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Abstract. In this paper, we give some determinstic differential prop-
erties for the compression function of SHA-3 candidate Blue Midnight
Wish (tweaked version for round 2). The computational complexity is
about 20 compression function calls. This applies to security parame-
ters 0/16, 1/15, and 2/14. The efficient differentials can be used to find
pseudo-preimages of the compression function with marginal gain over
brute force. However, none of these attacks threaten the security of the
BMW hash functions.
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1 Introduction

Blue Midnight Wish [3] (BMW) is one of the 14 second round candidates of
NIST’s cryptographic hash algorithm competition [5]. It was tweaked after be-
ing selected for round 2, apparently in order to resist attacks by Thomsen [7].
Aumasson [1] and Nikolić et al. [6], independently of our work, found some dis-
tinguishers with data complexity 219, and for a modified variant of BMW-512
with probability 2−278.2, respectively. In this paper, we give explicit construc-
tions of message pairs, by tracing the propagation of the differences, to show
some interesting behaviour on certain bits of the output with probability 1.

The paper is organised as follows. Section 2 gives a brief description of BMW.
Then, we introduce some general observations in Section 3, which are further
extended to differentials for BMW variants with security parameters 0/16, 1/15,
2/14, in Sections 4, 5, 6, respectively. A pseudo-preimage attack on the compres-
sion function using such efficient differentials is discussed in Section 7. Section 8
concludes the paper.

2 Description of BMW

BMW is a family of hash functions, containing four major instances, BMW-n,
with n ∈ {224, 256, 384, 512}, where n is the size of the hash output. It follows
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a tweaked Merkle-Damg̊ard structure with double-pipe design, i.e., the size of
the chaining value is twice the output size. Since our differentials concentrate
on the compression function only, we refer to (tweaked for round 2) submission
documents [3] for the descriptions of padding, finalisation, etc.

The compression function bmwn of BMW-n takes the chaining value H and
a message block M as input, and produces the updated chaining value H∗. All
H , M , and H∗ are of 16 words, where the size of a word is 32 bits for BMW-
224/256, and 64 bits for BMW-384/512. We use Xi (i = 0, . . . , 15) to denote the
i-th word of X . The compression function comprises three functions, called f0,
f1, and f2, in sequence. We introduce them here.

The f0 function. A temporary W is introduced as

Wi ← ±(Mi+5 ⊕Hi+5)± (Mi+7 ⊕Hi+7)± (Mi+10 ⊕Hi+10)
±(Mi+13 ⊕Hi+13)± (Mi+14 ⊕Hi+14)

(1)

for i = 0, . . . , 15. By ‘±’ we mean ‘+’ or ‘−’; which operator is used varies and
does not seem to follow any simple pattern (see [3, Table 2.2] for details). Unless
specified otherwise, all additions (and subtractions) are to be taken modulo 2w

(where w is the word size) and all indices for H and M are modulo 16 throughout
this paper. The outputs of f0 are Qi, i = 0, . . . , 15, which are computed as

Qi ← si mod 5(Wi) + Hi+1, (2)

where si are predefined bijective functions with i = 0, . . . , 4; see Appendix A for
the definitions of these. Note that without the feed-forward of Hi+1, the output
of f0 would be a permutation of H⊕M , since the computation of W corresponds
to a multiplication by an invertible matrix.

The f1 function. f1 takes H , M , and Q0, . . . , Q15 (the output from f0) as
input, and produces 16 new words Qj, for j = 16, . . . , 31. The output words
are computed one at a time through 16 rounds. There are two types of rounds,
expand1 rounds and expand2 rounds. We denote the number of expand1 rounds
by R, where R is a security parameter that can take any value between 0 and
16. There are 16 − R expand2 rounds. For the sake of clarity, we shall denote
a specific choice of security parameter by R/(16−R); the value of the security
parameter suggested by the designers is 2/14 (in other words: 2 expand1 rounds
and 14 expand2 rounds).

