
MATHEMATICS OF COMPUTATION
Volume 81, Number 278, April 2012, Pages 1233–1246
S 0025-5718(2011)02542-1
Article electronically published on August 23, 2011

DETERMINISTIC METHODS TO FIND PRIMES

TERENCE TAO, ERNEST CROOT III, AND HARALD HELFGOTT

Abstract. Given a large positive integer N , how quickly can one construct
a prime number larger than N (or between N and 2N)? Using probabilistic

methods, one can obtain a prime number in time at most logO(1) N with high
probability by selecting numbers between N and 2N at random and testing
each one in turn for primality until a prime is discovered. However, if one seeks
a deterministic method, then the problem is much more difficult, unless one
assumes some unproven conjectures in number theory; brute force methods
give a O(N1+o(1)) algorithm, and the best unconditional algorithm, due to

Odlyzko, has a runtime of O(N1/2+o(1)).

In this paper we discuss an approach that may improve upon the
O(N1/2+o(1)) bound, by suggesting a strategy to determine in timeO(N1/2−c)
for some c > 0 whether a given interval in [N, 2N ] contains a prime. While this
strategy has not been fully implemented, it can be used to establish partial
results, such as being able to determine the parity of the number of primes in
a given interval in [N, 2N ] in time O(N1/2−c).

1. Introduction

We1 consider the following question: Given a large integer N , how easy is it to
generate a prime number that is larger than N?

Of course, since there are infinitely many primes, and each integer can be tested
for primality in finite time, one can always answer this question in finite time,
simply by the brute force method of testing each integer larger than N in turn for
primality. So the more interesting question is to see how rapidly one can achieve
this, and, in particular, to see for which A = A(N) is it possible for a Turing
machine (say) to produce a prime number larger than N in at most A steps and
using at most A units of memory, taking only the integer N as input. If A is such
that this task is possible, we say that a prime number larger than N can be found
“in time at most A”.

Note that if one allows probabilistic algorithms (so that the Turing machine also
has access to a random number generator for input), then one can accomplish this

in time polynomial in the length of N (i.e., in time at most logO(1) N); indeed,
one can select integers in [N, 2N ] at random and test each one for primality. (Here
we use the usual asymptotic notation, thus O(X) denotes a quantity bounded in
magnitude by CX where C is independent of N , and o(1) denotes a quantity
bounded in magnitude by c(N) for some c(N) going to zero as N → ∞.) Using

Received by the editor September 20, 2010 and, in revised form, February 17, 2011 and Feb-
ruary 23, 2011.

2010 Mathematics Subject Classification. Primary 11Y11.
1A list of people involved in this Polymath project can be found at michaelnielsen.org/

polymath1/index.php?title=Polymath4 grant acknowledgments.

c©2011 American Mathematical Society
1233

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1234 TERENCE TAO, ERNEST CROOT III, AND HARALD HELFGOTT

algorithms such as the AKS algorithm [1], each such integer can be tested in time

at most logO(1)N , and by the prime number theorem one has about a 1/ logN
chance of success with each attempt, so the algorithm will succeed with (say) 99%

certainty after at most logO(1)N units of time.
If, however, one insists on deterministic methods, then the problem becomes

substantially harder. The sieve of Eratosthenes will supply all the primes between
N and 2N , but requires O(N1+o(1)) units of time and memory. Using the AKS
algorithm, if one can construct a subset E of [N, 2N ] in time at most A that is
guaranteed to contain at least one prime, then by testing each element of E in turn
for primality, we see that we can obtain a prime in time at most A+O(No(1)|E|).
Thus, for instance, using Bertrand’s postulate one recovers the O(N1+o(1)) bound;
using the unconditional fact that [N,N +N0.525] contains a prime for every large
N (see [2]) we improve this to O(N0.525+o(1)); and if one assumes the Riemann
hypothesis, then as is well known we obtain a prime in an interval of the form
[N,N +N0.5+o(1)] for all large N , leading to a bound of O(N0.5+o(1)).

There are other sparse sets that are known to contain primes. For instance, using
the result of Heath-Brown [7] that there are infinitely many primes of the form
a3 + 2b3 (which comes with the expected asymptotic), the above strategy gives an
unconditional algorithm with time O(N2/3+o(1)), since the number of integers in
[N, 2N ] of the form a3+2b3 is comparable to N2/3. More generally, if one assumes
Schinzel’s hypothesis H, which predicts the asymptotic number of primes inside any
polynomial sequence {P (n) : n ∈ N}, and, in particular, inside the sequence nk +1
for any fixed k = 1, 2, . . ., then the same argument would give a deterministic prime-
finding algorithm that runs in time O(N1/k+o(1)). Unfortunately, the asymptotic
for primes of the form nk + 1 is not known even for k = 2, which is a famous open
conjecture of Landau.

