
 Open access Proceedings Article DOI:10.1145/1835698.1835797

Deterministic distributed vertex coloring in polylogarithmic time — Source link

Leonid Barenboim, Michael Elkin

Institutions: Ben-Gurion University of the Negev

Published on: 25 Jul 2010 - Principles of Distributed Computing

Topics: Vertex (graph theory), Deterministic algorithm and Arboricity

Related papers:

 Locality in distributed graph algorithms

 Distributed (δ+1)-coloring in linear (in δ) time

 On the complexity of distributed graph coloring

 A fast and simple randomized parallel algorithm for the maximal independent set problem

 Network decomposition and locality in distributed computation

Share this paper:

View more about this paper here: https://typeset.io/papers/deterministic-distributed-vertex-coloring-in-polylogarithmic-
27834lrc7r

https://typeset.io/
https://www.doi.org/10.1145/1835698.1835797
https://typeset.io/papers/deterministic-distributed-vertex-coloring-in-polylogarithmic-27834lrc7r
https://typeset.io/authors/leonid-barenboim-2ivfb7o2qr
https://typeset.io/authors/michael-elkin-2zjauz8e6q
https://typeset.io/institutions/ben-gurion-university-of-the-negev-2goi3hza
https://typeset.io/conferences/principles-of-distributed-computing-q13081fg
https://typeset.io/topics/vertex-graph-theory-1q51dwyw
https://typeset.io/topics/deterministic-algorithm-ah16ig5t
https://typeset.io/topics/arboricity-17lpawnh
https://typeset.io/papers/locality-in-distributed-graph-algorithms-2fx0ayme17
https://typeset.io/papers/distributed-d-1-coloring-in-linear-in-d-time-2e80k0idhu
https://typeset.io/papers/on-the-complexity-of-distributed-graph-coloring-1wki5d6q9o
https://typeset.io/papers/a-fast-and-simple-randomized-parallel-algorithm-for-the-15rirfjm6y
https://typeset.io/papers/network-decomposition-and-locality-in-distributed-3vld44smkz
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/deterministic-distributed-vertex-coloring-in-polylogarithmic-27834lrc7r
https://twitter.com/intent/tweet?text=Deterministic%20distributed%20vertex%20coloring%20in%20polylogarithmic%20time&url=https://typeset.io/papers/deterministic-distributed-vertex-coloring-in-polylogarithmic-27834lrc7r
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/deterministic-distributed-vertex-coloring-in-polylogarithmic-27834lrc7r
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/deterministic-distributed-vertex-coloring-in-polylogarithmic-27834lrc7r
https://typeset.io/papers/deterministic-distributed-vertex-coloring-in-polylogarithmic-27834lrc7r

Deterministic Distributed Vertex Coloring
in Polylogarithmic Time

Leonid Barenboim∗

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, Israel.
leonidba@cs.bgu.ac.il

Michael Elkin∗

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, Israel.
elkinm@cs.bgu.ac.il

ABSTRACT

Consider an n-vertex graph G = (V, E) of maximum degree
∆, and suppose that each vertex v ∈ V hosts a processor.
The processors are allowed to communicate only with their
neighbors in G. The communication is synchronous, i.e., it
proceeds in discrete rounds.

In the distributed vertex coloring problem the objective
is to color G with ∆ + 1, or slightly more than ∆ + 1, col-
ors using as few rounds of communication as possible. (The
number of rounds of communication will be henceforth re-
ferred to as running time.) Efficient randomized algorithms
for this problem are known for more than twenty years [1,
19]. Specifically, these algorithms produce a (∆+1)-coloring
within O(log n) time, with high probability. On the other
hand, the best known deterministic algorithm that requires
polylogarithmic time employs O(∆2) colors. This algorithm
was devised in a seminal FOCS’87 paper by Linial [16]. Its
running time is O(log∗ n). In the same paper Linial asked
whether one can color with significantly less than ∆2 colors
in deterministic polylogarithmic time. By now this question
of Linial became one of the most central long-standing open
questions in this area.

In this paper we answer this question in the affirmative,
and devise a deterministic algorithm that employs ∆1+o(1)

colors, and runs in polylogarithmic time. Specifically, the
running time of our algorithm is O(f(∆) log ∆ log n), for
an arbitrarily slow-growing function f(∆) = ω(1). We can
also produce O(∆1+η)-coloring in O(log ∆ log n)-time, for
an arbitrarily small constant η > 0, and O(∆)-coloring in
O(∆ǫ log n) time, for an arbitrarily small constant ǫ > 0.
Our results are, in fact, far more general than this. In par-
ticular, for a graph of arboricity a, our algorithm produces
an O(a1+η)-coloring, for an arbitrarily small constant η > 0,
in time O(log a log n).

∗This research has been supported by the Israeli Academy of
Science, grant 483/06, and by the Binational Science Foun-
dation, grant No. 2008390.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on Discrete Structures; G.2.2 [Graph Theory]:
Network Problems

General Terms

Algorithms

Keywords

Arboricity, Arbdefective-Coloring, Partial-Orientation

1. INTRODUCTION
1.1 Background and Previous Research

In the message passing model of distributed computing the
network is modeled by an n-vertex undirected unweighted
graph G = (V, E), with each vertex hosting its own pro-
cessor with a unique identity number. These numbers are
assumed to belong to the range {1, 2, ..., n}. Initially, each
vertex v knows only its identity number id(v). The vertices
communicate over the edges of E in the synchronous man-
ner. Specifically, computations (or equivalently, algorithms)
proceed in discrete rounds. In each round each vertex v is
allowed to send a message to each of its neighbors. All mes-
sages that are sent in a certain round arrive to their desti-
nations before the next round starts. The number of rounds
that elapse from the beginning of the algorithm until its end
is called the running time of the algorithm.

In the vertex coloring problem one wants to color the ver-
tices of V in such a way that no edge becomes monochro-
matic. It is very easy to color a graph G of maximum degree
∆ = ∆(G) in ∆ + 1 colors using n rounds. Coloring it in
∆+1, or slightly more than ∆+1, colors far more efficiently
is one of the most central and fundamental problems in dis-
tributed computing. In addition to its theoretical appeal,
the problem is also very well motivated by various real-life
network tasks [21].

The vertex coloring problem is also closely related to the
maximal independent set (henceforth, MIS) problem. A sub-
set U ⊆ V is an independent set if there is no edge (u, u′) ∈ E
with both endpoints in U . It is an MIS if for every vertex
v ∈ V \U , the set U

⋃{v} is not an independent set. A clas-
sical reduction of Linial [17] shows that given a (distributed)
algorithm for computing an MIS on general graphs, one can
obtain a (∆ + 1)-coloring within the same time.

The (distributed) vertex coloring and MIS problems have
been intensively studied since the mid-eighties. Already in

1986 Luby [19] and Alon, Babai and Itai [1] devised random-
ized algorithms for the MIS problem that require O(log n)
time. Using Linial’s reduction [17] these results imply that
(∆ + 1)-coloring can also be computed in randomized log-
arithmic time. More recently, Kothapalli et al. [13] de-
vised a randomized O(∆)-coloring algorithm that requires
O(

√
log n) time. On the other hand, the best known deter-

ministic algorithm that requires polylogarithmic time em-
ploys O(∆2) colors. Specifically, its running time is O(log∗ n)1.
This algorithm was devised in a seminal FOCS’87 paper of
Linial [17]. In the end of this paper Linial argued that his
method cannot be used to reduce the number of colors be-
low

(

∆+2
2

)

, and asked whether this can be achieved by other
means. Specifically, he wrote

”Proposition 3.4 of [EFF] shows that set systems of the
type that would allow further reduction of the number of
colors do not exist. Other algorithms may still be capable
of coloring with fewer colors. It would be interesting to

decide whether this quadratic bound can be improved

when time bounds rise from O(log∗ n) to polylog, for

instance.”
By now, almost quarter a century later, this open question

of Linial became one of the most central long-standing open
questions in this area.
1.2 Our Results
In this paper we answer this question in the affirmative.
Specifically, for an arbitrarily small constant η > 0, our al-
gorithm constructs an O(∆1+η)-coloring in O(log ∆ log n)
time. Moreover, we show that one can trade time for the
number of colors, and devise a ∆1+o(1)-coloring algorithm
with running time O(f(∆) log ∆ log n), where f(∆) = ω(1)
is an arbitrarily slowly-growing function of ∆. Also, our al-
gorithm can produce an O(∆)-coloring in O(∆ǫ log n) time,
for an arbitrarily small constant ǫ > 0. All our algorithms
are deterministic.

