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Abstract: Mesoscale eddies, the weather system of the oceans, although being on the scales of12

O(20-100 km), have a disproportionate role in shaping the mean jets such as the separated Gulf13

Stream in the North Atlantic Ocean, which is on the scale of O(1000 km) in the along-jet direction.14

With the increase in computational power, we are now able to partially resolve the eddies in basin-15

scale and global ocean simulations, a model resolution often referred to as mesoscale permitting.16

It is well known, however, that due to grid-scale numerical viscosity, mesoscale permitting17

simulations have less energetic eddies and consequently weaker eddy feedback onto the mean18

flow. In this study, we run a quasi-geostrophic model at mesoscale resolving resolution in a double19

gyre configuration and formulate a deterministic parametrization for the eddy rectification term20

of potential vorticity (PV), namely, the eddy PV flux divergence. We have moderate success in21

reproducing the spatial patterns and magnitude of eddy kinetic and potential energy diagnosed22

from the model. One novel point about our approach is that we account for non-local eddy23

feedbacks onto the mean flow by solving the eddy PV equation prognostically in addition to the24

mean flow. In return, we are able to parametrize the variability in total (mean+eddy) PV at each25

time step instead of solely the mean PV. A closure for the total PV is beneficial as we are able to26

account for both the mean state and extreme events.27

Keywords: Mesoscale eddy closure; Quasi geostrophy; Mid-latitude double gyre28

1. Introduction29

In the field of fluid dynamics and turbulence, formulating a closure for the gov-30

erning equations has been a long standing problem [1,2]. This is because there is often31

not enough resolution whether it be an observational or modelling study to resolve32

the variable of interest down to the molecular scale where kinetic energy is dissipated33

to internal energy due to molecular viscosity. Particularly in the field of geophysical34

fluid dynamics (GFD) where the scales of interest span up to O(1000 km), resolving35

the molecular scale let alone three-dimensional turbulence [O(10 m); 3] is practically36

unachievable and will remain so for the foreseeable future. Due to the lack of resolution,37

the governing equations for the “resolved" field have an additional forcing term from the38

“unresolved" field. In other words, the governing equations are not closed. A large effort39

in GFD has been, therefore, to formulate a closure for the unresolved field, i.e. represent40

the unresolved field prognostically with the resolved momentum and/or tracer field41

[e.g. 4–7].42

The fact that the unresolved (small-scale) field not only drains energy from the43

resolved (large-scale) field but also partially feeds back onto the resolved field by fluxing44

momentum and buoyancy back into the latter has been known for some time [8–10].45

More recently, this inverse cascade of momentum from small to large scale has gained46

serious attention in the ocean modelling community. This has partially been due to47
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us not having the computational power until the last decade to partially resolve the48

mesoscale O(20-100 km) eddies on a global scale. The ocean currents are most energetic49

in the mesoscale range [11–14]. Modelling studies with varying spatial resolution have50

shown that only partially resolving the mesoscale results in weaker mesoscale eddies,51

and consequently weaker feedback onto large-scale flows such as the Gulf Stream52

[15,16]. Considering the impact of the mean jets on global tracer transport and air-sea53

interaction [17–20], improving the representation of the eddy feedback onto the mean54

flow has climate implications. There has been a growing effort, therefore, to represent55

the inverse cascade of kinetic energy otherwise lost to grid-scale numerical viscosity at56

mesoscale permitting resolution, a process often referred to as energy backscattering57

parametrizations [e.g. 21–27, and references therein]. Our study here is in the same58

realm of parametrization studies in which we aim to improve the large-scale state by59

parametrizing the net mesoscale feedback onto the former.60

Specifically, the goal of our study is to formulate a deterministic closure and hence61

a model for the eddy dynamics. Such approach is not new; for example, Jansen et al. [23],62

Juricke et al. [25] and Perezhogin [26] implement a prognostic equation for the sub-grid63

(unresolved) eddy energy and achieve the backscattering via a negative viscosity. One64

notable difference in our method is that while many previous studies have formulated65

their parametrizations based on a local closure (i.e. relating the eddy momentum flux66

locally at each grid point to the resolved momentum), we construct our closure by67

incorporating basin-scale information. This is motivated by the fact that Venaille et al.68

[28] and Grooms et al. [29] have shown that the eddy feedback on the large-scale flow is69

strongly non-local. We also focus on the eddy potential vorticity (PV) equation rather70

than eddy energy within the quasi-geostrophic (QG) framework. The QG framework has71

been shown to be fruitful in examining the eddy-mean flow interaction and formulating72

eddy closures [e.g. 22,30–32]. Here, we propose a spatial filtering approach to achieve a73

PV-based deterministic closure.74

The paper is organized as follows: We describe our QG model configuration in75

section 2 and in particular the eddy PV model in section 2.2. In depth analysis of the76

eddy model is given in section 3 and details on the spatial filtering are in section 4. We77

give our conclusions in section 5.78

2. Model and methods79

2.1. Description of the model80

We adopt the QG framework in order to describe the well known double gyre
circulation in an idealized midlatitude ocean basin. This model is known to capture both
the large-scale and small-scale variability of the ocean with a relatively coarse vertical
resolution [cf. 33]. The QG formalism is meant to describe dynamical regimes for a
prescribed background stratification N2 and Coriolis parameter f . Two ingredients are
necessary to reproduce the double gyre pattern: the planetary vorticity must vary with
latitude and we need to use a cyclonic forcing in the northern part of the domain and
an anticyclonic forcing in the southern part of the domain. In order to satisfy the first
condition, we work with the β-plane approximation such that the Coriolis parameter
f varies linearly with latitude. This sets the planetary scale Lβ = f0/β which is large
compared to the deformation scale NH/ f0, (with H the depth of the ocean and f0 the
average value of the Coriolis parameter in the domain). In this formalism, the main
dynamical variable is the quasi-geostrophic potential vorticity defined as

q = ∇
2ψ + Γψ

def
= Lψ, (1)

with ψ the stream function, ∇2 the horizontal Laplace operator and

Γ
def
=

∂

∂z

f 2
0

N2

∂

∂z
(2)
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the vertical stretching operator. The horizontal velocity is defined as

u = −∂ψ

∂y
and v =

∂ψ

∂x
, (3)

and the buoyancy is defined as

b = f0
∂ψ

∂z
. (4)