A famous conjecture of Cramér [4] (see also [6] for refinements) asserts that
the largest prime gap in [N, 2N ] is of the order of O(log2 N), which would give a

deterministic algorithm with run time O(logO(1)N). Unfortunately, this conjecture
is also well out of reach of current technology (the best bound on prime gaps being
the O(N0.525+o(1)) result from [2] mentioned earlier, or O(

√
N logN) assuming the

Riemann hypothesis [4]).
Another way to proceed is to find an efficient way to solve the following decision

problem: Given a subinterval [a, b] of [N, 2N ], how quickly can one decide whether
such an interval contains a prime? If one could solve each such problem in time at
most A, then one could locate a prime in [N, 2N ] in time O(A logN), by starting
with the interval [N, 2N ] (which is guaranteed to contain a prime, by Bertrand’s
postulate) and then performing a binary search, repeatedly subdividing the interval
into two approximately equal pieces and using the decision problem to locate a
subinterval that also contains a prime.

Because primality testing is known to be in the complexity class P (see [1]),
we see that the above decision problem is in the complexity class NP . Thus, if

P = NP , we could locate a prime deterministically in time at most logO(1) N . Of
course, this conjecture is also unproven (and is widely believed to be false).

Given that there is a probabilistic algorithm to locate primes in time polynomial
in the digits, it may seem that the conjecture P = BPP would be able to quickly
imply a fast algorithm to locate primes. Unfortunately, to use the P = BPP
conjecture, one would presumably need to obtain a bounded-error probabilistic

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINISTIC METHODS TO FIND PRIMES 1235

polynomial (BPP) time algorithm for solving the above decision problem (or some
closely related problem), and it is not clear how to achieve this2.

One way to solve the above decision problem would be to find a quick way to
compute π(x), the number of primes less than or equal to x, for x in [N, 2N ], since
an interval [a, b] contains a prime if and only if π(b) − π(a − 1) > 0. The fastest
known elementary method to compute π(x) is the Meissel-Lehmer method [8], [5],

which takes time O(x2/3/ log2 x) and leads to a O(N2/3+o(1)) algorithm.
On the other hand, if one can calculate π(x) for x ∈ [N, 2N ] approximately in

time A to a guaranteed error of L (say), then a modification of the above arguments
shows that in time O(No(1)A), one can find a subinterval of [N, 2N ] of length
O(No(1)L). (The only thing one has to be careful of is to ensure in the binary
search algorithm that the density of primes in the interval is always � 1/ logN ,
but this is easily accomplished.) It was observed by Lagarias and Odlyzko [9] that by
using an explicit contour integral formula for π(x) (or the closely related expression
ψ(x) =

∑
n≤x Λ(n)) in terms of the Riemann zeta function, one could compute

π(x) to accuracy L using O(No(1)N
L ) time3. This is enough to obtain an interval of

length O(N1/2+o(1)) that is guaranteed to contain a prime, in time O(N1/2+o(1));
testing each such element for primality, one then obtains a deterministic prime-
finding algorithm that unconditionally takes O(N1/2+o(1)) time (thus matching the
algorithm that was conditional on the Riemann hypothesis). To our knowledge, this
is the best known algorithm in the literature for deterministically finding primes.

1.1. Beating the square root barrier? We conjecture that the square root bar-
rier for the decision problem can be broken:

Conjecture 1.1. There exists an absolute constant c > 0, such that one can (de-
terministically) decide whether a given interval [a, b] in [N, 2N ] of length at most
N1/2+c contains a prime in time O(N1/2−c+o(1)).

This would of course imply a bound of O(N1/2−c+o(1)) for finding a prime in
[N, 2N ] deterministically, since as mentioned earlier we can locate an initial interval
of length at most N1/2+c containing a prime in time O(N1/2−c+o(1)), and then
proceed by a binary search.

As mentioned earlier, it would suffice to be able to compute π(x) in time
O(x1/2−c+o(1)). We do not know how to accomplish this, but we have the following
partial result:

Theorem 1.2 (Computing the parity of π(x)). There exists an absolute constant
c > 0, such that one can (deterministically) decide whether a given interval [a, b]
in [N, 2N ] of length at most N1/2+c contains an odd number of primes in time
O(N1/2−c+o(1)).

We prove this result in Section 2; the key observation is that the parity of
the prime counting function π(x) is closely connected to the divisor sum function

2For further discussion of this issue, see michaelnielsen.org/polymath1/index.php?title=

Oracle counterexample to finding pseudoprimes .
3The basic idea is to use quadrature to integrate a suitable contour integral involving the zeta

function on the interval from 2− iT to 2 + iT , where T is comparable to No(1) N
L
. In [9] it is also

observed that the method also lets one compute π(x) exactly in time O(N1/2+o(1)), by smoothing

the sum ψ(x) at scale O(N1/2+o(1)) and using the sieve of Eratosthenes to compute exactly the
error incurred by such a smoothing.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1236 TERENCE TAO, ERNEST CROOT III, AND HARALD HELFGOTT

∑
n≤x τ (n), which will be computed efficiently by invoking the standard Dirichlet

hyperbola identity∑
n≤x

∑
d|n

f(d)g(
n

d
) =

∑
n,m:nm≤x

f(n)g(m)

=
∑
n≤y

g(n)F (
x

n
) +

∑
m≤x/y

f(m)G(
x

m
)− F (y)G(x/y)

(1.1)

for any functions f, g : N → R, where F (x) :=
∑

n≤x f(n) andG(x) :=
∑

m≤x g(m);

see for instance [12, §3.2, Theorem 1].
Note that once one has Theorem 1.2, and assuming that one can find an interval

[a, b] which contains an odd number of primes, then the binary search method will
locate a prime deterministically in time O(N1/2−c+o(1)), since if one subdivides an
interval containing an odd number of primes into two subintervals, then at least
one of these must also contain an odd number of primes. However, we do not know
of a method to quickly and deterministically locate an interval with an odd number
of primes.

