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Abstract

The IAPWS-IF97 (Wagner et al. (2000) J Eng Gas Turbines Power 122:150) is the 
state-of-the-art model for the thermodynamic properties of water and steam for 
industrial applications and is routinely used for simulations of steam power cycles 
and utility systems. Its use in optimization-based design, however, has been lim-
ited because of its complexity. In particular, deterministic global optimization of 
problems with the IAPWS-IF97 is challenging because general-purpose methods 
lead to rather weak convex and concave relaxations, thus resulting in slow conver-
gence. Furthermore, the original domains of many functions from the IAPWS-IF97 
are nonconvex, while common global solvers construct relaxations over rectangular 
domains. Outside the original domains, however, many of the functions take very 
large values that lead to even weaker relaxations. Therefore, we develop tighter 
relaxations of relevant functions from the IAPWS-IF97 on the basis of an analysis of 
their monotonicity and convexity properties. We modify the functions outside their 
original domains to enable tighter relaxations, while we keep them unchanged on 
their original domains where they have physical meaning. We discuss the benefit of 
the relaxations for three case studies on the design of bottoming cycles of combined 
cycle power plants using our open-source deterministic global solver MAiNGO. 
The derived relaxations result in drastic reductions in computational time compared 
with McCormick relaxations and can make design problems tractable for global 
optimization.

Keywords Global optimization · Process design · Rankine cycle · Utility system · 
Thermodynamics · Water

 * Alexander Mitsos 
 amitsos@alum.mit.edu

1 Process Systems Engineering (AVT.SVT), RWTH Aachen University, Forckenbeckstraße 51, 
52074 Aachen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09502-1&domain=pdf


1096 D. Bongartz et al.

1 3

1 Introduction

Water is one of the most important substances in energy conversion systems. 
Today, around three quarters of the global power generation relies on steam 
power cycles (IEA 2019), either in pure steam power plants or as part of com-
bined-cycle plants. Furthermore, water is the most common heat transfer fluid for 
applications ranging from domestic heating to combined heat and power supply 
in utility systems for industrial production sites (Podolski et al. 2008). Given the 
widespread use of water in energy conversion systems, even small improvements 
in the design and operation of such systems can have a significant impact.

Despite the long industrial experience in the design of steam-based energy 
conversion systems, the optimal design of such systems (e.g., with respect to 
energy efficiency or cost) for given boundary conditions is still an active field of 
research. Steam cycle design is tackled with a variety of model-based approaches 
(Wang et al. 2019) ranging from simulation-based evaluation of designs manually 
derived from engineering experience through advanced exergy-based analyses for 
identifying promising points for improvement to optimization-based methods.

The state-of-the-art model for the required thermodynamic properties of water 
and steam is the IAPWS-IF97 (Wagner et al. 2000) in its revised version (IAPWS 
2007a). It is recommended by the International Association for the Properties of 
Water and Steam (IAPWS) “for industrial use (primarily the steam power indus-
try) for the calculation of thermodynamic properties of ordinary water in its fluid 
phases” (IAPWS 2007a). It was developed on the basis of the IAPWS-95 model 
(Wagner and Pruss 2002) with the goal of providing explicit expressions for 
all common calculations without iterative solution and with low computational 
effort.

While the IAPWS-IF97 is in fact the standard model for the simulation of 
steam cycles used in many simulators, its use in optimization-based approaches 
has been more limited since it is often considered too complex (Wang et  al. 
2019). Many existing optimization studies on steam power cycle or utility sys-
tem design have either directly opted for a simpler model (Bruno et  al. 1998; 
Bongartz and Mitsos 2017) or replaced the IAPWS-IF97 with a simplified surro-
gate model, typically polynomials of lower degree (Ahadi-Oskui et al. 2010). The 
latter approaches have sometimes been combined with smoothing techniques to 
remedy the nondifferentiabilities that occur at phase boundaries (Tică et al. 2012; 
Åberg et  al. 2017). Those studies using the IAPWS-IF97 itself have done so 
employing different methods: stochastic optimizers (Nadir and Ghenaiet 2015), 
often coupled with a simulation software implementing the IAPWS-IF97 (Koch 
et al. 2007; Luo et al. 2011; Wang et al. 2014); local NLP solvers (Zebian et al. 
2012); convex MINLP solvers (Savola et al. 2007; Manassaldi et al. 2011, 2016); 
or a combination of local and stochastic optimizers (Wang et al. 2015, 2016).

The existing optimization approaches using the IAPWS-IF97 share the limi-
tation that the local or stochastic optimizers employed cannot guarantee to find 
a global optimum since the resulting optimization problems are nonconvex and 
can have multiple local solutions even for the simplest cycles (and even with 
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much simpler models) (Bongartz and Mitsos 2017). Therefore, deterministic 
global optimization is desirable for solving steam cycle design problems with 
the IAPWS-IF97. The most rigorous existing approach that we are aware of is 
the work of Ahadi-Oskui et  al. (2006), who use a branch-and-cut approach for 
optimizing the design of combined cycle power plants modeled with the IAPWS-
IF97. However, their approach is also partially heuristic since it relies on sam-
pling of black box model functions (Nowak and Vigerske 2008).

In deterministic global optimization, a key challenge is the construction of tight 
convex and concave relaxations and range bounds of the functions used in the model 
(Locatelli and Schoen 2013). Although the form of the IAPWS-IF97 functions is 
such that they could in principle be addressed with general purpose methods for 
deriving relaxations such as � BB (Androulakis et al. 1995), the auxiliary variable 
method (AVM) (Smith and Pantelides 1997; Tawarmalani and Sahinidis 2002), or 
the McCormick technique (McCormick 1976), this is challenging for the follow-
ing reasons: First, the resulting relaxations are expected to be rather weak given the 
complexity of the functions. In global optimization, weak relaxations result in slow 
convergence that makes larger problems intractable. Second, when using the AVM, 
the subproblems for computing lower bounds will get very large because many aux-
iliary variables will be added, again because of the complexity of the functions. To 
obtain tighter relaxations and reduce computational time in global optimization, 
Schweidtmann et  al. (2019) recently proposed replacing complex thermodynamic 
models with artificial neural networks as surrogate models in the design of organic 
Rankine cycles. However, given the very high accuracy of the IAPWS-IF97 as well 
as its role as an established and trusted model implemented in most simulators, we 
would like to avoid replacing it with a surrogate model.

In this work, we retain the original model functions from the IAPWS-IF97 in 
those regions where they have physical meaning and construct tighter convex and 
concave relaxations and range bounds to speed up the global optimization of steam 
cycle design problems. Our approach is based on the observation that functions in 
thermodynamic models often exhibit useful monotonicity and convexity properties 
that can be exploited to derive tighter relaxations than those obtained by applying 
general purpose methods to their complex functional forms (Najman et al. 2019a, b).

In the following, we first provide some background on the methods employed for 
constructing relaxations. Next, we analyze the relevant functions from the IAPWS-
IF97 model and describe the derived relaxations. Finally, we discuss the appli-
cation of the relaxations to three case studies of combined cycle power plants to 
demonstrate the computational speedup compared with a plain application of the 
McCormick technique to the IAPWS-IF97. The results demonstrate that determin-
istic global optimization of problems with the IAPWS-IF97 can get intractable for 
larger problems when using McCormick relaxations as a general purpose technique, 
whereas larger problems can be solved with the proposed tailored relaxations. The 
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proposed relaxations are implemented in the MC++ library (Chachuat et al. 2015) 
used by our open-source global optimizer MAiNGO (Bongartz et al. 2018).1

2  Preliminaries and methods used

In the present work, we aim at enabling the use of IAPWS-IF97 functions as intrin-
sic functions in factorable programming techniques, in particular the multivariate 
McCormick technique. In the following, we thus first summarize the multivariate 
McCormick technique before discussing two methods that are used in Sect. 3.4 to 
derive relaxations of the IAPWS-IF97 functions, namely methods for relaxations of 
componentwise convex or concave functions and variants of the � BB method.

Throughout this article, we represent scalars as lowercase or uppercase letters 
(e.g., p or T), vectors in boldface (e.g., � ), and sets in calligraphic typeface (e.g., 
X  ). �ℝn denotes the set of all nonempty compact interval subsets of ℝn . The super-
scripts L and U denote the left and right end points of an interval, respectively (e.g., 
X = [xL, x

U] ). Given a function f ∶ X → Y , we denote by f (X) the image of X  
under f.

2.1  Multivariate McCormick relaxations

Established methods for deterministic global optimization are based on spatial 
branch-and-bound (B&B) (Falk and Soland 1969) and rely on the availability of 
valid convex and concave relaxations (Locatelli and Schoen 2013).

De�nition 1 (Convex and concave relaxation) Let f ∶ X → ℝ with X ∈ �ℝ
n . A 

convex function f cv,u
∶ X → ℝ is called a convex relaxation or convex underestima-

tor of f on X  iff f cv,u(�) ≤ f (�), ∀� ∈ X  . A concave function f cc,o
∶ X → ℝ is called 

a concave relaxation or concave overestimator of f on X  iff f cc,o(�) ≥ f (�), ∀� ∈ X .

In Sects. 2.3 and 3.4, we make use of non-standard under- and overestimators to 
derive tighter relaxations.

De�nition 2 (Concave underestimator and convex overestimator) Let f ∶ X → ℝ 
with X ∈ �ℝ

n . A convex function f cv,o
∶ X → ℝ is called a convex overestimator of f 

on X  iff f cv,o(�) ≥ f (�), ∀� ∈ X  . A concave function f cc,u
∶ X → ℝ is called a con-

cave underestimator of f on X  iff f cc,u(�) ≤ f (�) ∀� ∈ X .

1 MAiNGO is available at https ://git.rwth-aache n.de/avt.svt/publi c/maing o.git along with a version of 
MC++ implementing the proposed relaxations.

https://git.rwth-aachen.de/avt.svt/public/maingo.git
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The original McCormick technique (McCormick 1976) provides rules for com-
puting relaxations of so-called factorable functions consisting of finite compositions 
of binary sums, binary products, and a library of univariate functions. The latter are 
called intrinsic functions, and for these functions both convex and concave relaxa-
tions and range bounds need to be known.

De�nition 3 (Range bounds) Let f ∶ X → ℝ with X ∈ �ℝ
n . Scalars zL and zU are 

called range bounds of f over X  iff f (X) ⊆ [zL, zU].

Tsoukalas and Mitsos (2014) extended the McCormick technique to allow for multi-
variate intrinsic functions. Note that such intrinsic functions are also used in the context 
of the AVM, such that the relaxations and range bounds developed herein could also 
be applied in that context. Unlike the AVM (Smith and Pantelides 1997; Tawarmalani 
and Sahinidis 2002), the McCormick technique provides convex and concave relaxa-
tions in the original variable space. A challenge in the application of the multivariate 
McCormick method is that the evaluation of the relaxation requires the solution of a 
convex but possibly nonlinear and nonsmooth problem (Theorem  2, Tsoukalas and 
Mitsos (2014)). To this end, it is highly desirable for the developed relaxations to have 
specific monotonicity properties that allow us to either determine closed-form solutions 
of the problem described by Theorem 2 of Tsoukalas and Mitsos (2014) analytically, or 
compute it numerically with relatively little effort, e.g., by solving a one-dimensional 
nonlinear equation, which is solved via Newton’s method.

