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Abstract
Existing concurrency platforms for dynamic multithreading do not
provide repeatable parallel random-number generators. This pa-
per proposes that a mechanism calledpedigreesbe built into the
runtime system to enable efficient deterministic parallel random-
number generation. Experiments with the open-source MIT Cilk
runtime system show that the overhead for maintaining pedigrees
is negligible. Specifically, on a suite of 10 benchmarks, the relative
overhead of Cilk with pedigrees to the original Cilk has a geometric
mean of less than1%.

We persuaded Intel to modify its commercial C/C++ compiler,
which provides the Cilk Plus concurrency platform, to include pedi-
grees, and we built a library implementation of a deterministic par-
allel random-number generator called DOTM IX that compresses
the pedigree and then “RC6-mixes” the result. The statistical qual-
ity of DOTM IX is comparable to that of the popular Mersenne
twister, but somewhat slower than a nondeterministic parallel ver-
sion of this efficient and high-quality serial random-number gener-
ator. The cost of calling DOTM IX depends on the “spawn depth”
of the invocation. For a naive Fibonacci calculation withn = 40
that calls DOTM IX in every node of the computation, this “price of
determinism” is about a factor of2.3 in running time over the non-
deterministic Mersenne twister, but for more realistic applications
with less intense use of random numbers — such as a maximal-
independent-set algorithm, a practical samplesort program, and a
Monte Carlo discrete-hedging application from QuantLib — the
observed “price” was at most21%, and sometimes much less.
Moreover, even if overheads were several times greater, applica-
tions using DOTM IX should be amply fast for debugging purposes,
which is a major reason for desiring repeatability.

Categories and Subject DescriptorsG.3 [Mathematics of Com-
puting]: Random number generation; D.1.3 [Software]: Program-
ming Techniques—Concurrent programming

General Terms Algorithms, Performance, Theory

Keywords Cilk, determinism, dynamic multithreading, nondeter-
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1. Introduction
Dynamic multithreading,1 or dthreading, which integrates a run-
time scheduler into a concurrency platform, provides a thread-
ing model which allows developers to write many deterministic
programs without resorting to nondeterministic means. Dthread-
ing concurrency platforms — including MIT Cilk [20], Cilk++
[34], Cilk Plus [28], Fortress [1], Habenero [2, 12], Hood [6], Java
Fork/Join Framework [30], OpenMP 3.0 [40], Task Parallel Library
(TPL) [33], Threading Building Blocks (TBB) [42], and X10 [13]
— offer a processor-obliviousmodel of computation, where lin-
guistic extensions to the serial base language expose the logical
parallelism within an application without reference to the number
of processors on which the application runs. The platform’s run-
time system schedules and executes the computation on whatever
set ofworker threads is available at runtime, typically employing a
“work-stealing” scheduler [5, 10, 23], where procedure frames are
migrated from worker to worker. Although a dthreading concur-
rency platform is itself nondeterministic in the way that it schedules
a computation, it encapsulates the nondeterminism, providing the
developer with a programming abstraction in which deterministic
applications can be programmed without concern for the nondeter-
minism of the underlying scheduler.

A major reason parallel programming is hard is because nonde-
terminism precludes the repeatability programmers rely on to de-
bug their codes. For example, the popularpthreadingmodel — as
exemplified by POSIX threads [27], Windows API threads [24],
and the threading model of the Java programming language [22]
— is well known to produce programs replete with nondetermin-
ism and which are thus difficult to debug. Lee [31] cites the non-
determinism of multithreaded programs as a key reason that pro-
gramming large-scale parallel applications remains error prone and
difficult. Bocchinoet al. [7] argue persuasively that multithreaded
programs should be deterministic by default. The growing popular-
ity of dthreading concurrency platforms seems due in part to their
ability to encapsulate nondeterminism and provide a more deter-
ministic environment for parallel programming and debugging.

Nevertheless, dthreading concurrency platforms fail to encap-
sulate an important source of nondeterminism for applications that
employ (pseudo)random number generators (RNG’s). RNG’s are
useful for randomized algorithms [37], which provide efficient so-
lutions to a host of combinatorial problems, and are essential for
Monte Carlo simulations, which consume a large fraction of com-
puting cycles [35] for applications such as option pricing, molecu-
lar modeling, quantitative risk analysis, and computer games.

Unfortunately, typical implementations of RNG’s are either
nondeterministic or exhibit high overheads when used in dthreaded
code. To understand why, we first review conventional serial RNG’s
and consider how they are traditionally adapted for use in parallel

1 Sometimes calledtask parallelism.



programs. Then we examine the ramifications of this adaptation on
dthreaded programs.

A serial RNG operates as a stream. The RNG begins in some
initial stateS0. The ith request for a random number updates the
stateSi−1 to a new stateSi, and then it returns some function of
Si as theith random number. One can construct a parallel RNG
using a serial RNG, but at the cost of introducing nondeterminism.
One way that a serial RNG can be used directly in a dthreaded
application is as a global RNG where the stream’s update function
is protected by a lock. This strategy introduces nondeterminism,
however, as well as contention on the lock that can adversely affect
performance.

A more practical alternative that avoids lock contention is to
useworker-local RNG’s, i.e., construct a parallel RNG by having
each worker thread maintain its own serial RNG for generating ran-
dom numbers. Unfortunately, this solution fails to eliminate nonde-
terminism because the underlying nondeterministic scheduler may
execute a given call to the RNG on different workers during differ-
ent runs of the program, even if the sequence of random numbers
produced by each worker is deterministic.

Deterministic parallel random-number generators (DPRNG’s)
exist for pthreading platforms, but they are ineffective for dthread-
ing platforms. For example, SPRNG [35] is an excellent DPRNG
which creates independent RNG’s via a parameterization process.
For a few pthreads that are spawned at the start of a computation
and which operate independently, SPRNG can produce the needed
RNG for each pthread. For a dthreaded program, however, which
may contain millions ofstrands— serial sequences of executed
instructions containing no parallel control — each strand may need
its own RNG, and SPRNG cannot cope.

Consider, for example, a program that uses SPRNG to generate
a random number at each leaf of the computation of a parallel,
exponential-time, recursive Fibonacci calculationfib. Every time
fib spawns a recursive subcomputation, a new strand is created,
and the program calls SPRNG to produce a new serial RNG stream
from the existing serial RNG. Thefib program is deterministic,
since each strand receives the same sequence of random numbers
in every execution. In an implementation of this program, however,
we observed two significant problems:

• When computingfib(21), the program using SPRNG was
almost 50,000 times slower than a nondeterministic version that
maintains worker-local Mersenne twister [36] RNG’s from the
GNU Scientific Library [21].

• SPRNG’s default RNG only guarantees the independence of
219 streams, and computingfib(n) for n > 21 forfeits this
guarantee.

Of course, SPRNG was never intended for this kind of use case
where many streams are created with only a few random numbers
generated from each stream. This example does show, however,
the inadequacy of a naive solution to the problem of deterministic
parallel random-number generation for dthreading platforms.

Contributions

In this paper, we investigate the problem of deterministic parallel
random-number generation for dthreading platforms. In particular,
this paper makes the following contributions:
• A runtime mechanism, called “pedigrees,” for tracking the “lin-

eage” of each strand in a dthreaded program, which introduces
a negligible overhead across a suite of 10 MIT Cilk [20] bench-
mark applications.

• A general strategy for efficiently generating quality determinis-
tic parallel random numbers based on compressing the strand’s
pedigree and “mixing” the result.

• A high-quality DPRNG library for Intel Cilk Plus, called DOT-
M IX , which is based on compressing the pedigree via a dot-
product [17] and “RC6-mixing” [15, 43] the result, and whose
statistical quality appears to rival that of the popular Mersenne
twister [36].

