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Deterministic improvements of quantum measurements with
grouping of compatible operators, non-local transformations,
and covariance estimates
Tzu-Ching Yen 1, Aadithya Ganeshram1 and Artur F. Izmaylov 1,2✉

Obtaining the expectation value of an observable on a quantum computer is a crucial step in the variational quantum algorithms.
For complicated observables such as molecular electronic Hamiltonians, one of the strategies is to present the observable as a
linear combination of measurable fragments. The main problem of this approach is a large number of measurements required for
accurate estimation of the observable’s expectation value. We consider three previously studied directions that minimize the
number of measurements: (1) grouping commuting operators using the greedy approach, (2) involving non-local unitary
transformations for measuring, and (3) taking advantage of compatibility of some Pauli products with several measurable groups.
The last direction gives rise to a general framework that not only provides improvements over previous methods but also connects
measurement grouping approaches with recent advances in techniques of shadow tomography. Following this direction, we
develop two measurement schemes that achieve a severalfold reduction in the number of measurements for a set of model
molecules compared to previous state-of-the-art methods.
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INTRODUCTION
Variational Quantum Algorithms (VQA) constitute one of the most
promising class of applications for quantum computers in the
noisy intermediate scale quantum era1,2. In VQAs, classically
intractable optimization problems are represented as lowest
eigenstates of Nq-qubit operators

Ĥ ¼ PNP

n¼1
cnP̂n; P̂n ¼ �Nq

k¼1σ̂k (1)

where cn are coefficients and P̂n are tensor products of Pauli
operators or identities, σ̂k 2 fx̂k ; ŷk ; ẑk ; 1̂kg. VQAs then solve these
problems by minimizing EðθÞ ¼ ψ θð Þh jĤ ψ θð Þj i; where the quan-
tum computer prepares the trial wavefunction ψ θð Þj i and is given
a task to measure E(θ), while a classical optimizer determines the
optimal θ. However, it was found that estimating E(θ) accurately
for chemical systems requires large numbers of measurements
that diminish VQA’s advantage over classical alternatives3.
Measuring E(θ) is indeed not a straightforward task since only z-

Pauli operators can be measured on current digital quantum
computers. A common approach to measuring the expectation
value of the Hamiltonian is to present Ĥ as a sum of measurable
fragments Ĥ ¼ P

αÂα. The condition for selecting Âα is that they
can be easily rotated into polynomial functions of z-Pauli
operators

Âα ¼ Û
y
α

P
i
ai;α ẑi þ

P
ij
bij;αẑi ẑj þ :::

" #
Ûα: (2)

Then ψ θð Þh jĤ ψ θð Þj i ¼ P
α ψ θð Þh jÂα ψ θð Þj i where the latter can

be obtained by measuring z-Pauli operators of Âα for the rotated
wavefunction Ûα ψ θð Þj i.
Unfortunately, in general, the wavefunction ψ θð Þj i is not an

eigenstate of Âα, and thus each fragment requires a set of

measurements to obtain an estimator Aα for ψ θð Þh jÂα ψ θð Þj i. The
efficiency of the Hamiltonian measurement scheme is determined
by the total number of measurements, M, needed to reach ϵ
accuracy for E(θ). For a simple estimator of E(θ) as the sum of Aα

estimators, the error scales as ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

αVarψ Âα

� �
=mα

q
, where

Varψ Âα

� � ¼ ψh jÂ2
α ψj i � ψh jÂα ψj i2 is the variance of each fragment,

and mα are the numbers of measurements allocated for each
fragment, with the condition ∑αmα=M. The optimal distribution

of measurements is mα �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varψ Âα

� �q
, which gives the total

estimator error as ϵ ¼ P
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varψ Âα

� �q
=

ffiffiffiffi
M

p
.