2.2  Componentwise convex functions

Componentwise convexity of multivariate functions enables the construction of tight 
relaxations.

De�nition 4 (Componentwise convexity) A function f ∶ X → ℝ , where 
X = X

1
×⋯ × X

n
∈ �ℝ

n , is said to be componentwise convex (concave) with respect 

to a variable x
i
, i ∈ {1,… , n} iff the univariate function

is convex (concave) for any fixed x̂j ∈ Xj, j ≠ i . f is said to be componentwise convex 

(concave) iff it is componentwise convex (concave) with respect to each variable 
x

i
, i ∈ {1,… , n}.

For twice continuously differentiable functions, a convenient way of confirming 
componentwise convexity or concavity with respect to a variable consists in examining 
the second derivative of the univariate function f̂  in (1) (and hence the second partial 
derivative with respect to the variable of interest) and proving that it is non-negative 
or non-positive over the considered set (cf. Rockafellar 1970), either analytically or 
through global maximization or minimization. However, since some of the functions 
considered herein are only piecewise continuously differentiable, we use a specific 

(1)f̂ ∶ Xi → ℝ, xi ↦ f (x̂1,… , x̂i−1, xi, x̂i+1,… x̂n)



1100 D. Bongartz et al.

1 3

procedure that enables an analysis for functions where a partial derivative need not 
exist at all points. The functions we consider herein are of the form

where X1, X2 ∈ �ℝ , f1, f2 are both smooth on X
1
× X

2
 , f is continuous on X

1
× X

2
 , 

and x̃
2
(x

1
) is a strictly monotonic function. To determine whether functions of form 

(2) are componentwise convex, we proceed as described in the following. First, we 
solve the optimization problems

to global optimality. Note that these problems are much smaller and less complex 
than the design problems within which the functions are intended to be used and can 
be solved with general purpose methods. Furthermore, since we only consider cer-
tain known functions, the problems need to be solved only once in order to construct 
tighter relaxations for later use in design problems. If the solution values of both 
problems (3) and (4) are non-negative, we know that f

1
 is componentwise convex 

with respect to x
2
 on S1 ∶= {(x1, x2) ∈ X1 × X2|x2 ≥ x̃2(x1)} and f

2
 is component-

wise convex with respect to x
2
 on S2 ∶= {(x1, x2) ∈ X1 × X2|x2 ≤ x̃2(x1)} . To show 

that f is componentwise convex with respect to x
2
 on X

1
× X

2
 , it remains to show 

that the difference between the right and left derivatives of f with respect to x
2
 at the 

boundary between the subdomains S
1
 and S

2
 is non-negative. To this end, we solve a 

third optimization problem given as

and examine the sign of the optimal objective value. When applying the above 
procedure for testing componentwise convexity with respect to x

1
 , the order of the 

derivatives of f
1
 and f

2
 in (5) needs to be exchanged in case x̃

2
(x

1
) is increasing. An 

analogous procedure can be used for testing for componentwise concavity.
Once it has been established that a function is componentwise convex (con-

cave), its concave (convex) envelope is known to be vertex polyhedral (Tardella 
2004). Since the multivariate functions considered herein are only bivariate, 
this envelope can be computed efficiently using the method of Meyer and Flou-
das (2005). A convex (concave) relaxation, on the other hand, can be computed 
using the method of Najman et al. (2019a) if the derivatives of the function fulfill 

(2)f ∶ X1 × X2 → ℝ, (x1, x2) ↦

{

f1(x1, x2), if x2 ≥ x̃2(x1)

f2(x1, x2), otherwise
,

(3)
min

x1∈X1,x2∈X2

�
2f1

�x2

2

s.t. x2 ≥ x̃2(x1),

(4)
min

x1∈X1,x2∈X2

�
2f2

�x2

2

s.t. x2 ≤ x̃2(x1),

(5)min
x1∈X1

�f1

�x2

|
|
|
|(x1,x̃2(x1))

−
�f2

�x2

|
|
|
|(x1,x̃2(x1))
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certain additional requirements. However, since some of the functions herein are 
nonsmooth, we need to adapt the latter method. First, we define partial subderiva-
tives in analogy to the definition of subgradients for convex functions (cf. Rock-
afellar 1970).

De�nition 5 (Subgradient and subdifferential) For a convex and concave function 
f cv

, f cc
∶ X → ℝ , where X ∈ �ℝ

n , we call �cv
, �

cc
∈ ℝ

n a convex and a concave sub-

gradient of  f cv
, f cc  at  �̂ , respectively, iff

The convex and concave subdifferential of  f at  �̂ denoted by �cvf (�̂), �ccf (�̂) , respec-
tively, are the sets of all convex and concave subgradients of f at �̂ , respectively.

De�nition 6 (Partial subderivative and subdifferential) Let f ∶ X → ℝ , where 
X ∈ �ℝ

n , be componentwise convex (concave) with respect to some x
i
, i ∈ {1,… , n} . 

We call s ∈ ℝ a partial subderivative of  f with respect to x
i
 at �̂ ∈ X  iff it is a sub-

gradient of the univariate function f̂  as defined in (1) at x̂
i
 . The set of all partial 

subderivatives of f with respect to x
i
 at �̂ ∈ X  is called the partial subdifferential of f 

with respect to x
i
 at �̂ ∈ X  and denoted by �if (�̂).

Using this definition of the partial subdifferential, we introduce the following 
adapted version of Theorem 1 from Najman et al. (2019a):

Theorem  1 Let f ∶ X → ℝ be a componentwise convex function with 
X = X1 × X2 =

[

x
L

1
, x

U

1

]

×

[

x
L

2
, x

U

2

]

∈ �ℝ
2 , and �b a border point of X  with x

b

1
= x

L

1
 

and xb

2
∈

[

x
L

2
, x

U

2

]

 . Define the function

If it holds that

for any fixed x̄
2
∈ X

2
 , then f cv,u

sum
 is a convex relaxation of f.

Proof The proof is analogous to that of Theorem 1 of Najman et al. (2019a) when 
replacing the partial derivatives therein with the suitable minimum and maximum 
elements of the partial subdifferentials as in (7), and replacing the derivatives in 
Lemma 1 of Najman et al. (2019a) with the subgradients for convex (rather than dif-
ferentiable) functions.   ◻

In particular, Theorem  1 can be applied to componentwise convex functions 
of form (2). Similar to Najman et  al. (2019a), up to 2 valid relaxations can be 
obtained from Theorem 1 by reordering the variables and changing the sign of the 

f cv(�) ≥ f cv(�̂) + (�cv)T (� − �̂), ∀� ∈ X,

f cc(�) ≤ f cc(�̂) + (�cc)T (� − �̂), ∀� ∈ X.

(6)f cv,u
sum

(�) ∶= f
(

x1, xb
2

)

+ f
(

xb
1
, x2

)

− f
(

xb
1
, xb

2

)

.

(7)min �1f
(

x1, x̄2

)

≥ max �1f
(

x1, xb
2

)

∀x1 ∈ X1
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coordinates. Furthermore, an analogous way for constructing concave relaxations of 
componentwise concave functions is given by considering −f  instead.

In Corollary 1 of Najman et al. (2019a), a convenient procedure based on mixed 
second-order partial derivatives is provided for confirming that the conditions of 
Theorem 1 therein are satisfied. This procedure is not directly applicable for con-
firming the validity of (7) because functions of form (2) are possibly not twice dif-
ferentiable, despite the fact that f

1
 and f

2
 are both twice differentiable. Therefore, we 

describe an alternative way of confirming the validity of (7) for functions considered 
of form (2), which is analogous to the test for componentwise convexity described 
above: First, we solve the two optimization problems

to global optimality. If the solution values of both problems (8) and (9) are non-neg-
ative, Corollary 1 of Najman et al. (2019a) suggests that the corner �c = (xL

1
, x

L

2
) can 

be used in Theorem 1 in order to construct the convex relaxation. Assume w.l.o.g. 
that f equals f

2
 at �c . In order to guarantee that the relaxation resulting at �c is also 

valid for f, a sufficient condition is that

is non-negative for all x
1
∈ X

1
 if x̃

2
(x

1
) is decreasing and non-positive if x̃

2
(x

1
) is 

increasing. Since this condition is equivalent to the one for confirming component-
wise convexity via problem (5) or concavity via the equivalent maximization prob-
lem, respectively, the condition is automatically satisfied for componentwise con-
cave functions in case x̃

2
(x

1
) is increasing and componentwise convex functions in 

case x̃
2
(x

1
) is decreasing. An analogous procedure can be used for testing whether 

the corner point �c = (xL

1
, x

U

2
) can be used in Theorem 1.

2.3  Variants of ̨ BB

The � BB method was introduced as a general-purpose method for constructing 
relaxations of twice continuously differentiable functions (Androulakis et al. 1995). 
The basic idea is to add a quadratic function with parameters ��� to construct convex 
underestimators, where the ��� parameters are chosen such that the quadratic function 
offsets the smallest eigenvalue of the Hessian of the function over the considered 
domain. These ��� parameters can either be precomputed and thus be independent of 

(8)
min

x1∈X1,x2∈X2

�
2f1

�x1�x2

s.t. x2 ≥ x̃2(x1),

(9)
min

x1∈X1,x2∈X2

�
2f2

�x1�x2

s.t. x2 ≤ x̃2(x1),

�f1

�x2

|
|
|
|(x1,x̃2(x1))

−
�f2

�x2

|
|
|
|(x1,x̃2(x1))
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the interval, or they can be computed using interval methods when constructing the 
relaxation for a specific interval (Adjiman et al. 1998).

Hasan (2018) recently introduced a variant of � BB that does not use the ��� param-
eters to construct convex underestimators directly, but rather to construct a compo-
nentwise concave underestimator, and then uses the vertex polyhedral convex enve-
lope of the latter (cf. Sect. 2.2) as convex underestimator. Herein, we use a similar 
approach in the sense that we only aim at achieving componentwise convexity or 
concavity and not convexity or concavity of the function directly.

Lemma 1 Let f ∶ X → ℝ , where [xL

1
, x

U

1
] ×⋯ × [xL

n
, x

U

n
] = X ⊂ �ℝ

n , be such that 

for some i ∈ {1,… , n} , �
2f

�x2

i

 exists for all � ∈ X  . For any 

�
cv
i
≥ max

{

0,−
1

2
min

�∈X

�
2f

�x2

i

}

 , define

Then f cv,u,�BB(�) ≤ f (�) ≤ f cv,o,�BB(�) ∀� ∈ X  , and f cv,u,�BB and f cv,o,�BB are compo-

nentwise convex with respect to x
i
.

Proof The result for f cv,u,�BB follows when applying the original � BB method 
(Androulakis et al. 1995) to the univariate function f̂  in (1). For f cv,o,�BB , it follows 
from the results of Hasan (2018) applied to −f  .   ◻

Lemma 2 Let f and X  be as in Lemma  1. For any �cc
i
≥ max

{

0,
1

2
max

�∈X

�
2f

�x2

i

}

 , 

define

Then f cc,u,�BB(�) ≤ f (�) ≤ f cc,o,�BB(�) ∀� ∈ X  , and f cc,u,�BB and f cc,o,�BB are compo-

nentwise concave with respect to x
i
.