Outline

The remainder of this paper is organized as follows. Section 2 de-
fines pedigrees and describes how they can be incorporated into
a dthreading platform. Section 3 presents the DOTM IX DPRNG,
showing how pedigrees can be leveraged to implement DPRNG’s.
Section 4 describes other pedigree-based DPRNG schemes, focus-
ing on one based on linear congruential generators [29]. Section 5
presents a programming interface for a DPRNG library. Section 6
presents performance results measuring the overhead of runtime
support for pedigrees in MIT Cilk, as well as the overheads of DOT-
M IX in Cilk Plus on synthetic and realistic applications. Section 7
describes related work, and Section 8 offers some concluding re-
marks.

2. Pedigrees
A pedigree scheme uniquely identifies each strand of a dthreaded
program in a scheduler-independent manner. This section intro-
duces “spawn pedigrees,” a simple pedigree scheme that can be
easily maintained by a dthreading runtime system. We describe the
changes that Intel implemented in their Cilk Plus concurrency plat-
form to implement spawn pedigrees. Their runtime support pro-
vides an application programming interface (API) that allows user
programmers to access the spawn pedigree of a strand, which can
be used to implement a pedigree-based DPRNG scheme. We finish
by describing an important optimization for parallel loops, called
“flattening.”

We shall focus on dialects of Cilk [20, 28, 34] to contextual-
ize our discussion, since we used Cilk platforms to implement the
spawn-pedigree scheme and study its empirical behavior. The run-
time support for pedigrees that we describe can be adapted to other
dthreading platforms, however, which we discuss in Section 8.

Background on dynamic multithreading

Let us first review the Cilk programming model, which provides
the basic dthreading abstraction offork-join parallelism in which
dthreads are spawned off as parallel subroutines. Cilk extends C
with two main keywords:spawn andsync.2 A program’s logical
parallelism is exposed using the keywordspawn. In a functionF ,
when a function invocationG is preceded by the keywordspawn,
the functionG is spawned, and the scheduler may continue to
execute thecontinuation of F — the statement after thespawn
of G — in parallel withG, without waiting forG to return. The
complement ofspawn is the keywordsync, which acts as a local
barrier and joins together the parallelism specified byspawn. The
Cilk runtime system ensures that statements aftersync are not
executed until all functions spawned before thesync statement
have completed and returned. Cilk’s linguistic constructs allow a
programmer to express the logical parallelism in a program in a
processor-oblivious fashion.

Dthreading platforms enable a wide range of applications to ex-
ecute deterministically by removing a major source of nondeter-
minism: load-balancing. Cilk’s nondeterministic scheduler, for ex-
ample, is implemented as a collection ofworker pthreads that co-
operate to load-balance the work of the computation. The Cilk run-

2 The Cilk++ [34] and Cilk Plus [28] platforms use the keywords
cilk_spawn andcilk_sync. They also include acilk_for keyword for
defining a parallelfor loop, which can be implemented in terms ofspawn

andsync.



time employsrandomized work-stealing[5, 20], where a worker
posts parallel work locally, rather than attempting to share it when
the parallel work is spawned, and idle workers becomethieveswho
look randomly among their peers forvictims with excess work.
When a thief finds a victim, itstealsa function frame from the
victim, and resumes execution of the frame by executing the contin-
uation after aspawn statement. Cilk-style dynamic multithreading
encapsulates the nondeterminacy of the scheduler, enabling appli-
cation codes without determinacy races3 [18] to produce determin-
istic results regardless of how they are scheduled.

Pedigree schemes

Pedigreesare deterministic labels for the executed instructions in
a dthreaded program execution that partition the instructions into
valid strands. For the remainder of this section, assume that the
dthreaded program in question would be deterministic if each RNG
call in the program always returned the same random number
on every execution. For such computations, a pedigree scheme
maintains two useful properties:
1. Schedule independence: For any instructionx, the value of

the pedigree forx, denotedJ(x), does not depend on how the
program is scheduled on multiple processors.

2. Strand uniqueness: All instructions with the same pedigree
form a strand.

Together, Properties 1 and 2 guarantee that pedigrees identify
strands of a dthreaded program in a deterministic fashion, regard-
less of scheduling. Therefore, one can generate a random number
for each strand by simply hashing its pedigree.

The basic idea of a pedigree scheme is to name a given strand by
the path from the root of theinvocation tree— the tree of function
(instances) whereF is a parent of G, denotedF = parent(G),
if F spawns or callsG. Label each instruction of a function with a
rank, which is the number of calls, spawns, or syncs that precede
it in the function. Then the pedigree of an instructionx can be
encoded by giving its rank and a list of ancestor ranks, e.g., the
instructionx might have rank 3 and be the 5th child of the 1st
child of the 3rd child of the 2nd child of the root, and thus its
pedigree would beJ(x) = 〈2, 3, 1, 5, 3〉. Such a scheme satisfies
Property 1, because the invocation tree is the same no matter how
the computation is scheduled. It satisfies Property 2, because two
instructions with the same pedigree cannot have a spawn or sync
between them.

Spawn pedigreesimprove on this simple scheme by defining
ranks using only spawns and syncs, omitting calls and treating
called functions as being “inlined” in their parents. We can define
spawn pedigrees operationally in terms of a serial execution of a
dthreaded program. The runtime system conceptually maintains a
stack ofrank counters, where each rank counter corresponds to an
instance of a spawned function. Program execution begins with a
single rank counter with value0 on the stack for the root (main)
functionF0. Three events cause the rank-counter stack to change:
1. On a spawn of a functionG, push a new rank counter with value

0 for G onto the bottom of the stack.
2. On a return from the spawn ofG, pop the rank counter (for

G) from the bottom of the stack, and then increment the rank
counter at the bottom of the stack.

3. On async statement inside a functionF , increment the rank
counter at the bottom of the stack.
For any instructionx, the pedigreeJ(x) is simply the sequence

of ranks on the stack whenx executes. Figure 1 shows the Cilk code
for a recursive Fibonacci calculation and the corresponding invoca-
tion tree for an execution offib(4) with spawn pedigrees labeled
on instructions. Intuitively, the counter at the bottom of the rank-

3 Also calledgeneral races[39].

counter stack tracks the rank of the currently executing instruction
x with respect to the spawned ancestor function closest tox. Thus,
the increment at the bottom of the stack occurs whenever resuming
the continuation of aspawn or async statement. This operational
definition of spawn pedigrees satisfies Property 2, because an in-
crement occurs whenever any parallel control is reached and the
values of the pedigrees are strictly increasing according to a lexico-
graphic order. Because a spawn pedigree is dependent only on the
invocation tree, spawn pedigrees satisfy Property 1.

Runtime support for spawn pedigrees

Supporting spawn pedigrees in parallel in a dthreaded program
is simple but subtle. Let us first acquire some terminology. We
extend the definition of “parent” to instructions, where for any in-
structionx, the parent of x, denotedparent(x), is the function
that executesx. For any nonroot functionF , define thespawn
parent of F , denotedspParent(F ), as parent(F ) if F was
spawned, orspParent(parent(F )) if F was called. Intuitively,
spParent(F ) is the closest proper ancestor ofF that is a spawned
function. Define thespawn parentof an instructionx similarly:
spParent(x) = spParent(parent(x)). The rank of an instruc-
tion x, denotedR(x), corresponds to the value in the bottom-most
rank counter at the timex is executed in a serial execution, and
each more-distant spawn parent in the ancestry ofx directly maps
to a rank counter higher in the stack.

The primary complication for maintaining spawn pedigrees dur-
ing a parallel execution is that while one workerp is executing an
instructionx in F = spParent(x), another workerp′ may steal
a continuation inF and continue executing, conceptually modify-
ing the rank counter forF . To eliminate this complication, when
p spawns a functionG from F , it savesR(G) — the rank-counter
value ofF whenG was spawned — into the frame ofG, thereby
guaranteeing that any query of the pedigree forx has access to
the correct rank, even ifp′ has resumed execution ofF and incre-
mented its rank counter.

Figure 2 shows an API that allows a currently executing strand
s to query its spawn pedigree. For any instructionx belonging to a
strands, this API allowss to walk up the chain of spawned func-
tions along thex-to-root path in the invocation tree and access the
appropriate rank value forx and each ancestor spawned function.
The sequence of ranks discovered along this walk is precisely the
reverse of the pedigreeJ(x).