In fact, we can establish the following stronger result. Given an interval [a, b],
we define the prime polynomial P (t) = Pa,b(t) as

Pa,b(t) :=
∑

a≤p≤b

tp,

where p ranges over primes in [a, b]. Thus, for instance, [a, b] contains a prime if
and only if P (1) is non-zero, or equivalently if P (t) mod 2 is non-zero, where we
view P (t) mod 2 as an element of the polynomial ring F2[t] over the field F2 of two
elements.

Given a polynomial P (t) over a ring R, we say that P has circuit complexity
O(M) if, after time O(M), one can build a circuit of size O(M) consisting of the
arithmetic operations (addition, subtraction, multiplication, and division4), as well
as the primitive polynomials 1, t, whose output is well defined in R[t] and is equal
to P .

Theorem 1.3. Suppose that [a, b] is an interval in [N, 2N ] of size at most N1/2+c

for some sufficiently small c. Then the polynomial Pa,b(t) mod 2 has circuit com-

plexity O(N1/2−c+o(1)).

We prove this theorem in Section 3.
Observe that if g ∈ F2[t] is a polynomial of degree at most Nc/2+o(1), then

any arithmetic operation in the quotient space F2[t]/(g) can be performed in time
O(Nc/2+o(1)) (using the fast multiplication algorithm to evaluate multiplication
in this space, and Euler’s theorem and the power method to perform multiplica-
tive inversion). As a consequence of this and the above theorem, we see that
Pa,b(t) mod (2, g) can be computed in time O(N1/2−c/2+o(1)). When g(t) = t− 1,
this is Theorem 1.2; but this theorem is more general. For instance, applying
the above argument with g equal to a cyclotomic polynomial, it is not difficult
to see that one can compute the parity of the reduced prime counting functions

4Traditionally, division is not considered an arithmetic operation for the purpose of circuit
complexity, but it is convenient for us to modify the definition because we will be taking advantage
of division at a few places in the paper. Also note that in our definition, it is not enough for a
circuit to merely exist; it must also be constructible within the specified amount of time.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINISTIC METHODS TO FIND PRIMES 1237

π(x; a, q) := |{p ≤ x : p ≡ a mod q}| for any positive integer q = O(Nc/10) in time
O(N1/2−c/4+o(1)). Unfortunately, we were not able to use this to unconditionally
establish Conjecture 1.1; it is a priori conceivable (but quite unlikely) that an in-
terval [a, b] might contain a non-zero number of primes, but have an even number
of primes in every residue class mod q with q = O(Nc/10).

On the other hand, as the prime polynomial Pa,b(t) mod 2 has degree O(N), it

is easy to see that the proportion of polynomials of degree at most Nc/4 that do
not divide Pa,b(t) mod 2 is bounded away from zero. (Indeed, a positive proportion

of such polynomials contain a prime factor of degree at least Nc/8, but by unique

factorization, there are O(N) such primes, and each one only divides at most 2−Nc/8

of the polynomials of degree at most Nc/4.) As such, we see that we can obtain a
bounded-error probabilistic algorithm for solving the decision problem that runs in
time O(N1/2−c/2+o(1)), by testing whether the prime polynomial Pa,b(t) vanishes
modulo 2 and g(t), where g is a randomly selected polynomial of degree at most
Nc/4. Unfortunately, the run time of this algorithm is not polynomial in the number
of digits, and so the P = BPP hypothesis does not yield any improvements over
existing algorithms.

In Section 4 we discuss possible strategies that could lead to a full resolution of
Conjecture 1.1.

1.2. About this project. This paper is part of the Polymath project, which was
launched by Timothy Gowers in February 2009 as an experiment to see if research
mathematics could be conducted by a massive online collaboration. This project
(which was administered by Terence Tao) is the fourth project in this series. Further
information on this project can be found on the web site [10]. Information about
this specific polymath project may be found at michaelnielsen.org/polymath1/
index.php?title=Finding primes and a full list of participants and their grant
acknowledgments may be found at michaelnielsen.org/polymath1/index.php?
title=Polymath4 grant acknowledgments.

2. Computing the parity of π(x)

We now prove Theorem 1.2. Let c > 0 be a small number to be chosen later.
Let τ (n) :=

∑
d|n 1 be the number of divisors of n, and let ω(n) :=

∑
p|n 1 be the

number of distinct primes that divide n (with the convention that ω(1) = 0). One
easily verifies the identity

(2.1) 2ω(n) =
∑

d:d2|n
μ(d)τ (n/d2)

where μ is the Möbius function5, by checking this first on prime powers and then
using multiplicativity. Now for n > 1, 2ω(n) is divisible by 4, except when n is a
prime power n = pj , in which case it is equal to 2. This gives the identity

∑
a≤n≤b

2ω(n) ≡ 2
∞∑
j=1

|{p ∈ [a1/j , b1/j ] : p prime}| mod 4.