Proof The proof is analogous to that of Lemma 1.   ◻

Since both the original � BB method and the variant of Hasan (2018) require the 
function to be twice continuously differentiable, we consider the following proce-
dure for two dimensional functions of form (2): If the solution of problem (5) is non-
negative, we use the minimum of the solution values of problems (3) and (4) to con-
struct under- and overestimators as in Lemma 1 that are componentwise convex with 

(10)f cv,u,�BB(�) ∶= f (�) + �
cv
i

(

xi − xL
i

)(

xi − xU
i

)

,

(11)f cv,o,�BB(�) ∶= f (�) + �
cv
i

(

xi −
xL

i
+ xU

i

2

)2

.

(12)f cc,u,�BB(�) ∶= f (�) − �
cc
i

(

xi −
xL

i
+ xU

i

2

)2

,

(13)f cc,o,�BB(�) ∶= f (�) − �
cc
i

(

xi − xL
i

)(

xi − xU
i

)

.
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respect to x
1
 . Instead, if the solution value of the maximization problem analogous 

to (5) is non-positive, we solve the maximization problems analogous to problems 
(3) and (4) and use the maximum of their solution values to construct under- and 
overestimators as in Lemma 2 that are componentwise concave with respect to x

1
 . 

The same procedure is used to construct under- and overestimators that are compo-
nentwise convex or concave with respect to x

2
.

In the present work, we only use � BB to compute relaxations of intrinsic func-
tions within larger factorable functions, which are then relaxed using the multivari-
ate McCormick theorem (cf. Sect. 2.1). Therefore, we need to be able to compute 
minima of convex relaxations and maxima of concave relaxations, respectively, over 
boxes, either analytically or with little effort. However, the �BB-type relaxations 
(10)–(13) may not be monotonic even when the original functions are, thus com-
plicating the application of the multivariate McCormick theorem. We therefore add 
a linear term to functions described in (10)–(13) to make the final � BB relaxation 
monotonic. While this makes the final relaxations slightly weaker, it greatly simpli-
fies the application of the multivariate McCormick theorem.

In order to apply Theorem 1, it may additionally be necessary to alter the mixed 
second-order partial derivatives of a function f, which we achieve with mixed � BB 
terms. For example, to obtain an underestimator that has a non-negative mixed sec-
ond-order partial derivative with respect to x

i
 and xj , where i, j ∈ {1,… , n} , through-

out its domain, we use

with �pos

i,j
≥ max

{

0,−
1

2
min

�∈X

�
2f

�xi�xj

}

 in analogy to Lemma 1. This procedure can 

be used analogously to achieve a non-positive mixed second-order partial derivative 
and for overestimators.

3  Construction of relaxations of functions from the IAPWS-IF97

The IAPWS-IF97 is divided into five regions (cf. Fig.  1). Region 1 represents 
subcooled liquid up to a temperature of Tmax

1
= 623.15 K , Region 2 superheated 

vapor, and Region 4 the two-phase region. Of the latter, we only consider the 
part up to Tmin

3
= T

max

1
 (and, accordingly, p

min

3
≈ 16.5292 MPa ) in which the satu-

rated liquid and vapor states lie in Regions 1 and 2, respectively. This part will 
be denoted as Region 4-1/2 in the following. Additionally, we restrict Region 2 to 
pressures p ≥ p

min

2
∶= p

min

1
= 611.2127 Pa instead of the original definition p ≥ 0 

(IAPWS 2007a) to avoid the difficulty that entropy goes to infinity as pressure 
goes to zero. Since such low pressures are not typically encountered in steam 
cycles, this restriction of Region 2 is not a practical limitation for the intended 
application. We do not consider Region 5, since it corresponds to much higher 
temperatures than those encountered in steam cycles. Region 3, which represents 

f pos,u,�BB(�) ∶= f (�) + �
pos

i,j
(xi − xL

i
)(xj − xU

j
)
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the region around and above the critical point, can be relevant for steam cycles 
and could be included as future work.

Within the considered regions, we are interested in those functions that relate 
temperature T, pressure p, specific enthalpy h, specific entropy s, and vapor frac-
tion y. Specifically, we consider the following functions taken directly from the 
IAPWS-IF97:

• Region 1: h1(p, T) , s1(p, T) , T1(p, h) , T1(p, s)

• Region 2: h2(p, T) , s2(p, T)

• Region 4-1/2: p
s
(T) , T

s
(p)

• Boundary between Regions 2 and 3: p
B23

(T) , T
B23

(p)

In Region 2, we do not consider the functions T2(p, h) and T2(p, s) from the 
IAPWS-IF97 although they would be useful to eliminate optimization variables 
in reduced-space optimization formulations (Bongartz and Mitsos 2017). The 
reason is that these functions have piecewise definitions over subdomains in the 
p–h or p–s space. Since the functions were independently fitted to the original 
data for each of these subdomains during the development of the IAPWS-IF97, 
the resulting functions T2(p, h) and T2(p, s) are not continuous over their entire 
domains. Although the differences between the one-sided limits at the interface 
between different subdomains is within the tolerated error for model development 
(Wagner et al. 2000), this discontinuity does complicate the analysis of the func-
tions for deriving relaxations. Similar complications arise in Region 3, for which 
useful supplementary functions with piecewise definitions have been introduced 
(IAPWS 2007b).

In addition to the functions taken directly from the IAPWS-IF97, we define 
the following auxiliary functions for calculating specific enthalpy and entropy of 
saturated vapor and liquid states:

(14)h
liq

4−1∕2
(p) ∶= h1(p, Ts(p)),

Fig. 1  Regions of the revised 
release of the IAPWS-IF97 
(IAPWS 2007a). Only Regions 
1, 2, and 4-1/2 are considered in 
this work, where Region 4-1/2 is 
the part of Region 4 adjacent to 
Regions 1 and 2
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Using (14)–(17), we define the following functions for computing specific enthalpy 
and entropy as well as vapor fraction in the two-phase region:

For the bivariate functions, we define two types of domains that are useful for the 
analysis of the functions.

De�nition 7 (Physical domain) Given a function f (x1, x2) , we denote by 
Pf (x1,x2)

⊂ ℝ
2 the domain specified in the IAPWS-IF97 (IAPWS 2007a) and we call 

Pf (x1,x2)
 the physical domain of f (x1, x2).

De�nition 8 (Box domain) Given a function f (x1, x2) with physical domain 
Pf (x1,x2)

⊂ ℝ
2 , we denote by Bf (x1,x2)

∈ �ℝ
2 the smallest box containing Pf (x1,x2)

 and 
call Bf (x1,x2)

 the box domain of f (x1, x2).

In the following, the lower and upper variable bounds of the box 
domains are denoted with the superscripts min and max, respectively, i.e., 
Bf (x1,x2)

= [xmin

1
, xmax

1
] × [xmin

2
, xmax

2
] . The physical domains, which are often noncon-

vex (cf. Fig. 1), can be represented in terms of the box domains and additional ine-
qualities. This representation is useful because in global optimization the functions 
typically need to be evaluated on rectangular subsets of the box domains (called 
nodes of the B&B tree) while the inequalities are enforced as constraints. To distin-
guish the bounds of nodes from those of the box domains, we denote the former by 
the superscripts L and U, e.g., [xL

1
, xU

1
] × [xL

2
, xU

2
] ⊆ Bf (x1,x2)

.

(15)h
vap

4−1∕2
(p) ∶= h2(p, Ts(p)),

(16)s
liq

4−1∕2
(p) ∶= s1(p, Ts(p)),

(17)s
vap

4−1∕2
(p) ∶= s2(p, Ts(p)).

(18)h4−1∕2(p, y) ∶= yh
vap

4−1∕2
(p) + (1 − y)h

liq

4−1∕2
(p),

(19)s4−1∕2(p, y) ∶= ys
vap

4−1∕2
(p) + (1 − y)s

liq

4−1∕2
(p),

(20)y4−1∕2(p, h) ∶=
h − h

liq

4−1∕2
(p)

h
vap

4−1∕2
(p) − h

liq

4−1∕2
(p)

,

(21)y4−1∕2(p, s) ∶=
s − s

liq

4−1∕2
(p)

s
vap

4−1∕2
(p) − s

liq

4−1∕2
(p)

.
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All functions of the IAPWS-IF97 and by extension also those in (14)–(21) are 
given as explicit expressions, in most cases compositions of linear and signomial 
functions, and can be written as factorable functions. Therefore, general purpose 
methods for constructing relaxations of factorable functions such as the (multivari-
ate) McCormick technique (McCormick 1976; Tsoukalas and Mitsos 2014) or the 
auxiliary variable method (Smith and Pantelides 1997; Tawarmalani and Sahinidis 
2002) could be applied to the original, factorable representation of the functions. 
However, this is problematic for two reasons. First, the functional forms of the 
expressions are rather long and complex. Therefore, general purpose methods often 
result in rather weak relaxations. Second, during optimization, boxes need to be con-
sidered that contain regions of the box domain that lie outside the physical domain. 
Even though such regions are made infeasible using a suitable constraint, the func-
tions may still need to be evaluated at points in such regions and relaxations need to 
be constructed over boxes containing these regions as well. However, the functions 
were never intended to be used outside their physical domain, and many functions 
take values of extremely large magnitude when evaluated in such regions. This can 
lead to very weak relaxations over the physical domain when considering boxes con-
taining these regions, as well as numerical problems when solving the linear and 
nonlinear subproblems.

To address these challenges, we consider the IAPWS-IF97 functions directly as 
intrinsic functions instead of using their factorable representations. To derive the 
required information to treat them as intrinsic functions, we conduct the following 
steps that are explained in detail in the following subsections: 

1. We determine the physical domains and box domains for bivariate functions.
2. We modify the bivariate functions outside their physical domains to improve the 

mathematical properties of the functions in these regions.
3. We analyze the functions for monotonicity properties to derive range bounds.
4. We analyze the functions for convexity properties to derive convex and concave 

relaxations.

3.1  Determination of physical domains and box domains

For the bivariate functions, we first determine the physical domains and box 
domains according to Definitions  7 and 8. For the functions h1(p, T) , s1(p, T) , 
h2(p, T) , and s2(p, T) , which are obtained as derivatives of the basic equations of the 
IAPWS-IF97, the domains can be taken directly from the model definition (IAPWS 
2007a). For most other functions, the physical domains are not explicitly given in 
the IAPWS-IF97. In this case, the physical domains need to be determined through 
an analysis of the monotonicity properties of related functions from the IAPWS-
IF97 and the box domains need to be determined via globally maximizing and mini-
mizing each variable over the physical domain. Examples for this procedure both for 
a straightforward case and a more involved case can be found in “Appendix 1” along 
with a summary of all box and physical domains in Tables 5 and 6.
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3.2  Model modi�cation outside the physical domain

We analyze the model functions and their derivatives to determine whether the func-
tions exhibit excessive peaks or other undesired behavior in those regions of their 
box domains that are outside the physical domain. In case of undesired behavior, we 
replace the functions with a suitable extrapolation outside (a relaxation of) the phys-
ical domain. The resulting piecewise defined functions are of form (2) and will be 
called intermediate modified functions in the following and denoted with the super-
script int . The extrapolations are chosen such that

• they have similar monotonicity and convexity properties as the original functions 
on their physical domains as far as possible,

• the intermediate modified functions are continuous,
• the solution values of problem (5) for the intermediate modified functions are 

nonnegative, or those of the corresponding maximization problems are nonposi-
tive (whenever possible, both are achieved simultaneously by making the func-
tions continuously differentiable).