We persuaded Intel to modify its Cilk Plus [28] concurrency
platform to include pedigrees. The Intel C/C++ compiler with Cilk
Plus compiles the spawning of a functionG as a call to aspawn-
wrapperfunctionĜ, which performs the necessary runtime manip-
ulations to effect the spawn, one step of which is calling the func-
tionG. Thus, for any functionG, we havespParent(G) = Ĝ, and
for any instructionx, the pedigreeJ(x) has a rank counter for each
spawn-wrapper ancestor ofx.

Implementing this API in Cilk Plus requires additional storage
in spawn-wrapper frames and in the state of each worker thread.
For every spawned functionF , the spawn wrapper̂F stores the
following rank information inF ’s frame:

• F̂ →brank : a64-bit4 value that storesR(F ).
• F̂ →parent : the pointer tospParent(F̂ ).

In addition, every workerp maintains two values in worker-local
storage for its currently executing instructionx:
• p→current-frame: the pointer tospParent(x).
• p→rank : a64-bit value storingR(x).

As Figure 2 shows, to implement the API, the runtime system reads
these fields to report a spawn pedigree. In terms of the operational

4 A 64-bit counter never overflows in practice, since264 is abig number.



1 int main (void) {
2 int x = fib (4);
3 printf ("x=%d\n", x);
4 return (x);
5 }

6 int fib(int n) {
7 if (n < 2) return n;
8 else {
9 int x, y;

10 x = spawn fib(n-1);
11 y = fib(n-2);
12 sync;
13 return (x+y);
14 }
15 }
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Figure 1: Cilk code for a recursive Fibonacci calculation and the invocation tree for an execution offib(4). Pedigrees are labeled for each instruction. For
example,sync instruction infib(4) has pedigree〈3〉. A left-to-right preorder traversal of the tree representsthe serial execution order. For example, for the
children of the node forfib(4), the first two instructions with rank0 correspond to lines 7 and 9 from Figure 1, the subtree rooted at nodefib(4) between
fib(3) and the sync node corresponds to the execution of the sync block (lines 10–12), and the last instruction with rank4 corresponds to the return in line 13.
Instructions and functions are labeled with their ranks. For example,fib(3) has a rank of0.

Function Description Implementation

RANK() ReturnsR(x) Returnsp→rank .
SPPARENT() ReturnsspParent(x) Returnsp→current-frame.
RANK(F̂ ) ReturnsR(F̂ ) ReturnsF̂ →brank .
SPPARENT(F̂ ) ReturnsspParent(F̂ ) ReturnsF̂ →parent .

STRANDBREAK() Ends the currently-executing strandp→rank++.

Figure 2: An API for spawn pedigrees in Intel Cilk Plus. In these operations,x is the currently executing instruction for a worker, andF̂ is a spawn-wrapper
function which is an ancestor ofx in the computation tree. These operations allow the worker towalk up the computation tree to computeJ(x). A worker can
also call STRANDBREAK() to end its currently executing strand.

definition of spawn pedigrees, therank field in p holds the bottom-
most rank counter on the stack for the instructionx that p is
currently executing.

To maintain these fields, the runtime system requires additional
storage to save and restore the current spawn-parent pointer and
rank counter for each worker whenever it enters or leaves a nested
spawned function. In particular, we allocate space for a rank and
parent pointer in the stack frame of everyCilk function — function
that can containspawn andsync statements:
• G→rank : a64-bit value that storesR(x) for some instruction
x with spParent(x) = G.

• G→sp-rep: the pointer tospParent(G).
These fields are only used to save and restore the corresponding
fields for a workerp. Wheneverp is executing a Cilk functionG
which spawns a functionF , it saves its fields intoG before begin-
ning execution ofF . When a workerp′ (which may or may not be
p) resumes the continuation after thespawn statement,p′ restores
its values fromG. Similarly, saving and restoring also occurs when
a worker stalls at async statement. Figure 3 summarizes the run-
time operations needed to maintain spawn pedigrees.

Although the implementation of spawn pedigrees in Cilk Plus
required changes to the Intel compiler, ordinary C/C++ functions
need not be recompiled for the pedigree scheme to work. The
reason is that the code in Figure 3 does not perform any operations
on entry or exit to called functions. Consequently, the scheme

(a) On aspawn of F fromG:
1 G→rank = p→rank

2 G→sp-rep =

p→current-frame

3 F̂ →brank = G→rank

4 F̂ →parent = G→sp-rep

5 p→rank = 0

6 p→current-frame = F̂

(b) On stalling at async in G:

1 G→rank = p→rank

(c) On resuming the continuation
of aspawn or sync in G:
1 p→rank = G→rank++

2 p→current-frame =

G→sp-rep

Figure 3: How a workerp maintains spawn pedigrees.(a) F̂ is a pointer to
the spawn wrapper of the functionF being spawned, andG is a pointer to
the frame of the Cilk function that is spawningF . (b) G is the Cilk function
that is attempting to execute async. The valuep→ current-frame need
not be saved intoG→sp-rep, because the firstspawn in G will have saved
this value already, and this value is fixed forG. (c) G is the Cilk function
containing the continuation being resumed.

works even for programs that incorporate legacy and third-party
C/C++ binaries.

To implement DPRNG’s, it is useful to extend the API in Fig-
ure 2 to include a STRANDBREAK function that allows the DPRNG
to end a currently executing strand explicitly. In particular, if a
user requests multiple random numbers from a DPRNG in a se-
rial sequence of instructions, the DPRNG can let each call to get
a random number terminate a strand in that sequence using this
function, meaning that the DPRNG produces at most one random



number per strand. Like aspawn or sync, when a workerp encoun-
ters a STRANDBREAK call, the next instruction after the STRAND-
BREAK thatp executes is guaranteed to be part of a different strand,
and thus have a different pedigree. The STRANDBREAK function
is implemented by incrementingp→rank .

Pedigree flattening for parallel loops

As an optimization, we can simplify spawn pedigrees for parallel
loops. Intel Cilk Plus provides a parallel looping construct called
cilk_for, which allows all the iterations of the loop to execute
in parallel. The runtime system implementscilk_for using a bal-
anced binary recursion tree implemented withspawn’s andsync’s,
where each leaf performs a chunk of iterations serially. Rather than
tracking ranks at every level of this recursion tree, the Cilk Plus
pedigree scheme conceptually “cuts out the middle man” andflat-
tens all the iterations of thecilk_for loop so that they share a
single level of pedigree. The idea is simply to let the rank of an iter-
ation be the loop index. Consequently, iterations in acilk_for can
be referenced within thecilk_for by a single value, rather than
a path through the binary recursion tree. To ensure thatspawn and
sync statements within a loop iteration do not affect the pedigrees
of other loop iterations, the body of each loop iteration is treated as
a spawned function with respect to its pedigree. This change sim-
plifies the pedigrees generated forcilk_for loops by reducing the
effective spawn depth of strands within thecilk_for and as Sec-
tion 6 shows, the cost of reading the pedigree as well.

3. A pedigree-based DPRNG
This section presents DOTM IX , a high-quality statistically random
pedigree-based DPRNG. DOTM IX operates by hashing the pedi-
gree and then “mixing” the result. We investigate theoretical prin-
ciples behind the design of DOTM IX , which offer evidence that
pedigree-based DPRNG’s can generate pseudorandom numbers of
high quality for real applications. We also examine empirical test
results using Dieharder [9], which suggest that DOTM IX generates
high-quality random numbers in practice.

The DOTMIX DPRNG

At a high level, DOTM IX generates random numbers in two stages.
First, DOTM IX compresses the pedigree into a single machine
word while attempting to maintain uniqueness of compressed pedi-
grees. Second, DOTM IX “mixes” the bits in the compressed pedi-
gree to produce a pseudorandom value.