The 16 output words Q16, . . . , Q31 are computed as follows. An expand1 round
computes

Qj+16 ← AddElement(j) +
15∑

i=0

s(i+1) mod 4(Qi+j−16). (3)

Here, AddElement is defined as:

AddElement(j)← (M≪(j mod 16)+1
j + M

≪(j+3 mod 16)+1
j+3

−M
≪(j+10 mod 16)+1
j+10 + Kj)⊕Hj+7,

(4)
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where X≪n denotes a left-rotation of register X by n positions (by left we mean
towards the most significant bit). The words Kj are round constants equal to
(j + 16) · 0555555555555555h for BMW-384/512 and (j + 16) · 05555555h for
BMW-224/256. An expand2 round computes

Qj+16 ← Qj + r1(Qj+1) + Qj+2 + r2(Qj+3) + Qj+4 + r3(Qj+5) + Qj+6+
r4(Qj+7) + Qj+8 + r5(Qj+9) + Qj+10 + r6(Qj+11)+
Qj+12 + r7(Qj+13) + s4(Qj+14) + s5(Qj+15) + AddElement(j).

(5)

The functions ri are rotation functions; see Appendix A for details.

The f2 function. We list the description of H∗
0 , since our result concerns this

word only.

H∗
0 ← (XH�5 ⊕Q16

�5 ⊕M0) + (XL⊕Q24 ⊕Q0), (6)

where

XL = Q16 ⊕ · · · ⊕Q23,

XH = Q16 ⊕ · · · ⊕Q31.

Some notations. The attacks described in this paper deal with input pairs
for which there is a certain relation on the output pair. Hence, we shall be in-
terested in how differences propagate through the BMW compression function.
We use the following notation (apparently first introduced by De Cannière and
Rechberger [2]) for the difference between two bits: ‘-’ means there is no differ-
ence with probability 1, ‘x’ means there is a difference with probability 1, and
‘?’ means there may or may not be a difference (the probability of a difference
is not 0 or 1, but also may be bounded away from 1/2). When we talk about a
difference in a word, e.g., in a 32-bit word, we write (for instance)

[?????????????????x--------------],

which means that the 14 least significant bits contain no difference, the 15th
least significant bit contains a difference, and the 17 most significant bits may
or may not contain a difference.

With the above descriptions, we are able to introduce our differentials starting
with some important observations on the least significant bit (LSB) of H∗

0 .

3 Observations

Let X [n] denote the nth bit of the word X , where the least significant bit is the
0th bit. Since an addition takes no carry into the least significant bit, we can
state the following expression for the LSB H∗

0 [0] of H∗
0 :

H∗
0 [0] = Q16[5]⊕M0[0]⊕XL[0]⊕Q24[0]⊕Q0[0].
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Given the definition of XL, this expression can be restated as

H∗
0 [0] = M0[0]⊕Q0[0]⊕Q16[5]⊕

24⊕

i=16

Qi[0]. (7)

Hence, H∗
0 [0] does not depend on Q25, . . . , Q31. This means that if we can limit

difference propagation through the first 9 rounds of f1 (where Q16, . . . , Q24 are
computed), and if we can still keep the difference on M0[0] and Q0[0] under our
control, then the bit H∗

0 [0] may be biased.
In the function f1, differences may propagate only very slowly towards the

LSB. Consider an expand2 round:

Qj+16 ← Qj + r1(Qj+1) + Qj+2 + r2(Qj+3) + Qj+4 + r3(Qj+5) + Qj+6+
r4(Qj+7) + Qj+8 + r5(Qj+9) + Qj+10 + r6(Qj+11)+
Qj+12 + r7(Qj+13) + s4(Qj+14) + s5(Qj+15) + AddElement(j).

(8)

The function s5 is defined as

s5(x) = x�2 ⊕ x.

Here x�2 means a right-shift by two bit positions. Hence, if Qj+15 contains a
difference in an expand2 round, then the function s5 propagates this difference
two positions down towards the LSB. For example, the difference

[?????????????????x--------------]

would become

[???????????????????x------------].