The equation of evolution of the potential vorticity is

∂q

∂t
+ J(ψ, q) + βv = A4∇

4q + rb∇
2ψ + F , (5)

with

J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
, (6)

the jacobian operator, which corresponds to the non linear advective term, A4 the bi-81

harmonic viscosity, rb the bottom friction coefficient which parameterizes a bottom82

Ekman layer (and is thus non zero in the lower layer only), and F the forcing resulting83

from an Ekman pumping in a thin Ekman layer at the surface and is thus non zero in the84

upper layer only. We build the numerical version of this model in the basilisk framework85

[34,35].86

We solve Eqs. (5) and (1) in a horizontal square domain with side L = 5000 km87

and of vertical extension H = 5000 m. We discretize these equations with 512 × 51288

horizontal points (which correspond to a horizontal resolution of slightly less than89

10 km) and 4 vertical layers of thickness h1 = 238 m, h2 = 476 m, h3 = 953 m and90

h4 = 3333 m (from top to bottom). We adjust the background stratification N2 to91

mimic the stratification in middle of the subtropical gyre in the North Atlantic such92

that at each layer interface, we have N2
1.5 = 1.7 × 10−5 s−2, N2

2.5 = 1.1 × 10−5 s−2,93

N2
3.5 = 3.2 × 10−7 s−2, from top to bottom. The average value of the Coriolis parameter94

is f0 = 9.3 × 10−5 s−1 and β = 1.7 × 10−11 m−1 s−1. For these parameters, the three95

deformation radii are Rd1 = 25 km, Rd2 = 10 km and Rd3 = 7 km. Note that these96

deformation radii correspond to the inverse squared eigenvalue of the vertical stretching97

operator. At this resolution we choose A4 = 6.25 × 109 m4 s−1, and δe = 7.5 m (such that98

the spindown time scale is 1/rb = 166 days.99

We solve the elliptic equation (Eq. 1) with homogeneous dirichlet boundary con-100

ditions on the sides (ψ = 0 which correspond to no flux boundary condition) and101

homogeneous Neumann boundary conditions at the top and bottom boundary (which102

correspond to the traditional QG assumption: b = 0 at the upper and lower boundary).103

The forcing is

F =
∇× τ

ρ0h1
, with τ = τ0 sin3

(πy

L

)
. (7)

We use a a cubic sine function in the definition of the wind in order to reproduce a104

narrow midlatitude atmospheric jet. For such a narrow jet, the boundary between the105

positive and negative area of the wind stress curl pattern is sharper than if we use the106

traditional cosine shape for the wind pattern. We choose τ0 = 0.25 N m−2 which is an107

acceptable value for the difference between the maximum and minimum value of the108

wind in the North Atlantic1 [36]. We have also kept the wind stress axisymmetric as our109

interest is on eddy time scales and not low frequency variability.110

To integrate the model in time, we first perform a spin up phase of 80 years at low111

resolution (80 km) followed by another 80 years at the prescribed resolution (10 km).112

After this spin up, the model is in a statistically steady state.113

1 Note that this wind pattern takes only positive values: we could have added a term −τ0/2 in the definition of the wind in Eq. (7), however this is
only cosmetic because this additional term does not impact the wind stress curl, which is what ultimately matters in QG dynamics.
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2.2. Mean flow and eddy models114

We decompose each dynamical variable as the sum of its time mean (denoted with
an overbar) and a perturbation (denoted with a prime) as shown here for the stream
function

ψ = ψ + ψ′ . (8)

If we use this decomposition in the equation of evolution of PV, we get

∂

∂t
(q + q′) + J(ψ + ψ′, q + q′) + β(v + v′) = A4∇

4(q + q′) + rb∇
2(ψ + ψ′) + F , (9)

and if we take the time average of this equation, we get

∂q

∂t
+ J(ψ, q) + J(ψ′, q′) + βv = A4∇

4q + rb∇
2ψ + F , (10)

with F = F because we have a stationary forcing. The term J(ψ′, q′) is known as the eddy
rectification of the large-scale flow. It is this term that many studies seek to parameterize
[e.g. 22,30,32,37,38]. In the present study, we are going to explicitly model the eddy
dynamics with an independent model in order to compute this term. We obtain the eddy
equation by taking the difference between Eq. (9) and Eq. (10)

∂q′

∂t
+ J(ψ′, q′) + J(ψ, q′) + J(ψ′, q) + βv′ = A4∇

4q′ + rb∇
2ψ′ + J(ψ′, q′) . (11)

Note that there is no explicit wind forcing in this equation: the forcing is present115

implicitly in the background time-mean flow. Note also that the term J(ψ′, q′) also116

appears in the eddy equation. This is somewhat cumbersome because to simulate the117

eddy model requires an a priori knowledge of the eddy rectification terms as a forcing118

which renders the eddy model meaningless. Although it may seem overkill here, it will119

become painful around section 3.2 to keep track of the eddy rectification terms, which120

appear upon both sides of Eq. (11) upon taking the time mean, so we will denote the121

rectification term on the right-hand side as R′ to distinguish its role as a forcing term. In122

the remainder of the study, the expression J(ψ′, q′) will be reserved for the rectification123

term diagnosed from the full model (Eq. 5) or the left-hand side of Eq. (11). We are going124

to propose a strategy to run this deterministic model of the eddy dynamics (Eq. 11):125

to perform a scale decomposition of the PV equation and assume that the eddy field126

corresponds to the small-scale flow (section 4).127

2.3. Energy diagnostics128

We analyze our simulation with energy diagnostics. In quasi geostrophy, the total
energy is the sum of potential energy