To describe DOTM IX formally, let us first establish some nota-
tion. We assume that our computer has a word width ofw bits. We
choose a primep < m = 2w and assume that each rankji in the
pedigree falls in the range1 ≤ ji < p. Our library implementation
of DOTM IX simply increments each rank in the spawn-pedigree
scheme from Section 2 to ensure that ranks are nonzero. LetZm

denote the universe of (unsigned)w-bit integers over which calcu-
lations are performed, and letZp denote the finite field of integers
modulop. Consequently, we haveZp ⊆ Zm. We assume that the
spawn depthd(x) for any instructionx in a dthreaded program is
bounded byd(x) ≤ D.5 A pedigreeJ(x) for an instructionx at
spawn depthd(x) can then be represented by a length-D vector
J(x) = 〈j1, j2, . . . , jD〉 ∈ Z

D
p , whereji = 0 for D − d(x) en-

tries. Which entries are padded out with0 does not matter for the
theorems that follow, as long as distinct pedigrees remain distinct.
In our implementation, we actually pad out the first entries.

For a given pedigreeJ ∈ Z
D
p , the random number produced by

DOTM IX is the hashh(J), whereh(J) is the composition of

5 A reasonable upper bound isD = 100.

1. a compression functionc : Z
D
p → Zp that hashes each

pedigreeJ into a single integerc(J) less thanp, and
2. amixing function µ : Zm → Zm that “mixes” the compressed

pedigree valuec(J).
Let us consider each of these functions individually.

The goal of a compression functionc is to hash each pedigree
J into an integer inZp such that the probability of acollision —
two distinct pedigrees hashing to the same integer — is small. To
compress pedigrees, DOTM IX computes a dot product of the pedi-
gree with a vector of random values [17]. More formally, DOTM IX
uses a compression functionc chosen uniformly at random from
the following hash family.

DEFINITION 1. Let Γ = 〈γ1, γ2, . . . , γD〉 be a vector of integers
chosen uniformly at random fromZD

p . Define the compression
functioncΓ : ZD

p → Zp by

cΓ(J) =

(
D∑

k=1

γkjk

)

mod p ,

whereJ = 〈j1, j2, . . . , jD〉 ∈ Z
D
p . TheDOTMIX compression-

function family is the set

CDOTM IX =
{
cΓ : Γ ∈ Z

D
p

}
.

The next theorem proves that the probability is small that a ran-
domly chosen compression functioncΓ ∈ CDOTM IX causes two dis-
tinct pedigrees to collide.

THEOREM 1. Let cΓ ∈ CDOTM IX be a randomly chosen compres-
sion function. Then for any two distinct pedigreesJ, J ′ ∈ Z

D
p , we

havePr {cΓ(J) = cΓ(J
′)} = 1/p.

PROOF. Let J = 〈j1, j2, . . . , jD〉, and letJ ′ = 〈j′1, j′2, . . . , j′D〉.
BecauseJ 6= J ′, there must exist some indexk in the range
1 ≤ k ≤ D such thatjk 6= j′k. Without loss of generality, assume
thatk = 1. We therefore have (modulop) that

cΓ(J)− cΓ(J
′) = γ1j1 − γ1j

′

1 +

D∑

k=2

γkjk −
D∑

k=2

γkj
′

k ,

and thuscΓ(J)− cΓ(J
′) = 0 implies that

(j1 − j′1)γ1 =

D∑

k=2

γk(j
′

k − jk) .

Consider fixed values forJ , J ′, andγ2, . . . , γk. Leta = j1− j′1 6=
0, letx = γ1, and lety =

∑D

k=2 γk(j
′

k − jk).
We now show that for any fixed choice ofy ∈ Zp and nonzero

a ∈ Zp, there is exactly one choice ofx ∈ Zp such thaty = ax,
namely,x = a−1y. For the sake of contradiction, suppose that
there are two distinct valuesx1 andx2 such thaty = ax1 = ax2.
This supposition implies that0 = ax1−ax2 = a(x1−x2) modulo
p, which is satisfied if and only if eithera = 0 or x1 − x2 = 0,
sincep is prime. Becausea 6= 0, we must havex1 − x2 = 0,
contradicting the supposition thatx1 andx2 are distinct. Therefore,
there is one value ofx satisfyingy = ax. Becausex = γ1 is
a randomly chosen value fromZp, the probability thatx satisfies
y = ax is 1/p.

This low probability of collision allows DOTM IX to generate
many random numbers with a low probability that any pair collide.
By Boole’s Inequality [16, p. 1195], givenn distinct pedigrees
and using a random function fromCDOTM IX , the probability of
a collision among any of their compressed pedigrees is at most(
n

2

)
(1/p) = n(n−1)/2p. For the choice of the primep = 264−59,



for example, the probability that hashing5 million pedigrees results
in a collision in their compressed values is less than1 in a million.

Although the compression function effectively hashes a pedi-
gree into an integer less thanp with a small probability of collision,
two similar pedigrees may yet have “similar” hash values, whereas
we would like them to be statistically “dissimilar.” In particular,
for a given compression functioncΓ, two pedigrees that differ only
in theirkth coordinate differ in their compressions by a predictable
multiple ofγk. To reduce the statistical correlation in generated ran-
dom values, DOTM IX “mixes” the bits of a compressed pedigree
using a mixing function based on the RC6 block cipher [15, 43].
For anyw-bit input z, where we assume thatw is even, letφ(z)
denote the function that swaps the high- and low-orderw/2 bits of
z, that is,

φ(z) =

⌊
z√
m

⌋
+

√
m
(
z mod

√
m
)
,

and let

f(z) = φ(2z2 + z) mod m .

DOTM IX uses the mixing functionµ(z) = f (r)(z), which applies
r rounds off(z) to the compressed pedigree valuez. Contini et
al. [15] prove thatf(z) is a one-to-one function, and hence, for
two distinct pedigreesJ andJ ′, the probability thatµ(c(J)) =
µ(c(J ′)) is 1/p, unchanged from Theorem 1.

DOTM IX allows a seed to be incorporated into the hash of a
pedigree. The random number generated for a pedigreeJ is ac-
tually the value of a hash functionh(J, σ), whereσ is a seed.
Such a seed may be incorporated into the computation ofµ(cΓ(J))
in several ways. For instance, we might XOR or otherwise com-
bine the seed with the result ofµ(cΓ(J)), computing, for example,
h(J, σ) = σ ⊕ µ(cΓ(J)). This scheme does not appear to be par-
ticularly good, because it lacks much statistical variation between
the numbers generated by one seed versus another. A better scheme,
which DOTM IX adopts, is to combine the seed with the compressed
pedigreebeforemixing. DOTM IX is formally defined as follows.

DEFINITION 2. For a given numberr of mixing rounds, theDOT-
M IX DPRNG generates a random number by hashing the current
pedigreeJ = 〈j1, j2, . . . , jD〉 with a seedσ according to the func-
tion

hΓ(J, σ) = µ(cΓ(J, σ))

= f (r)(cΓ(J, σ)) ,

where

cΓ(J, σ) = (σ + cΓ(J)) mod m

andcΓ(J) is a hash function chosen uniformly at random from the
DOTM IX compression-function familyCDOTM IX .

The statistical quality ofDOTMIX

Although DOTM IX is not a cryptographically secure RNG, it ap-
pears to generate high-quality random numbers as evinced by
Dieharder [9], a collection of statistical tests designed to empir-
ically test the quality of serial RNG’s. Figure 4 summarizes the
Dieharder test results for DOTM IX and compares them to those
of the Mersenne twister [36], whose implementation is provided
in the GNU Scientific Library [21]. As Figure 4 shows, with2 or
more iterations of the mixing function, DOTM IX generates random
numbers of comparable quality to Mersenne twister. In particu-
lar, Mersenne twister and DOTM IX with 2 or more mixing iter-
ations generally fail the same set of Dieharder tests. Because the
Dieharder tests are based onP -values [26], it is not surprising to
see statistical variation in the number of “Weak” and “Poor” results
even from high-quality RNG’s. We report the median of5 runs
using5 different seeds to reduce this variation.