5The Möbius function is defined by setting μ(p1 . . . pk) := (−1)k for any product p1 . . . pk of
distinct primes p1, . . . , pk, and μ(n) = 0 whenever n is not square-free (i.e., it is divisible by a
perfect square larger than 1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1238 TERENCE TAO, ERNEST CROOT III, AND HARALD HELFGOTT

Clearly, we may restrict j to size O(logN). For any j ≥ 2, the interval [a1/j , b1/j ]
has size O(Nc) (by the mean value theorem), and so the jth summand on the RHS
can be computed in time O(Nc+o(1)) by the AKS algorithm [1]. Thus we see that
to prove Theorem 1.2, it will suffice to compute the quantity∑

a≤n≤b

2ω(n)

in time O(N1/2−c+o(1)). Using (2.1), we can expand this expression as

(2.2)
∑
d

μ(d)
∑

a/d2≤m≤b/d2

τ (m).

Clearly, d can be restricted to be O(N1/2).
We first dispose of the large values of d in which d > N0.49 (say). Then m =

O(N0.02), so we can rearrange this portion of (2.2) as

(2.3)
∑

m=O(N0.02)

∑
√

a/m≤d≤
√

b/m;d≥N0.49

μ(d)τ (m).

For each value ofm, there areO(Nc) possible values of d, each of size O(N1/2). Each
such d can be factored using trial division in time O(N1/4+o(1)) (or one can use more
advanced factoring algorithms if desired), and so each of the O(N0.02+c) summands
can be computed in time O(N1/4+o(1)), giving a net cost of O(N0.27+c+o(1)) which
is acceptable for c small enough.

For the remaining values of d, we can use the sieve of Erathosthenes to factorise
all the d (and, in particular, compute μ(d)) in time O(N0.49+o(1)). So the main
task is to compute the inner sum of (2.2) for such d.

We will shortly establish

Theorem 2.1. The expression
∑

n≤x τ (n) can be computed in time O(x1/2−c0+o(1))
for some absolute constant c0 > 0.

Assuming this for the moment, we see that for each d ≤ N0.49, the summand in
(2.2) can be computed in time O(No(1)(N/d2)1/2−c0). Summing in d, we obtain a
total time cost of O(N1/2−c0/10+o(1)) (say), which is acceptable if c is chosen small
enough depending on c0.

So it suffices to establish Theorem 2.1. The argument here is loosely inspired
by the arguments used to establish the elementary bound

∑
n≤x τ (n) = x log x −

(2γ − 1)x+O(x1/3+o(1)) in [13, Chapter 3].
Clearly, we may shift x to be a non-integer. We then apply the Dirichlet hyper-

bola identity (1.1) (with f = g = 1 and y =
√
x) to expand

∑
n≤x

τ (n) = 2
∑

n≤
√
x

⌊x
n

⌋
− 


√
x�2.

It thus suffices to evaluate the integer∑
n≤√

x

⌊x
n

⌋

in time O(x1/2−c0+o(1)). In fact, we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINISTIC METHODS TO FIND PRIMES 1239

Proposition 2.2 (Complexity of the hyperbola). In time O(x0.49+o(1)), one can
obtain a partition of the discrete interval {n : 1 ≤ n ≤

√
x} into O(x0.49+o(1))

arithmetic progressions, with the function n �→
⌊
x
n

⌋
linear on each arithmetic pro-

gression.

Since one can use explicit formulas to sum any linear function with coefficients
of size O(x) on an arithmetic progression of integers of size O(x) in time O(xo(1)),
Theorem 2.1 now follows immediately from the above proposition.

Proof. By using the singleton sets {n} to partition all the numbers less than x0.49,
we see that it suffices to partition the interval {n : x0.49 ≤ n ≤ √

x}.
Let x0.49 ≤ n0 ≤

√
x be arbitrary, and set Q := x0.1. By the Dirichlet approxi-

mation theorem, there exist integers 1 ≤ q ≤ Q and a ≥ 1 such that | x
n2
0
− a

q | ≤
1
qQ .

These integers can be easily located in time O(xo(1)) using continued fractions. We
now expand the quantity x

n where n = n0 + lq + r, l ≥ 0, and 0 ≤ r < q. Since

1

n0 + y
=

1

n0
− y

n2
0

+
y2

n2
0(n0 + y)

for any y, we have
x

n
=

x

n0
− x(lq + r)

n2
0

+
x(lq + r)2

n2
0(n0 + y)

.

We expand x
n2
0
= a

q + θ
qQ for some explicitly computable |θ| ≤ 1, to obtain

x

n
=

x

n0
− al − θl

Q
− xr

n2
0

+
x(lq + r)2

n2
0(n0 + lq + r)

.

We thus have ⌊x
n

⌋
= −al + 
P (l)�

where P = Px,n0,a,q,θ,r is the rational function

P (l) :=
x

n0
− xr

n2
0

− θl

Q
+

x(lq + r)2

n2
0(n0 + lq + r)

.

The first two terms on the right-hand side are independent of l. If we restrict l to
the range 0 ≤ l ≤ Q, then the third term has magnitude at most 1, and the fourth
term has magnitude at most

O(
xQ4

n3
0

) = O(x−0.01).