Currently, the state-of-the-art bound for deterministic
O(∆1+η)-coloring (respectively, ∆1+o(1)-coloring; resp., O(∆)-

coloring) is min{O(∆1−η + log∗ n), 2O(
√

log n)} (respectively,

min{∆1−o(1)+O(log∗ n), 2O(
√

log n)}; resp., min{O(∆+log∗ n),

2O(
√

log n)}). (Algorithms that produce O(∆ · t)-coloring in
O(∆/t + log∗ n) time were devised in [4] and in [14]. The

algorithm of [22] requires 2O(
√

log n) time.) Our results con-
stitute an exponential improvement over this state-of-the-art
for large values of ∆ (i.e., ∆ = 2Ω(logǫ n), for some constant
ǫ > 0), and a significant improvement in the wide range of

∆ = log1+Ω(1) n.
In addition, our results are, in fact, far more general than

described above. Specifically, we consider graphs with bounded
arboricity 2 rather than bounded degree. This is a much
wider family of graphs that contains, in addition to graphs
of bounded degree, the graphs of bounded genus, bounded
tree-width, graphs that exclude a fixed minor, and many
other graphs. All the results that we have stated above ap-
ply to graphs of arboricity at most a. (One just needs to
replace ∆ by a in the statements of all results. We remark
that a graph with maximum degree ∆ has arboricity at most
∆ as well.) One interesting consequence of this extension is

1log∗ n is the smallest integer t such that the t-iterated log-
arithm of n is no greater than 2, i.e., log(t) n ≤ 2.
2The arboricity of a graph G = (V, E) is the minimal number
a such that the edge set E of G can be covered with at most
a edge disjoint forests.

that if the arboricity a and the degree ∆ of a graph are poly-
nomially separated one from another (i.e., if there exists a
constant ν > 0 such that a ≤ ∆1−ν) then our algorithm con-
structs a (∆+1)-coloring 3 in O(log a·log n) = O(log ∆·log n)
time.

We also show that one can decrease the running time fur-
ther almost all the way to log n, while still having less than
a2 colors. Specifically, we show that in O(log log a log n)
time one can construct an O(a2/ logC a)-coloring, for an ar-
bitrarily large constant C. More generally, for any function
ω(1) = f(a) = o(log a), one can construct an O(a2/2f(a))-
coloring in O(f(a) log n) time.

Our algorithms for coloring graphs of arboricity a also
compare very favorably with the current state-of-the-art.
Specifically, the fastest algorithm known today for O(a)-
coloring [3] requires O(a log n) time. Our algorithm pro-
duces O(a)-coloring in O(aǫ log n) time, for arbitrarily small
constant ǫ > 0. The best known tradeoff between the num-
ber of colors and the running time (also due to [3]) is O(a·t)-
coloring in O(a

t
log n + log n + a) time. We improve this

tradeoff and show that O(a · t)-coloring can be computed
in just O((a

t
)ǫ log n) time, for an arbitrarily small constant

ǫ > 0. In some points on the tradeoff curve the improve-
ment is even greater than that. For example, we com-
pute an O(a1+η)-coloring, for an arbitrarily small η > 0,
in O(log a log n) time, while the previous bound was

O(a1−η log n + a) time. Similarly, our a1+o(1)-coloring al-
gorithm requires O(f(a) log a log n) time, for any function

f(a) = ω(1), while the previous bound was a1−o(1) · log n +
O(a) time.

Finally, our results imply improved bounds for the deter-
ministic MIS problem on graphs of bounded arboricity a.
Specifically, our algorithm produces an MIS in time O(a +
aǫ log n), for an arbitrarily small constant ǫ > 0. The previ-

ous state-of-the-art is min{O(a
√

log n + log n), 2O(
√

log n)}
due to [3, 22]. Hence our result is stronger in the wide range

log1/2+Ω(1) n ≤ a ≤ 2c
√

log n, for some universal constant
c > 0.
1.3 Our Techniques and Overview of the Proof
We employ a combination of a number of different existing
approaches, together with a number of novel ideas. The
first main building block is the machinery for constructing
distributed forests decomposition, developed by us in a pre-
vious paper [3]. Specifically, it is known [3] that a graph
G = (V, E) of arboricity a can be efficiently decomposed
into O(a) edge-disjoint forests in O(log n) time. Moreover,
these forests come with a complete acyclic orientation of the
edges of E. In other words, both endpoints u and v of ev-
ery edge e = (u, v) ∈ E know the identity of the forest F
to which the edge e ends up to belong, and the parent-child
relation of u and v in F . In addition, this forests decomposi-
tion comes along with another useful graph decomposition,
called H-partition. Roughly speaking, an H-partition is a
decomposition of the vertex set V of G into ℓ = O(log n) ver-
tex sets H1, H2, ..., Hℓ, such that each G(Hi), i = 1, 2, ..., ℓ
is a graph with maximum degree O(a). (See Section 2.2 for
more details.) This decomposition is extremely useful, as it
allows one to apply algorithms that were devised for graphs
of bounded degree on graphs of bounded arboricity. We will
discuss this point further below.

The second main building block is the suite of algorithms

3Actually, even o(∆)-coloring.

for constructing defective colorings, developed by us in an-
other previous paper (in STOC’09 [4, 5]), and by Kuhn (in
SPAA’09 [14]). These algorithms enable one to efficiently
decompose a graph G of maximum degree ∆ into h = O(t2)
subgraphs G′

1, G
′
2, ..., G

′
h, of maximum degree ∆′ = O(∆/t)

each. This decomposition was used in [4, 14] for devising
(∆ + 1)-coloring algorithms that run in O(∆ + log∗ n) time.
It is a natural idea to construct this decomposition and then
to recurse on each of the subgraphs. However, unfortunately,
the product h·∆′ may be significantly larger than ∆. Hence,
in this simplistic form this approach is doomed either to have
a large running time or to use prohibitively many colors.

The approach that we employ in this paper is based on
arbdefective colorings. While defective coloring is a classical
graph-theoretic notion [6, 11], arbdefective coloring is a new
concept that we introduce in this paper. It generalizes the
notion of defective coloring. A coloring ϕ is an r-arbdefective
k-coloring if it employs k colors, and each color class induces
a subgraph of arboricity at most r. We demonstrate that
in a graph G of arboricity a, an r-arbdefective k-coloring
with r · k = O(a) can be efficiently computed. Here the
combination of parameters is significantly better than in the
case of defective colorings, and consequently, recursing on
each of the subgraphs gives rise to an efficient algorithm for
O(a)-coloring of the original graph G.

A key idea of our O(a)-coloring algorithm is a partition of
the input graph (whose arboricity is a) into k subgraphs of
smaller arboricity O(a/k) each, for a certain positive param-
eter k. Note that the product of the number of subgraphs
and the arboricity in each subgraph is O(a). Then each
of the subgraphs is partitioned again into subgraphs of yet
smaller arboricity. However, the product of the number of
subgraphs and the arboricity of each subgraph still remains
O(a). This refinement procedure of partitioning is repeated
for several phases until the arboricity of all subgraphs is suf-
ficiently small. Consequently, we achieve an r′-arbdefective
k′-coloring ϕ, for a sufficiently small integer r′. Then we
invoke a known algorithm form [3] for coloring graphs of
bounded arboricity on each of the k′ subgraphs induced by
the color classes of ϕ in parallel. Since the arboricity of
each of these k′ subgraphs is at most r′, this step requires
O(r′ log n) time, and provides O(r′)-coloring for each sub-
graph. It is then easy to combine these colorings into a
unified O(r′ · k′) = O(a)-coloring of the original graph.