4 The Security Parameter 0/16

Consider a variant of BMW with security parameter 0/16, meaning that all
16 rounds in f1 are of the expand2 type. Consider an input pair to the com-
pression function such that there is a difference in Q0 but in no word among
Q1, . . . , Q15, nor in M0, M3, M10, and H7. This difference on Q0 will propagate
to Q16. Due to the additions, the difference may propagate towards the most
significant bit (MSB), but never towards the LSB. Hence, if the t LSBs of Q0

contain no difference, then these bits also contain no difference in Q16. As an
example, the difference [----x----x---------x------------] in Q0 becomes
[???????????????????x------------] in Q16.

In the second round, Q16 will go through the function s5, and the difference
will be shifted two positions towards the least significant bit. In the example
above, we would get [?????????????????????x----------]. Hence, there will
be no difference in the t − 2 least significant bits of s5(Q16). The word Q0 no
longer affects the function f1, and if there is no difference in the t − 2 least
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significant bits of AddElement(1), then Q17 will contain no difference in the
t − 2 LSBs. In the following round (under some conditions on M and H), the
difference again propagates two positions towards the LSB, meaning that the
t− 4 LSBs contain no difference.

The condition that the only difference in the words Q0, . . . , Q15 lies in Q0 can
be enforced by having the same difference in H1 and in M1, and no difference
in all other words of H and M . This means that there is no difference in the
permutation inside f0, but the difference in H1 will be fed forward to Q0. Denote
by Δ the difference on H1 and M1. If Δ has many trailing ‘0’ bits, i.e., there is
no difference in many LSBs of H1 and M1, then the behaviour described above
occurs.

The word M1 is involved in rounds 1, 7, and 14 of f1, and H1 is involved in
round 10. In rounds 1 and 7, M1 is rotated two positions left, and therefore, in
order to keep differences out of the least significant bit positions, we need Δ to
have ‘0’ bits in the two MSB positions. In rounds 9–15, we do not worry about
difference propagation, since this will affect only the words Q25, . . . , Q31, which
are not involved in the computation of H∗

0 [0].
The only remaining potential source of differences in the least significant bit

positions are due to the rotation functions ri. Looking closely at the effects
of these functions one sees that they make no difference in the case of BMW-
224/256, but they do have a significant effect in the case of BMW-384/512. On
the other hand, in BMW-384/512, the “distance” to the LSB is greater, and
therefore it is still possible to obtain interesting results as described now.

The difference Δ with the maximum value of t fulfilling the mentioned re-
quirements is Δ = 261 for BMW-384/512 (and Δ = 229 for BMW-224/256).
Hence, we have the difference

[--x-------------------------------------------------------------]

on H1 and M1, which becomes

[??x-------------------------------------------------------------]

in Q0 due to the feed forward of H1. The 16 words computed in f1 will have the
following differences:

ΔQ16 = [??x-------------------------------------------------------------]

ΔQ17 = [????x-----------------------------------------------------------]

ΔQ18 = [??????x---------------------------------------------------------]

ΔQ19 = [?????????????x--------------------------------------------------]

ΔQ20 = [???????????????-------------------------------------------------]

ΔQ21 = [???????????????????????x----------------------------------------]

ΔQ22 = [?????????????????????????---------------------------------------]
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ΔQ23 = [?????????????????????????????x----------------------------------]

ΔQ24 = [??????????????????????????????????------------------------------]

ΔQ25 = [????????????????????????????????????----------------------------]

ΔQ26 = [????????????????????????????????????????????x-------------------]

ΔQ27 = [??????????????????????????????????????????????x-----------------]

ΔQ28 = [??????????????????????????????????????????????????--------------]

ΔQ29 = [???????????????????????????????????????????????????????---------]

ΔQ30 = [?????????????????????????????????????????????????????????-------]

ΔQ31 = [????????????????????????????????????????????????????????????????]

The end result in the output word H∗
0 is the difference (one can verify this by

substituting all above differences to Eqn. (6))

[???????????????????????????????????????????????????????????-----].

Hence, there is no difference in the 5 LSBs with probability 1. In fact, there is
also a strong bias in H∗

5 , which has the difference
[??????????????????????????????????????????????????????????------].

For BMW-224/256 one gets a similar behaviour; the difference on H∗
0 is

[???????????????????????????-----],

and the difference on H∗
5 is [????????????????????????????x---].