Test r Passed Weak Poor Failed

Mersenne twister – 79 7 7 14

DOTM IX (tree)

16 83 6 4 14
8 84 6 4 13
4 81 5 7 14
2 81 5 5 16
1 3 2 3 99
0 0 0 0 107

DOTM IX (loop)

16 82 2 8 15
8 79 6 8 14
4 79 5 8 15
2 79 4 8 16
1 55 2 8 42
0 2 0 1 104

LCGMIX (tree)
4 84 4 6 13
0 24 6 21 56

Figure 4: A summary of the quality of DOTM IX on the Dieharder tests
compared to the Mersenne twister. For the entries labeled “tree,” DOTM IX

generates320 random numbers in a parallel divide-and-conquer ternary
tree fashion using spawns. For the entries labeled “loop,” acilk_for loop
generates320 random numbers. The column labeledr indicates the number
of mixing iterations. Each successive column counts the numberof tests that
produced the given status, where the status of each test was computed from
the median of5 runs of the generator using5 different seeds. The table also
summarizes the Dieharder test results for LCGMIX .

When using Dieharder to measure the quality of a parallel
RNG, we confronted the issue that Dieharder is really designed
to measure the quality of serial RNG’s. Since all numbers are
generated by a serial RNG in a linear order, this order provides a
natural measure of “distance” between adjacent random numbers,
which Dieharder can use to look for correlations. When using an
RNG for a parallel program, however, this notion of “distance”
is more complicated, because calls to the RNG can execute in
parallel. The results in Figure 4 use numbers generated in a serial
execution of the (parallel) test program, which should maximize the
correlation between adjacent random numbers due to similarities in
the corresponding pedigrees. In principle, another execution order
of the same program could generate random numbers in a different
order and lead to different Dieharder test results.

As a practical matter, DOTM IX usesr = 4 mixing iterations to
generate empirically high-quality random numbers. The difference
in performance per call to DOTM IX with r = 0 and withr = 4 is
less than2%, and thus DOTM IX can generate high-quality random
numbers without sacrificing performance.

4. Other pedigree-based DPRNG’s
This section investigates several other pedigree-based schemes for
DPRNG’s. Principal among these schemes is LCGMIX , which
uses a compression function based on linear congruential gener-
ators and the same mixing function as DOTM IX . We prove that
the probability that LCGMIX ’s compression function generates a
collision is small, although not quite as small as for DOTM IX . We
examine Dieharder results which indicate that LCGMIX is statisti-
cally good. We also discuss alternative DPRNG schemes and their
utility. These DPRNG’s demonstrate that pedigrees can enable not
only DOTM IX , but a host of other DPRNG implementations. We
close by observing a theoretical weakness with DOTM IX which
would be remedied by a4-independent compression scheme.

The LCGMIX DPRNG

LCGMIX is related to the “Lehmer tree” DPRNG scheme of [19].
LCGMIX uses a family of compression functions for pedigrees
that generalize linear congruential generators (LCG’s) [29, 32].



LCGMIX then “RC6-mixes” the compressed pedigree to generate
a pseudorandom value using the same mixing function as DOTM IX .

The basic idea behind LCGMIX is to compress a pedigree by
combining each successive rank using an LCG that operates mod-
ulo a primep, wherep is close to but less thanm = 2w, where
w is the computer word width. LCGMIX uses only three random
nonzero valuesα, β, γ ∈ Zp, rather than a table, as DOTM IX does.
Specifically, for an instructionx at depthd = d(x) with pedigree
J(x) = 〈j1, j2, . . . , jd〉, the LCGMIX compression function per-
forms the following recursive calculation modulop:

Xd =

{
γ if d = 0,
αXd−1 + βjd if d > 0.

The valueXd is the compressed pedigree. Thus, the LCGMIX
compression function need only perform two multiplications mod-
ulo p and one addition modulop per rank in the pedigree.

Assume, as for DOTM IX , that the spawn depthd(x) for any
instructionx in a dthreaded program is bounded byd(x) ≤ D. The
family of compression functions used by LCGMIX can be defined
as follows.

DEFINITION 3. Let α, β, γ be nonzero integers chosen uniformly
at random fromZp. Definecα,β,γ :

⋃
∞

d=1 Z
d
p → Zp by

cα,β,γ(J) =

(

αdγ + β
d∑

k=1

αd−kjk

)

mod p ,

whereJ = 〈j1, j2, . . . , jd〉 ∈ Z
d
p. TheLCGMIX compression-

function family is the set of functions

CLCGMIX = {cα,β,γ : α, β, γ ∈ Zp − {0}} .

The next theorem shows that the probability a randomly chosen
compression functioncα,β,γ ∈ CLCGMIX hashes two distinct pedi-
grees to the same value is small, although not quite as small as for
DOTM IX .

THEOREM 2. Let cα,β,γ ∈ CLCGMIX be a randomly chosen com-
pression function. Then for any two distinct pedigreesJ ∈ Z

d
p and

J ′ ∈ Z
d′

p we havePr {cα,β,γ(J) = cα,β,γ(J
′)} ≤ D/(p − 1),

whereD = max {d, d′}.

PROOF. Let J = 〈j1, j2, . . . , jd〉 andJ ′ = 〈j′1, j′2, . . . , j′d′〉. The
important observation is that the differencecα,β,γ(J)− cα,β,γ(J

′)
is a nonzero polynomial inα of degree at mostD with coef-
ficients in Zp. Thus, there are at mostD roots to the equation
cα,β,γ(J) − cα,β,γ(J

′) = 0, which are values forα that cause
the two compressed pedigrees to collide. Since there arep− 1 pos-
sible values forα, the probability of collision is at mostD/(p−1).

This pairwise-collision probability implies a theoretical bound
on how many random numbers LCGMIX can generate before
one would expect a collision between any pair of numbers in the
set. By Boole’s Inequality [16, p. 1195], compressingn pedigrees
with a random function fromCLCGMIX gives a collision probabil-
ity between any pair of thosen compressed pedigrees of at most(
n

2

)
D/(p − 1) = n(n − 1)D/2(p − 1). With p = 264 − 59 and

making the reasonable assumption thatD ≤ 100, the probabil-
ity that compressing 500,000 pedigrees results in a collision is less
than1 in a million. As can be seen, 500,000 pedigrees is a factor
of 10 less than the5 million for DOTM IX for the same probability.
Since our implementation of LCGMIX was no faster than our im-
plementation of DOTM IX per function call, we favored the stronger
theoretical guarantee of DOTM IX for the Cilk Plus library.

We tested the quality of random numbers produced by LCG-
M IX using Dieharder, producing the results in Figure 4. The data
suggest that, as with DOTM IX , r = 4 mixing iterations in LCG-
M IX are sufficient to provide random numbers whose statistical
quality is comparable to those produced by the Mersenne twister.

Further ideas for DPRNG’s

We can define DPRNG’s using families of compression functions
that exhibit stronger theoretical properties or provide faster perfor-
mance than either DOTM IX or LCGMIX .

One alternative is to usetabulation hashing [11] to com-
press pedigrees, giving compressed pedigree values that are3-
independent and have other strong theoretical properties [41]. This
DPRNG is potentially useful for applications that require stronger
properties from their random numbers. To implement this scheme,
the compression function treats the pedigree as a bit vector whose
1 bits select entries in a table of random values to XOR together.

As another example which favors theoretical quality over per-
formance, a DPRNG could be based on compressing the pedigree
with a SHA-1 [38] hash, providing a cryptographically secure com-
pression function that would not require any mixing to generate
high-quality random numbers. Other cryptographically secure hash
functions could be used as well. While cryptographically secure
hash functions are typically slow, they would allow the DPRNG to
provide pseudorandom numbers with very strong theoretical prop-
erties, which may be important for some applications.

On the other side of the performance-quality spectrum, a
DPRNG could be based on compressing a pedigree using a faster
hash function. One such function is the hash function used in
UMAC [3], which performs half the multiplications of DOTM IX ’s
compression function. The performance of the UMAC compres-
sion scheme and the quality of the DPRNG it engenders offers an
interesting topic for future research.