This consideration shows superiority of estimators operating
with a set of measurable fragments that have the lowest sum over
variance square roots. For practical use of this consideration, there
are two difficulties in explicit optimization of the estimator error:
(1) there is an overwhelming number of choices for measurable
operator fragments and (2) variance estimates require knowledge
of the wavefunction. The second problem can be addressed by
introducing a classically efficient proxy for the quantum wave-
function (e.g. from Hartree-Fock or configuration interaction
singles and doubles (CISD) methods in quantum chemistry
problems) or by utilizing the measurement results from VQAs to
gain empirical estimates if classical efficient proxy cannot be
found for the trial wavefunction. Yet, the search space in the first
problem is so vast that it has only been addressed heuristically in
previous studies. The Hamiltonian partitioning has been done in
qubit space4–11 and in the original fermionic space with
subsequent transfer of all operators into the qubit space12,13. An
initial heuristic idea was to reduce the number of measurable
fragments without accounting for variances. It was shown for
several partitioning that the number of fragments is not a good
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proxy for the total number of measurements, and the fragments’
variances cannot be ignored13,14. The key element determining a
particular set of measurable fragments is a class of unitary
transformations Ûα in Eq. (2). Compared to single-qubit transfor-
mations, multi-qubit transformations are more flexible and there-
fore have a greater potential to minimize the total number of
measurements by selecting fragments with lower variances. Yet,
they also have a downside of an extra circuit overhead needed to
perform the rotation before the measurement. Once the set of
unitary transformations has been selected, empirically, it was
found more beneficial for the estimator variance to use greedy
algorithms for the Hamiltonian partitioning. In these algorithms
one finds Âα fragments sequentially by minimizing the norm of
the difference between partial sum of Âα and Ĥ13,14. This can be
rationalized considering that greedy algorithms produce first
fragments with larger variances and later fragments with smaller
variances. Such a distribution of variances makes sum of square
roots somewhat smaller compare to the case where variances are
distributed relatively equally over all fragments.
Fragmentation techniques in the qubit space are based on

grouping mutually commuting Pauli products in each fragment Âα

[Eq. (2)]. Two types of commutativity between Pauli products are
used: qubit-wise and full commutativity. The full commutativity
(FC) is the regular commutativity of two operators7, whereas the
qubit-wise commutativity (QWC) for two Pauli products is a
condition when corresponding single-qubit operators commute5.
Using either commutativity to find Âα, one can efficiently identify
unitary operators Ûα from the Clifford group that bring the
fragments to the form of Eq. (2) for measurement. Only one-qubit
Clifford gates are sufficient for Ûα of the qubit-wise commuting
fragments5, while Ûα for fully commuting fragments require also
two-qubit Clifford gates7.
Initial QWC- and FC-based schemes had Âα consisting of disjoint

(non-overlapping) sets of Pauli products. Generally, each Pauli
product can belong to multiple Âα as long as it commutes with all
terms in these fragments. This follows from non-transitivity of
both FC and QWC as binary relations: if P̂1 commutes with P̂2, and
P̂2 commutes with P̂3, this does not lead to commutativity of P̂1
and P̂3. For the measurement problem, P̂1 and P̂3 form separate
measurable groups while P̂2 can be measured within both of these
groups. Here, P̂2 constitutes an overlapping element for the P̂1 and
P̂3 groups (see Fig. 1 where P̂1, P̂2, and P̂3 are ẑ1, ẑ1ẑ2, and x̂1x̂2
respectively). Recent developments based on shadow tomogra-
phy15–18 and grouping19,20 techniques exploiting overlapping
fragments found considerable reduction in the number of needed
measurements over non-overlapping grouping schemes. How-
ever, all non-overlapping schemes used in those comparisons did
not use the greedy approach. Since within qubit-based

partitioning schemes there are multiple estimator improvement
techniques, it is interesting to assess them all systematically.
In this work, we assess improvements in the total number of

measurements from introducing a series of ideas: (1) grouping
commuting operators using the greedy approach14, (2) involving
non-local (entangling) unitaries for measuring groups of fully
commuting Pauli products6–8,11, and (3) taking advantage of
compatibility of some Pauli products with several measurable
groups (i.e. overlapping grouping)15–20. It is shown that these
ideas, used separately or combined, can give rise to schemes
superior to prior art within grouping and shadow tomography
techniques16,19. One of the most striking findings is that using only
greedy non-overlapping grouping within the QWC approach can
already surpass the performance of recent techniques that
employed overlapping local frames. We do not consider
fermionic-algebra-based techniques here because they do not
allow overlapping grouping while all other improvements were
already discussed for them13. Other measurement techniques that
do not involve grouping of Hamiltonian terms are also outside of
the scope of the current work21–25.