PE =
1

2

b2

N2
, (12)

and kinetic energy

KE =
1

2
(u2 + v2) . (13)

and since potential and kinetic energies are quadratic quantities, we write their
time average as

PE =
1

2

b
2

N2
+

1

2

b′2

N2

def
= PE + PE′ (14)

KE =
1

2
(u2 + v2) +

1

2
(u′2 + v′2) def

= KE + KE′ , (15)
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with PE and KE the potential and kinetic energy of the time mean flow and PE′ and KE′
129

the mean potential and kinetic energy of the eddy flow.130

2.4. Notation131

In the remainder of this paper, we adopt the following convention: we write with a132

prime (e.g. ψ′), the diagnosed eddy field from the full model (Eq. 5), and with a dagger133

(e.g. ψ†) the prognostic eddy dynamics that result from the explicit time integration of134

the eddy model (Eq. 11) with the mean flow (ψ, q) as the input. Our aim is to build an135

eddy model for which PE† and KE† the potential and kinetic energies in the eddy flow136

mimic PE′ and KE′, the diagnosed eddy energies.137

2.5. Mean flow and eddy dynamics in the full model138

We first analyze the 80 years integration of the full model (Eq. 5). The stream func-139

tion exhibits a standard double gyre pattern with an strong eddying jet that separate the140

cyclonic and anticylconic gyres. Such pattern has already been observed and described141

in numerous studies; we wish however to revisit it from an energetic perspective. We142

plot in Fig. 1a a snapshot of the eddy kinetic energy in the upper layer. We find at least143

two distinct dynamical regimes: (i) the eddying jet with KE′ on the order of 0.5 m2 s−2
144

(corresponding to a velocity of |u′| ∼ 1 m s−1). The intensity of the jet decreases down-145

stream (eastward). (ii) a region with moderate eddies in the middle of each gyre; the146

magnitude of these eddies increases from East to West but their overall intensity is147

order KE′ ∼ 0.04 m2 s−2 (|u′| ∼ 0.2 m s−1). There are other dynamical regions such as148

quiescent zone with no eddies at all at the same latitude as the jet but near the eastern149

boundary, and the regions near the northern and southern boundaries.150

We plot with the same colorbar the eddy potential energy for the same snapshot151

(Fig. 1b). We observe that the magnitude of PE′ is similar to the magnitude of KE′
152

consistent with the QG scaling. We plot in Figs. 1c and 1d the mean eddy kinetic energy153

and mean eddy potential energy. Both the eddy potential energy and eddy kinetic energy154

are maximum in the jet area and both fields exhibit very similar pattern. The maximum155

value of eddy energy in the jet area reflects the meandering jet. These meanders are156

strongest near the western boundary and decrease in amplitude as we go east.157

The energy stored in the mean flow exhibits a radically different pattern than the158

eddy energy (Figs. 1e and 1f). The QG model exhibit the standard result that most of the159

large-scale energy is stored in the form of potential energy and only a small fraction of160

large-scale energy is stored in the form of kinetic energy. Note that the colorbar in Fig. 1f161

is extended by a factor 20 compared to the other plots because there is approximately162

20 times more potential energy than kinetic energy in the large-scale flow. This result163

corresponds to the traditional view of the ocean circulation, although in our case both164

the large-scale and small-scale dynamics are handled by QG dynamics. In Fig. 1f, we165

see the bowl shape of the anticylconic gyre in the southern part of the domain (and166

respectively the dome shape of the cyclonic gyre in the northern part of the domain).167

Potential energy is maximum in the middle of the gyre where the buoyancy anomaly168

is maximum. The mean jet is much less energetic as shown in the kinetic energy panel169

(Fig. 1e). To summarize, we have PE ≫ PE′ ∼ KE′ > KE.170

2.6. Vorticity balance of the mean flow171

For sufficiently long integration, the first term in the mean flow (Eq. 10) will even-172

tually vanish. There is thus a balance between the remaining terms of the mean PV173

equation. We only focus here on the rectification term that we plot in Fig. 2. We plot in174

Fig. 2a the raw estimate of this term (J(ψ′, q′)) computed with 500 independent snap-175

shots that are 60 days apart, and in Fig. 2b the smoothed version where we average 16176

neighboring grid points and linearly interpolate back on the fine grid for visualization177

purposes. From the latter plot, a large-scale component of this field that emerges in178

the return flow area. The region of the separated jet exhibits a stronger signal whereas179
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Figure 1. Snapshots and time-mean of potential energy and kinetic energy diagnosed from the

full model. Units: m2 s−2
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the region near the boundaries also exhibit intense magnitude signal. The pattern180

in Fig. 2a clearly has not converged because when we sum all the terms in Eq. (10),181

viz. J(ψ, q) + J(ψ′, q′) + βv − A4∇
4q − rb∇

2ψ − F, we get a field with similar bittiness182

to Fig. 2a, whereas we should actually get zero everywhere if the model were run long183

enough (
∂q
∂t ∼ 0; not shown). With the purpose of formulating a deterministic model184

for the eddy rectification term, some spatial smoothing is appropriate in order to filter185

out stochastic variability. If we admit that the smoothed J(ψ′, q′) is the deterministic186

part and that J(ψ′, q′) should converge towards its smoothed version, we can estimate187

the number of samples we need for convergence with a maximum of 10% error. Indeed188

the standard error of the mean is given by σ/
√

n where σ is the standard deviation of189

the time series at a given point and n the number of samples. If we want the errorbar190

to be 10% of the value of the mean m, the 95% confidence interval on the mean for191

that tolerance is given by 0.1m = 2σ/
√

n such that n = 400σ2/m2. We get an estimate192

of n = 105 samples to get this 10% precision for the mean. This corresponds to 104
193

years of simulation which is clearly out of reach in the current setup. We have tested194

this using the 2740 years of output from Kondrashov and Berloff [39] and found the195

convergence to be very slow (personal communication with Pavel Berloff). The fact that196

such a long integration is required for accurate statistics is problematic from an eddy197

closure perspective, namely the eddy statistics of today would depend on the dynamical198

state of the system thousands of years into the future.199

(a) Raw J(ψ′, q′)
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(b) Smoothed J(ψ′, q′)