Beyond these intermediate modifications, we restrict the range of each function to 
that achieved over its physical domain. This helps to avoid domain violations when 
considering compositions of functions from the IAPWS-IF97. The resulting func-
tions will be called final modified functions in the following and denoted with the 
superscript mod.

The final modified functions are the ones that will be used in the optimization 
problems. The relaxations, however, will be constructed based on the intermediate 
modified functions that have more useful convexity properties (cf. Sect. 3.4). Based 
on these relaxations of the intermediate modified functions, relaxations for the final 
modified functions are obtained using the rules for composition with the max and 
min functions (Tsoukalas and Mitsos 2014).

Figure 2 shows the application of the above procedure to the function h2(p, T) . A 
more detailed description for this function can be found in “Appendix 2”. Similar 
modifications are conducted for the functions h1(p, T) , s1(p, T) , T1(p, h) , and s2(p, T) . 
The intermediate modifications are summarized in Table  7 in “Appendix  2”. The 
remaining bivariate functions are only cut at the minimum and maximum values 
occurring on their physical domains but not extended otherwise since their proper-
ties outside their physical domains are already satisfactory.

Note that the modifications of the model functions themselves are only conducted 
in parts of the box domain where the model has no physical meaning and that are 
excluded via suitable constraints when using the functions in an optimization prob-
lem. They thus do not alter the solutions of meaningful process models using these 
functions. Note also that the modifications do make the functions nonsmooth outside 
of the physical domains (both the replacement of the function with an extrapolation 
for some of the intermediate modified function and the restriction of the range of the 
functions to that over their physical domains when constructing the final modified 
functions). However, we did not find this to be an issue in practice so far (cf. discus-
sion in Sect. 4).
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3.3  Range bounds

To derive range bounds, we analyze the intermediate modified functions for mono-
tonicity properties by globally maximizing and minimizing their first partial deriva-
tives over the corresponding box domains using our open-source global solver 
MAiNGO (Bongartz et al. 2018). For functions that are replaced by an extrapolation 
outside their physical domains and that are hence of form (2), the maximization and 
minimization is done separately within the relaxed physical domain and the domain 
of the extrapolation. In both subdomains, the functions are differentiable by con-
struction. Even though the functions may be nonsmooth at the boundary between 
the subdomains, monotonicity results within the subdomains can still be translated 

(a) (b)

(c) (d)

Fig. 2  Modification procedure for the function h2(p, T) as described in “Appendix 2”. In all subplots, the 
solid red line denotes the boundary of the physical domain. a The physical domain of h2(p, T) , Ph2(p,T) , 
is a nonconvex subset of the box domain [611.2127 × 10−6, 100]MPa × [273.15, 1073.15]K delim-
ited by p ≤ p

s
(T) for T ≤ 623.15 K and p ≤ p

B23
(T) otherwise (note that both axes are inverted). Since 

this boundary is nonsmooth, we introduce a relaxed physical domain delimited by the smooth func-
tion plim

2
(T) instead. b  Original function h2(p, T) with undesired peaks outside Ph2(p,T) that go beyond 

4.5 × 109 kJ/kg and −6.1 × 1055 kJ/kg and were cut off to improve readability. c  Intermediate modified 
function hint

2
(p, T) that was modified (green) for p > plim

2
(T) to have favorable properties for deriving 

relaxations. d Final modified function hmod

2
(p, T) = max(hint

2
(p, T), hmin

2
) , where hmin

2
 is the minimum of 

h2(p, T) over Ph2(p,T) . The region where this lower bound is active is shown in orange. Note the different 
scale of the z-axes compared with b and c 
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into global monotonicity properties since the functions are continuous. These prop-
erties also hold for the final modified functions since taking the maximum or mini-
mum with a constant does not change the monotonicity properties.

For functions with monotonicity properties over the entire (box) domain, we 
immediately obtain exact range bounds. For other functions, exact range bounds can 
only be obtained in certain cases. In case a function is only monotonic with respect 
to one variable, an exact upper or lower bound can sometimes still be obtained 
in case of componentwise convexity or concavity with respect to the other varia-
ble (cf. Sect. 3.4). As a last resort, we obtain natural interval extensions from the 
FILIB++ library (Lerch et al. 2011) by evaluating the factorable representation of 
the function using the interval datatypes from FILIB++ either with respect to one 
or both variables over a suitable part of its domain. Examples for both a straightfor-
ward case and a more involved case can be found in “Appendix 3”, and all exploited 
monotonicity properties are summarized in Table 8.

3.4  Convex and concave relaxations

Similar to the monotonicity analysis described above, we analyze the intermediate 
modified functions for (componentwise) convexity by globally maximizing and min-
imizing their second partial derivatives over their box domains using MAiNGO. For 
bivariate functions with piecewise definition of form (2), we proceed as described 
in Sect. 2.2. The identified properties are summarized in Table 9 in “Appendix 4”. 
These properties are used to derive relaxations as described in the following.

3.4.1  Univariate functions

For univariate functions that are convex or concave over their entire domain (cf. 
Table 9), we trivially obtain the convex and concave envelopes over any interval as 
the function itself and the secant between the end points of the interval. The func-
tions hliq

4-1/2
(p) , sliq

4-1/2
(p) and svap

4-1/2
(p) , on the other hand, are not convex or concave 

on their entire domains. However, they are either mostly convex or mostly concave, 
while the remaining parts are essentially linear. We can therefore obtain rather tight 
relaxations via the � BB variants (10)–(13) with fixed values for the � parameters. 
These values are obtained as described in Lemmata 1 and 2 from the maximum or 
minimum values (whichever is smaller in magnitude) of the second derivatives over 
the entire domain that were precomputed through global optimization in MAiNGO. 
When constructing relaxations on a given interval during the B&B procedure, the 
� BB terms in (10)–(13) are only used if the node is not fully in a region where 
the function is convex or concave (cf. Table  9). Since the functions are univari-
ate, convex and concave envelopes could instead also be obtained using the tech-
nique described by McCormick (1976, Section 4). However, in general this method 
requires iterative solution of a nonlinear equation using, e.g., Newton’s method, for 
each evaluation of the relaxations, and we would like to avoid this computational 
effort.
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As an example, Fig.  3c shows the proposed relaxations for hliq

4-1/2
(p) , which are 

discussed in more detail in “Appendix 4”. The relaxations are orders of magnitude 
tighter than the McCormick relaxations (cf. Fig. 3a). Quantitatively, the maximum 
difference between the value of hliq

4-1/2
(p) and that of the convex relaxation is approxi-

mately 1.3 × 10
7 for the McCormick relaxation whereas it is less than 750 for the 

proposed relaxation. The proposed convex relaxation, which is based on the secant 
of the concave underestimator (12) and hence the maximum of the second derivative 
of hliq

4-1/2
(p) , is also much tighter than the regular � BB relaxation (10) based on the 

minimum of the second derivative of hliq

4-1/2
(p) . For this regular � BB relaxation, the 

maximum difference between the values of the function and that of the relaxation is 
approximately 1.5 × 104 (cf. Fig. 3b).

Beyond the tightness of the relaxations, another factor that can impact the perfor-
mance of a global solver is the computational cost for computing the relaxations. To 
quantify this computational cost, we evaluated both the McCormick relaxations and 
the proposed relaxations (using the implementation described in Sect. 4) for all con-
sidered univariate functions on 100 evenly spaced points on each of 1000 randomly 
generated intervals within their domains and measured the CPU time. The measured 
time includes the time for computing the proposed range bounds in case of the pro-
posed relaxations and that for computing natural interval extensions in case of the 
McCormick relaxations. For all functions, the evaluation of the proposed relaxations 
was 53–96% faster than that of the McCormick relaxations.

(a) (b) (c)

Fig. 3  Convex (cv) and concave (cc) relaxations of the function h
liq

4−1∕2
(p) constructed using different 

methods. Note the different scales on the y-axis. a McCormick relaxations applied to 
h

liq

4−1∕2
(p) = h1(p, Ts(p)) , where the relaxations of T

s
(p) needed to be artificially bounded to positive val-

ues to avoid domain violations. b � BB relaxations (10) and (13) using exact � values (determined 
through global optimization) for the considered domain. c Relaxations used in the present work as 
described in “Appendix 4”. The dotted line denotes the concave underestimator (cc,u) from the � BB vari-
ant (12). The dash-dotted convex relaxation is the secant of this concave underestimator, additionally cut 
at the lower bound hmin

4−1∕2
= minp∈[pmin

4−1∕2
,pmax

4−1∕2
] h

liq

4−1∕2
(p)
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3.4.2  Bivariate functions

The considered bivariate intermediate modified functions are neither convex nor 
concave on most parts of their domains. However, they are often componentwise 
convex or concave with respect to one or both variables on large parts of their 
domain (cf. Table 9). Additionally, they are often almost componentwise convex or 
concave over the entire domain in the sense that either the maximum of the second 
partial derivative is much larger in magnitude than the minimum or vice versa. This 
property is exploited to construct relaxations as described in the following, where 
we consider the function hmod

2
(p, T) as an example.

First, in addition to the identification of regions where the intermediate modified 
function (e.g., hint

2
(p, T) ) is componentwise convex or concave with respect to some 

variable, we identify the minimum and maximum values of its second partial deriva-
tives via global optimization using MAiNGO (separately over the subdomains in 

(a) (b)

(c) (d)

Fig. 4  Construction of relaxations of the function hmod

2
(p, T) on 

[611.2127 × 10−6, 10]MPa × [520, 1073.15]K . Note the different scales on the z-axes. a The McCor-
mick relaxations of the original function h2(p, T) are very weak. Note also the strong negative peak of the 
function itself at high p and low T. b For the function hint

2
(p, T) , this peak is much less pronounced. The 

componentwise concave over- and underestimators constructed via � BB are almost identical to hint

2
(p, T) . 

c The convex and concave relaxations of hint

2
(p, T) are constructed from these componentwise concave 

over- and underestimators. d The relaxations of the function hmod

2
(p, T) are constructed by applying the 

rules for composition with the max function
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case of piecewise defined functions, cf. Sect. 2.3). For those regions where the func-
tion is not componentwise convex with respect to a variable, we apply component-
wise � BB with respect to that variable using either (10) and (11) or (12) and (13), 
depending on whether the function is almost componentwise convex or concave 
with respect to that variable in the above sense (cf. Fig. 4b). If necessary, we add a 
linear term to (10)–(13) to ensure that the relaxation is monotonic, and we include a 
mixed � BB term to ensure a constant sign of the mixed second-order partial deriva-
tives (cf. Sect. 2.3).