RESULTS
We assess the performance of the proposed approaches (IMA,
GMA, and ICS) in comparison to prior works (LF, SI, and classical-
shadow-based algorithms) in estimating energy expectation
values for ground eigen-states of several molecular electronic
Hamiltonians. The qubit Hamiltonians were generated using the
STO-3G basis and the BK transformation. The nuclear geometries
for the Hamiltonians are R(H–H)= 1Å (H2), R(Li–H)= 1Å (LiH),
R(Be–H)= 1Å with collinear atomic arrangement (BeH2),
R(O–H)= 1Å with ∠HOH= 107. 6∘ (H2O), and R(N–H)= 1Å with
∠HNH= 107∘ (NH3). The overlapping groups (Pα) of the proposed
methods are obtained from an extension of the sorted insertion
technique (see Supplementary Note 1). The initial measurement
allocations or coefficient splittings are derived from measurement
allocations of the SI technique using exact or CISD wavefunctions.
To illustrate the relative performance of our methods, Table 1

presents the Hamiltonian estimator variances based on covar-
iances calculated with the exact wavefunction (Supplementary

Fig. 1 Illustration of non-overlapping and overlapping partition-
ing. The graph is based on full commutativity for a model
Hamiltonian, Ĥ ¼ c1 ẑ1 þ c2ẑ1 ẑ2 þ c3x̂1x̂2. Within the non-
overlapping scheme the fragments are: Â1 ¼ c1ẑ1 and
Â2 ¼ c2ẑ1ẑ2 þ c3x̂1x̂2. For the overlapping scheme based on coeffi-
cient splitting (measurement allocation) the fragments are: Â1 ¼
c1ẑ1 þ cð1Þ2 ẑ1 ẑ2 (Â1 ¼ c1 ẑ1 þ c2ẑ1 ẑ2) and Â2 ¼ cð2Þ2 ẑ1ẑ2 þ c3x̂1x̂2
(Â2 ¼ c2ẑ1ẑ2 þ c3x̂1x̂2).

Table 1. Variances of the Hamiltonian estimators using exact
wavefunction.

Systems LF SI IMA GMA ICS

Qubit-wise commutativity

H2 0.136 0.136 0.136 0.136 0.136

LiH 5.84 2.09 1.73 1.52 0.976

BeH2 14.3 6.34 5.60 5.26 4.29

H2O 116 48.6 27.9 18.8 13.5

NH3 352 97.0 83.3 62.1 44.8

Full commutativity

H2 0.136 0.136 0.136 0.136 0.136

LiH 1.43 0.882 0.647 0.517 0.232

BeH2 5.18 1.11 1.02 0.974 0.459

H2O 43.4 7.59 5.88 4.27 1.50

NH3 78.7 18.8 13.6 9.35 3.32

Variances of the Hamiltonian estimators in different methods calculated
with the exact wavefunction: largest first (LF), sorted insertion (SI), iterative
measurement allocation (IMA), gradient-based measurement allocation
(GMA), and iterative coefficient splitting (ICS). Covariances calculated with
the exact wavefunction were used for finding optimal parameters in all
methods.
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Note 5 illustrates the connection of these variances with energy
errors). Lower variances in SI compared to those in the largest first
(LF) algorithm are consistent with earlier findings14. All proposed
methods result in lower variances than those in SI. As the most
flexible approach, the coefficient splitting method ICS achieves
the lowest variances. GMA has a slight edge over IMA in estimator
variances, but due to the computational cost of GMA, we will only
consider IMA from here on.
Table 2 shows the number of optimization variables in the

measurement allocation and coefficient splitting techniques. For
the measurement allocation approaches (IMA and GMA) the
number of variables is equal to the number of measurable groups.
For the qubit-wise (full) commutativity, the number of such
groups scales as ~NP/3 (� N3

q) since on average each group
contains three (Nq) Pauli products. For relatively small molecules in
our set (i.e. only few atoms), NP scales as N4

q. In the coefficient
splitting approach, the number of variables is a product of NP and
an average number of measurable groups that are compatible
with an average Pauli product. For our model systems, it was
found empirically that the latter number grows as � N3

q for the
qubit-wise commutativity, whereas for the full commutativity the
number is within a range of [0.4, 2.3] and thus can be considered
relatively constant. These considerations clarify why the measure-
ment allocation techniques can be employed for both commu-
tativities, but the coefficient splitting without extra constraints can
be afforded only for full commutativity.
To compare the proposed methods to the classical shadow