5 The Security Parameter 1/15

When there is a single expand1 round in the beginning of f1, followed by 15
expand2 rounds, we can get a similar behaviour as described in the previous
section if we can find a difference Δ with many LSBs equal to 0, and such that
s1(Δ) also has many LSBs equal to 0. We shall investigate this in a moment.

Now, in order to keep the difference Δ from being changed by the feed-forward
with H in f0, we need a few more conditions on H and M compared to the
security parameter 0/16. What we need is that s0(W0) contains ‘0’ bits in the
positions where Δ contains ‘1’ bits. An easy way to ensure this is by requiring
that Mi and Hi are equal to zero for i ∈ {5, 7, 10, 13, 14}. Alternatively, without
introducing any requirements, the condition is fulfilled with probability 2−||Δ||,
where ||Δ|| is the Hamming weight of Δ excluding the MSB.

5.1 Searching for Good Differences

In order to simplify the discussion we introduce the following function:

P (X) = min{i |ΔX [i] �= ‘-’}.
In words, P (X) is the number of consecutive least significant bits of X , which
certainly contain no difference. It is clear that P (X+Y ) ≥ min(P (X), P (Y )), and
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P (X��) = max(P (X)− �, 0). In the case of rotations, we have that if � ≤ P (X),
then P (X≫�) = P (X)− �. For BMW-384/512, we have the following:

P (s5(X)) = P (X)− 2, since s5(X) = X�2 ⊕X
P (s4(X)) = P (X)− 1, since s4(X) = X�1 ⊕X
P (r7(X)) = P (X)− 11, since r7(X) = X≪53 = X≫11

P (r6(X)) = P (X)− 21, since r6(X) = X≪43 = X≫21

P (r5(X)) = P (X)− 27, since r5(X) = X≪37 = X≫27.

The last three identities are on the condition that � ≤ P (X), where � is the
(right) rotation value.

As above, we assume that among {Q0, . . . , Q15}, only Q0 contains a difference,
and among {Hi} ∪ {Mi}, only H1 and M1 contain a difference. This happens if
the differences in H1 and M1 are the same. Now we track the differences going
into each of the first nine rounds of f1. Below we have listed the (modified) input
words that contain a difference in each round.

Q16 : s1(Q0)
Q17 : s5(Q16), M≪2

1

Q18 : s5(Q17), s4(Q16)
Q19 : s5(Q18), s4(Q17), r7(Q16)
Q20 : s5(Q19), s4(Q18), r7(Q17), Q16

Q21 : s5(Q20), s4(Q19), r7(Q18), Q17, r6(Q16)
Q22 : s5(Q21), s4(Q20), r7(Q19), Q18, r6(Q17), Q16

Q23 : s5(Q22), s4(Q21), r7(Q20), Q19, r6(Q18), Q17, r5(Q16), M≪2
1

Q24 : s5(Q23), s4(Q22), r7(Q21), Q20, r6(Q19), Q18, r5(Q17), Q16

(9)

The goal is to find differences Δ in Q0 such that the LSB of Qi, for all i,
16 ≤ i ≤ 24, contains a strong bias. This bias is preferably in the form of a
difference or no difference with probability 1. We now identify the minimum
requirements on Δ in order for this to happen. We assume the difference on H1

and M1 is also Δ, i.e., that there is no propagation of bit differences in the feed
forward of H1 in f0.

We first find the bare requirements on Q16 in order to reach our goal. The
round in which the P -value of Q16 drops the most is round 7 (computing Q23),
in which r5 is computed on Q16. This yields the requirement P (Q16) ≥ 27.

The requirements on Q17 are similarly found to be P (Q17) ≥ 27. This “up-
dates” the requirement on Q16 due to the dependence of Q17 on Q16, which
means that we get P (Q16) ≥ 29.