In most cases, the resulting under- and overestimators are already either com-
ponentwise convex or concave (with respect to both variables). If, however, an 
underestimator is componentwise convex with respect to one variable and compo-
nentwise concave with respect to the other, we construct a componentwise convex 
underestimator by taking the secant with respect to the concave variable (Najman 
et al. 2019a). For an overestimator, we instead construct a componentwise concave 
overestimator by taking the secant with respect to the convex variable. For com-
ponentwise convex underestimators and componentwise concave overestimators, 
we use Theorem  1 to obtain convex underestimators and concave overestimators, 
respectively. For componentwise concave underestimators and componentwise con-
vex overestimators, we use the method of Meyer and Floudas (2005) instead (cf. 
Fig. 4c).

Up to this point, the relaxations were constructed based on the intermediate mod-
ified functions (e.g., hint

2
(p, T) ) before cutting at the minimum and maximum values 

over the physical domain. We therefore apply the rules for composition with max 
and min functions (Tsoukalas and Mitsos 2014) to derive valid relaxations for the 
final modified functions. For hmod

2
(p, T) , the relaxations are shown in Fig. 4d. They 

are significantly tighter than the McCormick relaxations of h2(p, T) (cf. Fig. 4a).
In some cases, however, the resulting relaxations are still somewhat weak when 

considering large boxes, in particular when requiring large � values for achiev-
ing componentwise convexity (cf. Fig. 5a). In these cases, we manually construct 

(a) (b)

Fig. 5  Relaxations for the function hmod

2
(p, T) on [611.2127 × 10−6, 60]MPa × [273.15, 1073.15]K . a 

The relaxations constructed as in Fig. 4 are somewhat weak over larger boxes. b We therefore add ad hoc 
relaxations that do not converge but are valid over the entire domain and provide tighter relaxations on 
large boxes
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additional (linear or nonlinear) ad hoc relaxations. These ad-hoc relaxations are 
valid over the entire box domain and are independent of the subset of the box 
domain over which they are evaluated in a B&B procedure. Therefore, they do not 
converge to the function when considering boxes of decreasing size, but they help 
tighten the relaxations for large boxes (cf. Fig. 5b). To construct the ad-hoc relaxa-
tions, we visually inspect the graph of the respective functions by plotting them in 
MATLAB. We then simultaneously plot linear or convex nonlinear functions, the 
potential ad-hoc relaxations, with parameters that we adjust through trial and error 
until the functions visually appear to be valid relaxations (e.g., in case of a convex 
relaxation, they appear to be below the original function on the entire box domain). 
We then confirm the validity of these potential ad-hoc relaxations by globally mini-
mizing the difference between them and the original function in MAiNGO and 
examining the sign of the optimal objective value.

Finally, to evaluate the proposed relaxations at a given point, we select the maxi-
mum among the described convex relaxations and the minimum among the concave 
relaxations, including the multiple facets that are obtained from the application of 
both Theorem 1 and the method of Meyer and Floudas (2005). Additionally, we cut 
the relaxations off at the lower and upper range bounds.

The full procedure described above is used for the functions h1(p, T) , s1(p, T) , 
T1(p, h) , h2(p, T) , s2(p, T) , and y4−1∕2(p, h) . For the functions T1(p, s) , h4−1∕2(p, y) , 
s4−1∕2(p, y) , and y4−1∕2(p, s) , the McCormick relaxations of the factorable representa-
tions or the compositions using the relaxations of the univariate functions discussed 
in Sect. 3.4.1 are relatively good already so that these are used instead. For T1(p, s) 
and y4−1∕2(p, s) , we merely add ad-hoc relaxations for large boxes as described 
above.

While the proposed relaxations of the considered bivariate functions are at 
least as tight as and typically significantly tighter than the McCormick relaxa-
tions, unlike in the univariate case, they are not always cheaper to evaluate. When 
evaluating them on 100 evenly spaced points on each of 1000 randomly generated 
boxes within their box domains, only the proposed relaxations of h2(p, T) , s2(p, T) , 
h4−1∕2(p, y) , s4−1∕2(p, y) , and y4−1∕2(p, s) are faster to evaluate (80–99%) than the 
McCormick relaxations. The time for evaluating the proposed relaxation for T1(p, s) 
is virtually the same as that for evaluating the McCormick relaxation, since we 
merely add an ad-hoc relaxation, which is very cheap to compute. For the func-
tions h1(p, T) , s1(p, T) , T1(p, h) , and y4−1∕2(p, h) , however, the proposed relaxations 
take 160–6500% longer to evaluate than the McCormick relaxations. The reason for 
this higher computational cost is that for these functions, iterative solution of one-
dimensional nonlinear equations via Newton’s method is required to determine the 
correct point to be used in the multivariate McCormick composition theorem (cf. 
Sect. 2.1). Nevertheless, computational experiments confirmed that this additional 
effort for computing the relaxations typically pays off in global optimization thanks 
to the much better tightness than the McCormick relaxations.
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4  Case studies

To demonstrate the benefit of the derived relaxations, we use the design problems 
from our previous work (Bongartz and Mitsos 2017) that consider bottoming cycles 
for combined power plants in three levels of complexity:

• Case Study 1 Basic Rankine cycle with fixed temperature of the hot gas turbine 
exhaust at the outlet of the heat recovery steam generator (HRSG).

• Case Study 2 Basic Rankine cycle but with variable gas outlet temperature and 
with a turbine bleed to an open feedwater heater that also serves as deaerator.

• Case Study 3 Dual-pressure cycle where the outlet of the high-pressure (HP) tur-
bine is mixed with the outlet of the low-pressure (LP) superheater before enter-
ing the LP turbine. The latter also has a bleed stream to the deaerator.

Two objective functions are considered for each flowsheet, namely maximization 
of the net power output ( Ẇ

net
 ) and minimization of the levelized cost of electricity 

(LCOE). The latter objective is more complex because it includes investment cost 
and hence, the models contain sizing and cost correlations for the process units.

In our previous work (Bongartz and Mitsos 2017), we demonstrated the benefit of 
modeling the design problems in a reduced-space optimization formulation where 
only the design variables and very few model variables remain in the optimization 
problem and most other model variables (and equations) are collapsed in a sequen-
tial evaluation of the model going through the cycle. In this previous work, we used 
very simple models for the thermodynamic properties of water, mostly ideal gas and 
liquid with constant heat capacities and constant heat of vaporization at a reference 
temperature. In the present work, we consider the same design problems and replace 
the simple thermodynamic models with the IAPWS-IF97 and solve the resulting 
problems using MAiNGO.

4.1  Modeling and implementation

Compared to the original reduced-space formulation (Bongartz and Mitsos 2017), 
we need to make some slight changes to the model. These changes are required 
because the functions T2(p, h) and T2(p, s) for computing temperatures for given 
pressure and enthalpy or entropy in the gas phase are not available (cf. discussion in 
Sect. 3). Specifically, we need to use steam temperatures at the superheater outlets as 
optimization variables, either instead of the corresponding enthalpies as degrees of 
freedom (for Case Studies 2 and 3) or as an additional variable with a correspond-
ing equality constraint (for Case Study 1). For Case Study 3, we also need to add 
the steam temperature at the inlet of the LP turbine, i.e., after mixing the HP turbine 
outlet with the LP superheater outlet, as well as the temperature of the hypothetical 
isentropic state at the outlet of the HP turbine. Additionally, we use mass flow rates 
of all branches of the flowsheet as design variables instead of the overall mass flow 
rate and split fractions, which we found to improve the relaxations.
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We implement the models in C++  using two different ways of handling the 
IAPWS-IF97 functions: using their factorable representation, and considering 
them as intrinsic functions. In the former case, the factorable representation of each 
IAPWS-IF97 function is incorporated into the directed acyclic graph (DAG) built 
in MAiNGO by the MC++ library (Chachuat et al. 2015). Range bounds are then 
obtained via natural interval extensions by FILIB++  (Lerch et  al. 2011), relaxa-
tions and their subgradients via the multivariate McCormick technique by MC++ , 
and gradients via automatic differentiation by FADBAD++ (Bendtsen and Staun-
ing 2012). In the latter case, each IAPWS-IF97 function occurs as a single node 
in the DAG. In this case, the range bounds and relaxations derived in the previous 
sections are used instead. For gradients, we use automatic differentiation via FAD-
BAD++ for each of the piecewise defined regions of the functions and arbitrarily 
use one of the one-sided limits at the nonsmooth kinks (the same is done for the 
max and min functions). While we are aware that this could potentially cause dif-
ficulties for the local subsolvers that rely on gradients, we did not experience such 
difficulties in the case studies (cf. Sect. 4.2). This is likely due to the fact that the 
performance of the local subsolvers for upper bounding is often not as crucial for the 
performance of global solvers. Nevertheless, in the future, it would be desirable to 
use recently published methods for generalized derivatives (Khan and Barton 2015) 
instead. Finally, we use custom relaxations for the equipment cost correlations and 
pressure factors for heat exchangers and deaerator vessels (Najman et  al. 2019b), 
and for the logarithmic mean temperature difference in heat exchangers (Mistry and 
Misener 2016; Najman and Mitsos 2016). The process models are available via our 
website,2 while the functions from the IAPWS-IF97 and the proposed relaxations 
are available in the MC++ library used by MAiNGO.

All problems are solved with MAiNGO v0.2.0 (Bongartz et al. 2018) using CLP 
1.17.0 (Forrest et al. 2019) for the linear lower bounding problems constructed on 
the basis of the subgradients of the relaxations, Ipopt 3.12.12 (Wächter and Biegler 

Table 1  Ranges and optimal values for optimization variables and objectives of Case Study 1 (basic 
Rankine cycle) with the IAPWS-IF97 and ideal models (in parentheses)

el., electricity; temp., temperature

Symbol Description Unit Range max Ẇ
net

min LCOE

Optimization variables

pS2
Upper cycle pressure MPa [0.3, 10]    10 (5.46) 4.33 (3.55)

ṁ Cycle mass flow rate kg/s [5, 100] 27.9 (29.5) 28.9 (30.6)

T
S5

Live steam temp. K [300, 873] 826 (668) 751 (616)

Objective functions

Ẇ
net

Net power output MW 31.7 (30.0)

LCOE Levelized cost of el. $/MWh 50.8 (50.2)

2 The C++  implementation of the process models is available at http://perma link.avt.rwth-aache 
n.de/?id=40986 3.

http://permalink.avt.rwth-aachen.de/?id=409863
http://permalink.avt.rwth-aachen.de/?id=409863
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2006) as local NLP solver during pre-processing, and no local solver (pure function 
evaluation of the lower-bounding solution point) during the B&B. For range reduc-
tion, we use optimization-based bound tightening with trivial filtering (Gleixner 
et al. 2017), duality-based bound-tightening (Ryoo and Sahinidis 1995), and basic 
constraint propagation. The feasibility-tolerances are set to 10

−6 and the relative opti-
mality tolerance to 10

−2 . All calculations are conducted on an  Intel®  Core™ i5-3570 
CPU with 3.4 GHz running Fedora Linux 30.