tomography techniques (Derand16 and OGM19), we consider
qubit-wise commuting (QWC) grouping methods that do not
require non-local (entangling) transformations and use approx-
imate covariances obtained from CISD wavefunction to choose
optimal parameters for the other algorithms (Table 3). Unlike the
original OGM treatment, we avoid deleting measurement bases to
compare all methods on an equal footing. Comparison between
the non-overlapping techniques (LF and SI) and classical shadow
techniques reveals that only employing the greedy approach to
QWC grouping in SI is already enough to surpass the classical
shadow tomography techniques. Due to sensitivity of ICS
optimization to inaccurate covariance estimates, we only optimize
coefficients of Pauli products with the top 90% CISD variances. The
remaining Pauli products have their coefficients frozen to that of
the SI scheme. In accord with results of Table 1, both IMA and ICS
outperform SI even when approximate covariances are used.
Similarly, switching to application of CISD variances to optimize

grouping based on full commutativity clearly shows several times
improvements in the number of measurements for IMA and ICS
compared to non-overlapping techniques (Table 4).
To explore possible advantages of the IMA and ICS scheme in

cases where approximate covariances cannot be obtained from

classical wavefunction approximations, we consider a case of
random wavefunctions. For all molecular systems corresponding
wavefunctions were randomly generated by selecting their
coefficients in computational basis from a uniform distribution
and renormalizing. These wavefunctions were used to generate
exact covariances needed for the overlapping grouping optimiza-
tions in IMA and ICS. Table 5 shows that using exact covariances
IMA and ICS can improve the number of measurements even for
randomly generated wavefunctions.
For considering a more realistic scenario where covariances

cannot be evaluated because the wavefunction is not known, it
was assumed that covariances can be obtained through
accumulated measurement results for any trial wavefunction. A
modest 1000 measurements were considered for each fragment
to estimate covariances between simultaneously measured Pauli
products: P̂i , P̂j . We simulated such measurements to obtain
approximate P̂i

� �
, P̂j
� �

and P̂i P̂j
� �

. If a Pauli product appears in
multiple fragments, measurements in all fragments contribute to
the expectation value estimate. The approximate expectation
values allow us to estimate covariances between P̂i and P̂j , which
are then used to obtain results shown in Table 6. The results
reaffirm that IMA and ICS are the most efficient measurement
methods among the presented even with approximate covar-
iances. Note that incorporating measured covariances into
measurement optimization can be done more efficiently, as
detailed in ref. 20.
Interestingly, the advantage of ICS over IMA diminishes when

we use random wavefunctions. This suggests that the extra
degrees of freedom in optimizing cðαÞk is not more beneficial to
reducing estimator variance than the simple choice

Table 2. Number of optimization variables.

Systems Nq NP QWC FC

MA CS MA CS

H2 4 15 3 4 2 6

LiH 12 631 155 3722 42 1466

BeH2 14 666 183 5946 36 1203

H2O 14 1086 334 11192 50 1823

NH3 16 3609 1359 61137 122 6138

The number of optimization variables in the measurement allocation (MA)
and coefficient splitting (CS) methods for the full and qubit-wise
commutativities (FC and QWC) and different molecular electronic
Hamiltonians. Nq is the number of qubits, and NP is the number of Pauli
products.

Table 3. Variances with qubit wise commuting fragments.

Systems LF OGM Derand SI IMA ICS

H2 0.136 0.173 0.144 0.136 0.136 0.136

LiH 5.84 3.50 3.74 2.09 1.73 1.07

BeH2 14.3 18.3 12.5 6.34 5.60 4.54

H2O 116 148 114 48.6 27.9 15.9

NH3 352 305 251 97.0 83.4 53.8

Variances of Hamiltonian estimators with qubit wise commuting frag-
ments: largest first (LF), overlapped grouping measurement (OGM),
derandomization (Derand), sorted insertion (SI), iterative measurement
allocation (IMA), and iterative coefficient splitting (ICS). The LF, SI, IMA, and
ICS algorithms utilize CISD wavefunctions for choosing parameters, but the
final variances are computed using exact wavefunctions.

Table 4. Variances of Hamiltonian estimators with fully commuting
fragments.