Thus (for x large enough) we see that P fluctuates in an interval of length at
most 3, and so 
P (l)� takes at most three values. For any such value k, the set
{l : 
P (l)� = k} is a union of intervals, bounded by the sets {l : P (l) = k} and
{l : P (l) = k + 1}. As P is a rational function in l of bounded degree, we see
from Bezout’s theorem that these latter sets have cardinality O(1), and so the set
{l : 
P (l)� = k} is the union of O(1) intervals. Furthermore, the endpoints of these
intervals can be computed explicitly in time O(xo(1)), by using the explicit formula
for the solution of the cubic. We conclude that in time O(xo(1)), one can partition
each arithmetic progression {n0 + lq + r : 0 ≤ l ≤ Q} for 0 ≤ r < q into O(1)
subprogressions, with n �→ 
 x

n� linear on each subprogression. Performing this once

for each residue class r mod q, we see that in time O(xo(1)q), we can partition the
interval {n : n0 ≤ n < n0 + qQ} into O(q) progressions, with n �→

⌊
x
n

⌋
linear on

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1240 TERENCE TAO, ERNEST CROOT III, AND HARALD HELFGOTT

each progression. If we apply this observation with n0 set equal to the left endpoint
of the interval {n : x0.49 ≤ n ≤ √

x}, we may partition an initial segment of this
interval into progressions with the required linearity property. Removing this initial
segment, and iterating this procedure (updating n0 and q at each stage) we then
obtain the claim. (Note that if the interval {n : n0 ≤ n < n0 + qQ} overflows
beyond

√
x, then we may simply partition the remaining portion of the interval

into singletons, at a cost of O(x0.2) progressions.) �

2.1. A refinement. By modifying the above argument, one can in fact compute∑
n≤x τ (n) in O(x1/3+o(1)) time, though this particular argument does not extend

as easily to the polynomial setting as the one given above. We sketch the details
as follows. As before, it suffices to compute∑

n≤
√
x

⌊x
n

⌋

in time O(x1/3+o(1)). By dyadically decomposing the interval {n : n ≤
√
x} into

dyadic intervals {x : A ≤ n < 2A} for various values of A, it suffices to compute
∑

A≤n<2A

⌊x
n

⌋

in time O(x1/3+o(1)) for all A ≤
√
x. We may assume that A > 100x1/3 since one

can sum the series one term at a time otherwise.
We consider the subtask of computing a partial sum of the form∑

n0≤n<n0+q

⌊x
n

⌋

where A ≤ n0 < 2A and q is chosen so that |x/n2
0 − a/q| ≤ 1/qQ with 1 ≤ q ≤ Q

and a coprime to q as above, where we now optimise Q to equal Ax−1/3. We claim
that this sum can be computed in O(xo(1)) time.

As this sum is an integer, it suffices to compute the sum with an error of less
than 1/2. The sum ∑

n0≤n<n0+q

x

n

can be computed with error at most 0.1 (say) by quadrature in O(xo(1)) time, so
it suffices to compute ∑

n0≤n<n0+q

{x

n

}
.

Writing n = n0 + r and x/n2
0 = a/q + θ/qQ and expanding as before we have

x

n
=

x

n0
− ar

q
− θr

qQ
+

xr2

n2
0(n0 + r)

and thus (for 0 ≤ r < q),

x

n
=

x

n0
− ar

q
+O

(
1

q

)

where we have used the assumptions q ≤ Q = Ax−1/3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINISTIC METHODS TO FIND PRIMES 1241

As r runs from 0 to q − 1, the fractional parts of ar
q take each of the values

0
q ,

1
q , . . . ,

q−1
q exactly once, since a is coprime to q. We conclude that

{x

n

}
=

{
x

n0
− ar

q

}

for all but O(1) values of r, each of which can be computed explicitly in O(xo(1))
time. So we are left with computing

∑
0≤r<q

{
x

n0
− ar

q

}
=

∑
0≤i<q

{
x

n0
− i

q

}

which can easily be computed in O(xo(1)) time, and the claim follows.
A modification of the above argument shows that we can in fact compute∑
n0≤n<n0+kq

⌊
x
n

⌋
in O(xo(1)) time whenever kq = O(Q). As such, we can compute

the entire sum
∑

A≤n<2A

⌊
x
n

⌋
in time O(xo(1)A/Q) = O(x1/3+o(1)) by summing in

blocks of size Q, and the claim follows.

3. The circuit complexity of the prime polynomial mod 2

We now modify the above arguments to establish Theorem 1.3. We begin by
showing a non-trivial gain in circuit complexity for a quadratic sum.

Lemma 3.1. Let a, b, c, q = O(N) be integers, then the expression

(3.1)

q−1∑
m=0

tam
2+bm+c

has circuit complexity O(No(1)q1−c0) in the polynomial ring Z[t] for some absolute
constant c0 > 0.

Note that this is a power saving over the trivial bound of O(No(1)q) (note that
by repeated squaring, any monomial tn with n = O(NO(1)) has circuit complexity
O(No(1))).

Proof. It suffices to establish this lemma when q is a perfect cube q = Q3, as the
general case can then be established by approximating q by the nearest cube and
evaluating the remaining O(q1/3) terms by hand.