4-independent compression of pedigrees

Although Theorem 1 shows that the probability is small that DOT-
M IX ’s compression function causes two pedigrees to collide, DOT-
M IX contains a theoretical weakness. Consider two distinct pedi-
greesJ1 andJ2 of lengthD, and suppose that DOTM IX mapsJ1

andJ2 to the same value, or more formally, that DOTM IX chooses
a compression functioncΓ such thatcΓ(J1) = cΓ(J2). LetJ + 〈j〉
denote the pedigree that results from appending the rankj to the
pedigreeJ . BecauseJ1 andJ2 both have lengthD, it follows that

cΓ(J1 + 〈j〉) = cΓ(J1) + γD+1j

= cΓ(J2) + γD+1j

= cΓ(J2 + 〈j〉) .
Thus, DOTM IX hashes the pedigreesJ1 + 〈j〉 andJ2 + 〈j〉 to the
same value, regardless of the value ofj. In other words, one colli-
sion in the compression of the pedigrees for two strands, however
rare, may result in many ancillary collisions.

To address this theoretical weakness, a DPRNG scheme might
provide the guarantee that if two pedigrees for two strands collide,
then the probability remains small that any the pedigrees collide for
any other pair of strands. A4-independent hash function [46] would
achieve this goal by guaranteeing that the probability is small that
any sequence of4 distinct pedigrees hash to any particular sequence
of 4 values. Tabulation-based4-independent hash functions for
single words are known [45], but how to extend these techniques
to hash pedigrees efficiently is an intriguing open problem.

5. A scoped DPRNG library interface
This section presents the programming interface for a DPRNG li-
brary that we implemented for Cilk Plus. This interface demon-



1 template <typename T>

2 class DPRNG {

3 DPRNG (); // Constructor

4 ~DPRNG(); // Destructor

5 DPRNG_scope current_scope (); // Get current scope

6 void set(uint64_t seed , DPRNG_scope scope); // Init

7 uint64_t get(); // Get random #

8 };

Figure 5: A C++ interface for a pedigree-based DPRNG suitable for use
with Cilk Plus. The typeT of the DPRNG object specifies a particular
DPRNG library, such as DOTM IX , that implements this interface. In ad-
dition to accepting an argument for an initial seed, the initialization method
for the DPRNG in line 6 also requires an lexical scope, restricting the scope
where the DPRNG object can be used.

strates how programmers can use a pedigree-based DPRNG library
in applications. The interface uses the notion of “scoped” pedi-
grees, which allow DPRNG’s to compose easily.

Scoped pedigrees solve the following problem. Suppose that a
dthreaded program contains a parallel subcomputation that uses
a DPRNG, and suppose that the program would like to run this
subcomputation the same way twice. Using scoped pedigrees, the
program can guarantee that both runs generate the exact same
random numbers, even though corresponding RNG calls in the
subcomputations have different pedigrees globally.

Programming interface

Figure 5 shows a C++ interface for a DPRNG suitable for use with
Cilk Plus. It resembles the interface for an ordinary serial RNG,
but it constrains when the DPRNG can be used to generate random
numbers by defining a “scope” for each DPRNG instance. The
set method in line 6 initializes the DPRNG object based on two
quantities: an initial seed and a scope. The seed is the same as
for an ordinary serial RNG. Thescoperepresented by a pedigree
J is the set of instructions whose pedigrees haveJ as a common
prefix. Specifying a scope (represented by)J to the DPRNG object
rand restricts the DPRNG to generate numbers only within that
scope and to ignore the common prefixJ when generating random
numbers. By default, the programmer can pass in the global scope
〈0〉 to let the DPRNG object be usable anywhere in the program.
The interface allows programmers to limit the scope of a DPRNG
object by getting an explicit scope (line 5) and setting the scope of
a DPRNG object (line 6).

Figure 6 demonstrates how restricting the scope of a DPRNG
can be used to generate repeatable streams of random numbers
within a single program. Insidef, the code in lines 3–4 limits the
scope ofrand so that it generates random numbers only withinf.
Because of this limited scope, the assertion in line 23 holds true. If
the programmer setsrand with a global scope, then each call tof
would generate a different value forsum, and the assertion would
fail.

Intuitively, one can think of the scope as extension of the seed
for a serial RNG. To generate exactly the same stream of random
numbers in a dthreaded program, one must (1) use the same seed,
(2) use the same scope, and (3) have exactly the same structure of
spawned functions and RNG calls within the scope. Even iff from
Figure 6 were modified to generate random numbers in parallel,
the use of scoped pedigrees still guarantees that each iteration of
the parallel loop in line 16 behaves identically.

Implementation

To implement theget method of a DPRNG, we use the API in
Figure 2 to extract the current pedigree during the call toget, and
then we hash the pedigree. The principal remaining difficulty in the
DPRNG’s implementation is in handling scopes.

1 uint64_t f(DPRNG<DotMix>* rand , uint64_t seed , int i) {

2 uint64_t sum = 0;

3 DPRNG_scope scope = rand ->current_scope();

4 rand ->set(seed , scope);

5 for (int j = 0; j < 15; ++j) {

6 uint64_t val = rand ->get();

7 sum += val;

8 }

9 return sum;

10 }

11 int main(void) {

12 const int NSTREAMS = 10;

13 uint64_t sum[NSTREAMS ];

14 uint64_t s1 = 0x42; uint64_t s2 = 31415;

15 // Generate NSTREAMS identical streams

16 cilk_for (int i = 0; i < NSTREAMS; ++i) {

17 DPRNG<DotMix>* rand = new DPRNG();

18 sum[i] = f(rand , s1 , i);

19 sum[i] += f(rand , s2 , i);

20 delete rand;

21 }

22 for (int i = 1; i < NSTREAMS; ++i)

23 assert(sum[i] == sum [0]);

24 return 0;

25 }

Figure 6: A program that generatesNSTREAMS identical streams of random
numbers. Inside functionf, the code in lines 3–4 limits the scope ofrand

so that it can generate random numbers only withinf.

Intuitively, a scope can be represented by a pedigree prefix
that should be common to the pedigrees of all strands generating
random numbers within the scope. Lety be the instruction cor-
responding to a call tocurrent_scope(), and letx be a call to
get() within the scopeJ(y). Let J(x) =

〈
j1, j2, . . . , jd(x)

〉
and

J(y) =
〈
j′1, j

′

2, . . . , j
′

d(y)

〉
. Sincex belongs to the scopeJ(y), it

follows thatd(x) ≥ d(y), and we havejd(y) ≥ j′d(y) andjk = j′k
for all k < d(y). We now define thescoped pedigreeof x with
respect to scopeJ(y) as

JJ(y)(x) =
〈
jd(y) − j′d(y), jd(y)+1, . . . , jd(x)

〉
.

To compute a random number forJ(x) excluding the scopeJ(y),
we simply perform a DPRNG scheme on the scoped pedigree
JJ(y)(x). For example, DOTM IX computesµ(cΓ(JJ(y)(x))). Fur-
thermore, one can check for scoping errors by verifying thatJ(y) is
indeed the prefix ofJ(x) via a direct comparison of all the pedigree
terms.

Scoped pedigrees allow DPRNG’s to optimize the process of
reading a pedigree. By hashing scoped pedigrees, a call to the
DPRNG need only read a suffix of the pedigree, i.e. the scoped
pedigree itself, rather than the entire pedigree. To implement this
optimization, each scope may store a pointer to the spawn parent
for the deepest rank of the scope, and then the code for reading the
pedigree extracts ranks as usual until it observes the spawn parent
the scope points to. One problem with this optimization is that a
DPRNG may not detect if it is hashing a pedigree outside of its
scope. To overcome this problem, DOTM IX supports a separate
mode for debugging, in which calls checks their pedigrees term-
by-term to verify they are within the scope.