Another intricate part of our argument is the routine that
computes an O(∆/t)-arbdefective t-coloring of a graph G
with maximum degree at most ∆. In this part of the proof
we manipulate with orientations in a novel way. A complete
orientation σ assigns a direction to each edge e = (u, w) of G.
Orientations play a central role in the theory of distributed
graph coloring [7, 17, 13]. We introduce the notion of partial
orientations. A partial orientation σ is allowed not to ori-
ent some edges of the graph. Specifically, we say that σ has
deficit at most d, for some positive integer parameter d, if
for every vertex v in the graph the number of edges incident
to v that σ does not orient is no greater than d. Another
important parameter of an orientation σ is its length, de-
fined as the length of the longest path P in which all edges
are oriented consistently according to σ. We demonstrate
that partial orientations with appropriate deficit and length
parameters can be constructed efficiently. Moreover, these
orientations turn out to be extremely useful for computing
arbdefective colorings. We believe that the notion of partial

orientation, and our technique of constructing these orien-
tations are of independent interest.
1.4 Related Work
There is an enormous amount of literature on distributed
graph coloring. Already before the work of Linial, Cole and
Vishkin [7] devised a deterministic 3-coloring algorithm with
running time O(log∗ n) for oriented 1 rings. In STOC’87
Goldberg and Plotkin [9] generalized the algorithm of [7]
and obtained a (∆+1)-coloring algorithm with running time

2O(∆) + O(log∗ n). Also, Goldberg, Plotkin, and Shannon
[10] devised a (∆ + 1)-coloring algorithm with running time
O(∆ log n). In FOCS’89 Awerbuch, Goldberg, Luby and

Plotkin [2] devised a 2O(
√

log n log log n)-time deterministic al-
gorithm for the MIS, and consequently, for the (∆ + 1)-
coloring problem. In STOC’92 Panconesi and Srinivasan

[22] improved this upper bound to 2O(
√

log n). More recently,
in PODC’06 Kuhn and Wattenhofer [15] devised a (∆ + 1)-
coloring algorithm with running time O(∆ log ∆ + log∗ n).
In STOC’09 Barenboim and Elkin [4, 5], and independently
Kuhn [14] in SPAA’09, devised a (∆+1)-coloring algorithm
with running time O(∆ + log∗ n).

Another related thread of study is the theory of distributed
graph decompositions. (See the book of Peleg [21] for an ex-
cellent in-depth survey of this topic.) In particular, Awer-
buch et al. [2] and Panconesi and Srinivasan [22] showed that
any n-vertex graph G can be efficiently decomposed into dis-

joint regions of diameter 2O(
√

log n), so that the super-graph
induced by contracting each region into a super-vertex has

arboricity 2O(
√

log n). (See also [18].) Note, however, that
these decompositions are inherently different from the ones
that we develop, in a number of ways.

We remark that the algorithmic scheme of [2, 18, 22] that
utilizes graph decompositions for computing colorings stip-
ulates that on each round only a small portion of all vertices
(specifically, vertices that belong to regions of a given color)
are active. This approach is inherently suboptimal, as it
does not exploit the network parallelism to the fullest pos-
sible extent. In our approach, on the contrary, once the
original graph is decomposed into subgraphs the algorithm
recurses in parallel on all subgraphs. In this way all vertices
are active at (almost) 2 all times. This extensive utilization
of parallelism is the key to the drastically improved running
time of our algorithms.
1.5 Structure of the Paper
The remainder of the paper is organized as follows. Section
2 contains basic definitions and notation, and statements of
a few known results about forests-decomposition. Section
3 describes the algorithms for computing arbdefective col-
orings. Section 4 contains various efficient algorithms that
produce legal coloring. Section 5 presents even faster algo-
rithms that, however, employ more colors.

2. PRELIMINARIES
2.1 Definitions and Notation
Unless the base value is specified, all logarithms in this pa-
per are to base 2.

1In an oriented ring each vertex v knows which of its two
neighbors is located in the clockwise direction from v, and
which is located in the counter-clockwise direction.
2In some branches the recursion may proceed faster than
in others. This may result in some vertices becoming idle
sooner than other vertices.

The out-degree of a vertex v in a directed graph is the num-
ber of edges incident to v that are oriented out of v. An
orientation σ of (the edge set of) a graph is an assignment
of direction to each edge (u, v) ∈ E, either towards u or
towards v. A partial orientation is an orientation of a sub-
set E′ ⊆ E. Edges in E \ E′ have no orientation. The
length of a vertex v with respect to an orientation σ, de-
noted len(v) = lenσ(v), is the length ℓ of the longest di-
rected path < v = v0, v1, ..., vℓ > that emanates from v,
where all edges (vi, vi+1), for i = 0, 1, ...ℓ − 1, are oriented
by σ towards vi+1. The length of a (partial) orientation σ,
denoted len(σ), is the maximum length of a vertex v with
respect to the orientation. The deficit of a vertex v with
respect to a partial orientation σ is the number of edges e
that are unoriented by σ, and incident to v. The deficit of
σ is the maximum deficit of a vertex v ∈ V with respect to
σ. The out-degree of an orientation σ of a graph G is the
maximum out-degree of a vertex in G with respect to σ. In
a given orientation, each neighbor u of v that is connected
to v by an edge oriented towards u is called a parent of v.
In this case we say that v is a child of u.
A coloring ϕ : V → IIN that satisfies ϕ(v) 6= ϕ(u) for each
edge (u, v) ∈ E is called a legal coloring. The minimum
number of colors that can be used in a legal coloring of a
graph G is called the chromatic number of G. It is denoted
χ(G).
An m-defective p-coloring of a graph G is a coloring of the
vertices of G using p colors, such that each vertex has at
most m neighbors colored by its color. Each color class in
the m-defective coloring induces a graph of maximum degree
m. It is known that for any positive integer parameter p, an
⌊∆/p⌋-defective O(p2)-coloring can be efficiently computed
distributively [4, 5, 14].

Lemma 2.1. [14] A ⌊∆/p⌋-defective O(p2)-coloring can be
computed in O(log∗ n) time.

We conclude this section by defining the notion of arbde-
fective coloring. This notion generalizes the notion of defec-
tive coloring.

Definition 2.1. An r-arbdefective k-coloring is a coloring
with k colors such that all the vertices colored by the same
color i, 1 ≤ i ≤ k, induce a subgraph of arboricity at most
r.

2.2 Forests-Decomposition
A k-forests-decomposition is a partition of the edge set of the
graph into k subsets, such that each subset forms a forest.
Efficient distributed algorithms for computing O(a)-forests
decompositions have been devised recently in [3]. Several
results from [3] are used in the current paper. They are
summarized in the following lemmas.

Lemma 2.2. [3] (1) For any graph G, a legal (⌊(2 + ǫ) · a⌋+
1)-coloring of G can be computed in O(a log n) time, for an
arbitrarily small positive constant ǫ.

(2) For any graph G, an O(a)-forests-decomposition can
be computed in O(log n) time.

Moreover, the algorithm in [3] for computing forests- de-
compositions produces a vertex partition with a certain help-
ful property, called an H-partition. An H-partition is a par-
tition of V into subsets H1, H2, ..., Hℓ, ℓ = O(log n), such
that each vertex in Hi, 1 ≤ i ≤ ℓ, has at most O(a) neigh-

bors in
⋃ℓ

j=i Hj . The degree of the H-partition is the maxi-

mum number of neighbors of a vertex v ∈ Hi in
⋃ℓ

j=i Hj for

1 ≤ i ≤ ℓ. For a vertex v ∈ V , the H-index of v is the index
i, 1 ≤ i ≤ ℓ, such that v ∈ Hi.

Lemma 2.3. [3] For any graph G, an H-partition of the
vertex set of G can be computed in O(log n) time. The de-
gree of the computed H-partition is ⌊(2 + ǫ) · a⌋, for an ar-
bitrarily small positive constant ǫ.

The H-partition is used to compute an acyclic orientation
such that each vertex has out-degree O(a).

Lemma 2.4. [3] For any graph G, an acyclic complete ori-
entation with out-degree O(a) can be computed in O(log n)
time.

Finally, the relationship between arboricity and acyclic
orientation is given in the following lemma.

Lemma 2.5. [3, 8] If there exists an acyclic complete ori-
entation of G with out-degree k, then a(G) ≤ k.

3. SMALL ARBORICITY DECOMPOSITION
We begin with presenting a simple algorithm that com-

putes an O(a/k)-arbdefective k-coloring for any integer pa-
rameter k > 0. (In other words, it computes a vertex de-
composition into k subgraphs such that each subgraph has
arboricity O(a/k).) The running time of our first algorithm
is O(a log n). Later, we present an improved version of the
algorithm with a significantly faster running time.