Next, we expand m in base Q as m = i+Qj +Q2k for 0 ≤ i, j, k < Q. We can
then expand am2 + bm+ c as a quadratic polynomial in i, j, k, which we split as

am2 + bm+ c = U(i, j) + V (j, k) +W (k, i)

for some explicit quadratic polynomials U, V,W , whose coefficients have polynomial
size in N . We can then express (3.1) as

Q−1∑
i=0

Q−1∑
j=0

Q−1∑
k=0

tU(i,j)tV (j,k)tW (k,i)

or more compactly as

tr(ABC)

where A,B,C are the Q×Q matrices

A := (tU(i,j))0≤i,j<Q; B := (tV (i,j))0≤j,k<Q; C := (tW (k,i))0≤k,i<Q.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1242 TERENCE TAO, ERNEST CROOT III, AND HARALD HELFGOTT

Each of the matrices A,B,C has a circuit complexity of O(No(1)Q2). Using the
Strassen fast matrix multiplication algorithm [11], one can multiply A,B,C to-
gether using a circuit of complexity O(Q3−c0) for some absolute constant c0 > 0.
Taking the trace requires another circuit of complexity O(Q). Putting all these
circuits together and recalling that Q = q1/3, one obtains the claim. �

It would be of interest to see if similar power savings can also be obtained for
analogous sums in which the quadratic exponent an2+bn+c is replaced by a higher
degree polynomial. It may be that a generalisation of the Strassen algorithm to
tensors would be relevant for this task.

Next, we need the following modification of Proposition 2.2.

Proposition 3.2 (Complexity of the hyperbola, II). There exists an absolute con-
stant c0 > 0 such that if 0 < c < c0 is sufficiently small, then for any 0 < x′ < x
with x − x′ ≤ x1/2+c, and in time O(x1/2−c0+o(1)), one can obtain a partition of
the discrete interval {n : x1/2−c ≤ n ≤

√
x} into O(x1/2−c0+o(1)) arithmetic pro-

gressions, with the function n �→ 
 x
n� linear on each arithmetic progression, and the

function n �→ 
 x
n� − 
x′

n � is constant.

Proof. Let c0 > 0 be a sufficiently small constant, and assume that 0 < c < c0 is
sufficiently small as well. Let x1/2−c ≤ n ≤

√
x be arbitrary, and set Q := x10c0 .

As in the proof of Proposition 2.2, there exist integers 1 ≤ q ≤ Q and a ≥ 1 such
that x

n2
0
= a

q + θ
qQ for some |θ| ≤ 1, where n = n0 + lq + r and 0 ≤ l, q, r ≤ Q.

Since n ≥ x1/2−c, we have (for x large enough) that n0 ≥ x1/2−c/2 (say). A brief

computation (noting that |x−x′| ≤ x1/2+c) then shows that x′

n2
0
= a

q +
θ′

qQ for some

|θ′| ≤ 2 if c is small enough and x is sufficiently large. The claim then follows by
repeating the proof of Proposition 2.2 (the main difference being that the rational
function P is now replaced by a pair P, P ′ of rational functions). �

We now combine Lemma 3.1 and Proposition 3.2 to obtain

Corollary 3.3. If c > 0 is sufficiently small, then for any 0 < a < b < N with
b− a ≤ N1/2+c, the polynomial ∑

a<n≤b

τ (n)tn

has circuit complexity O(N1/2−c+o(1)) for some absolute constant c > 0.

Proof. This is analogous to Theorem 2.1. We let c > 0 be a sufficiently small
quantity to be chosen later.

We may assume that a, b are not integers. We expand this polynomial as∑
n,m≥1:a<nm≤b

tnm.

Observe that if a < nm ≤ b, then one either has 1 ≤ n ≤
√
b or 1 ≤ m ≤

√
b, or

both, with the last case occuring precisely when a/
√
b ≤ n ≤

√
b and a/n ≤ m ≤√

b. In the first case, we rewrite the condition a < nm ≤ b as a/n < m ≤ b/n; in
the second case, we rewrite that condition as a/m < n ≤ b/m. After swapping n
and m in the second case, we can rearrange the above polynomial as

2
∑

1≤n≤
√
b

∑
a/n<m≤b/n

tnm −
∑

a/
√
b≤n≤

√
b

∑
a/n≤m≤

√
b

tnm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINISTIC METHODS TO FIND PRIMES 1243

The second sum contains only O(N2c) terms and so can easily be verified to have
a circuit complexity of O(N2c+o(1)), which is acceptable. So it will suffice to show
that the sum

(3.2)
∑

1≤n≤
√
b

∑
�a/n�+1≤m≤�b/n�

tnm

has circuit complexity O(N1/2−c+o(1)).
Using the geometric series formula, the inner sum has circuit complexityO(No(1))

for each fixed n. This is already sufficient to dispose of the contribution of the terms
in (3.2) for which n ≤ N1/2−c, so it remains to bound the circuit complexity of∑

N1/2−c+o(1)≤n≤
√
b

∑
�a/n�+1≤m≤�b/n�

tnm.