Table 2  Ranges and optimal values of optimization variables and objectives of Case Study 2 (basic 
Rankine cycle with bleed) with the IAPWS-IF97 and ideal models (in parentheses)

el., electricity; temp., temperature

Symbol Description Unit Range max Ẇ
net

min LCOE

Optimization variables

pS2
Deaerator pressure MPa [0.02, 0.5] 0.02 (0.02) 0.0404 (0.02)

pS4
Upper cycle pressure MPa [0.3, 10] 10 (4.53) 6.67 (4.03)

ṁ
Cond

Mass flow rate condenser kg/s [1, 99] 26.7 (24.5) 24.4 (25.6)

ṁ
Bleed

Mass flow rate bleed kg/s [0.05, 20] 1.45 (0.83) 2.09 (0.92)

T
S7

Live steam temp. K [300, 873] 817 (873) 758 (731)

Objective functions

Ẇ
net

Net power output MW 35.7 (34.4)

LCOE Levelized cost of el. $/MWh 51.2 (48.8)

Table 3  Ranges and optimal values of optimization variables and objectives of Case Study 3 (dual-pres-
sure cycle) with the IAPWS-IF97 and ideal models (in parentheses)

el., electricity; temp., temperature

Symbol Description Unit Range max Ẇ
net

min LCOE

Optimization variables

pS2
Deaerator pressure MPa [0.02, 0.5] 0.02 (0.02) 0.04 (0.02)

pS4
LP pressure level MPa [0.3, 1.5] 0.589 (0.920) 1.5 (1.5)

pS8
HP pressure level MPa [1, 10] 10 (10) 6.31 (4.58)

ṁ
HP

Mass flow rate HP part kg/s [2.5, 95] 26.4 (22.5) 24.3 (21.3)

ṁ
Cond

Mass flow rate condenser kg/s [4, 99] 29.6 (28.4) 25.8 (27.1)

ṁ
Bleed

Mass flow rate bleed kg/s [0.05, 20] 1.56 (1.02) 2.25 (0.98)

T
S7

LP steam temp. K [300, 873] 584 (585) 478 (515)

T
S11

HP steam temp. K [300, 873] 873 (873) 784 (797)

T
S12s

Isentropic temp. HP turbine K [300, 873] 458 (513) 565 (623)

T
S13

Temp. LP turbine inlet K [300, 873] 508 (558) 569 (610)

Objective functions

Ẇ
net

Net power output MW 39.8 (39.3)

LCOE Levelized cost of el. $/MWh 52.1 (49.5)
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4.2  Numerical results

The optimal solution points and objective values of the three case studies are 
summarized in Tables  1, 2 and 3. To avoid confusion with the symbols intro-
duced in the previous sections, the stream indices are prefixed by S in the tables. 
For comparison, the results with the very simple ideal thermodynamic models 
of Bongartz and Mitsos (2017) are also shown. Note that these deviate slightly 
from the original values (Bongartz and Mitsos 2017) when minimizing LCOE 
because the cooling water temperature in the condenser needed to be modified for 
the chosen condenser pressure to remain feasible when using the IAPWS-IF97. 
While the optimal objective values differ by less than 6% between the results with 
the IAPWS-IF97 model and the results with the ideal model, the optimal solution 
points and hence the optimal cycle designs differ significantly. For example, for 
Case Study 1, at the solution for maximum power output the cycle pressure pS2

 is 
at its upper bound (note that the bound pS2

≤ 10 MPa was chosen for consistency 
with the original problem of Bongartz and Mitsos (2017); therein, it was chosen 
because of the simplistic model that was expected to perform best at moderate 
pressures) when using the IAPWS-IF97 model, whereas with the simple model, it 
is approximately 50% lower (cf. Table 1). This highlights the importance of using 
detailed thermodynamic models for the design of steam power cycles.   

When using McCormick relaxations for the IAPWS-IF97 functions, only Case 
Study 1 can be solved (rather quickly) within the given time limit of 24 h (see 
Table 4). For Case Studies 2 and 3, the global solution and thus the correct final 
upper bound (UBD; all problems are cast as minimization problems when imple-
menting them for MAiNGO) is found during pre-processing as well, but the lower 
bound (LBD) barely improves from the values for the root node, resulting in large 
or even undefined (for Ẇ

net
 in Case Study 3; the lower bound remains at minus 

Table 4  Problem statistics and solution times with a time limit of 24 h when using McCormick relaxa-
tions or the relaxations presented herein for the IAPWS-IF97 functions, as well as when using the very 
simple ideal model of Bongartz and Mitsos (2017)

CS, Case Study; CPU, CPU time; Func., number of occurrences of IAPWS-IF97 functions; Iter., number 
of B&B iterations; McCormick, McCormick relaxations; Proposed, relaxations developed herein; gap, 
remaining relative optimality gap at CPU time limit; undef., gap not defined because the lower bound 
remained at minus infinity

Problem Func. IAPWS-IF97 model Ideal model

McCormick Proposed McCormick

CPU Iter. CPU Iter. CPU Iter.

CS1, Ẇ
net

10 0.60 s 557 0.08 s 17 0.03 s 3

CS1, LCOE 10 4.36 s 2845 0.32 s 195 0.05 s 19

CS2, Ẇ
net

19 >24 h (gap 4 × 10
11) 0.939 s 499 0.10 s 129

CS2, LCOE 19 >24 h (gap 92%) 14.5 s 7353 0.78 s 1109

CS3, Ẇ
net

31 >24 h (gap undef.) 9.90 min 1.6 × 105 2.92 s 2199

CS3, LCOE 31 >24 h (gap 92%) >24 h (gap 4%) >24 h (gap 2%)



1119

1 3

Deterministic global optimization of steam cycles using the…

infinity, i.e., no valid overall lower bound was identified) relative optimality gaps, 
defined as (UBD − LBD)∕UBD . Additionally, numerous numerical difficulties are 
encountered by CLP when solving the linear lower bounding problems (e.g., false 
infeasibility claims or solution points that are not actually feasible). These are 
likely due to the extremely large function values encountered outside the physical 
domains as well as the very weak relaxations (cf. Sect. 3).

When using the proposed relaxations, the solution of Case Study 1 takes almost 
97% less B&B iterations and 86% (for Ẇ

net
 ) to 95% (for LCOE) less CPU time 

than the solution with McCormick relaxations. Unlike with McCormick relaxa-
tions, Case Study 2 can be solved quickly as well with either objective. For Case 
Study 3, only the problem of maximizing Ẇ

net
 can be solved to the desired rela-

tive optimality tolerance of 1% within a few minutes, while the minimization of 
LCOE terminates at the CPU time limit of 24 h with a remaining relative optimal-
ity gap of 3.7%. Nevertheless, the optimality gap is closed much faster with the 
proposed relaxations than with McCormick relaxations (cf. Fig. 6). Furthermore, 
this problem can not be solved to the desired accuracy with the current version of 
MAiNGO when using the very simple ideal model of Bongartz and Mitsos (2017) 
either (cf. Table 4 and Fig. 6). This indicates that the difficulty with this problem 
is not purely due to the complexity or relaxations of the IAPWS-IF97.

5  Conclusion

We have derived relaxations for relevant functions from the IAPWS-IF97 that are 
orders of magnitude tighter than those obtained from general purpose methods like 
the McCormick technique. To derive the relaxations, the functions were modified 

Fig. 6  When minimizing the levelized cost of electricity in Case Study 3 (dual-pressure cycle), 
MAiNGO closes the optimality gap between the lower and upper objective bounds significantly faster 
with the proposed relaxations of IAPWS-IF97 functions than with McCormick relaxations and gets 
closer to the performance with ideal thermodynamics (Bongartz and Mitsos 2017)
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outside their original domains in regions where the model has no physical mean-
ing but where evaluation is required during global optimization. The functions were 
then analyzed for monotonicity properties to construct tight range bounds and (com-
ponentwise) convexity properties to construct tight convex and concave relaxations 
using variants of the � BB method as well as methods for relaxation of component-
wise convex or concave functions.

The relaxations were tested on three bottoming cycles for combined cycle power 
plants of increasing complexity. For all but the simplest example, global optimiza-
tion of the cycle design for either power output or levelized cost of electricity was 
not possible within reasonable computational time with McCormick relaxations but 
only with the relaxations developed herein. For the largest cycle, the minimization 
of the levelized cost of electricity could not be solved to the desired accuracy with 
the proposed relaxations either, although the optimality gap was closed much faster 
than with McCormick relaxations.

Future work could aim at improving the relaxations even further, which is in prin-
ciple possible because the proposed relaxations are no envelopes, except for some 
of the univariate functions. Beyond better relaxations of the functions considered 
herein, compositions could be considered (e.g., h1(p, s) ∶= h1(p, T1(p, s)) ), given the 
fact that good relaxations for intrinsic functions do not always lead to good relaxa-
tions of the composite function (Najman and Mitsos 2019). Hence, tighter relaxa-
tions could be achieved by considering these composite functions as intrinsic func-
tions themselves.

In addition to having tight relaxations for the thermodynamic models, computa-
tional advantages can also result from suitable modeling of the process flowsheets, 
especially in the context of reduced-space optimization formulations as considered 
herein (Bongartz and Mitsos 2017) that aim at a sequential evaluation of large parts 
of the process model. To this end, it would be beneficial to enable the use of the 
backward equations T2(p, h) and T2(p, s) from the IAPWS-IF97. These would allow 
for more freedom in the way the flowsheet is modeled, and for example allow to 
eliminate more optimization variables and equality constraints from the optimiza-
tion problem and move them into the flowsheet evaluation, thus leading to a smaller 
problem and potentially further reduced runtime. When developing relaxations for 
T2(p, h) and T2(p, s) , care needs to be taken to handle the discontinuities induced by 
the piecewise definition of the functions. Similar difficulties arise when extending 
the present approach to Region 3 of the IAPWS-IF97 (Wagner et al. 2000; IAPWS 
2007b), which would enable optimization of transcritical and supercritical cycles.

Finally, from a modeling perspective, it would be desirable to avoid having 
to specify which point in the flowsheet lies in which region of the IAPWS-IF97. 
This could be achieved either by using integer variables to let the optimizer choose 
between subregions, or by considering functions with piecewise definition over the 
regions, e.g., a function T(p, h) that consists of the respective functions in the differ-
ent regions. Similar approaches have already been used for local dynamic optimiza-
tion (Tică et  al. 2012; Åberg et  al. 2017), but in conjunction with simplifications 
(and smoothing) of the IAPWS-IF97. In analogy to the present approach, the func-
tions could also be kept unchanged where they have physical meaning and instead 
be analyzed to derive tighter relaxations.
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Appendix 1: Physical domains and box domains

As an example for a straightforward case, consider the function h1(p, T) . Wagner 
et  al. (2000) specify its domain as Ph1(p,T) = {(p, T)|273.15 K ≤ T ≤ 623.15 K,

p
s
(T) ≤ p ≤ 100 MPa

}

 (cf. also Fig. 1). We obtain the box domain Bh1(p,T) = [pmin

1
, pmax

1
]

×[Tmin

1
, Tmax

1
] = [minT∈[Tmin

1
,Tmax

1
] ps(T), 100 MPa] × [273.15, 623.15]K , where pmin

1
=

minT∈[Tmin

1
,Tmax

1
] ps(T) = 611.2127 × 10−6 MPa is also given by Wagner et al. (2000). 