Suppose that we are given an acyclic complete orientation
of the edge set of G, such that each vertex has at most m
outgoing edges, for a positive parameter m. The following
procedure, called Procedure Simple-Arbdefective accepts as
input such an orientation and a positive integer parameter
k. During its execution, each vertex computes its color in
the following way. The vertex waits for all its parents to
select their colors. (Recall that a parent of a vertex v is a
neighbor u of v connected by an edge 〈v, u〉 that is oriented
towards u.) Once the vertex receives a message from each of
its parents containing their selections, it selects a color from
the range {1, 2, ..., k} that is used by the minimum number of
parents. (In particular, if there is a color in this range that is
not used by any parent, then such a color is selected.) Then
it sends its selection to all its neighbors. This completes the
description of the procedure.

Let c be the color that a vertex v has selected. Since v has
at most m parents, by the Pigeonhole Principle, the number
of parents colored by the color c is at most ⌊m/k⌋. For
c = 1, 2, ..., k, consider the subgraph Gc induced by all the
vertices that have selected the color c. For each edge e in Gc,
orient e in the same way it is oriented in the original graph G.
The orientation in Gc is therefore acyclic, and each vertex
in Gc has out-degree at most ⌊m/k⌋. Thus, the arboricity
of Gc is at most ⌊m/k⌋ (See Lemma 2.5). Hence Procedure
Simple-Arbdefective has produced an ⌊m/k⌋-arbdefective k-
coloring.

Next, we consider a more general scenario in which in-
stead of accepting as input a complete acyclic orientation
we are given a partial acyclic orientation. Specifically, the
orientation that Procedure Simple-Arbdefective accepts as
input has out-degree at most m, and deficit at most τ . (Ob-
serve that Procedure Simple-Arbdefective is applicable as is
with a partial orientation as input. If a partial orientation
is given as input instead of a complete orientation, a vertex
still waits for its parents before selecting a color. Again, the

selected color is the color used by the minimum number of
neighbors. However, the number of parents may be smaller
than in a complete orientation.) Once the procedure is in-
voked on such an orientation and a parameter k as input, a
coloring with k colors is produced. Consider the graph Gc

induced by all the vertices that are colored by the color c,
1 ≤ c ≤ k. Each edge in Gc is oriented in the same way as
in G. Each vertex in Gc has at most ⌊m/k⌋ parents, and at
most τ unoriented edges connected to it in Gc. The follow-
ing lemma states that it is possible to orient all unoriented
edges of Gc to achieve a complete acyclic orientation.

Lemma 3.1. Any acyclic partial orientation σ of a graph
G = (V, E) can be transformed into a complete acyclic ori-
entation by adding orientation to unoriented edges.

Proof. Let Ê be the set of all edges oriented by σ. Since
σ is acyclic, the graph Ĝ = (V, Ê) is a directed acyclic graph.

Perform a topological sort of Ĝ such that for any edge 〈u, v〉
that is oriented towards v, the vertex v is placed after u.
Orient each unoriented edge (w, z) in G towards the end-

point that appears later in the topological sorting of Ĝ. It
is easy to see that the resulting orientation is a complete
acyclic orientation of G. ✷

Once the unoriented edges of Gc are oriented as in the
proof of Lemma 3.1, each vertex v in Gc has an out-degree
at most τ + ⌊m/k⌋. (Recall that v had at most τ unoriented
edges incident to it.) Hence, by Lemma 2.5, the arboricity
of Gc is at most τ + ⌊m/k⌋. The next Theorem summarizes
the properties of Procedure Simple-Arbdefective.

Theorem 3.2. Suppose that Procedure Simple-Arbdefective
is invoked with the following two input arguments:
(1) An acyclic (partial) orientation of length ℓ, out-degree
at most m, and deficit at most τ .
(2) An integer parameter k > 0.
Then Procedure Simple-Arbdefective produces a (τ+⌊m/k⌋)-
arbdefective k-coloring in O(ℓ) time.

Proof. By Lemmas 2.5, 3.1, the arboricity of Gc, for
1 ≤ k ≤ c, is at most τ + ⌊m/k⌋. Hence, Procedure Simple-
Arbdefective produces a (τ+⌊m/k⌋)-arbdefective k-coloring.

Next, we analyze the running time of Procedure Simple-
Arbdefective. We prove by induction on i that after i rounds,
all vertices v ∈ V with len(v) ≤ i, have selected their colors.

Base (i = 0): The vertices v with len(v) = 0 are the ver-
tices that have no outgoing edges. Such vertices select an
arbitrary color from the range {1, 2, ..., k} immediately after
the algorithm starts, requiring no communication whatso-
ever.

Induction step: Assume that after i− 1 rounds, all ver-
tices v ∈ V with len(v) ≤ i − 1, have selected their colors.
Let u be a vertex with len(u) ≤ i. Then, for each parent
w of u, it holds that len(u) ≤ i − 1. Consequently, by the
induction hypothesis, all parents of u select their color after
at most i − 1 rounds. Therefore, the vertex u is aware of
the selection of all its parents on round i or before. Hence,
after i rounds the vertex u necessarily selects a color. This
completes the inductive proof.

If Procedure Simple-Arbdefective accepts as input an acyclic
orientation of length ℓ, then all directed paths are of length
at most ℓ. Consequently, all vertices select their color after
at most ℓ rounds. ✷

For Procedure Simple-Arbdefective to be useful, we need
to compute partial acyclic orientations with small length and

out-degree. Next, we devise efficient algorithms for com-
puting appropriate acyclic orientations. First, we devise a
distributed algorithm that receives as input an undirected
graph G, and computes a complete acyclic orientation such
that each vertex has out-degree O(a). Observe that in a dis-
tributed computation of an orientation, each vertex has to
compute only the orientation of edges incident to it, as long
as the global solution formed by this computation is cor-
rect. The algorithm we devise is called Procedure Complete-
Orientation.

Procedure Complete-Orientation consists of three steps.
First, an H-partition of the input graph G is computed.
(See Section 2.2.) As a consequence, the vertex set of G is
partitioned into ℓ′ = O(log n) subsets H1, H2, ..., Hℓ′ , such
that each vertex in Hi, 1 ≤ i ≤ ℓ′, has O(a) neighbors

in
⋃ℓ′

j=i Hj . Next, each subgraph induced by a set Hi is

colored legally using O(a) colors. Finally, an orientation
is computed as follows. Consider an edge (u, v) such that
u ∈ Hi and v ∈ Hj for some 1 ≤ i, j ≤ ℓ′. If i < j, orient
the edge towards v. If j < i orient the edge towards u.
Otherwise i = j. In this case the vertices u and v have
different colors. Orient the edge towards the vertex that is
colored with a greater color. This completes the description
of the procedure. We summarize the properties of Procedure
Complete-Orientation in the following lemma.

Lemma 3.3. The running time of Procedure Complete-
Orientation is O(a + log n). It produces a complete acyclic
orientation with out-degree ⌊(2 + ǫ) · a⌋ for an arbitrarily
small constant ǫ > 0, and length O(a log n).

Proof. By Theorem 2.3, the first step, in which the H-
partition is computed, requires O(log n) time. The second
step consists of coloring graphs of maximum degree O(a).
All the colorings are performed in parallel in O(a + log∗ n)
time using the algorithm from [4]. The orientation step re-
quires a single round in which vertices learn the colors and
the H-indices of their neighbors. To summarize, the total
running time is O(a + log n).

Next, we show that the out-degree of each vertex is O(a).
Consider a vertex v ∈ Hi. Each outgoing edge of v is con-
nected to a vertex in a set Hj such that j ≥ i. By Lemma

2.3, v has at most ⌊(2 + ǫ) · a⌋ neighbors in
⋃ℓ′

j=i Hj . There-

fore, the out-degree of v is ⌊(2 + ǫ) · a⌋. Next, we show that
the length of the orientation is O(a log n). Consider a sub-
graph Gi induced by a set Hi, 1 ≤ i ≤ ℓ′. Each edge in
Gi is oriented towards a vertex with a greater color among
its two endpoints. Hence, a certain color appears in any di-
rected path at most once. Consequently, the length of the
longest directed path in Gi is less than the number of colors
used for coloring Gi. Since Gi is colored using O(a) colors,
the length of the longest directed path in Gi is O(a). Con-
sider an edge (u, v) such that u ∈ Hi, v ∈ Hj , i < j. The
edge (u, v) is oriented towards the set with the greater index
Hj . Therefore, each directed path in G has at most ℓ′ − 1
edges whose endpoints belong to different H-sets. Inside
any path, each two edges whose endpoints belong to differ-
ent H-sets are separated be O(a) consequent edges whose
endpoints belong to the same H-set. Therefore, the length
of any directed path is O(a · ℓ′) = O(a log n). ✷

Theorem 3.2 and Lemma 3.3 imply the following corollary.