Using Proposition 3.2 and in time O(N1/2−c0+o(1)) for some absolute constant

c0 (independent of c), we may partition {n : N1/2−c0+o(1) ≤ n ≤
√
b} into arith-

metic progressions P1, . . . , Pk with k = O(N1/2−c0+o(1)), such that 
b/n� is a linear
function of n on each of these progressions, and 
a/n� − 
b/n� is constant. This
constant is of size O(N2c). Applying Lemma 3.1 (after first switching the order of
summation), the sum ∑

n∈Pj

∑
�a/n�+1≤m≤�b/n�

tnm

has a circuit complexity of O(N2c+o(1)|Pj |1−c1) for some c1 > 0, so that (3.2) has
a circuit complexity of

O(N1/2−c0+o(1)) +
k∑

j=1

O(N2c+o(1)|Pj |1−c1).

By Hölder’s inequality, one has

k∑
j=1

|Pj |1−c1 ≤ (
k∑

j=1

|Pj |)1−c1kc1 .

Since
∑k

j=1 |Pj | = O(N1/2) and k = O(N1/2−c0+o(1)), we obtain a total circuit
complexity bound of

O(N1/2−c0c1+2c+o(1))

and the claim follows if c is chosen sufficiently small. �

Now we can prove Theorem 1.3. We repeat the arguments from the previous
section. First observe that

∑
a≤n≤b

2ω(n)tn ≡ 2Pa,b(t) + 2
∞∑
j=2

∑
a1/j≤p≤b1/j

tp
j

mod 4.

Because b − a = O(N1/2+c) and b, a are comparable to N , we see from the mean
value theorem that b1/j − a1/j = O(Nc) for all j ≥ 2. We thus see that the total
number of primes p in the latter sum are O(Nc+o(1)) on the right-hand side, and
so this sum has a circuit complexity of O(Nc+o(1)). Thus, it suffices to show that
the polynomial ∑

a≤n≤b

2ω(n)tn mod 4

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1244 TERENCE TAO, ERNEST CROOT III, AND HARALD HELFGOTT

has circuit complexity O(N1/2−c+o(1)). Using (2.1), we rewrite this polynomial as

(3.3)
∑
d

μ(d)
∑

a/d2≤m≤b/d2

τ (m)td
2m.

Clearly d can be restricted to be O(N1/2).
Once again, we first dispose of the large values of d in which d > N0.49. This

portion of (3.3) can be rearranged as
∑

m=O(N0.02)

∑
√

a/m≤d≤
√

b/m;d≥N0.49

μ(d)τ (m)tdm.

Repeating the arguments from the previous section (and specifically, the argu-
ments used to compute (2.3)), this term can be given a circuit complexity of
O(N0.27+c+o(1)).

For the remaining values of d, we again use the sieve of Erathosthenes to compute
all the μ(d) in time O(N0.49+o(1)). Using Lemma 3.3, each instance of the inner

sum
∑

a/d2≤m≤b/d2 τ (m)td
2m has a circuit complexity of O((N/d2)1/2−c0+o(1)) for

some absolute constant c0 > 0. Summing in d as before, we obtain a total circuit
complexity of

O(N0.49+o(1) +
∑

d≤N0.49

O((N/d2)1/2−c0+o(1))

which sums to O(N1/2−c+o(1)) as desired, for c small enough.

4. Possible extensions

The circuit complexity bound on the prime polynomial Pa,b(t) given by Theorem

1.3 lets us compute Pa,b(t) mod (2, g) in time O(N1/2−c/2+o(1)) for any polynomial

g ∈ F2[t] of degree O(Nc/4), if c > 0 is sufficiently small. Unfortunately, this is
not strong enough to deterministically determine in time O(N1/2−c/2+o(1)) whether
Pa,b(t) is non-trivial or not, although as mentioned in the introduction it at least
gives a bounded-error probabilistic test in this amount of time. It may be, however,
that by using additional algorithms (such as the Fast Fourier Transform, or the mul-
tipoint polynomial evaluation algorithm of Borodin and Moenk[3]) one may be able
to compute quantities such as Pa,b(t) mod (2, g) for multiple values of g simulta-

neously in O(N1/2−c/2+o(1)) time, or perhaps variants such as Pa,b(t
j) mod (2, g).

However, it is a priori conceivable (though very unlikely) that the degree O(N)
polynomial Pa,b(t) mod 2 is divisible by as many as O(N1−c/4) irreducible polyno-

mials g ∈ F2[t] of degree O(Nc/4), so it is not yet clear to us how to use this sort of
test to deterministically settle the decision problem in O(N1/2−c+o(1)) time. One
possibility would be to find a relatively small set of g for which it was not possi-
ble for Pa,b(t) mod 2 to be simultaneously divisible by, without vanishing entirely.
Note that a somewhat similar idea is at the heart of the AKS primality test [1].

If one could compute π(x) mod q (or π(b)−π(a) mod q) for each prime 1 ≤ q ≤
O(logN) in time O(N1/2−c+o(1)) uniformly in q, where x, a, b = O(N), then from
the Chinese remainder theorem we could compute π(x) or π(b)−π(a) itself in time
O(N1/2−c+o(1)), thus solving Conjecture 1.1. The above analysis achieves this goal
for q = 2. However, the methods deteriorate extremely rapidly in q. For instance,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINISTIC METHODS TO FIND PRIMES 1245

if one wished to compute π(x) mod 3 by the above methods, one would soon be
faced with understanding the sum∑

n<x

τ2(n) =
∑

a,b,c≥1:abc≤x

1

where x = O(N) and τ2(n) :=
∑

a,b,c:abc=n 1 is the second divisor function. (Ob-

serve that the expression
∑

d:d3|n μ(d)τ2(n/d
3) is divisible by 9 unless n is equal to

a 1 or a power of a prime.) The three-dimensional analogue of the Dirichlet hy-
perbola method allows one to evaluate this expression in time O(N2/3+o(1)). The
type of arguments used in the previous sections would reduce cost this slightly to
O(N2/3−c+o(1)) for some small c > 0, but this is inferior to the bound O(N1/2+o(1))
that can already be obtained for π(x).