If we continue like this, we find requirements on subsequent words of Q, which
may iteratively require updates to requirements on previous words. The end
result is that the requirement on Q16 becomes P (Q16) ≥ 32 and the requirement
on M1 is P (M1) ≥ 25 combined with the requirement that there is no difference
in the two MSBs of M1. Hence, we search for a difference Δ which has ‘0’ bits
in the two MSB positions, and such that Δ ends with 25 ‘0’ bits and s1(Δ) ends
with 32 ‘0’ bits.
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The function s1 can be described as a matrix multiplication over F2. The
matrix S1 has 64 rows and columns, and the input x is viewed as a 64-bit
column vector. Then we have s1(x) = S1 · x. Searching for a good difference
Δ corresponds to finding the kernel of a submatrix Ŝ1 of S1, in which rows
0, . . . , 31 and columns 0, 1, and 39, . . . , 63 are removed. Hence, we keep the
columns corresponding to input bits that may contain a difference, and we keep
the rows corresponding to output bits which must contain no difference. See
Fig. 1.

Ŝ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . .

. . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1 . . .

. . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1 . .

. . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1 .

. . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1

. . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . .

. . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 .

. . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . .
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . .
. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . .
. . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . .
. . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . .
. . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . .
. . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .
. . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. The matrix Ŝ1 over F2 (a dot means ‘0’)

The kernel of Ŝ1 has dimension 5 and hence contains 25 − 1 =
31 non-zero vectors. Five basis vectors of the kernel correspond to the
64-bit words 0204800008000000h, 0102400004000000h, 1004000040000000h,
0081200002000000h, and 2401000090000000h, and so any linear combination
of these (except 0) can be used as a value for Δ. As an example, if we choose
Δ = 1004000040000000h (and assuming Δ is not changed by the feed-forward
in f0), we have the following differences with probability 1 (the words Qi for
1 ≤ i < 16 contain no difference):
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ΔQ0 = [---x---------x-------------------x------------------------------]

ΔQ16 = [???????????????????????????????x--------------------------------]

ΔQ17 = [?????????????????????????????????x------------------------------]

ΔQ18 = [???????????????????????????????????x----------------------------]

ΔQ19 = [??????????????????????????????????????????x---------------------]

ΔQ20 = [????????????????????????????????????????????--------------------]

ΔQ21 = [????????????????????????????????????????????????????x-----------]

ΔQ22 = [??????????????????????????????????????????????????????----------]

ΔQ23 = [??????????????????????????????????????????????????????????x-----]

ΔQ24 = [???????????????????????????????????????????????????????????????-]

Hence, XL will be

[??????????????????????????????????????????????????????????x-----],

and from (7) we see that H∗
0 [0] will contain no difference with probability 1.

For BMW-224/256, a similar investigation results in a solution space for
Δ of dimension 2, parametrised by the vectors 08901000h and 20404000h.
As an example, with Δ = 20404000h we have the following differences with
probability 1:

ΔQ0 = [--x------x-------x--------------]

ΔQ16 = [???????????????x----------------]

ΔQ17 = [?????????????????x--------------]

ΔQ18 = [???????????????????x------------]

ΔQ19 = [?????????????????????x----------]

ΔQ20 = [???????????????????????x--------]

ΔQ21 = [?????????????????????????x------]

ΔQ22 = [???????????????????????????x----]

ΔQ23 = [?????????????????????????????x--]

ΔQ24 = [???????????????????????????????x]

Hence, XL will be [?????????????????????????????x--], and H∗
0 [0] will con-

tain a difference with probability 1. If we instead take Δ to be the xor of the
two basis vectors, then H∗

0 [0] will contain no difference with probability 1.

6 The Security Parameter 2/14

The results described above cannot be directly extended to the security param-
eter 2/14. The reason is that the difference in Q16 goes through s0 instead of s5

in round 1. s0 is much more effective in spreading differences than s5.
However, we observe that it is still possible if we are lucky (as attacker) enough

to get the differences in some LSBs cancelled. Note that when the security pa-
rameter is 2/14 instead of 1/15, we have the same dependencies (see (9)) except
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that Q17 depends on s0(Q16) instead of on s5(Q16). Hence, we may investigate
whether the requirement P (Q17) ≥ 27 that we found above holds for some Δ
among the 31 candidates mentioned above. Unfortunately, this is not the case.