Corollary 3.4. For an integer k > 0, an O(a/k)-arbdefective
k-coloring can be computed in O(a log n) time.

The running time of Procedure Simple-Arbdefective is
proportional to the length of the acyclic orientation that
is given to the procedure as part of its input. Hence, to im-
prove its running time, we have to compute a much shorter
orientation. However, the shortest complete acyclic orienta-
tion of a graph G is of length at least χ(G)−1. (Since a com-
plete acyclic orientation of length ℓ allows one to color the
graph legally with ℓ+1 colors.) There exist graphs for which
χ(G) = Ω(a). For example, the chromatic number of a com-
plete graph on n vertices is n, and its arboricity is ⌈n/2⌉.
Consequently, an acyclic complete orientation of length o(a)
does not always exist. We overcome this difficulty by com-
puting a partial acyclic orientation instead. This partial ori-
entation is significantly shorter, and its deficit is sufficiently
small. Moreover, we show that a partial orientation can be
computed considerably faster than a complete orientation.
Also, in the computation of a partial orientation it is no
longer required that the H-sets are legally colored, which is
the case in Procedure Complete-Orientation. Instead it suf-
fices to color the H-sets with a defective coloring, and this
can be done far more efficiently. (See Lemma 2.1.)

The pseudocode of the algorithm for computing short acyclic
orientations, called Procedure Partial-Orientation is given
below. It receives as input a graph G and a positive inte-
ger parameter t. It computes an orientation with out-degree
⌊(2 + ǫ) · a⌋, and deficit at most ⌊a/t⌋. Procedure Partial-
Orientation is similar to Procedure Complete-Orientation,
except step 2, in which an ⌊a/t⌋-defective O(t2)-coloring is
computed instead of a legal O(a)-coloring.

Algorithm 1 Procedure Partial-Orientation(G, t)

1: H1,H2,...,Hℓ′ := an H-partition of G.
2: for i = 1, 2..., ℓ′ in parallel do
3: compute an ⌊a/t⌋-defective O(t2)-coloring ϕ of G(Hi).
4: end for
5: for each edge e = (u, v) in E in parallel do
6: if u and v belong to different H-sets then
7: orient e towards the set with greater index.
8: else
9: if u and v have different colors then

10: orient e towards the vertex with greater color
among u, v.

11: end if
12: end if
13: end for

The dominant term in the running time of Procedure
Partial-Orientation is the computation of the H-partition
that requires O(log n) time. The other steps are significantly
faster, since computing defective colorings in lines 2-4 of the
procedure requires O(log∗ n) time, and the orientation step
(lines 5-13) requires only O(1) time. Therefore, the running
time of Procedure Partial-Orientation is O(log n). Another
important property of Procedure Partial-Orientation is that
the length of the produced orientation is bounded. Consider
a directed path in a subgraph G(Hi), 1 ≤ i ≤ ℓ′. The length
of this path is smaller than the number of colors used in the
defective coloring of G(Hi), which is O(t2). Now consider
a directed path in the graph G with respect to the orienta-
tion produced by Procedure Partial-Orientation. The path
contains O(log n) edges that cross between different H-sets.
Between any pair of such edges in the path there are O(t2)

consequent edges whose endpoints belong to the same H-
set. Hence, the length of a directed path in G is O(t2 log n).
(See Figure 1 below.)

Fig. 1. A directed path P = (v11, v12, ..., vℓ4) with respect
to the orientation produced by Algorithm 1. In this example
each Hi is colored with 4 colors. For all i ∈ {1, 2, ..., ℓ},
j ∈ {1, 2, 3, 4}, vij is colored by j. P contains at most ℓ−1 =
O(log n) edges that cross between Hi’s.

The properties of Procedure Partial-Orientation are sum-
marized in the next theorem.

Theorem 3.5. Let ǫ be an arbitrarily small positive con-
stant. Procedure Partial-Orientation invoked on a graph G
and an integer parameter t > 0 produces an acyclic orien-
tation of out-degree ⌊(2 + ǫ) · a⌋, length O(t2 · log n), and
deficit at most ⌊a/t⌋. The running time of the procedure is
O(log n).

We conclude this section with an efficient procedure for
computing an arbdefective coloring. The procedure, called
Procedure Arbdefective-Coloring, receives as input a graph
G and two positive integer parameters k and t. First, it
invokes Procedure Partial-Orientation on G and t. Then it
employs the produced orientation and the parameter k as an
input for Procedure Simple-Arbdefective, which is invoked
once Procedure Partial-Orientation terminates. This com-
pletes the description of the procedure. By Theorem 3.2, the
procedure produces an ⌊a/t + (2 + ǫ) · a/k⌋-arbdefective k-
coloring. The properties of Procedure Arbdefective-Coloring
are summarized in the next corollary. The corollary follows
directly from Theorems 3.2 and 3.5.

Corollary 3.6. Procedure Arbdefective-Coloring invoked on
a graph G and two positive integer parameters k and t com-
putes an ⌊a/t + (2 + ǫ) · a/k⌋-arbdefective k-coloring in time
O(t2 log n).

We will invoke Procedure Arbdefective-Coloring with t =
k. In this case it returns a ⌊(3 + ǫ) · a/t⌋-arbdefective t-
coloring in O(t2 log n) time. Observe that this t-coloring
can also be viewed as a decomposition of the original graph
G into t subgraphs G′

1, G
′
2, ..., G

′
t, each of arboricity at most

⌊(3 + ǫ) · a/t⌋.

4. FAST LEGAL COLORING
In this section we employ the procedures presented in the

previous section to devise efficient algorithms that produce
legal colorings (i.e., colorings with no defect). Our algo-
rithms rely on the following key properties of arbdefective
coloring. Consider a b-arbdefective k-coloring for some posi-
tive integer parameters b and k. For 1 ≤ i ≤ k, let Gi denote
the subgraph induced by all vertices colored with the color
i. For all 1 ≤ i ≤ k, it holds that a(Gi) ≤ b. Therefore,
by Lemma 2.2, each subgraph Gi can be efficiently legally

colored using ⌊(2 + ǫ) · b⌋+ 1 colors. If each subgraph is as-
signed a distinct color palette of size ⌊(2 + ǫ) · b⌋ + 1, then
the parallel legal coloring of all subgraphs results in a legal
O(b · k)-coloring of the entire graph G. Observe that once
the arbdefective coloring is computed, each vertex v ∈ Gi

communicates only with its neighbors in the same subgraph
Gi. Once the legal colorings of all subgraphs are computed,
the color of v is different not only from all its neighbors in
Gi, but from all its neighbors in G, as we shortly prove.

Our goal is to efficiently compute an O(a)-coloring of the
graph G. Therefore, we employ Corollary 3.6 with appro-
priate parameters to guarantee that b · k = O(a). First,
we present an O(a)-coloring algorithm with running time

O(a2/3 log n) that involves a single invocation of Procedure
Arbdefective-Coloring. Then, we show a more complex al-
gorithm that achieves running time O(aµ log n) for an arbi-
trarily small positive constant µ.

In our first algorithm we invoke Procedure Arbdefective-
Coloring on a graph G with the input parameters k = t =
⌈

a1/3
⌉

. By Corollary 3.6, as a result of this invocation we

achieve a
⌊

(3 + ǫ) · a2/3
⌋

-arbdefective
⌈

a1/3
⌉

-coloring of G.

For 1 ≤ i ≤ k, let Gi denote the subgraph induced by all
vertices colored with the color i. The arboricity of Gi is
at most (3 + ǫ) · a2/3. For 1 ≤ i ≤ k, in parallel, color Gi

with γ =
⌊

(2 + ǫ)(3 + ǫ) · a2/3
⌋

+1 colors. (See Lemma 2.2).

Let ψi, 1 ≤ i ≤ k, denote the resulting colorings. For each
index i, ψi is a legal coloring of Gi. However, for a pair of
neighboring vertices v ∈ Gi, w ∈ Gj , i 6= j, it may happen
that ψi(v) = ψj(w). Finally, each vertex v ∈ Gi selects a
new color ϕ that is computed by ϕ(v) = (i − 1) · γ + ψi(v).
Intuitively, the color ϕ(v) can be seen as an ordered pair <
i, ψi(v) >. This completes the description of the algorithm.
Its correctness and running time are summarized below.