0 1 2 3 4 5
×106

0

1

2

3

4

5
×106 J(ψ′, q′)

−1.0

−0.5

0.0

0.5

1.0

×10−11

Figure 2. J(ψ′, q′) and J(ψ′, q′) smoothed by averaging 16 neighboring grid points and linearly

interpolated back on the fine grid.

3. Analysis of the small-scale model200

We now use the mean field of the run that we just described to force the perturbation201

equation (Eq. 11). As a preliminary sanity check, we perform a linear stability analysis of202

that background flow and then do the non-linear integration of the perturbation model.203

3.1. Linear stability analysis204

We first perform a linear stability analysis of the mean state that we described in the
previous section. Methods to perform such analysis have been reported elsewhere [e.g.
8,13,40,41] and we only recall the main steps here. From the perturbation equation (Eq.
11), we drop the non-linear advective term as well as the rectification term and replace
ψ′ by one Fourier component

ψ′ = ψ̂′(z) exp[i(kx + ly − ωt)] + cc , (16)
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where cc stands for complex conjugate. For each Fourier component, we get an equation

with four unknown: ψ̂′(z), k, l, and ω, respectively the vertical structure of the Fourier
mode, the zonal, meridional, and temporal wave number. We span the (k, l) space in

order to find ψ̂′(z) and ω, which are the eigenvector and the eigenvalue of the equation.
If the imaginary part of ω is negative, the corresponding mode is exponentially decaying
and the solution is stable but if the imaginary part of ω is positive, the solution is
unstable. In the (k, l) space, the most unstable mode corresponds to the solution for
which Im(ω) is maximum. We call

T =
1

max(k,l) (Im(ω))
(17)

the inverse growth rate of the most unstable mode, km and lm, the zonal and meridional
wavelength of that most unstable mode, and

λ =
2π√

k2
m + l2

m

, (18)

the length scale of that mode. We plot T and λ in Fig. 3. One first important information205

from these plots is that the large-scale solution is unstable almost everywhere in the206

domain (except in the small white area at y = 2500 km near the eastern boundary). This207

was not obvious a priori because we computed the most unstable mode with the same208

viscosity as the full model and viscosity is known to damp instabilities. We divide the209

time scale pattern into three distinct dynamical regimes: the western boundary and210

the intergyre jet which have the fastest growing mode (order 20 days), the return flow211

near the northern and southern boundary for which the instability time scale is order212

60 days, and the rest of the domain for which the instability time scale is greater than213

115 days (the colorbar saturates beyond this value). We do not consider the instability214

with long time scale because such long time scale is much bigger than the eddy time215

scale and become irrelevant for the eddy dynamics (local instability analysis is probably216

not relevant in areas with such long time scales). The instability length scale is noisier217

but overall in the area where T < 115 days, the length scale of the instability is 10 times218

the deformation radius [consistent with the canonical 2-layer baroclinic instability; 42].219
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Figure 3. Time scale and length scale of the most unstable mode (compute every 4 grid point of

the computational domain)

When we compare these plot with Fig. 1c, there does not seem to be an obvious link220

between the local instability parameter and the observed eddy kinetic energy. The path221

of the jet has a wider signature in the KE′ map. The demarcation between the return222

flow and the rest of the gyre that we observe in Fig. 3a also does not show up in the223
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kinetic energy map. This confirms the conclusion of Grooms et al. [29] who showed that224

the eddies observed at one given location are mostly not locally generated but emanate225

from areas afar [see also 28]. We will return to these instability maps in section 4 on226

spatial filtering.227

3.2. Non linear run of the eddy model with no forcing228

Perhaps more interesting is the analysis of the non-linear simulation of the eddy229

model (Eq. 11) without the eddy rectification term on the right-hand side (viz. R† = 0).230

We recall that this equation has mostly been used to simulate local turbulence in doubly-231

periodic patches of the ocean with uniform shear [e.g. 28,29], whereas we now apply and232

solve this equation prognostically in the entire domain with a large-scale flow that varies233

in space. In other words, we will be examining the dagger variables (e.g. ψ†) where the234

primes in Eq. (11) are replaced by daggers.235

For white noise initial conditions, we can decompose the run in several stages: we236

first observe a linear growth of the most unstable modes mainly in the jet and near the237

northern and southern boundary. The duration of this phase is on the same order of238

magnitude as the inverse linear growth rate, in agreement with the analysis done in the239

previous paragraph. We then enter another transient phase during which a large-scale240

pattern emerges in the PV field, and after this transient phase, we reach a statistical241

steady state. To illustrate this last regime, we plot in Fig. 4 the mean potential and242

kinetic energy as well as snapshot of these two fields. There are several important things243

to notice: first we note that PE† (Fig. 4d) is very different from PE′ (Fig. 1d): PE† is244

maximum along the western boundary and does not really reflect the eddies that were245

present in the jet in the reference run. In fact when we look at a snapshot of potential246

energy (Fig. 4b), we see that this potential energy field is the sum of a large-scale and247

small-scale flow.248

Everywhere in the domain, the mean kinetic energy in this perturbation run (Fig.249