Instead, we may allow differences in the 25 LSBs of Q0 and hope that the
modular addition cancels the differences in the 27 LSBs of s0(s1(Q0)) and M≪2

1 ,
which are the only terms in the computation of Q17 that contain differences. We
still need s1(Q0) to contain no difference in the 32 LSBs, and we also need M1

to have no difference in the two MSBs. So we search for Δ so that s0(s1(Δ)) and
Δ≪2 agree in the 27 LSBs, and so that s1(Δ) has ‘0’ bits in the 32 LSBs and
Δ has ‘0’ bits in the two MSBs.

Let S0 and S1 denote the bit matrices corresponding to the functions s0 and
s1, and let R2 denote the bit matrix corresponding to the operation x≪2. Let
Λ = s1(Δ); this means that we are interested in Λ having 32 trailing ‘0’ bits,
and such that S0 ·Λ and R2 ·S−1

1 ·Λ agree in the 27 LSBs (where Λ in this case is
viewed as a 64-bit column vector). Hence, similar to the situation above for the
security parameter 1/15, we are in fact interested in the kernel of a submatrix of
S0−R2 ·S−1

1 . The submatrix is the 27×32 matrix where the last 32 columns and
the first 37 columns are removed. Moreover, we need Λ to be such that s−1

1 (Λ)
has ‘0’ bits in the two MSBs.

It turns out that the kernel of this submatrix has dimension 5 and is
parametrised by the vectors that can be found in the table below, where also
the corresponding Δs are listed.

Λ Δ = s−1
1 (Λ)

80D2227300000000h 2B0D8FF05891139Ah

48002F6000000000h 29A78CAE96017B01h

22C4DC6100000000h 89ABBD3D9226E308h

10D27CB300000000h 784296AD7493E598h

01201CFD00000000h 28E58FDD2900E7E8h

Clearly, there are 7 (non-zero) linear combinations that contain only ‘0’ bits in
the two MSB positions and therefore admit a bias of the type ‘-’ or ‘x’ in H∗

0 [0].
One of these (Δ = 28E58FDD2900E7E8h) also admits this type of bias in H∗

0 [1].
Moreover, among the remaining 24 non-zero linear combinations, there are 16
which admit a weaker bias in the sense that H∗

0 [0] contains a difference with
probability about 3/8 or 5/8 (i.e., a bias 1/8, estimated from many experiments).
Note that a difference in the two MSBs of M1 is no longer a problem in round
1, since we obtain the required difference in round 1 by having the differences in
the 27 LSBs of s0(Q16) and M≪2

1 cancel. This can be ensured through simple
message modifications, as explained in the following.

First, we choose H1 = M1 = 0. Then we choose Hi and Mi at random, i ∈
{0, 2, 3, . . . , 15}. We then correct M5 such that Q0 = 0. Hence, Q0⊕Δ = Δ, and
so all bit differences in Q0 are of the form 0→ 1. We then correct Q8 (through
proper choice of H9 and M9, without affecting other words) such that Q16 = 0.
This ensures that there is no carry propagation after adding the difference Λ on
s1(Q0). Hence, the difference on Q16 will be Λ as required. This, in turn, means
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that s0(Q16) will result in a difference that is the same as the difference on M≪2
1

in the 27 LSB positions. All bit differences in s0(Q16) will be of the form 0→ 1.
We can make the difference on M≪2

1 cancel the difference on s0(Q16) (in the 27
LSBs) by making sure that all bit differences on M≪2

1 are of the form 1 → 0.
This is ensured by correcting M11 so that AddElement(1) = 0 and by choosing
H8 = FFFFFFFFFFFFFFFFh. Note that this can be done in the very beginning,
since these values do not depend on any values of Q. There are still many degrees
of freedom left in the attack.

For BMW-224/256, we get the following three solutions:

Λ Δ = s−1
1 (Λ)

99108000h 5CD58223h

54E68000h 6A2F79CCh

245B0000h 872008B6h

Only the xor of the first two basis vectors fulfils the requirement that the two
MSBs of Δ are ‘0’ bits. Using this value of Δ (and with a similar message
modification as above), one gets that the LSB of H∗[0] is always ‘-’. Four out
of the remaining six non-zero linear combinations yield a difference in the same
bit with probability 3/8 or 5/8 (again an estimate based on experiments).

C program. The differential properties described in this section are demon-
strated in a C program available for download [4].