Lemma 4.1. ϕ is a legal O(a)-coloring of G computed in

O(a2/3 log n) time.

Proof. First, we prove that ϕ is a legal O(a)-coloring.
Observe that for each vertex v, it holds that 1 ≤ ϕ(v) ≤ k ·γ.

Since k =
⌈

a1/3
⌉

, and γ =
⌊

(2 + ǫ)(3 + ǫ) · a2/3
⌋

+ 1, it

follows that ϕ(v) = O(a), and consequently ϕ is an O(a)-
coloring. It is left to show that ϕ is a legal coloring. Consider
an edge (u, v) in G, such that u ∈ Gi, v ∈ Gj . If i = j then
ψ(u) 6= ψ(v) and hence also ϕ(u) 6= ϕ(v). Otherwise i 6= j,
and again ϕ(u) 6= ϕ(v).

Next, we prove that ϕ is computed in O(a2/3 log n) time.
By Corollary 3.6, the invocation of Procedure Arbdefective-
Coloring requires O(a2/3 log n) time. It produces k sub-
graphs G1, G2, ..., Gk, each with arboricity at most
⌊

(3 + ǫ) · a2/3
⌋

. By Lemma 2.2, coloring all subgraphs Gi,

for 1 ≤ i ≤ k in parallel, requires O(a2/3 log n) time as
well. The computation of the final coloring ϕ is performed
locally, requiring no additional communication. Therefore,
the overall running time is O(a2/3 log n). ✷

Lemma 4.1 shows that this algorithm is already a sig-
nificant improvement over the best previously known algo-
rithm for O(a)-coloring, whose results are summarized in
Lemma 2.2. Nevertheless, the running time can be im-
proved further by invoking Procedure Arbdefective-Coloring
several times. Since Procedure Arbdefective-Coloring pro-
duces subgraphs of smaller arboricity comparing to the input

graph, it can be invoked again on the subgraphs, producing
a refined decomposition, in which each subgraph has even
smaller arboricity. For example, invoking the procedure on

a graph G with the parameters k = t =
⌈

a1/6
⌉

, results in an

O(a5/6)-arbdefective O(a1/6)-coloring. Invoking the Proce-
dure Arbdefective-Coloring with the same parameters again
on all the O(a1/6) subgraphs induced by the initial arbde-

fective coloring results in an O(a4/6)-arbdefective O(a1/6)-
coloring of each subgraph. If distinct palettes are used for
each subgraph, the entire graph is now colored with an
O(a2/3)-arbdefective O(a1/3)-coloring. The running time of

this computation is O(a1/3 log n). This computation is much
faster than a single invocation of Procedure Arbdefective-

Coloring with the parameters k = t =
⌈

a1/3
⌉

that yields the

same results. However, to obtain a legal coloring of the orig-
inal graph G, each subgraph still has to be colored legally.
For the entire computation to be efficient, the arboricity of
all subgraphs has to be as small as possible. Therefore we
need to invoke Procedure Arbdefective-Coloring more times
to achieve an o(a2/3)-arbdefective coloring. Indeed, apply-

ing Procedure Arbdefective-Coloring on each of the O(a1/3)
subgraphs produces an O(

√
a)-arbdefective O(

√
a)-coloring.

This, in turn, directly gives rise to an O(a)-coloring within
O(

√
a · log n) time.

We employ this idea in the following Procedure called Pro-
cedure Legal-Coloring.

Algorithm 2 Procedure Legal-Coloring(G, p)

1: G1 := G
2: α := a(G1)
3: G := {G1} /* The set of subgraphs */
4: while α > p do
5: Ĝ := ∅ /* Temp. var. for storing refinements of G */
6: for each Gi ∈ G in parallel do
7: G′

1, G
′
2, ..., G

′
p :=

Arbdefective-Coloring(Gi , k := p , t := p)
/* G′

j is the subgraph induced by all the vertices
that are assigned the color j by the arbdefective
coloring */

8: for j := 1, 2, ..., p in parallel do
9: z := (i−1) ·p+ j /* Computing a unique index

for each subgraph */

10: Ĝz := G′
j

11: Ĝ := Ĝ ∪ {Ĝz}
12: end for
13: end for
14: G := Ĝ
15: α := ⌊α/p + (2 + ǫ) · α/p⌋ /* The new upper bound

for the arboricity of each of the subgraphs */
16: end while
17: A := ⌊(2 + ǫ)α⌋ + 1
18: for each Gi ∈ G in parallel do
19: color Gi legally using the palette

{(i − 1) · A + 1, (i − 1) · A + 2, ..., i · A}
/* Using Lemma 2.2 */

20: end for

The procedure receives as input a graph G and a posi-
tive integer parameter p. It proceeds in phases. In the first
phase Procedure Arbdefective-Coloring is invoked on the in-
put graph G with the parameters k := p and t := p. Con-

sequently, a decomposition into p subgraphs is produced, in
which each subgraph has arboricity O(a/p). In each of the
following phases Procedure Arbdefective-Coloring is invoked
in parallel on all subgraphs in the decomposition that was
created in the previous phase. As a result, a refinement of
the decomposition is produced, i.e., each subgraph is parti-
tioned into p subgraphs of smaller arboricity. Consequently,
after each phase, the number of subgraphs in G grows by a
factor of p, but the arboricity of each subgraph decreases by
a factor of Θ(p). Hence, the product of the number of sub-
graphs and the arboricity of subgraphs remains O(a) after
each phase. (As long as the number of phases is constant.)
Once the arboricities of all subgraphs become small enough,
Lemma 2.2 is used for a fast parallel coloring of all the sub-
graphs, resulting in a unified legal O(a)-coloring of the input
graph.

Let µ be an arbitrarily small positive constant. We show
that invoking Procedure Legal-Coloring on G with the in-

put parameter p :=
⌊

aµ/2
⌋

results in an O(a)-coloring in

O(aµ log n) time. The following lemma constitutes the proof
of correctness of the algorithm.

We assume without loss of generality that the arboricity
a is sufficiently large to guarantee that p ≥ 16. (Otherwise,

it holds that a ≤ 172/µ, i.e., the arboricity is bounded by
a constant. In this case, by Lemma 2.2, one can directly
compute an O(1)-coloring in O(log n) time).

Let αi and Gi denote the values of the variables α and
G, respectively, in the end of iteration i of the while-loop of
Algorithm 2 (lines 4-16).

Lemma 4.2. (1) (Invariant for line 16 of Algorithm 2) In
the end of iteration i of the while-loop, i = 1, 2, ..., each
graph in the collection Gi has arboricity at most αi.
(2) The while-loop runs for a constant number of iterations.
(3) For i =1,2,..., after i iterations, it holds that αi · |Gi| ≤
(3 + ǫ)i · a.

Proof. The proof of (1): The proof is by induction
on the number of iterations. For the base case, observe that
after the first iteration, G contains p subgraphs produced by
Procedure Arbdefective-Coloring. By Corollary 3.6, the ar-
boricity of each subgraph is at most ⌊a/t + (2 + ǫ) · a/k⌋ =
⌊a/p + (2 + ǫ) · a/p⌋ = α1.

For the inductive step, consider an iteration i. By the
induction hypothesis, each subgraph in Gi−1 has arboricity
at most αi−1. During iteration i, Procedure Arbdefective-
Coloring is invoked on all subgraphs in Gi−1. Consequently,
Gi contains new subgraphs, each with arboricity at most
⌊αi−1/p + (2 + ǫ) · αi−1/p⌋, which is exactly the value αi of
α in the end of iteration i. (See line 15.)

The proof of (2): In each iteration the variable α is
decreased by a factor of at least b = p/(3 + ǫ). Hence, the
number of iterations is at most logb a. For any 0 < ǫ < 1/2,
and a sufficiently large a, it holds that

logb a =
log a

log(p/(3 + ǫ))
≤ log a

log(1
4
aµ/2)

=
2/µ · log aµ/2

log aµ/2 − 2
≤ 4/µ.

The proof of (3): The correctness of the lemma follows
directly from the fact that in each iteration the number |G|
of subgraphs grows by a factor of p, and the arboricity of
each subgraph decreases by a factor of at least p/(3 + ǫ). ✷

The next theorem follows from Lemma 4.2.