4c) is weaker than the mean eddy kinetic energy diagnosed from the reference run (Fig.250

1c), viz. KE† < KE′. The lower energy levels in eddy kinetic and potential energy is251

also apparent in the isotropic wavenumber spectra (Fig. 5; compare the black solid and252

dotted lines). We compute the eddy kinetic and potential energy spectra ( |û|
2

2 and |b̂|2
2N2253

respectively where ˆ(·) is the Fourier transformed amplitude) over the whole domain of254

the first layer using the xrft Python package [43] and taper the fields with the Hann255

window as is commonly done when computing the spectra [13,14,44]. The periodogram256

is computed every 23 days over the last 580 days of output and then averaged. In the257

perturbation run, we still see a local kinetic energy (KE†) maximum in the middle of the258

domain where the mean jet is and we also observe deformation radius size eddies in259

the rest of the gyre (Fig. 4a). Such difference between PE† and KE† where we see larger260

scale patterns in the former indicates that in this perturbation run, energy is stored in the261

large-scale buoyancy field rather than in small-scale eddies. We interpret these energy262

maps in the light of the inverse cascade in quasi geostrophy that fluxes energy toward263

larger scales [8,45]. Because of this inverse cascade, we see the apparition of a large-scale264

pattern superimposed on top of the prescribed large-scale circulation (i.e. ψ and q in Eq.265

11). The sum of these two large-scale solutions as we see in Fig. 4d corresponds to a less266

baroclinically unstable state and hence weaker eddies (see Fig. 4a).267

We also plot in Fig. 6a the eddy stream function for the same snapshot as the one268

plotted in Fig. 1, and in Fig. 6b the eddy stream function of the eddy model for the269

same snapshot as in Fig. 4. This plot confirms the differences already highlighted of270

a weaker baroclinicity in the perturbation run and also shows that large-scale Rossby271

waves present in the eddy field diagnosed from the full model (ψ′; Fig. 6a) are not272

present in the eddy model (ψ†; Fig. 6b). This implies that the Rossby waves are excited273

by the winds (F in Eq. 9), which project themselves onto the temporally varying fields of274

ψ′, whereas the eddy model (ψ†) has no input to excite such waves.275
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(c) KE†
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(d) PE†
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Figure 4. Snapshots and time-mean of potential energy and kinetic energy diagnosed from the

eddy model with no forcing (R† = 0). Units: m2 s−2

(a) (b)

Figure 5. The isotropic wavenumber spectra taken over the whole domain for kinetic and potential

energy in the first layer. The energies diagnosed from the full model is shown in solid black, from

the eddy model with no forcing in dotted black (R† = 0), and from the eddy model with the

varying spatial filter approach in dashed red lines respectively.
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The interesting point is that in this perturbation run, the large-scale pattern that276

emerges corresponds to a the cyclonic gyre (in blue) is in the southern part of the domain277

and the anticyclonic gyre (red) is in the northern part of the domain (Fig. 6b), which is278

precisely the opposite of the reference run. We interpret this large-scale pattern as the279

result of the rectification of the large-scale flow by small-scale eddies: the eddies tend280

to create a flow that opposes the large-scale forcing. As already noted with the energy281

diagnostics, the intensity of the eddy activity increases near the central latitude and near282

the western boundary. Near the central latitude, the eddies tend to form an eastward jet,283

which is also the opposite of what is observed in the reference run (a western boundary284

current that penetrates into the domain as a westward flowing jet). Although a similar285

mechanism of the eddies counteracting the mean flow is well known in the Southern286

Ocean where the overturning circulation by eddies counter balance the mean Ekman287

steepening of isopycnals [e.g. 46], we conclude that the solution produced by the eddy288

model (ψ†) is not a fair reproduction of the eddy dynamics in the full model (ψ′; Fig.289

6). We show in section 4, however, that we have some success in recovering the eddy290

dynamics from the dagger fields by applying a spatial filter.291
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(b) ψ†
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Figure 6. The eddy stream function ψ′ diagnosed from the full model and eddy stream function

ψ† simulated from the eddy model with no forcing (R† = 0).

We now focus on the rectification term J(ψ†, q†) (the mean of second term on the292

left-hand side of Eq. 11) that emerges in this simulation from the white-noise initial293

condition and plot this field in Fig. 7. The field is smoothed in a similar manner to294

as described in section 2.6 where we average 16 neighboring grid points and linearly295

interpolate back on the fine grid for visualization purposes. The smoothed J(ψ†, q†)296

shares many common features with the diagnosed rectification term (J(ψ′, q′); Fig. 2):297

both fields are positive (negative) in the subpolar (subtropical) gyre. The magnitude of298

this term is intensified in the region of the separated jet with roughly the same alternance299

of positive and negative pattern. And last the boundary dynamics is also of the same300

sign. The main difference is that the simulated field J(ψ†, q†) is weaker in magnitude301

than the diagnosed field (Fig. 2). The agreement in spatial patterns between these two302

fields is pleasing given the discrepancies of the dynamics in the two simulations (cf.303

Figs. 1, 4, 6).304

This experiment suggests that eddy dynamics feedback onto the large-scale dynam-305

ics via the inverse cascade. In the perturbation model, this feedback on the large-scale306

potential energy concurs to flatten isopycnal surfaces and effectively shuts off the gener-307

ation of eddies via baroclinic instability. We conclude that although the term J(ψ′, q′) has308

no impact on the domain-integrated energetics of the eddy flow, it is actually very impor-309

tant to counteract the inverse cascade and prevent the formation of spurious large-scale310

mode in the eddy flow. Even though the stream function itself we get from the eddy311
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Figure 7. J(ψ†, q†) diagnosed from the eddy model without forcing (R† = 0), smoothed by

averaging 16 neighboring grid points and linearly interpolated back on the fine grid.