7 Potential Applications

In this section, we show how to convert the efficient differentials into pseudo-
preimages of the compression function. To describe the attack, we consider a
small ideal case: assume we have a set of differences D1, D2, D3 such that the
differentials give [-x], [x-], and [xx] on two output bits, respectively. Given
any target T , we perform the pseudo-preimage attack as follows.

1. Randomly choose (H, M) from the set of inputs that fulfil the requirements
for the differentials. Compute H∗ = bmwn(H, M).

2. Compare H∗ with T for the two bits.
3. If it gives [--], further compare others bits;
4. else if it gives [-x], compare bmwn(H ⊕D1, M ⊕D1) with T ;
5. else if it gives [x-], compare bmwn(H ⊕D2, M ⊕D2) with T ;
6. else if it gives [xx], compare bmwn(H ⊕D3, M ⊕D3) with T .
7. Repeat steps 1-6 until a full match is found.

Note, steps 2-5 each gives a full match with probability 22−n′
(with n′ the size

of the chaining value). Hence, the expected time complexity is 2n′−2 × (1 +
3/4) 
 2n′−1.2, with negligible memory requirements. More generally, if there
are 2k − 1 differences giving all possible 2k − 1 probability 1 differentials on k
output bits of the compression function, then the pseudo-preimage takes time
about 2n′−k · (2− 2−k) 
 2n′−k+1.
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In the case of BMW-512, we only have differences giving differentials on the
2 LSBs of H∗

0 with [x-], [?x], and [x?]. This can be converted into a pseudo-
preimage of bmw512 in time 21023.2.

An interesting problem here is to find more such differentials, such that the
complexity could be further reduced. Moreover, if the differentials work on the
lower half of the output bits (those to be taken as the output of the hash func-
tion), then the pseudo-preimage on the compression function can be further
extended to a pseudo-preimage attack on the hash function.

8 Conclusion

We have described some determinstic differential properties for the BMW com-
pression function with security parameters 0/16, 1/15 and 2/14: by choosing a
certain xor difference in two input words to the compression function (and with
conditions on absolute values of a few other words), a single (or a few) output
bits of the compression function contain a difference with probability 0 or 1.

The differentials work for the compression function only, and do not affect
the security of the hash function because of the additional blank invocation of
the compression function before returning the hash output. Moreover, H∗

0 is
discarded in the final hash output, and only the least significant half (or less)
bits of H∗ of the final compression are taken.

Combining with more sophisticated message modification techniques, the dif-
ferentials might be further extended to higher security parameters, hence in-
creasing security parameter might not be enough to resist them. Tweaking the
rotation values for the si and ri functions may work, under the condition that
the tweak does not affect other security properties.

Another interesting problem to consider is to devise differentials on other
output words than merely H∗

0 . In particular, a bias on one of the output words
H∗

8 , . . . , H∗
15 would be interesting.

We note that tracing the propagation of differences, as done in this paper,
might help to explain the distinguisher found by Aumasson [1].
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3. Gligoroski, D., Kĺıma, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjølsnes,
S.F.: Cryptographic hash function BLUE MIDNIGHT WISH. Submission to NIST
(Round 2) (September 2009),
http://people.item.ntnu.no/ danilog/Hash/BMW-SecondRound/Supporting

Documentation/BlueMidnightWishDocumentation.pdf (March 22, 2010)
4. Guo, J., Thomsen, S.S.: C program that demonstrates the distinguisher,

http://www2.mat.dtu.dk/people/S.Thomsen/bmw/bmw-distinguisher.zip

5. National Institute of Standards and Technology. Announcing Request for Candidate
Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family.
Federal Register 27(212), 62212–62220 (November 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (April
7, 2009)
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s4(x) = x�1 ⊕ x s4(x) = x�1 ⊕ x

s5(x) = x�2 ⊕ x s5(x) = x�2 ⊕ x

r1(x) = x≪3 r1(x) = x≪5
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r3(x) = x≪13 r3(x) = x≪27
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r5(x) = x≪19 r5(x) = x≪37

r6(x) = x≪23 r6(x) = x≪43

r7(x) = x≪27 r7(x) = x≪53
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