Theorem 4.3. Invoking Procedure Legal-Coloring on a graph

G with arboricity a with the parameter p =
⌈

aµ/2
⌉

for a

positive constant µ < 1, computes a legal O(a)-coloring of G
within O(aµ · log n) time.

Proof. We first prove that the coloring is legal. Observe
that the selection of unique indices in line 9 guarantees that
any two distinct subgraphs that were added to the same set
Ĝ are colored using distinct palettes. In addition, in each
iteration each vertex belongs to exactly one subgraph in G.
Consequently, once the while-loop terminates, each vertex
v belongs to exactly one subgraph in G. Let Gi ∈ G be
the subgraph that contains v. Let α′ denote the value of α
on line 17 of Algorithm 2. As we have seen, the arboricity
of Gi is at most α′. Hence, Gi is colored legally using a
unique palette containing A = ⌊(2 + ǫ)α′ + 1⌋ colors. Con-
sequently, the color of v is different from the colors of all its
neighbors, not only in Gi, but in the entire graph G.

Now we analyze the number of colors in the coloring. By
Lemma 4.2, the number of colors employed is A · |G| =
(⌊(2 + ǫ)α′⌋ + 1) · |G| ≤ (3 + ǫ)c · a, for some explicit con-
stant c. (For a sufficiently large a, the appropriate constant
is c = 4/µ + 1.) Hence, the number of employed colors is
O(a).

Next, we analyze the running time of Procedure Legal-
Coloring. By Lemma 4.2(2), during the execution of Proce-
dure Legal-Coloring, the Procedure Arbdefective-Coloring is
invoked for a constant number of times. Note also that each
time it is invoked with the same values of the parameters

t = k = p =
⌊

aµ/2
⌋

. Hence, by Corollary 3.6, execut-

ing the while-loop requires O(t2 log n) = O(aµ log n) time.
By Lemma 2.2, the additional time required for coloring
all the subgraphs in step 19 of Algorithm 2 is O(p log n) =

O(aµ/2 log n). (By the termination condition of the while-
loop (line 4), once the algorithm reaches line 19, it holds that
α ≤ p.) Therefore, the total running time is O(aµ log n). ✷

Theorem 4.3 implies that for the family of graphs with
polylogarithmic arboricity in n, an O(a)-coloring can be

computed in time O((log n)1+µ′

), for an arbitrarily small
positive constant µ′. In the case of graphs with superloga-
rithmic arboricity, we can achieve even better results than
those that are given in Theorem 4.3. In this case we execute

Procedure Legal-Coloring with the parameter p =
⌊

aµ′

log n

⌋

.

Since a is superlogarithmic in n, and µ′ > 0 is a constant,

it holds that p > aµ′/2, for a sufficiently large n. There-
fore, Procedure Legal-Coloring executes its loop a constant
number of times. Consequently, the number of colors em-
ployed is still O(a). The running time is the sum of running
time of Procedure Arbdefective-Color and the running time
of computing legal colorings of graphs of arboricity at most

p, which is O(a2µ′

log2 n
· log n+ aµ′

log n
· log n) = O(a2µ′

). If we set

µ′ = µ/2, the running time becomes O(aµ). We summarize
this result in the following corollary.

Corollary 4.4. Let µ be an arbitrarily small constant. For
any graph G, a legal O(a)-coloring of G can be computed in
time O(aµ + (log n)1+µ).

Next, we demonstrate that one can trade the number of
colors for time. Specifically, we show that if one is allowed to
use slightly more than O(a) colors, the running time can be

bounded by polylog(n), for all values of a. To this end, we
select the parameter p to be polylogarithmic in a. With this
value of p the running time O(p log n) of the coloring step
in line 19 of Algorithm 2 becomes polylogarithmic. More-
over, setting the parameters t and k to be polylogarithmic
in a results in a polylogarithmic running time of Procedure
Arbdefective-Coloring. The number of executions of an iter-
ation of the while-loop is O(logp a). Consequently, the total
running time is also polylogarithmic. However, the number
of iterations becomes superconstant. Hence the number of
colors grows beyond O(a). The specific parameters we se-

lect are p = k = t = f(a)1/2, for an arbitrarily slow-growing
function f(a) = ω(1). The results of invoking Procedure
Legal-Coloring with these parameters are given below.

Theorem 4.5. Invoking Procedure Legal-Coloring with the
parameter p = f(a)1/2, f(a) = ω(1) as above, requires

O(f(a) log a log n) time. The resulting coloring employs a1+o(1)

colors.

Proof. Set b = p/(3 + ǫ). The number of iterations
is at most logb a = O(log a

log f(a)
). Each iteration requires

O(p2 log n) = O(f(a) log n) time. Hence the running time
is logb a · O(f(a) log n) = O(f(a) log a log n). By Lemma
4.2(3), the total number of employed colors is at most

a · (3 + ǫ)O(log a/ log f(a)) = a1+O(1/ log f(a)) = a1+o(1). ✷

More generally, as evident from the above analysis, the
running time of our algorithm is O(p2 logp a log n), and the

number of colors used is 2O(logp a) · a. Another noticeable
point on the tradeoff curve is on the opposite end of the
spectrum, i.e., p = C, for some large constant C. Here the
tradeoff gives rise to a1+O(1/ log C)-coloring in O(log a log n)
time.

Corollary 4.6. For an arbitrarily small constant η > 0,
Procedure Legal-Coloring invoked with p = 2O(1/η) produces
an O(a1+η)-coloring in O(log a log n) time.

Corollary 4.6 implies that any graph G for which there ex-
ists a constant ν > 0 such that a ≤ ∆1−ν can be colored with
o(∆) colors in O(log a log n) time. This goal is achieved by
computing an O(a1+ν)-coloring of the input graph G. Since

a1+ν ≤ ∆1−ν2

, this is an o(∆)-coloring of G. Therefore, our
results give rise to deterministic polylogarithmic (∆ + 1)-
coloring algorithm for a very wide family of graphs. This
fact is summarized in the following corollary.

Corollary 4.7. For the family of graphs with arboricity a ≤
∆1−ν , for an arbitrarily small constant ν, one can compute
(∆ + 1)-coloring in O(log a log n) time.

5. EVEN FASTER COLORING
In this section we show that one can decrease the running

time of the coloring procedure almost all the way to log n, at
the expense of increasing the number of colors. (The number
of colors still stays o(a2), but it grows significantly beyond
a1+η.) In addition, we show that for any t, 1 ≤ t ≤ a, and
any constant ǫ > 0, one can compute O(a · t)-coloring in
O((a

t
)ǫ · log n) time.

We start with extending an algorithm from [14] to graphs
of bounded arboricity. Specifically, Kuhn [14] devised an
algorithm that works on an n-vertex graph G of maximum
degree ∆, and for an integer parameter t, 1 ≤ t ≤ ∆, it con-
structs an O(t2)-coloring, (∆/t)-defective in O(log∗ n) time.

(His technique is based on that of Linial [17].) We show
that if a graph G has arboricity at most a then an (a/t)-
arbdefective O(t2)-coloring can be computed in O(log n) time.

The first step of our algorithm is to construct an orien-
tation σ of out-degree at most A, A = (2 + ǫ) · a, for some
constant ǫ > 0. To this end we employ an algorithm from
[3]. This algorithm requires O(log n) time, and it is the most
time-consuming step of the algorithm. The second step uses
this orientation to execute an algorithm that is analogous to
the one of [14].

Next, we describe this algorithm. Set d = ∆/t. Suppose
that we start with a d′-arbdefective M -coloring of G, for
some possibly very large M , and 0 ≤ d′ ≤ d. Consider a
pair of sets A and B that will be determined later, and let
F (A,B) denote the collection of all functions from A to B.
Consider also a mapping Ψ : [M] → F (A,B) that associates
a function ϕχ ∈ F (A,B) (i.e, ϕχ : A → B) with each color
χ ∈ [M]. Our coloring algorithm is based on a recoloring
subroutine, Procedure Arb-Recolor. This procedure is de-
scribed in Algorithm 3. The procedure accepts as input the
original color χ ∈ [M] of the vertex v that executes the pro-
cedure, the δ ≤ A colors of the parents of v according to the
orientation computed on the first step of the algorithm, and
the defect parameter d.