Systems LF SI IMA ICS

H2 0.136 0.136 0.136 0.136

LiH 1.43 0.882 0.647 0.295

BeH2 5.19 1.11 1.02 0.543

H2O 43.4 7.59 5.89 2.21

NH3 78.8 18.8 13.7 4.95

Variances of Hamiltonian estimators with fully commuting fragments:
largest first (LF), sorted insertion (SI), iterative measurement allocation
(IMA), and iterative coefficient splitting (ICS). All algorithms utilize CISD
wavefunctions for choosing parameters, but the final variances are
computed using exact wavefunctions.
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cðαÞk ¼ ckmα=M. Indeed, in the case of random wavefunctions, any
Pauli product P̂k tends to not correlate with fragments consisting
of many Pauli products, whose covariances with P̂k are distributed
symmetrically about zero. In such case, it makes intuitive sense to
choose cðαÞk to be proportional to the number of times that P̂k is
measured in each group.

DISCUSSION
We assessed multiple ideas for reduction of the number of
measurements required to accurately obtain the expectation value
of any operator that can be written as a sum of Pauli products.
Since these ideas can be used separately or combined, our main
goal was to understand the impact on the number of measure-
ments and incurred computational cost of each idea. Exploring the
idea of Pauli products’ compatibility led to the realization that the
coefficient splitting framework is the most general implementa-
tion of this idea for the grouping methods.
Among previously suggested measurement allocation

approaches15,16,19,20 only ref. 20 went beyond QWC fragments
and utilized their FC counterparts for the first time. In addition, in
ref. 20 analytical formulas for the measurement error were derived
and the measurement shots were distributed according to the
knowledge on the covariances. Although these techniques have
shown performance superior to that of the non-overlapping
measurement scheme based on graph-coloring algorithms, by
employing a greedy heuristic the non-overlapping scheme can
already outperform the Derand and OGM techniques. Thus, for
future developments, new approaches need to be compared with
greedy grouping-based algorithms rather than with grouping
approaches that try to minimize the overall number of measurable
groups (e.g. LF).
Unlike previous classical shadow techniques that focus on

qubit-wise commuting groups, we also considered measuring
techniques involving non-local (entangling) transformations that
allow one to measure groups of fully commuting Pauli products.
An efficient implementation of these non-local transformations

using Clifford gates was proposed by Gottesman26 and would
introduce only OðN2

q= logNqÞ CNOT gates. The schemes based on
fully commuting groups outperform their qubit-wise commuting
counterparts up to a factor of seven in variances of the
expectation value estimators. Even accounting for increase of
the number of measurements related to uncertainties from a
lower fidelity of CNOT gates, fully commuting grouping schemes
require fewer numbers of measurements than their qubit-wise
commuting counterparts27.
Taking advantage of compatibility of some Pauli products with

members of multiple measurable groups (i.e. overlapping groups
idea) can be generally presented as augmenting the measurable
groups with all Pauli products compatible with initial members of
these groups. Then the coefficients of Pauli products entering
multiple groups are optimized to lower the estimator variance,
with the constraint that the sum over coefficients in different
groups for each Pauli product is equal to the coefficient of the
Pauli product in the Hamiltonian. This coefficient splitting
approach incorporates as a special case a heuristic technique of
optimizing measurement allocation for overlapping measurable
groups.
Even though the coefficient splitting variance minimization

provides the lowest variances among all studied approaches, it
requires optimizing a large number of variables: � N4

q (� N7
q) for

full (qubit-wise) commutativity. Due to certain restrictions, the
measurement allocation approach is much more economical in
the number of optimization variables: � N3

q (� N4
q) for full (qubit-

wise) commutativity. Another contributor of the computational
cost of these techniques is calculation of the variance gradients.
To reduce the computational cost of this part we proposed
iterative schemes, the ICS method converges to true extrema,
while the IMA scheme deviates from extrema. IMA and ICS provide
up to forty and eighty percent reduction in the number of
measurements required compared to corresponding best non-
overlapping techniques.
Both IMA and ICS use approximate covariances between Pauli

products to lower the estimator variance. Use of CISD

Table 5. Average estimator variances with random wavefunction and exact covariances.

Systems Derand (QWC) SI (QWC) IMA (QWC) ICS (QWC) SI (FC) IMA (FC) ICS (FC)

H2 0.241 0.233 0.226 0.219 0.202 0.185 0.177

LiH 13.6 11.2 8.64 8.59 7.43 6.18 6.13

BeH2 45.5 38.7 29.3 29.2 24.0 21.2 21.1

H2O 799 715 517 505 478 410 406

NH3 865 657 392 391 324 249 246

Average variances of the Hamiltonian estimators in methods using qubit-wise and full commutativity (QWC and FC) calculated from 4 random wavefunctions
for each system. Optimal parameters for sorted insertion (SI), iterative measurement allocation (IMA), iterative coefficient splitting (ICS) are obtained using the
exact covariances.