We have not attempted to optimise the exponent savings c > 0 appearing in
the results of this paper. It may be that improvements to these exponents may
be obtained by making more accurate approximations of the discrete hyperbola
{(n, 
 x

n�) : 1 ≤ n ≤
√
x} than the piecewise linear approximation given by Propo-

sition 2.2; for instance, piecewise polynomial approximations may ultimately be
more efficient.

It may also be of interest to obtain circuit complexity bounds for more general
expressions than the prime polynomial

∑
a≤p≤b t

p; for instance, one could consider∑
a≤p≤b t

p2

or, more generally,
∑

a≤p≤b t
h(p) for some fixed polynomial h.

Some progress along the above lines will appear in forthcoming work of Croot,
Hollis, and Lowry (in preparation).

Acknowledgements

The authors thank Ryan Williams for corrections, and the anonymous referee
for many cogent suggestions and corrections.

References

[1] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals of Mathematics 160 (2004), no.
2, pp. 781–793. MR2123939 (2006a:11170)

[2] R. C. Baker, G. Harman, J. Pintz, The difference between consecutive primes, II, Proceedings
of the London Mathematical Society 83, (2001), 532–562. MR1851081 (2002f:11125)

[3] A. Borodin, R. Moenk, Fast Modular Transforms, Jour. of Comp. and System Sciences, 8
(1974), 366–386. MR0371144 (51:7365)

[4] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers,
Acta Arithmetica 2 (1936), 23–46.

[5] M. Deleglise, J. Rivat, Computing π(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko
method, Math. Comp. Vol. 65 (1996), 235–245. MR1322888 (96d:11139)

[6] A. Granville, Harald Cramér and the distribution of prime numbers, Scandinavian Actuarial
Journal 1(1995), 12–28. MR1349149 (96g:01002)

[7] D. R. Heath-Brown, Primes represented by x3 + 2y3. Acta Math. 186 (2001), no. 1, 1–84.
MR1828372 (2002b:11122)

[8] J. C. Lagarias, V. S. Miller, A. M. Odlyzko, Computing π(x): The Meissel-Lehmer method,
Math. Comp. 44 (1985), 537–560. MR777285 (86h:11111)

[9] J. C. Lagarias, A. M. Odlyzko, Computing π(x): An analytic method, J. Algorithms 8 (1987),
173–191. MR890871 (88k:11095)

[10] D.H.J. Polymath, michaelnielsen.org/polymath1/index.php?title=Polymath1
[11] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356.

MR0248973 (40:2223)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2123939
http://www.ams.org/mathscinet-getitem?mr=2123939
http://www.ams.org/mathscinet-getitem?mr=1851081
http://www.ams.org/mathscinet-getitem?mr=1851081
http://www.ams.org/mathscinet-getitem?mr=0371144
http://www.ams.org/mathscinet-getitem?mr=0371144
http://www.ams.org/mathscinet-getitem?mr=1322888
http://www.ams.org/mathscinet-getitem?mr=1322888
http://www.ams.org/mathscinet-getitem?mr=1349149
http://www.ams.org/mathscinet-getitem?mr=1349149
http://www.ams.org/mathscinet-getitem?mr=1828372
http://www.ams.org/mathscinet-getitem?mr=1828372
http://www.ams.org/mathscinet-getitem?mr=777285
http://www.ams.org/mathscinet-getitem?mr=777285
http://www.ams.org/mathscinet-getitem?mr=890871
http://www.ams.org/mathscinet-getitem?mr=890871
http://www.ams.org/mathscinet-getitem?mr=0248973
http://www.ams.org/mathscinet-getitem?mr=0248973


1246 TERENCE TAO, ERNEST CROOT III, AND HARALD HELFGOTT

[12] G. Tenenbaum, Introduction to analytic and probabilistic number theory. Translated from the
second French edition (1995) by C. B. Thomas. Cambridge Studies in Advanced Mathematics,
46. Cambridge University Press, Cambridge, 1995. MR1342300 (97e:11005b)

[13] I. M. Vinogradov, Elements of Number Theory, Mineola, NY: Dover Publications, 2003,
MR0062138 (15:933e)

http://michaelnielsen.org/polymath1/index.php

http://michaelnielsen.org/polymath1/index.php

http://michaelnielsen.org/polymath1/index.php

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1342300
http://www.ams.org/mathscinet-getitem?mr=1342300
http://www.ams.org/mathscinet-getitem?mr=0062138
http://www.ams.org/mathscinet-getitem?mr=0062138

	1. Introduction
	1.1. Beating the square root barrier?
	1.2. About this project

	2. Computing the parity of (x)
	2.1. A refinement

	3. The circuit complexity of the prime polynomial mod 2
	4. Possible extensions
	Acknowledgements
	References