6. Performance results
This section reports on our experimental results investigating the
overhead of maintaining pedigrees and the cost of the DOTM IX
DPRNG. To study the overhead of tracking pedigrees, we modi-
fied the open-source MIT Cilk [20], whose compiler and runtime
system were both accessible. We discovered that the overhead of
tracking pedigrees is small, having a geometric mean of only1%
on all tested benchmarks. To measure the costs of DOTM IX , we
implemented it as a library for a version of Cilk Plus that Intel en-



Application Default Pedigree Overhead

fib 11.03 12.13 1.10
cholesky 2.75 2.92 1.06
fft 1.51 1.53 1.01
matmul 2.84 2.87 1.01
rectmul 6.20 6.21 1.00
strassen 5.23 5.24 1.00
queens 4.61 4.60 1.00
plu 7.32 7.35 1.00
heat 2.51 2.46 0.98
lu 7.88 7.25 0.92

Figure 7: Overhead of maintaining64-bit rank pedigree values for the Cilk
benchmarks as compared to the default of MIT Cilk 5.4.6. The experiments
were run on an AMD Opteron 6168 system with a single 12-core CPU
clocked at 1.9 GHz. All times are the minimum of15 runs measured in
seconds.

gineers had augmented with pedigree support, and we compared
its performance to a nondeterministic DPRNG implemented us-
ing worker-local Mersenne twister RNG’s. Although the price of
determinism from using DOTM IX was approximately a factor of
2.3 greater per function call than Mersenne twister on a synthetic
benchmark, this price was much smaller on more realistic codes
such as a sample sort and Monte Carlo simulations. These empiri-
cal results suggest that pedigree-based DPRNG’s are amply fast for
debugging purposes and that their overheads may be low enough
for some production codes.

Pedigree overheads

To estimate the overhead of maintaining pedigrees, we ran a set
of microbenchmarks for MIT Cilk with and without support for
pedigrees. We modified MIT Cilk 5.4.6 to store the necessary 64-
bit rank values and pointers in each frame for spawn pedigrees
and to maintain spawn pedigrees at runtime. We then ran 10 MIT
Cilk benchmark programs using both our modified version of MIT
Cilk and the original MIT Cilk. In particular, we ran the following
benchmarks:
• fib: Recursive exponential-time calculation of the40th Fi-

bonacci number.
• cholesky: A divide-and-conquer Cholesky factorization of a

sparse2000× 2000 matrix with 10,000 nonzeros.
• fft: Fast Fourier transform on222 elements.
• matmul: Recursive matrix multiplication of1000×1000 square

matrices.
• rectmul: Rectangular matrix multiplication of2048 × 2048

square matrices.
• strassen: Strassen’s algorithm for matrix multiplication on
2048× 2048 square matrices.

• queens: Backtracking search to count the number of solutions
to the24-queens puzzle.

• plu: LU-decomposition with partial pivoting on a2048×2048
matrix.

• heat: Jacobi-type stencil computation on a4096 × 1024 grid
for 100 timesteps.

• lu: LU-decomposition on a2048× 2048 matrix.
The results from these benchmarks, as summarized in Figure 7,

show that the slowdown due to spawn pedigrees is generally neg-
ligible, having a geometric mean of less than1%. Although the
overheads run as high as10% for fib, they appear to be within
measurement noise caused by the intricacies of modern-day proces-
sors. For example, two benchmarks actually run measurably faster
despite the additional overhead. This benchmark suite gives us con-
fidence that the overhead for maintaining spawn pedigrees should
be close to negligible for most real applications.

DPRNG overheads

To estimate the cost of using DPRNG’s, we persuaded Intel to mod-
ify its Cilk Plus concurrency platform to maintain pedigrees, and
then we implemented the DOTM IX DPRNG.6 We compared DOT-
M IX ’s performance, usingr = 4 mixing iterations, to a nondeter-
ministic parallel implementation of the Mersenne twister on syn-
thetic benchmarks, as well as on more realistic applications. From
these results, we estimate that the “price of determinism” for DOT-
M IX is about a factor of2.3 in practice on synthetic benchmarks
that generate large pedigrees, but it can be significantly less for
more practical applications. For these experiments, we coded by
hand an optimization that the compiler could but does not imple-
ment. To avoid incurring the overhead of multiple worker lookups
on every call to generate a random number, within a strand, DOT-
M IX looks up the worker once and uses it for all calls to the API
made by the strand.

We used Intel Cilk Plus to perform three different experiments.
First, we used a synthetic benchmark to quantify how DOTM IX
performance is affected by pedigree length. Next, we used the same
benchmark to measure the performance benefits of flattening pedi-
grees forcilk_for loops. Finally, we benchmarked the perfor-
mance of DOTM IX on realistic applications that require random
numbers. All experiments described in the remainder of this section
were run on an Intel Xeon X5650 system with two 6-core CPU’s,
each clocked at 2.67 GHz. The code was compiled using the In-
tel C++ compiler v13.0 Beta with the-O3 optimization flag and
uses the Intel Cilk Plus runtime, which together provide support
for pedigrees.

First, to understand how the performance of DOTM IX varies
with pedigree length, we constructed a synthetic benchmark called
CBT. This benchmark successively createsn/k complete binary
trees, each withk leaves, which it walks in parallel by spawning
two children recursively. The pedigree of each leaf has uniform
lengthL = 2 + lg k, and within each leaf, we call the RNG.

Figure 8 compares the performance of various RNG’s on the
CBT benchmark, fixingn = 220 random numbers but varying
the pedigree lengthL. These results show that the overhead of
DOTM IX increases roughly linearly with pedigree length, but that
DOTM IX is still within about a factor of2 compared to using
a Mersenne Twister RNG. From a linear regression on the data
from Figure 8, we observed that the cost per additional term in
the pedigree for both DOTM IX and LCGMIX was about15 cycles,
regardless of whetherr = 4 or r = 16.7

Figure 9 breaks down the overheads of DOTM IX in the CBT
benchmark further. To generate a random number, DOTM IX re-
quires looking up the currently executing worker in Cilk (from
thread-local storage),8 reading the pedigree, and then generating
a random number. The figure compares the overhead of DOTM IX
with the overhead of simply spawning a binary tree withn leaves
while performing no computation within each leaf. From this data,
we can attribute at least35% of the execution time of DOTM IX
calls to the overhead of simply spawning the tree itself. Also, by
measuring the cost of reading a pedigree, we observe that for the
longest pedigrees, roughly half of the cost of an RNG call can be
attributed to looking up the pedigree itself.

6 The Intel C++ compiler v12.1 provides compiler and runtime support for
maintaining pedigrees in Cilk.
7 This linear model overestimates the runtime of this benchmark for L < 4
(not shown). For small trees, it is difficult to accurately measure and isolate
the RNG performance from the cost of the recursion itself.
8 Our implementation of a parallel RNG based on Mersenne Twisteralso
requires a similar lookup from thread-local storage to find the worker-
thread’s local RNG.
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nondeterministic parallel implementation.
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Figure 9: Breakdown of overheads of DOTM IX in the CBT benchmark,
with n = 220. This experiment uses the same methodology as for Figure 8.

Pedigree flattening

To estimate the performance improvement of the pedigree-flatten-
ing optimization forcilk_for loops described in Section 2, we
compared the cost performingn pedigree lookups for the CBT
benchmark (Figure 9) to the cost of pedigree lookups in acilk_for

loop performingn pedigree lookups in parallel. Figure 10 shows
that thecilk_for pedigree optimization substantially reduces the
cost of pedigree lookups. This result is not surprising, since the
pedigree lookup for recursive spawning in the CBT benchmark
cost increases roughly linearly withlg n, whereas the lookup cost
remains nearly constant for using acilk_for aslg n increases.

Application benchmarks

Figure 11 summarizes the performance results for the various
RNG’s on four application benchmarks:
• pi: A simple Monte-Carlo simulation that calculates the value

of the transcendental numberπ using256M samples.
• maxIndSet: A randomized algorithm for finding a maximum

independent set in graphs with approximately16M vertices,
where nodes have an average degree of between4 and20.