Table 6. Average number of measurements with random wavefunction and approximate covariances.

Systems Derand (QWC) SI (QWC) IMA (QWC) ICS (QWC) SI (FC) IMA (FC) ICS (FC)

H2 0.241 0.236 0.230 0.222 0.204 0.187 0.179

LiH 13.6 11.4 8.80 8.81 7.47 6.22 6.23

BeH2 45.5 38.9 29.5 29.7 24.0 21.2 21.3

H2O 799 715 517 510 480 410 407

NH3 865 658 394 393 324 249 249

Average number of measurements in millions that are required to have ϵ= 10−3 a.u. accuracy in the true expectation values of 4 random wavefunctions for
each system. Note that due to the choice of ϵ and use of millions as units, the numbers here are similar to those in Table 5. These numbers include
measurements used for estimating covariances for sorted insertion (SI), iterative measurement allocation (IMA), and iterative coefficient splitting (ICS). The
obtained approximate covariances were employed to determine optimal parameters.
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wavefunction for obtaining these covariances for physically
relevant states generally show improvements comparable to
those obtained using the exact covariances. In cases where
classically efficient approximate wavefunctions are not available,
approximate covariances can be obtained via quantum
measurements.

METHODS
Estimator for non-overlapping Pauli groups
All measurable fragments Âα are linear combinations of mutually
commuting or qubit-wise commuting Pauli products

Âα ¼
P
k
ckP̂k ; P̂k 2 Pα; (3)

where Pα are disjoint sets of Pauli products measured as parts of
corresponding Âα, and ck are coefficients of P̂k in the Hamiltonian.
The commutativity between Pauli products within Pα implies a
common eigen-basis Bα, where one can measure all the members
of Pα. Initial proposals to find these fragments aim to minimize
the total number of fragments using graph coloring algorithms,
such as the largest first (LF) algorithm5,7. But later the sorted
insertion (SI) algorithm employing the greedy approach was found
to produce better groups in terms of the number of
measurements14.
Let H denotes the estimator for ψh jĤ ψj i; it is a sum of estimators

for its parts

H ¼ PL
α¼1

Aα: (4)

Each Aα comes from mα repeated measurements of Âα,

Aα ¼ 1
mα

Pmα

i¼1
Aα;i; (5)

where Aα,i is the i-th measurement result of Âα. The variance of H is

Var H
� � ¼ PL

α¼1
Var Aα

� �
; (6)

where Var Aα

� �
are variances of estimators characterizing

differences between Aα and the true expectation values
ψh jÂα ψj i. Note that covariances between different fragments
CovðAα;AβÞ are zero because measurements of different frag-
ments are done independently. Var Aα

� �
can be evaluated using

quantum operator variances Varψ Âα
� �

, Var Aα

� � ¼ Varψ Âα

� �
=mα,

which leads to the Hamiltonian estimator variance as

Var H
� � ¼ PL

α¼1

1
mα

Varψ Âα

� �
: (7)

Using the constraint M= ∑αmα one can minimize Var H
� �

with
respect to mα

14,28 which gives

Var H
� �

min ¼ 1
M

P
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varψ Âα

� �q� �2

: (8)

with

mðminÞ
α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varψ Âα

� �q P
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varψ Âβð Þp

Var Hð Þ (9)

Note that this minimization gives generally non-integer mðminÞ
α .

Here and in what follows we will always assume taking the integer
approximation ⌊mα⌋ for obtained mα if mα are used as integer
quantities. In case of large M, the difference between mα and ⌊mα⌋
in the estimator variance is negligible.
The minimum variance in Eq. (8) is generally lower if there is an

uneven distribution of Varψ Âα

� �
. This motivates the sorted

insertion (SI) algorithm to employ the greedy approach to achieve
an uneven distribution of norms of coefficients in fragments,

which was found to produce the lowest variances for the energy
estimators out of all non-overlapping grouping techniques14.
In practice, quantum variances Varψ Âα

� �
are not known a priori.

