

again a trade-off: the trajectories that previously descended
at the exponential rate of 2M converge more slowly, but still
exponentially.

V. CONCLUSION

The purpose of this paper is to demonstrate the fact that
the process of continuous projective measurement can be
made deterministic with a theoretically simple and intuitive
state-based control law. In the context of an atomic spin en-
semble, the resulting Dicke states are highly entangled and
otherwise difficult to reliably produce from an initially unen-
tangled state.

However, there is much work to be done in the general
field of quantum-state estimation and control, of which this
is one example. In this pursuit, it is helpful to utilize and

FIG. 3. One hundred closed-loop moment trajectories1 of the SSE with feedback law bstd=lkJxJz+JzJxlstd /2 and l=10 chosen from

numerical considerations. (A), (B) If the control is successful, the quantity kJz
2lstd should go to zero on every trial. For this controller the

number of successful trajectories is increased significantly (from 25% to 90%), but the remaining fraction is attracted to neighboring fixed

points, causing the mean EfkJz
2lstdg to saturate at a nonzero value. Although the successful fraction converges exponentially, the fastest

converging trajectories are slower than in the open-loop case. This is evident in (C) as the converging trajectories have visibly not yet

reached kJxl=0 at time t=5.
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adapt methods from the developed fields of classical stochas-
tic estimation and control theory. In [28], for example, the
problem of this paper is considered for a single spin with
greater emphasis on technical notions of stochastic stability
and convergence. Ultimately, we would like to discover con-
structive methods for deriving optimal control laws given a
cost function and realistic actuators.

Even with an optimal control law in hand, there is no
guarantee that experimental implementation will be possible.
Any analysis should incorporate, among other constraints,
nonunity detection efficiencies and finite controller resources
(bandwidth, memory, etc). For experimental application of
quantum feedback, the controller complexity needs to be re-
duced to the point where the delay is minimal compared to
other dynamical time scales [33]. As in classical control, ef-
fective model reduction techniques are indispensable when it
comes to implementation.

Despite these difficulties, the increasing number of physi-
cal systems that can be measured reliably at the quantum
limit will surely hasten the effort to solve many of these
technical challenges. By respecting the physical basis of
measurement dynamics, experimentalists will be able to
more efficiently use measurement itself, in tandem with more
traditional techniques, to actuate quantum systems into desir-
able states.
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APPENDIX: SOLUTION OF THE SME

WITHOUT A FIELD

An explicit solution to the SME, Eq. (1), can easily be
found in the case Hstd=0. First, the SME is rewritten as

dr̃std = DfÎMJzgr̃stddt + 2MhfJzr̃std + r̃stdJzgystddt .

sA1d

This equation, known as the unnormalized or linear SME, is
equivalent to Eq. (1) with the identification

rstd = r̃std/Trfr̃stdg . sA2d

Introducing the notation

G1r̃ = Jzr̃Jz,

G2r̃ = Jz
2r̃ + r̃Jz

2,

G3r̃ = Jzr̃ + r̃Jz, sA3d

Eq. (A1) can be written in the more suggestive form

dr̃std = MSG1 −
1

2
G2Dr̃stddt + 2MhG3r̃stdystddt . sA4d

Now note that Eq. (A4) is a linear Itô SDE [29] for r̃std, and

moreover G1,2,3 all commute with each other in the sense that
GiG jr̃=G jGir̃. Such SDE’s have a simple explicit solution
[30]

r̃std = expFfMs1 − hdG1 − Ms1 + hdG2/2gt

+ 2MhG3E
0

t

yssddsGr̃s0d , sA5d

as is easily verified by taking the time derivative of this
expression, where care must be taken to use Itô’s rule for the
stochastic term.

Now consider an initial pure state of the form

ucs0dl = o
m=−J

J

cmuml . sA6d

The associated initial density matrix is then

FIG. 4. One hundred closed-loop moment trajectories1 of the SSE with feedback law bstd=lkJzlstd and l=10 chosen from numerical

considerations. (A) The average over 10 000 trajectories suggests that with this control law the mean EfkJz
2lstdg descends to zero exponen-

tially and the target state is deterministically prepared. (B) Despite a number of early excursions, all 100 trajectories shown converge to the

desired value of m=0. (C) Those trajectories that do not descend to the goal directly (about 10 of 100) are recycled and rotated back into the

attractive region of the target state. Again, the control slightly compromises the best-case convergence rate and the trajectories have a

nonzero (but still decreasing) kJxl at t=5.
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r̃s0d = ucs0dlkcs0du = o
m,m8=−J

J

cmc
m8

* umlkm8u . sA7d

Substituting into Eq. (A5) gives

r̃std = o
m,m8=−J

J

cmc
m8

*
expFHMs1 − hdmm8 −

1

2
Ms1 + hdfm2

+ sm8d2gJt + 2Mhsm + m8dE
0

t

yssddsGumlkm8u . sA8d

Hence

TrfJz
kr̃stdg = o

m=−J

J

mkucmu2expF− 2Mhm2t

+ 4mMhE
0

t

yssddsG , sA9d

which is the result used in the text, Eq. (20).
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