Algorithm 3 Procedure Arb-Recolor

Input: A color χ ∈ [M], parent colors y1, y2, ..., yδ ∈ [M],
parameter d.

1: find α ∈ A such that
|{i ∈ [δ] : ϕχ(α) = ϕyi(α)}| ≤ d. (*)

2: return (color := (α, ϕχ(α))).

The following lemma summarizes the properties of Proce-
dure Arb-Recolor. (The lemma and its proof are analogous
to Lemma 4.1 in [14]).

Lemma 5.1. For a value k > 0, suppose that the functions
{ϕx : x ∈ [M]} satisfy that for any two distinct colors x, y ∈
[M], there are at most k values α ∈ A for which ϕx(α) =

ϕy(α). Suppose also that |A| > k · A−d′

d−d′+1
. Then procedure

Arb-Recolor computes a d-arbdefective (|A| · |B|)-coloring χ′.

By Lemma 4.3 [14], the collection of functions {ϕx : x ∈
[M]} with the property required by the statement of Lemma
5.1 exists if |B| ≥ A

2·ln M
and k = ⌊2e · ln M⌋. For Lemma

5.1 to hold, |A| should be greater than k · A−d′

d−d′+1
. Hence the

number of colors used by χ′ is |A| · |B| = k2 (A−d′)2

(d−d′+1)2 ln M
=

O(log M) · (A−d′)2

d−d′+1
.

By using O(log∗ M) iterations of Procedure Arb-Recolor
with intermediate values of defect parameter that are speci-
fied in the proof of Theorem 4.9 of [14] we obtain an O(A2/d2)-
coloring with arbdefect at most d. (The proof for this state-
ment is identical to the proof of Theorem 4.9 of [14].) Hence-
forth, we refer to this algorithm that invokes Procedure Arb-
Recolor O(log∗ M) times by Algorithm Arb-Kuhn. Since
each invocation of procedure Arb-Recolor requires O(1) time,
the overall running time of Algorithm Arb-Kuhn is O(log∗ M)
= O(log∗ n). (For M = n we start with a trivial legal n-
coloring that uses each vertex Id as its color.) As d = A/t,
we obtain an A/t-arbdefective O(t2)-coloring within this
running time.

Next, we argue that using Algorithm Arb-Kuhn in con-
junction with our algorithm enables one to trade between
the running time and number of colors. Specifically, set
d = f(a) to be some growing function of the arboricity a,
i.e., f(a) = ω(1). Invoke Algorithm Arb-Kuhn. We obtain a
decomposition of the original graph G into O(A2/f(a)2) =
O(a2/f(a)2) subgraphs of arboricity at most α = f(a) each.
Invoke on each of these subgraphs in parallel our algorithm
that for n-vertex graphs with arboricity α computes an
O(α1+η)-coloring in O(log α log n) time, for an arbitrarily
small constant η > 0. Use distinct palettes of size O(α1+η)
for each of the O(a2/α2) subgraphs to get a unified
O(a2/α1−η)-coloring of the entire graph G. The running
time of this algorithm is O(log∗ n+log α log n) = O(log f(a)·
log n). We set g(a) = f(a)1−η and obtain the next Theorem.

Theorem 5.2. For an arbitrarily small constant η > 0,
and any function ω(1) = g(a) = O(a1−η), our algorithm
computes an O(a2/g(a))-coloring, in time O(log g(a) · log n).

In particular, by setting g(a) = 2logζ a for some ζ > 0, one

can have here an (a2/2Ω(logζ a))-coloring within O(logζ a log n)
time. Also, with g(a) = logc a, for an arbitrarily large
constant c > 0, one gets an O(a2/ logc a)-coloring in time
O(log log a log n).

Finally, we show that this technique can be used to ob-
tain a tradeoff between the running time and the number
of colors. This new tradeoff improves the previous tradeoff
(due to [3]) for all values of the parameters. Specifically,
we have shown that O(a/t)-arbdefective O(t2)-coloring can
be computed in O(log n) time. In other words, a graph G
of arboricity a can be decomposed into O(t2) subgraphs of
arboricity α = O(a/t) each, in O(log n) time. By Corollary
4.3, by invoking Procedure Legal-Coloring in parallel on all
these subgraphs we obtain an O(α)-coloring of each of them.
The running time of this step is O((a

t
)µ · log n), for an ar-

bitrarily small constant µ > 0. Using disjoint palettes for
each of the subgraphs we merge these colorings into a unified
O(α · t2) = O(a · t)-coloring of the original graph G. The
last step (the merging) requires no communication. Hence,
the total running time of the algorithm is O((a

t
)µ · log n).

Theorem 5.3. For any parameter t, 1 ≤ t ≤ a, and a
constant µ > 0, an O(a/t)-coloring of a graph of arboricity
a can be computed in O((a

t
)µ · log n) time.

6. REFERENCES

[1] N. Alon, L. Babai, and A. Itai. A fast and simple
randomized parallel algorithm for the maximal
independent set problem. Journal of Algorithms,
7(4):567–583, 1986.

[2] B. Awerbuch, A. V. Goldberg, M. Luby, and
S. Plotkin. Network decomposition and locality in
distributed computation. In Proc. of the 30th
Symposium on Foundations of Computer Science,
pages 364–369, 1989.

[3] L. Barenboim, and M. Elkin. Sublogarithmic
distributed MIS algorithm for sparse graphs using
Nash-Williams decomposition. In Proc. of the 27th
ACM Symp. on Principles of Distributed Computing,
pages 25–34, 2008.

[4] L. Barenboim, and M. Elkin. Distributed
(∆ + 1)-coloring in linear (in ∆) time. In Proc. of the

41th ACM Symp. on Theory of Computing, pages
111-120, 2009.

[5] L. Barenboim, and M. Elkin. Distributed
(∆ + 1)-coloring in linear (in ∆) time.
http://arXiv.org/abs/0812.1379v2, 2008.

[6] L. Cowen, R. Cowen, and D. Woodall. Defective
colorings of graphs in surfaces: partitions into
subgraphs of bounded valence. Journal of Graph
Theory, 10:187–195, 1986.

[7] R. Cole, and U. Vishkin. Deterministic coin tossing
with applications to optimal parallel list ranking.
Information and Control, 70(1):32–53, 1986.

[8] D. Eppstein. Arboricity and bipartite subgraph listing
algorithms. Information Processing Letters,
51(4):207–211, 1994.

[9] A. Goldberg, and S. Plotkin. Efficient parallel
algorithms for (∆ + 1)- coloring and maximal
independent set problem. In Proc. 19th ACM
Symposium on Theory of Computing, pages 315–324,
1987.

[10] A. Goldberg, S. Plotkin, and G. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM Journal
on Discrete Mathematics, 1(4):434–446, 1988.

[11] F. Harary, and K. Jones. Conditional colorability II:
Bipartite variations. Congressus Numer, 50:205-218,
1985.

[12] Ö. Johansson. Simple distributed (∆ + 1)-coloring of
graphs. Information Processing Letters, 70(5):229–232,
1999.

[13] K. Kothapalli, C. Scheideler, M. Onus, and
C. Schindelhauer. Distributed coloring in O(

√
logn)

bit rounds. In Proc. of the 20th International Parallel
and Distributed Processing Symposium, 2006.

[14] F. Kuhn. Weak graph colorings: distributed
algorithms and applications. In proc. of the 21st ACM
Symposium on Parallel Algorithms and Architectures,
pages (138–144) February 2009.

[15] F. Kuhn, and R. Wattenhofer. On the complexity of
distributed graph coloring. In Proc. of the 25th ACM
Symp. on Principles of Distributed Computing, pages
7–15, 2006.

[16] N. Linial. Distributive graph algorithms: Global
solutions from local data In Proc. of the 28th Annual
Symp. on Foundation of Computer Science, pages
331–335, 1987.

[17] N. Linial. Locality in distributed graph algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[18] N. Linial and M. Saks. Low diameter graph
decomposition. Combinatorica 13: 441 - 454, 1993.

[19] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on
Computing, 15:1036-1053, 1986.

[20] C. Nash-Williams. Decompositions of finite graphs
into forests. J. London Math, 39:12, 1964.

[21] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM, 2000.

[22] A. Panconesi, and A. Srinivasan. On the complexity of
distributed network decomposition. Journal of
Algorithms, 20(2):581-Ű592, 1995.