model is different from the diagnosed eddy stream function from the full model, we get312

at this point a viable candidate for the rectification of the large-scale flow by the eddies313

(J(ψ†, q†)). In the remainder of this analysis, we propose two strategies to reintroduce314

this term as a forcing in the eddy equation and examine if we can get a better estimate of315

the eddy field and the rectification term.316

4. Spatial filtering317

As we we have just described, the solution of the full model exhibits a double318

gyre pattern that is anticyclonic in the southern part of the domain and cyclonic in the319

northern part of the domain. Superimposed to this large-scale pattern, we observe an320

active turbulent activity. Although there is no clear spectral gap between the large-scale321

circulation and the mesoscale circulation, Pedlosky [47], Grooms et al. [48] and others322

have proposed to decompose the flow into a large-scale component and a small-scale323

component. We adopt this strategy and propose to approximate the eddy flow as small324

scale only. We thus replace the term J(ψ′, q′) in Eq. (11) by a spatial filter F whose effect325

is to damp any large-scale pattern that would emerge from the non-linear interactions in326

the eddy flow.327

4.1. Scale decomposition328

In order to prevent the formation of a large-scale mode in the eddy equation, we use329

a spatial filtering approach to mimic the rectification term in Eq. (11). The idea behind330

this filtering strategy is that even if J(ψ′, q′) is very slow to converge, we can ensure that331

the eddy solution remains on the deformation scale. We can already anticipate that this332

strategy will not work well in the region of the separated jet where there is no clear scale333

separation between the eddy flow and the mean flow [cf. 49]. However, as we shall see,334

this strategy works well in the rest of the domain.335

We first introduce the scale decomposition for a field ψ as

ψ = ψ̃ + ψ∗ , (19)

where ψ̃ and ψ∗ are respectively the large-scale and small-scale components of the field336

ψ. We do this scale separation by applying a low-pass filter with a discrete wavelet337

transform (numerical details of the implementation are provided in the Appendix). We338

illustrate this decomposition in Fig. 8 where we plot the same stream function as the one339

used in Fig. 4 along with its large-scale and small-scale component. In Fig. 8, we use a340

cutoff length scale of λc = 500 km. In the large-scale pattern, we recognize a cyclonic341

and anticyclonic gyre, and a weak jet in the middle that we described earlier.342
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(b) ψ†∗
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Figure 8. Low pass and high pass filtered eddy stream function diagnosed from the eddy model

with no forcing (R† = 0). The eddy stream function spatially decomposed is the one in Fig. 6b.

4.2. Filtering of the large-scale mode in the small scale equation343

Based on Fig. 8b we hypothesize that the eddy rectification term can be approxi-
mated by the small scale flow. Namely, we use the scale decomposition to periodically
remove the large scale component in Eq. (11) as we see in Fig. 8a. Formally we apply the
following operator detailed in the Appendix

F (ψ) = ψ − ψ̃ (20)

to the stream function ψ† in Eq. (11) every three days (viz. F (ψ†) = ψ†∗). We choose this
three-day period because it is comparable to the eddy time scale and is short enough
compared to the time needed to build the large-scale mode observed in Fig. 8a which
is on the order of years. In order to facilitate the following discussion, we re-write the
eddy model (Eq. 11) using the prognostic dagger variables

∂q†

∂t
+ J(ψ†, q†) + J(ψ, q†) + J(ψ†, q) + βv† = A4∇

4q† + rb∇
2ψ† +R†, (21)

where we represent the eddy rectification forcing with R† = T −1L[F (ψ†)]. L is the
linear operator in Eq. (1), and T is the three-day time scale. The time scale separation
is similar to ocean models where the barotropic and baroclinic modes are solved with
different time stepping [cf. 50]. The time scale separation can be rephrased as we are
enforcing

∂q̃†

∂t
= 0 (22)

with the initial condition of q̃†(t = 0) = 0 so that q̃† = 0andq† = q†∗ is satisfied for all344

time.345

For this first experiment, we choose the filter cutoff length as λc = 1000 km which346

corresponds to roughly 4 times the average instability length scale and is thus in between347

the eddy scale and the basin scale. We plot the energy diagnostic of this run in Fig. 9348

using the same layout as in Fig. 4. These energy diagnostics exhibit different features349

than the previous eddy run. The most striking feature is that there is more kinetic energy350

and less potential energy everywhere in the domain. Eddies are now more abundant351

in the basin: not only in the region of the separated jet but also in the return flow of352

both gyres. Also the jet at mid latitude now flows from west to east; this is in the same353

direction as the mean flow. As expected, the use of the filters removes the large-scale354

component of the flow such that the spurious large-scale pattern that where visible in355

Fig. 4b are no longer visible in Fig. 9b. Comparing Fig. 9 with Figs. 1 and 4, we see that356
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there is a clear improvement in extracting the eddy dynamics using the spatial filter357

with similar westward penetration of the separated jet into the basin. In the region of358

the separated jet, the the eddy flow (F (ψ†)) still underestimates the magnitude of eddy359

activity (ψ′).360
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(d) PE†
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Figure 9. Snapshots and time-mean potential energy and kinetic energy diagnosed from the eddy

model where R† is implemented with a spatially-uniform scale filter. Units: m2 s−2

We performed several runs with different values of λc and find that when λc is361

greater than 1000 km we recover the solution with no filter. For smaller values of λc we362

observe a nearly uniform eddy field for which the size of the eddies is of the order of λc363

(not shown).364

4.3. Variable length scale filter365

We now allow the length scale of the spatial filter to vary in space. It is clear from the366

previous simulation that the energy level in the eddy field (|∇F (ψ†)|2) is still smaller367

than in the original simulation. In fact, we see in Fig. 1a that the patch of high eddy368

kinetic energy has horizontal dimensions on the order of 1000 km, which is precisely369

the cutoff length scale of the filter. In the region of the separated jet, there is thus no370

clear scale separation between the eddy flow and the mean flow. To a certain extent,371

this corroborates what we observed in the instability analysis. In Fig. 3, we see that in372

the region of the separated jet, the most unstable mode has λ = 300 km compared to373