They can be evaluated using covariances between Pauli products,

Varψ Âα

� � ¼ P
jk
cjckCovψ P̂j; P̂k

� �
(10)

Covψ P̂j; P̂k
� � ¼ ψh jP̂j P̂k ψj i � ψh jP̂j ψj i

´ ψh jP̂k ψj i;
(11)

where P̂j ; P̂k 2 Pα. The covariances for different Pauli products are
generally non-zero because all of these Pauli products are
measured together within the same fragment. The covariances
can be approximated for molecular Hamiltonians using approx-
imate wavefunctions obtained on a classical computer. Config-
uration interaction singles and doubles (CISD) is one example for
obtaining approximation for ψj i that will be used in the current
work. Alternatively, the measurements results obtained from
measurement basis Bα can help estimate the covariances between
Pauli products of Pα during VQA cycles.

Optimization by coefficient splitting
Many Pauli products in the Hamiltonian can be measured in
multiple fragments because of their compatibility with other
members of those fragments. The coefficient splitting approach,
briefly mentioned in ref. 14, takes advantage of this opportunity by
splitting coefficients of Pauli products that are compatible with
multiple fragments

Âα ¼
P
k
cðαÞk P̂k ; P̂k 2 Pα (12)

ck ¼
P
α2I k

cðαÞk (13)

where I k is a set of group indices α corresponding to fragments
Âα whose members are compatible with P̂k (see Fig. 1 for an
example). To find fragments Âα and to establish compatibility
relations between their members we developed an extension of
the SI algorithm detailed in Supplementary Note 1. The SI
algorithm was taken as the basis of this extension because it
produces fragments with a lowest estimator variance among all
non-overlapping grouping techniques. From here on, we assume
use of the extension for methods proposed in this work.
Note that the equations for the estimator variance and the

optimal measurement distribution remain the same [Eqs. (9) and
(8)]. However, freedom in the coefficient splitting approach [Eq.
(13)] can be used to minimize the Hamiltonian estimator variance
[Eq. (8)].
A straightforward approach to minimization of Var H

� �
with

respect to cðαÞk is to use analytical gradients ∂ Var H
� �

=∂cðαÞk . The

gradients are non-linear functions of cðαÞk and computing them

becomes computationally expensive as the number of cðαÞk grows
with the size of the system. As a computationally more efficient
alternative, we propose an iterative heuristic that quickly
converges to a zero gradient solution.

Iterative coefficient splitting (ICS). Given a particular choice of cðαÞk
and its optimal mα, the procedure consists of iteratively applying
two steps: (1) optimizing cðαÞk with fixedmα and (2) updating mα for

evaluated cðαÞk using Eq. (9). For step 1, we solve a linear system of

equations originating from the
∂Var Hð Þ

∂cðαÞk

¼ 0 condition (see

Supplementary Note 2 for details).
If the number of cðαÞk overcomes computationally affordable

limits, one can always limit the minimization to a selected subset
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of cðαÞk . The criteria for the suitable subset can be the P̂k variances,
which correlate with magnitudes of their covariances and
therefore the importance of their coefficients for Var H

� �
.

Optimization by measurement allocation
Another approach to reducing the Hamiltonian estimator variance
is to measure each Pauli product as a member of as many
compatible measurable fragments as possible. This idea was used
in classical shadow tomography methods based on local
transformations for measurement of Pauli products15,16 and
grouping techniques for qubit-wise commuting19 and fully
commuting20 fragments. First, for a particular Pauli product P̂k ,
one finds a set of measurement bases Bα where P̂k can be
measured (see Fig. 1 for an example, by a measurement group this
method considers a set of compatible Pauli products). Then, all
measurement results for P̂k obtained in Bα are used to estimate Pk :

Pk ¼ 1
Mk

P
α2I k

Pmα

i¼1
PðαÞk;i ; (14)

where PðαÞk;i is the i-th measurement result of P̂k measured in basis
Bα, and Mk ¼

P
α2I k

mα is the total number of times P̂k is
measured. Pk are used in the Hamiltonian estimator as
H ¼ P

kckPk . The variance of H is

Var H
� � ¼ P

jk
cjck Cov Pj ; Pk

� �
(15)

¼ P
jk

cjck
MjMk

P
α2I j ;

β2I k

Pmα

u¼1

Pmβ

v¼1
Cov PðαÞj;u ; P

ðβÞ
k;v

	 

(16)

To proceed further, it is important to distinguish covariances
between Pauli products measured within the same fragment and
in different fragments. The former correspond to α= β and u= v
in Eq. (16) and generally are non-zero, while the latter (α ≠ β or
u ≠ v) are zero

Var H
� � ¼ P

jk

cj ck
MjMk

P
α2I j ;