The physical domain can be expressed as Ph1(p,T) =
{
(p, T) ∈ Bh1(p,T)|ps(T) ≤ p

}
={

(p, T) ∈ Bh1(p,T)|Ts(p) ≥ T
}
.

As an example for a more involved case, consider the function T1(p, h) which is part 
of the so-called backward equations (Wagner et al. 2000). It is related to the function 
h1(p, T) in the sense that for any fixed p̂ ∈ [pmin

1
, p

max

1
] , the function T̂1(h) ∶= T1(p̂, h) 

is intended to be the inverse of the function ĥ1(T) ∶= h1(p̂, T) . Although this inver-
sion was not done analytically but T1(p, h) was fitted to data separately from h1(p, T) , 
we can use this relation to obtain the physical domain of T1(p, h) implied by Wagner 
et al. (2000) as PT1(p,h) =

{
(p, h)|p ∈ [pmin

1
, pmax

1
], hlower

1
(p) ≤ h ≤ h

upper

1
(p)

}
 , where

(22)
hlower

1
(p) ∶= min

T
h1(p, T)

s.t. (p, T) ∈ Ph1(p,T),

(23)
h

upper

1
(p) ∶= max

T
h1(p, T)

s.t. (p, T) ∈ Ph1(p,T).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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The parametric optimization problems in (22) and (23) can be solved analytically 
since h1(p, T) is monotonically increasing with respect to T (cf. Sect. 3.3) and we 
obtain

hlower
1

(p) =h1(p, Tmin
1

)

h
upper

1
(p) =

{

h1(p, Ts(p)), if p ≤ pmin
3

h1(p, Tmax
1

), otherwise.

Table 5  Bounds of the box domains of the IAPWS-IF97 functions considered in this study. For a func-
tion fi(x, z) , the box domain is Bfi(x,z) ∶= [xmin

i
, xmax

i
] × [zmin

i
, zmax

i
]

Def., Definition; Min., Global minimization, Max., Global maximization

Bound Unit Value Source

p
min

1
MPa 611.2127 × 10

−6 Def. of Region 1

p
max

1
MPa 100 Def. of Region 1

T
min

1
K 273.15 Def. of Region 1

T
max

1
K 623.15 Def. of Region 1

h
min

1
kJ/kg −0.04158783 Min. of h1(p, T) over Ph1(p,T)

h
max

1
kJ/kg 1671.023 Max. of h1(p, T) over Ph1(p,T)

s
min

1
kJ/(kg K) −0.008582287 Min. of s1(p, T) over Ps1(p,T)

s
max

1
kJ/(kg K) 3.778281 Max. of s1(p, T) over Ps1(p,T)

p
min

2
MPa 611.2127 × 10

−6 Def. herein (cf. Sect. 2.1)

p
max

2
MPa 100 Def. of Region 2

T
min

2
K 273.15 Def. of Region 2

T
max

2
K 1073.15 Def. of Region 2

h
min

2
kJ/kg 2500.82500 Min. of h2(p, T) over Ph2(p,T)

h
max

2
kJ/kg 4160.66300 Max. of h2(p, T) over Ph2(p,T)

s
min

2
kJ/(kg K) 5.048097 Min. of s2(p, T) over Ps2(p,T)

s
max

2
kJ/(kg K) 11.92106 Max. of s2(p, T) over Ps2(p,T)

p
min

3
MPa 623.15 Def. of Region 3

T
min

3
K 16.5292 Def. of Region 3

p
min

4−1∕2
MPa 611.2127 × 10

−6 Def. of Region 4-1/2 (cf. Sect. 3)

p
max

4−1∕2
MPa 16.5292 Def. of Region 4-1/2 (cf. Sect. 3)

T
min

4−1∕2
K 273.15 Def. of Region 4-1/2 (cf. Sect. 3)

T
max

4−1∕2
K 623.15 Def. of Region 4-1/2 (cf. Sect. 3)

y
min

4−1∕2
– 0 Def. of Region 4-1/2 (cf. Sect. 3)

y
min

4−1∕2
– 1 Def. of Region 4-1/2 (cf. Sect. 3)

h
max

4−1∕2
kJ/kg −0.04158783 Min. of h4−1∕2(p, y) over Ph4−1∕2(p,y)

h
max

4−1∕2
kJ/kg 2803.285 Max. of h4−1∕2(p, y) over Ph4−1∕2(p,y)

s
min

4−1∕2
kJ/(kg K) −0.0001545496 Min. of s4−1∕2(p, y) over P

s4−1∕2(p,y)

s
max

4−1∕2
kJ/(kg K) 9.155759 Max. of s4−1∕2(p, y) over P

s4−1∕2(p,y)
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Finally, for the box domain BT1(p,h) = [pmin

1
, pmax

1
] × [hmin

1
, hmax

1
] we obtain hmin

1
 and 

h
max

1
 by globally minimizing hlower

1
(p) and maximizing hupper

1
(p) , respectively, over 

[pmin

1
, p

max

1
] . The physical and box domains of the remaining functions can be found 

in Tables 5 and 6.

Appendix 2: Modi�cation outside the physical domain

By means of example, consider the function h2(p, T) . Its physical domain 
Ph2(p,T) = {(p, T) ∈ Bh2(p,T) | p ≤ p

upper

2
(T)} , where

is shown in Fig.  2a, where the solid line denotes the points (pupper

2
(T̃), T̃) . When 

evaluating h2(p, T) on the entire box domain Bh2(p,T) , we observe undesired peaks of 
very large magnitude for points (p̃, T̃) with p̃ > p

upper

2
(T̃) (cf. Fig. 2b). These peaks 

destroy the monotonicity properties that h2(p, T) exhibits on its physical domain 

(24)p
upper

2
(T) =

{

ps(T), if T ≤ Tmin
3

pB23(T), otherwise,

Table 6  Physical domains of 
the IAPWS-IF97 functions 
considered in this study. For a 
function fi(x, z) , Bfi(x,z) denotes 
its box domain according to 
Table 5

Function Physical domain

h1(p, T) {(p, T) ∈ Bh1(p,T) | p ≥ ps(T)}

s1(p, T) {(p, T) ∈ Bh1(p,T) | p ≥ ps(T)}

T1(p, h) {(p, h) ∈ BT1(p,h) | hlower
1

(p) ≤ h ≤ h
upper

1
(p)},

hlower

1
(p) ∶= h1(p, Tmin

1
),

h
upper

1
(p) ∶=

{

h1(p, Ts(p)), if p ≤ pmin
3

h1(p, Tmax
1

), if p > pmin
3

T1(p, s) {(p, s) ∈ BT1(p,s) | slower
1

(p) ≤ s ≤ s
upper

1
(p)},

slower

1
(p) ∶= s1(p, Tmin

1
),

s
upper

1
(p) ∶=

{

s1(p, Ts(p)), if p ≤ pmin
3

s1(p, Tmax
1

), if p > pmin
3

h2(p, T) {(p, T) ∈ Bh2(p,T) | p ≤ p
upper

2
(T)},

p
upper

2
(T) ∶=

{

ps(T), if T ≤ Tmin
3

pB23(T), if T > Tmin
3

s2(p, T) {(p, T) ∈ Bs2(p,T) | p ≤ p
upper

2
(T)}

h4−1∕2(p, y) {(p, y) ∈ Bh4−1∕2(p,y)}

s4−1∕2(p, y) {(p, y) ∈ B
s4−1∕2(p,y)}

y4−1∕2(p, h) {(p, h) ∈ By4−1∕2(p,h) | h
liq

4−1∕2
(p) ≤ h ≤ h

vap

4−1∕2
(p)}

y4−1∕2(p, s) {(p, s) ∈ B
y4−1∕2(p,s) | s

liq

4−1∕2
(p) ≤ s ≤ s

vap

4−1∕2
(p)}
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Ph2(p,T) and would additionally lead to rather weak relaxations over boxes including 
these peaks.

To enable tighter relaxations, we replace the function with a suitable extrapola-
tion in this region. However, since pupper

2
(T) is nonsmooth (cf. (24) and Fig. 2a), we 

consider a relaxed physical domain Prel

h2(p,T)
∶= {(p, T) ∈ Bh2(p,T)|p ≤ plim

2
(T)} , with

where k
1
–k

4
 are chosen such that plim

2
(T) is continuously differentiable and 

plim
2
(T) ≥ p

upper

2
(T) ∀T ∈ {T̂ ∈ [Tmin

2
, Tmax

2
] | p

upper

2
(T̂) ≤ pmax

2
} (cf. Fig. 2a). We then 

define the intermediate modified function

(25)plim

2
(T) ∶=

{

ps(T), if T ≤ 350 K

k1 + k2T + k3T2 + k4T3, otherwise,

Table 7  Intermediate modifications of IAPWS-IF97 functions outside their physical domains to enable 
the construction of tight relaxations. k

i
, i = 1,… , 12 are parameters

Function Intermediate modified functions

h1(p, T)

hint

1
(p, T) ∶=

⎧⎪⎪⎨⎪⎪⎩

h1(p, T), if p ≥ ps(T)

h1(ps(T), T)

+

�
�h1

�p

������(ps(T),T)

�
p − ps(T)

�
,

if p < ps(T)

s1(p, T)

sint

1
(p, T) ∶=

⎧⎪⎪⎨⎪⎪⎩

s1(p, T), if p ≥ ps(T)

s1(ps(T), T)

+

�
�s1

�p

������(ps(T),T)

�
p − ps(T)

�
,

if p < ps(T)

T1(p, h)

T int

1
(p, h) ∶=

⎧⎪⎪⎨⎪⎪⎩

T1(p, h), if p ≥ pmin

3

∨ h ≤ h1(p, Ts(p))

T1(p, h1(p, Ts(p))

+ k1

�
h − h1(p, Ts(p))

�
,

otherwise

h2(p, T)

hint

2
(p, T) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

h2(p, T), if p ≤ plim

2
(T)

h2(p
lim

2
(T), T)

−

⎛⎜⎜⎜⎝
k5 +

k6T�
plim

2
(T)

⎞⎟⎟⎟⎠

�
p − plim

2
(T)

�
,

otherwise

plim

2
(T) ∶=

{

ps(T), if T ≤ 350 K

k1 + k2T + k3T2 + k4T3, otherwise

s2(p, T)
sint

2
(p, T) ∶=

{

s2(p, T), if T ≥ T lim

2
(p)

s2(p, T lim

2
(p)) + k8

(

T − T lim

2
(p)

)

, otherwise.

T lim

2
(p) ∶=

{

Ts(p), if p ≤ pmin

3

k9 + k10T + k11T2 + k12T3, otherwise
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with parameters k5 and k6. The extension for p > plim

2
(T) is chosen such that hint

2
(p, T) 

is continuous, it is increasing with respect to p and decreasing with respect to T, it is 
componentwise concave with respect to p, componentwise concave with respect to T 

(26)

hint

2
(p, T) ∶=

⎧⎪⎨⎪⎩

h2(p, T), if p ≤ plim

2
(T)

h2(p
lim

2
(T), T) −

�
k5 +

k6T√
plim

2
(T)

��
p − plim

2
(T)

�
, otherwise,

Table 8  Monotonicity 
guarantees for the (modified) 
functions from the IAPWS-IF97

inc., increasing; dec., decreasing

Function Monotonicity guarantees

p
s
(T) inc.