λ = 230 km in the return flow. We use that information to build a filter with non uniform374

length scale in the form of λc = αλ. If we set α = 4.5, we get λc ∼ O(1000 km) in the375

area of the return flow, and we have just found above that this value gives correct results376

in most of the gyre. With the combination of α = 4.5 and λ = 300 km, we would get377

λc ≃ 1350 km. However, using the raw value of λ as shown in Fig. 3b with α = 4.5 is378
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not necessarily a good idea because this field is noisy and also because some instabilities379

are not relevant to the dynamics. This occurs in places where the instability time scale is380

greater than the advection time scale (which is on the order of 20 days in most of the381

gyre, not shown). To get rid of the non relevant unstable modes, we adjust the value of382

λ to 225 km everywhere where τ > 115 days. We then smooth that field to get rid of383

the grid scale variations. Lastly, for each point of the domain, we create a halo of size384

αλ over which we propagate the value of λ. Several halos overlap at one point and so385

for each point we retain the maximum value of all halos that are present at that point.386

This is done to let enough space for all instabilities to develop around the formation site.387

We smooth the final map to damp the halo pattern that may have persisted. We plot388

the final map of λc in Fig. 10. As desired, λc has values on the order of 1000 km with a389

maximum of 1350 km in the region of the separated jet and a minimum of 850 km near390

the north-east and south-east corners.391

λc (m)

0 1 2 3 4 5

x (m) ×106

0

1

2

3

4

5
y
(m

)

×106

0.9

1.0

1.1

1.2

1.3

×106

Figure 10. The cut-off length scale (λc) based on the instability length scale.

We plot the energy diagnostics of the variable length scale filter in Fig. 11. Com-392

paring Fig. 11c with 9c, and 11d with 9d, we see that the varying filter size succeeds393

in increasing the eddy amplitude overall and in particular around the separated jet.394

The energy levels come closer to the eddy field diagnosed from the full model (Figs.395

1c and 1d), which is also apparent in the isotropic wavenumber spectra (Fig. 5). We see396

clear increase in energy from the run without forcing and that the varying spatial filter397

approach captures energy levels close to the diagnosed eddy kinetic and potential energy398

except for the smallest wavenumbers (largest spatial scales; compare the black solid and399

red dashed lines in Fig. 5). This is expected as we remove the large-scale component400

with the spatial filter F .401

If we average Eq. (21), the terms linear in dagger vanish and one should get a
balance between

J(ψ†, q†) ≃ R† (23)

Although the balance in Eq. (23) requires there to be a clear scale separation between the402

eddy and mean flow, we expect this to approximately hold, viz. ψ† ∼ 0 for a converged403

simulation. Equation (23) is complimentary to a recent work by Porta Mana and Zanna404

[31] and Grooms and Zanna [51] where they find a local relation J(ψ′s, q′s)
s ≃ ∇

2 Dqs

Dt405

and (·)s
is their spatially filtered field and (·)′s (= (·)− (·)s

) the residual from their406

filtered field. One may question why go through the hassle of solving Eq. (21) when you407

can already have an estimate for the eddy rectification term (Eq. 23). We emphasize that408

by explicitly solving for Eq. (21) and diagnosing the eddy rectification term from it, the409

rectification term incorporates non-local effects.410

We plot in Fig. 12, J(ψ†, q†) and R†. (The difference between Fig. 12a and 7 is in411

Eq. (21) prognostically solved with and without the eddy rectification forcing on the412

right-hand side.) We first see that J(ψ†, q†) captures the same patterns as the diagnosed413
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Figure 11. Potential energy and kinetic energy diagnosed from the eddy model where R† is

implemented with the variable length scale filter. Units: m2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2021                   doi:10.20944/preprints202105.0548.v1

https://doi.org/10.20944/preprints202105.0548.v1


Version May 21, 2021 submitted to Fluids 17 of 22

field from the full model J(ψ′, q′). We see improvements compared to the run without414

the rectification forcing (R† = 0; Fig. 13); the joint histogram of J(ψ′, q′) and J(ψ†, q†)415

aligns more around the one-to-one line with the varying spatial filter approach. This is416

an important result because it means that one can use this model (Eq. 21) to reproduce417

the eddy statistics. If we now compare J(ψ†, q†) and R†, we see that R† captures the418

large scale pattern in the return flow of the gyre but misses the small scale variability in419

the separated jet and right at the western boundary. We could have anticipated this result420

because of the nature of our filter which leaves small scale dynamics unchanged and421

slow convergence of the eddy field as we discussed in section 2.6. In the separated jet,422

we face here the limits of our approximation of the time average by a low-pass filter. We423

also observe that reducing the length scale of the filter is problematic because it degrades424

the quality of the eddy solution. Nevertheless, even with this bias, the rectification term425

(J(ψ†, q†)) compares well with the diagnosed rectification (J(ψ′, q′); Figs. 2 and 12).426

(a) J(ψ†, q†) (varying spatial filter)
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Figure 12. J(ψ†, q†) diagnosed from the eddy model with the varying spatial filter approach,

smoothed by averaging 16 neighboring grid points and linearly interpolated back on the fine grid,

and R†.