• sampleSort: A randomized recursive samplesort algorithm on
64M elements, with the base case on 10,000 samples.
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recursive spawns in a binary tree. The recursive spawning generatesn
leaves as in the CBT benchmark, with each pedigree lookup having L =
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pedigrees of length4.

Application T1(DotMix)/T1(mt) T12(DotMix)/T12(mt)

fib 2.33 2.25
pi 1.21 1.13
maxIndSet 1.14 1.08
sampleSort 1.00 1.00
DiscreteHedging 1.03 1.03

Figure 11: Overhead of DOTM IX as compared to a parallel version of the
Mersenne twister (denoted bymt in the table) on four programs. All bench-
marks use the same worker-local Mersenne twister RNG’s as in Figure 8
except forDiscreteHedging, which uses QuantLib’s existing Mersenne
twister implementation.

• DiscreteHedging: A financial-model simulation using Monte
Carlo methods.

We implemented thepi benchmark ourselves. ThemaxIndSet and
sampleSort benchmarks were derived from the code described
in [4]. The DiscreteHedging benchmark is derived from the
QuantLib library for computation finance. More specifically, we
modified QuantLib version 1.1 to parallelize this example as de-
scribed in [25], and then supplemented QuantLib’s existing RNG
implementation of Mersenne Twister with DOTM IX .

To estimate the per-function-call cost of DOTM IX , we also
ran the samefib benchmark that was used for the experiment
described in Figure 7, but modified so that the RNG is called
once at every node of the computation. The results forfib in
Figure 11 indicate that DOTM IX is about a factor of2.3 slower than
using Mersenne twister, suggesting that the price of determinism
for parallel random-number generation in dthreaded programs is at
most2–3 per function call.

The remaining applications pay a relatively lesser price for
determinism for two reasons. First, many of these applications
perform more computation per random number obtained, thereby
reducing the relative cost of each call to DOTM IX . Second, many
of these applications call DOTM IX within a cilk_for loop, and
thus benefit from the pedigree-flattening optimization to reduce the
cost per call of reading the pedigree.

7. Related work
The problem of generating random numbers deterministically in
multithreaded programs has received significant attention. SPRNG
[35] is a popular DPRNG for pthreading platforms that works by
creating independent RNG’s via a parameterization process. Other



approaches to parallelizing RNG’s exist, such as leapfrogging and
splitting. Coddington [14] surveys these alternative schemes and
their respective advantages and drawbacks. It may be possible to
adapt some of these pthreading RNG schemes to create similar
DPRNG’s for dthreaded programs.

The concept of deterministically hashing interesting locations in
a program execution is not new. ThemaxIndSet andsampleSort
benchmarks we borrowed from [4] used anad hochashing scheme
to afford repeatability, a technique we have used technique our-
selves in the past and which must have been reinvented numerous
times before us. More interesting is the pedigree-like scheme due
to Bond and McKinley [8] where they use an LCG strategy similar
to LCGMIX to assign deterministic identifiers to calling contexts
for the purposes of residual testing, anomaly-based bug detection,
and security intrusion detection.

Recently, Salmonet al. [44] independently explored the idea of
“counter-based” parallel RNG’s, which generate random numbers
via independent transformations of counter values. Counter-based
RNG’s use similar ideas to pedigree-based DPRNG’s. Intuitively,
the compressed pedigree values generated by DOTM IX and LCG-
M IX can be thought of as counter values, and the mixing function
corresponds to a particular kind of transformation. Salmonet al.fo-
cus on generating high-quality random numbers, exploring several
transformations based on both existing cryptographic standards and
some new techniques, and show that these transformations lead to
RNG’s with good statistical properties. Counter-based RNG’s do
not directly lead to DPRNG’s for a dthreaded programs, however,
because it can be difficult to generate deterministic counter val-
ues. One can, however, apply these transformations to compressed
pedigree values and automatically derive additional pedigree-based
DPRNG’s.

8. Concluding remarks
We conclude by discussing two enhancements for pedigrees and
DPRNG’s. We also consider how the notion of pedigrees might be
extended to work on other concurrency platforms.

The first enhancement addresses the problem of multiple calls to
a DPRNG within a strand. The mechanism described in Section 2
involves calling the STRANDBREAK function, which increments
the rank whenever a call to the DPRNG is made, thereby ensuring
that two successive calls have different pedigrees. An alternative
idea is to have the DPRNG store for each workerp anevent counter
ep that the DPRNG updates manually and uses as an additional
pedigree term so that multiple calls to the DPRNG per strand
generate different random numbers.

The DPRNG can maintain an event counter for each worker
as follows. Suppose that the DPRNG stores for each workerp the
last pedigreep read. When workerp calls the DPRNG to generate
another random number, causing the DPRNG to read the pedigree,
the DPRNG can check whether the current pedigree matches the
last pedigreep read. If it matches, thenp has called the DPRNG
again from the same strand, and so the DPRNG updatesep. If it
does not match, thenp must be calling the DPRNG from a new
strand. Because each strand is executed by exactly one worker, the
DPRNG can safely resetep to a default value in order to generate
the next random number.

This event counter scheme improves the composability of
DPRNG’s in a program, because calls to one DPRNG do not af-
fect calls to another DPRNG in the same program, as they do for
the scheme from Section 2. In practice, however, event counters
may hurt the performance of a DPRNG. From experiments with
the fib benchmark, we found that an event-counter scheme runs
approximately20%–40% slower per function call than the scheme
from Section 2, and thus we favored the use of STRANDBREAK
for our main results. Nevertheless, more efficient ways to imple-

ment an event-counter mechanism may exist, which would enhance
composability.

Our second enhancement addresses the problem of “climbing
the tree” to access all ranks in the pedigree for each call to the
DPRNG, the cost of which is proportional to the spawn depthd.
Some compression functions, including Definitions 1 and 3, can
be computedincrementally, and thus results can be “memoized”
to avoid walking up the entire tree to compress the pedigree. In
principle, one could memoize these results in aframe-datacache
— a worker-local cache of intermediate results — and then, for
some computations, generate random numbers inO(1) time in-
stead ofO(d) time. Preliminary experiments with using frame-data
caches indicate, however, that in practice, the cost of memoizing
the intermediate results in every stack frame outweighs the bene-
fits from memoization, even in an example such asfib, where the
spawn depth can be quite large. Hence, we opted not to use frame-
data caches for DOTM IX . Nevertheless, it is an interesting open
question whether another memoization technique, such as selective
memoization specified by the programmer, might improve perfor-
mance for some applications.

We now turn to the question of how to extend the pedigree ideas
to “less structured” dthreading concurrency platforms. For some
parallel-programming models with less structure than Cilk, it may
not be important to worry about DPRNG’s at all, because these
models do not encapsulate the nondeterminism of the scheduler.
Thus, a DPRNG would seem to offer little benefit over a nonde-
terministic parallel RNG. Nevertheless, some models that support
more complex parallel control than the fork-join model of Cilk do
admit the writing of deterministic programs, and for these models,
the ideas of pedigrees can be adapted.

As an example, Intel Threading Building Blocks [42] supports
software pipelining, in which each stage of the pipeline is a fork-
join computation. For this control construct, one could maintain
an outer-level pedigree to identify the stage in the pipeline and
combine it with a pedigree for the interior fork-join computation
within a stage.

Although Cilk programs produce instruction traces correspond-
ing to fork-join graphs, the pedigree idea also seems to extend to
general dags, at least in theory. One can define pedigrees on gen-
eral dags as long as the children (successors) of a node are ordered.
The rank of a nodex indicates the birth order ofx with respect
to its siblings. Thus, a given pedigree (sequence of ranks) defines
a unique path from the source of the task graph. The complication
arises because in a general dag, multiple pedigrees (paths) may lead
to the same node. Assuming there exists a deterministic procedure
for choosing a particular path as the “canonical” pedigree, one can
still base a DPRNG on canonical pedigrees. It remains an open
question, however, as to how efficiently one can maintain canoni-
cal pedigrees in this more general case, which will depend on the
particular parallel-programming model.
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