T
s
(p) inc.

h
liq

4-1/2
(p) inc.

h
vap

4-1/2
(p) inc. if p ≤ 3.0783756970 MPa

dec. if p ≥ 3.0783756971 MPa

s
liq

4-1/2
(p) inc.

s
vap

4-1/2
(p) dec.

p
B23

(T) inc.

T
B23

(p) inc.

hmod

1
(p, T) inc. w.r.t. T

inc. w.r.t. p if T ≤ 510 K

dec. w.r.t. p if T ≥ 614 K

smod

1
(p, T) inc. w.r.t. p

dec. w.r.t. T if p ≥ 19 MPa ∨ T ≥ 278 K

Tmod

1
(p, h) inc. w.r.t. h

dec. w.r.t. p if h ≤ 1073 kJ∕kg ∧ h ≤ h
liq

4-1/2
(p)

inc. w.r.t. p if p ≤ pmin
3

∧ h ≥ h
liq

4-1/2
(p)

Tmod

1
(p, s) not analyzed

hmod

2
(p, T) inc. w.r.t. p

dec. w.r.t. T

smod

2
(p, T) inc. w.r.t. p

dec. w.r.t. T

hmod

4-1/2
(p, y) inc. w.r.t. y

s
mod

4-1/2
(p, y) inc. w.r.t. y

ymod

4-1/2
(p, h) inc. w.r.t. h

dec. w.r.t. p if p ≤ 3 MPa ∨ h ≤ 2158 kJ∕kg

y
mod

4-1/2
(p, s) inc. w.r.t. s
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on most of the box domain, and has 
�

2hint

2

�p�T
≥ 0 . Furthermore, while hint

2
(p, T) does 

attain values significantly below hmin

2
∶= min(p,T)∈Ph2(p,T)

h2(p, T) for points (p̃, T̃) 
with p̃ > p

upper

2
(T̃) , the values are much smaller in magnitude than those attained by 

h2(p, T) in this region (cf. Fig. 2b vs. 2c). Although hint

2
(p, T) is nonsmooth at every 

point (plim

2
(T̃), T̃) , the extrapolation is constructed to have a negative solution value 

of the maximization problem analogous to (5). Compared with the original function 
h2(p, T) , hint

2
(p, T) thus exhibits useful properties that can be used to construct tight 

range bounds and relaxations.
We then define the final modified function

that cuts off hint

2
(p, T) at the minimum value of h2(p, T) over Ph2(p,T) . Note that cut-

ting off at hmax

2
∶= max(p,T)∈Ph2(p,T)

h2(p, T) is not required because the maximum of 
hint

2
(p, T) is attained in the physical domain. The graph of hmod

2
(p, T) is shown in 

Fig. 2d, where the extrapolation according to (26) is shown in green and the changes 
induced by the max operator in (27) are shown in orange. Relaxations of hmod

2
(p, T) 

can be obtained by correcting the relaxations of hint

2
(p, T) using the rules for 

(27)hmod

2
(p, T) ∶= max

(

hint

2
(p, T), hmin

2

)

Table 9  Convexity guarantees 
for the (intermediate) functions 
from the IAPWS-IF97 that are 
exploited in this work

comp., componentwise; conv., convex; conc., concave

Function Convexity guarantees

p
s
(T) conv.

T
s
(p) conc.

h
liq

4-1/2
(p) conc. if p ≤ 14.48 MPa

h
vap

4-1/2
(p) conc.

s
liq

4-1/2
(p) conc. if p ≤ 15.26 MPa

s
vap

4-1/2
(p) conv. if p ≤ 12.23 MPa

p
B23

(T) conv.

T
B23

(p) conc.

hint

1
(p, T) comp. conc. w.r.t. T if T ≥ 314 K ∨ p ≥ 26 MPa

comp. conv. w.r.t. p if T ≥ 370 K

sint

1
(p, T) comp. conv. w.r.t. p if T ≥ 319 K

T int

1
(p, h) comp. conc. w.r.t. p

comp. conc. w.r.t. h if p ≥ 16.4 MPa ∨ h ≥ 166 kJ∕kg

T int

1
(p, s) not analyzed

hint

2
(p, T) comp. conc. w.r.t. p if p ≤ 28.68 MPa

sint

2
(p, T) comp. conv. w.r.t. p if T ≥ 794 K

comp. conc. w.r.t. T

hint

4-1/2
(p, y) not analyzed

s
int

4-1/2
(p, y) not analyzed

yint

4-1/2
(p, h) not analyzed

y
int

4-1/2
(p, s) not analyzed
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relaxation of the max function (cf. Sect. 3.4). Given the smaller range of hmod

2
(p, T) 

compared with h2(p, T) , even the convex envelope of hmod

2
(p, T) over Bh2(p,T) or large 

subsets thereof would be tighter over Ph2(p,T) than that of h2(p, T). Table 7 summa-
rized the intermediate modifications of the remaining bivariate functions. 

Appendix 3: Monotonicity and range bounds

As a simple example, consider the univariate function p
s
(T) . The func-

tion is monotonically increasing on its entire domain (cf. Table  8), such 
that for any [TL, T

U] ⊆ [Tmin

4
, T

max

4
] we obtain exact range bounds as 

ps

(

[TL, TU]
)

=
[

ps(T
L), ps(T

U)
]

.

As an example for a more involved case, we consider the function hmod

1
(p, T) . 

For P ∶= [pL, p
U] ⊆ [pmin

1
, p

max

1
] , T ∶= [TL, T

U] ⊆ [Tmin

1
, T

max

1
] , we obtain 

h
mod

1
(P × T) ⊆

[

ĥ
L, ĥ

U
]

 with

where IE
L

h1(p,T)

(

P̂T

)

 denotes a lower bound for h1(p, T) over the set 

P̂T ∶= [max(pL, ps(T
L)), pU] ×

{

TL
}

 computed via natural interval extensions. 
Since hmod

1
(p, T) is increasing with respect to T (cf. Table 8), the maximum and min-

imum over P × T  are attained at T
U and T

L , respectively. For T
U ≤ 510 K or 

T
U ≥ 614 K , hmod

1
(p, TU) is monotonic in p as well and the maximum is thus at pU or 

p
L , respectively. For TU ∈ (510, 614)K , hmod

1
(p, TU) is not monotonic in p, but since 

it is componentwise convex with respect to p in this region (cf. Table 9), the maxi-
mum is attained at either p

L or p
U . Similarly, for T

L ≤ 510 K or T
L ≥ 614 K , 

hmod

1
(p, TL) is monotonic in p as well and the minimum is thus attained at pU or pL , 

respectively. However, for TL ∈ (510, 614)K , hmod

1
(p, TL) is not monotonic in p, and 

because it is componentwise convex, the minimum could be attained at any p ∈ P . 
In this case, we can exploit componentwise convexity with respect to p to conclude 
that if the partial derivative is non-negative at p

L or non-positive at p
U , the mini-

mum must lie at that value of p. If this is not the case, the minimum can lie any-
where in P̂T = [max(pL, ps(T

L)), pU] ×
{

TL
}

 (note that it cannot lie below p
s
(TL) 

because the function is linear with respect to p for p < p
s
(T) (cf. Table 7) and we are 

ĥU =

⎧
⎪⎨⎪⎩

hmod

1
(pU, TU), if TU ≤ 510 K

hmod

1
(pL, TU), if TU ≥ 614 K

max
�
hmod

1
(pL, TU), hmod

1
(pU, TU)

�
, if TU ∈ (510, 614)K,

ĥL =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hmod

1
(pL, TL), if TL ≤ 510 K

hmod

1
(pU, TL), if TL ≥ 614 K

hmod

1
(pL, TL), if TL ∈ (510, 614)K ∧

�h1

�p

���(pL,TL)
≥ 0

hmod

1
(pU, TL), if TL ∈ (510, 614)K ∧

�h1

�p

���(pU,TL)
≤ 0

max

�
IE

L

h1(p,T)

�
P̂T

�
,

hmod

1
(pL, 510 K)

�
, otherwise,
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in the case where �h1

�p

|
|
|(pL,TL)

< 0 ). Since �PT ⊂ Ph1(p,T) , we have hmod

1
(p̃, T̃) = h1(p̃, T̃) 

for every (p̃, T̃) ∈ �PT  and thus hmod

1
(p̃, T̃) has a factorable representation over P̂T  

and we can use natural interval extensions from FILIB++ to obtain an underestima-
tion of the minimum function value. Another, potentially tighter, lower bound can 
be obtained by exploiting the monotonicity with respect to T that implies that a 
lower bound over P × {T̂} is a valid lower bound over P × {T

L} for every T̂ ≤ T
L . In 

particular, this holds for T̂ = 510 K , for which we know that the lower bound is 
attained at pL.

Appendix 4: Convexity and relaxations

As an example for a univariate function, we consider the function hliq

4-1/2
(p) , which is 

defined on P
h

liq

4-1/2
(p)

= [611.2127 × 10−6, 16.5292]MPa but is convex only on 
[611.2127 × 10−6, 14.48]MPa (cf. Table  9). By globally maximizing the second 
derivative of h

liq

4-1/2
(p) , we obtain 

� ∶= 0.5 × 1.0592301 kJ∕(kgMPa2) ≥ 0.5 × maxp∈P
h
liq

4-1/2
(p)

d2h
liq

4-1/2

dp2
 . Given a non-

degenerate interval [pL, p
U] and range bounds [hL, h

U] , we construct a convex relaxa-
tion as the secant of a concave underestimator based on (12) as

and a concave relaxation based on (13) as

The max and min functions in (28) and (29) potentially tighten the relaxation in case 
we do not have an envelope anyway. The resulting relaxations are orders of magni-
tude tighter than those obtained by applying standard McCormick relaxations to the 
factorable representation of hliq

4-1/2
(p) (cf. Fig. 3a, c). Furthermore, the convex relaxa-

tion (28) obtained from the � BB variant (12) by Hasan (2018) is significantly tighter 
than that obtained from the regular � BB version (10) (cf. Fig. 3b, c). This is due to 
the fact that the function itself is almost concave in the sense that the maximum of 
the second derivative is much smaller in magnitude than the minimum.

(28)

h
liq,cv,u

4-1/2
(p) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h
liq

4-1/2
(pL)

+
h

liq

4-1/2
(pU) − h

liq

4-1/2
(pL)

pU − pL

�
p − pL

�
,

if pU ≤ 14.48 MPa

max

�
hL, h

liq

4-1/2
(pL) − �

�
pU − pL

2

�2

+
h

liq

4-1/2
(pU) − h

liq

4-1/2
(pL)

pU − pL

�
p − pL

��
,

otherwise,

(29)

h
liq,cc,o

4-1/2
(p) ∶=

{

h
liq

4-1/2
(p), if pU ≤ 14.48 MPa

min
(

hU, h
liq

4-1/2
(p) − �

(

p − pL
)(

p − pU
)

)

, otherwise.
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