5. Conclusions and discussion427

In this study, we have examined the eddy rectification term, which encapsulates428

the net eddy feedback onto the mean flow, from a quasi-geostrophic (QG) double gyre429

simulation. In doing so, we decompose the QG potential vorticity (PV) into its mean430

flow, defined by a time mean, and eddies as the fluctuations about the mean. The eddy431

rectification term is then diagnosed from the full model (Eq. 10) and eddy model (Eq.432

11). We have shown that the unforced eddy model (R† = 0) gives a rough estimate433

for the rectification term diagnosed from the full model, viz. J(ψ†, q†) ∼ J(ψ′, q′)434

(Figs. 2b and 7). However, the fact that a large-scale component of the eddy stream435

function itself (ψ̃†) emerges opposing the mean flow without the eddy rectification436

forcing, which is not apparent in the eddy stream function diagnosed from the full437

model (ψ′), perhaps warrants some attention (Figs. 6 and 8). Previous studies have438

solved the eddy model without the forcing [e.g. 28,29]. This has partially been due to439

the fact that the eddy rectification term is difficult to accurately diagnose. We have440

shown that approximating the eddy rectification forcing by the spatially-filtered eddy441

stream function (R† ≃ T −1L[F (ψ†)]) improves the eddy kinetic and potential energy442

and J(ψ†, q†) (Figs. 5, 11–13).443

In the context of parametrizing the eddy feedback onto the mean flow, we have444

shown a spatial filtering approach. Once the eddy rectification terms, which are en-445

forced to be dynamically consistent with the mean flow, are diagnosed from the eddy446
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(a) (b)

(c) (d)

First layer

Second layer

Figure 13. Joint histogram of the spatially smoothed J(ψ′, q′) and J(ψ†, q†) for the first and second

layer plotted against a logarithmic scaling (the masked out regions have zero values). The left

column shows the run with no forcing (R† = 0) and right the run with the varying spatial filter

approach. The one-to-one line is shown in grey dashed lines. The histograms were computed

using the xhistogram Python package [52].
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model (J(ψ†, q†); Eq. 21), we can then plug them back into the mean flow model (Eq.447

10) as a forcing term on the right-hand side. This is similar to other energy backscatter448

parametrization studies where they solve the (unresolved) eddy energy equation and449

take that as an input for the resolved energy equation [e.g. 23,25,26]. Here, we have450

formulated a deterministic closure based on PV instead of energy; PV is a more funda-451

mental variable in quasi geostrophy as momentum is invertible from it. Our approach of452

parametrizing the eddy rectification term via a spatially-filtered eddy stream function453

(F (ψ†)) is complementary to a recent work by Mana and Zanna [38] and Grooms and454

Zanna [51] where they find a closure for the rectification term in relation to the low-pass455

filtered PV. One major difference here is that while their closure was local, we have456

accounted for non-local effects by solving the eddy model prognostically. We are also457

currently looking into stochastic closures.458

Other than the spatial filtering approach, it is theoretically possible to obtain the459

rectification term through iteratively solving for Eq. (21) as the Fixed-Point Theorem460

would predict. As we discussed in section 3.2, the eddy model without any forcing461

term (R† = 0) produces a good first guess of the rectification term, namely the mean462

of J(ψ†, q†) on the left-hand side of Eq. (21) (Fig. 7). The idea is then to re-run the eddy463

model with this first guess as the forcing term (R† = J(ψ†, q†)) and repeat this iterative464

procedure until convergence is reached. We already know that this convergence is465

extremely slow (order of million of eddy time scale; section 2.6) so this process can not be466

practically done with the raw estimate of the rectification term but may be possible for467

its spatially smoothed version. The proof for mathematical convergence of this iterative468

process is beyond the scope of this study and will be left for interested mathematicians.469

Another notable point is that because we solve for the mean and eddy model470

prognostically, our closure applies for the total PV (q = q + q†, and stream function471

ψ = L−1q) at each time step as opposed to solely the mean PV. Commonly, the ap-472

proach for mesoscale closures has been to focus on the mean equations including recent473

developments in energy backscattering parametrizations [e.g. 6,22–27]. We argue that474

it is actually more beneficial to develop a closure which couples the mean and eddy475

model, as we have attempted here, to capture the total variability otherwise resolved476

under sufficient model resolution. For realistic simulations, in addition to the mean state,477

we are often interested in fluctuations about the mean and extreme events [e.g. 53–55];478

having a closure for the total PV accounts for both in a physically consistent manner.479

Such approach is sometimes referred to as super parametrizations and have been com-480

monly implemented for atmospheric convection [e.g. 56,57]. Lastly, one may ask how481

our results can be extended to primitive equation models. In primitive equations, the482

eddy Ertel PV flux encapsulates the eddy feedback onto the mean flow [58]. In other483

words, a closure based on Ertel PV may allow one to capture the net eddy-mean flow484

interaction and variability in the total Ertel PV. We leave this for future work.485
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Appendix A499

Appendix A.1 Numerical implementation of the spatial filter500

The discrete wavelet transform bears some resemblance with the multigrid solver.501

We define a set of grids from the finest model resolution 2n × 2n to the coarsest resolution502

20 × 20 (one grid point). In our model, there are n + 1 = 10 sets of grids. The two key503

operations in the filtering procedure are504

• The restriction R for which we coarsen a field by averaging 4 neighboring points505

• The prolongation P for wich we refine a field by linear interpolation of neighboring506

points.507

Let suppose a field ψl is defined on a grid 2l × 2l . We say it is defined of a grid of508

level l for which the grid step is ∆l = L/2l . Then we have509

ψl−1 = R(ψl) , (A1)

We define the wavelet coefficients at level l as510

ψ̌l = ψl −P(ψl−1) . (A2)

Hence from the wavelet coefficients, one can reconstruct the field at the finest grid with511

an iterative procedure. The wavelet coefficients at level l hold the information about the512

structure of the field at length scale of the grid size ∆l . To high pass filter a field with a513

cutoff length scale λc = ∆k, we simply need to set to zero the wavelet coefficients ψ̌l for514

l < k. In case λc varies smoothly in space we can zero the wavelet coefficients locally515

only.516
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