β2I k

Pmα

u¼1

Pmβ

v¼1
δαβδuvCovψ P̂j; P̂k

� �

¼ P
jk

cjck
MjMk

P
α2I j\I k

mαCovψ P̂j; P̂k
� �

:

(17)

Note that the key element in deriving this Hamiltonian
estimator variance is the consideration that if a Pauli product is
measured as a part of a certain group, all members of this group
contribute to the average and to the variance. Thus, the variance
of each group gives rise to covariances between its members.
Since the covariances in different groups are different in
magnitude, placing a particular Pauli product in all compatible
groups can be sub-optimal for the total variance of the
Hamiltonian estimator (an example illustrating this phenomenon
is given in Supplementary Note 4).
Dependencies of Mj and Mk on mα in Var H

� �
[Eq. (17)] make

finding the optimal measurement allocation in the analytic form
infeasible. To minimize Var H

� �
with respect to mα in Eq. (17) one

can numerically optimize mα as positive variables with restriction
∑αmα=M. We will refer to this strategy as the measurement
allocation approach.
Interestingly, the measurement allocation technique is equiva-

lent to a restricted coefficient splitting optimization with
cðαÞk ¼ ckmα=Mk . Indeed, substituting cðαÞk for mα in Âα and using

Eq. (7), we obtain Var H
� �

as

Var H
� � ¼ P

α

1
mα

P
jk:α2I j\I k

Covψ
mα

Mj
cj P̂j;

mα

Mk
ckP̂k

	 


¼ P
jk

cj ck
MjMk

P
α2I j\I k

mαCovψ P̂j ; P̂k
� �

;
(18)

which agrees with Eq. (17).
One can formulate approximation for gradients of Var H

� �
with

respect to continuous proxy of mα (see Supplementary Note 3),
which leads to a gradient descent scheme that we will refer to as
gradient-based measurement allocation (GMA). Yet, a computa-
tionally more efficient, non-gradient iterative scheme was found
and detailed below.

Iterative measurement allocation (IMA). Given an initial guess for
mð0Þ

α and resulting Mð0Þ
k , the corresponding coefficient splitting

partitioning of the Hamiltonian is

Ĥ ¼ PL
α
Â
ð0Þ
α ; (19)

where

Â
ð0Þ
α ¼ P

k

mð0Þ
α

Mð0Þ
k

ck P̂k; P̂k 2 Pα: (20)

Recall that the optimal measurement allocation for any
coefficient splitting is given by Eq. (9). Thus, we use this optimal
allocation to update mðiÞ

α as

mðiÞ
α ! mðiþ1Þ

α /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varψ Â

ðiÞ
α

	 
r
; (21)

which leads to the update in measurable groups

Â
ðiÞ
α ! Â

ðiþ1Þ
α ¼ P

k

mðiþ1Þ
α

Mðiþ1Þ
k

ck P̂k ; P̂k 2 Pα (22)

Since there is no guarantee that each iteration will necessarily
lower Var H

� �
in Eq. (17), we repeat these steps multiple times and

choose mα that result in the lowest estimator variance. Empirically,
the procedure finds the best measurement allocation in first few
cycles.

Method summary
Conceptually, there are three approaches described above: non-
overlapping grouping, coefficient splitting, and measurement
allocation. For all of them expectation value of the Hamiltonian is
a sum of estimators for expectation values of fragments
H ¼ P

αHα, and the variance for the H estimator is given by Eq.
(7). The differences between three methods are in the fragment
definitions: non-overlapping grouping use fragments with original
Hamiltonian coefficients ck for Pauli products and each Pauli
products entering only a single fragment, coefficient splitting and
measurement allocation allow Pauli products to enter multiple
groups with coefficients defined by the optimization procedure
for Eq. (12) and cðαÞk ¼ ckmα=Mk (cf. Eq. (22)), respectively. Variables
that are optimized to obtain the lowest estimator variance are the
numbers of measurements mα for measurement allocation and
cðαÞk and mα for coefficient splitting. The main advantage of the
measurement allocation approach is a much lower number of
optimization variables (mα) compared to that of the coefficient
splitting scheme (cðαÞk ). Yet, note that positivity of mα imposes not
only a limitation of measurement allocation with respect to
coefficient splitting but also with respect to non-overlapping
grouping. In non-overlapping grouping, cðαÞk are either 0 or ck, but
in measurement allocation, cðαÞk cannot be zero.
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