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Abstract

1. Introduction

Existing concurrency platforms for dynamic multithreading do not Dynamic multithreading® or dthreading which integrates a run-
provide repeatable parallel random-number generators. This pa-time scheduler into a concurrency platform, provides a thread-

per proposes that a mechanism caltetligreesbe built into the

ing model which allows developers to write many deterministic

runtime system to enable efficient deterministic parallel random- programs without resorting to nondeterministic means. Dthread-
number generation. Experiments with the open-source MIT Cilk ing concurrency platforms — including MIT Cilk [20], Cilk++
runtime system show that the overhead for maintaining pedigrees[34], Cilk Plus [28], Fortress [1], Habenero [2, 12], Hood [6]yda

is negligible. Specifically, on a suite of 10 benchmarks, the relative Fork/Join Framework [30], OpenMP 3.0 [40], Task Parallel Library
overhead of Cilk with pedigrees to the original Cilk has a geometric (TPL) [33], Threading Building Blocks (TBB) [42], and X10 [13]
mean of less thaih%. — offer a processor-obliviousnodel of computation, where lin-

We persuaded Intel to modify its commercial C/C++ compiler, guistic extensions to the serial base language expose the logical
which provides the Cilk Plus concurrency platform, to include pedi- parallelism within an application without reference to the number
grees, and we built a library implementation of a deterministic par- of processors on which the application runs. The platform’s run-
allel random-number generator called@MIx that compresses  time system schedules and executes the computation on whatever
the pedigree and then “RC6-mixes” the result. The statistical qual- set ofworkerthreads is available at runtime, typically employing a
ity of DoTMIx is comparable to that of the popular Mersenne “work-stealing” scheduler [5, 10, 23], where procedure franmres a
twister, but somewhat slower than a nondeterministic parallel ver- migrated from worker to worker. Although a dthreading concur-
sion of this efficient and high-quality serial random-number gener- rency platform is itself nondeterministic in the way that it schedules

ator. The cost of calling BTMIx depends on the “spawn depth”
of the invocation. For a naive Fibonacci calculation with= 40
that calls DbTMIX in every node of the computation, this “price of
determinism” is about a factor @f3 in running time over the non-

deterministic Mersenne twister, but for more realistic applications

a computation, it encapsulates the nondeterminism, providing the
developer with a programming abstraction in which deterministic
applications can be programmed without concern for the nondeter-
minism of the underlying scheduler.

A major reason parallel programming is hard is because nonde-

with less intense use of random numbers — such as a maximal-terminism precludes the repeatability programmers rely on to de-
independent-set algorithm, a practical samplesort program, and abug their codes. For example, the popw#ireadingmodel — as
Monte Carlo discrete-hedging application from QuantLib — the exemplified by POSIX threads [27], Windows API threads [24],

observed “price” was at most1%, and sometimes much less.

and the threading model of the Java programming language [22]

Moreover, even if overheads were several times greater, applica-— is well known to produce programs replete with nondetermin-

tions using DTMIx should be amply fast for debugging purposes,
which is a major reason for desiring repeatability.
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ism and which are thus difficult to debug. Lee [31] cites the non-
determinism of multithreaded programs as a key reason that pro-
gramming large-scale parallel applications remains error prone and
difficult. Bocchinoet al. [7] argue persuasively that multithreaded
programs should be deterministic by default. The growing popular-
ity of dthreading concurrency platforms seems due in part to their
ability to encapsulate nondeterminism and provide a more deter-
ministic environment for parallel programming and debugging.
Nevertheless, dthreading concurrency platforms fail to encap-
sulate an important source of nondeterminism for applications that
employ (pseudo)random number generators (RNG’s). RNG's are
useful for randomized algorithms [37], which provide efficient so-
lutions to a host of combinatorial problems, and are essential for
Monte Carlo simulations, which consume a large fraction of com-
puting cycles [35] for applications such as option pricing, molecu-
lar modeling, quantitative risk analysis, and computer games.
Unfortunately, typical implementations of RNG’s are either
nondeterministic or exhibit high overheads when used in dthreaded
code. To understand why, we first review conventional serial RNG’s
and consider how they are traditionally adapted for use in parallel

1 Sometimes callethsk parallelism



programs. Then we examine the ramifications of this adaptation on e A high-quality DPRNG library for Intel Cilk Plus, called ®r-
dthreaded programs. Mix, which is based on compressing the pedigree via a dot-
A serial RNG operates as a stream. The RNG begins in some  product [17] and “RC6-mixing” [15, 43] the result, and whose
initial state Sy. Theith request for a random number updates the statistical quality appears to rival that of the popular Mersenne
stateS;_; to a new states;, and then it returns some function of twister [36].
S; as theith random number. One can construct a parallel RNG .
using a serial RNG, but at the cost of introducing nondeterminism. Outline
One way that a serial RNG can be used directly in a dthreaded The remainder of this paper is organized as follows. Section 2 de-
application is as a global RNG where the stream’s update function fines pedigrees and describes how they can be incorporated into
is protected by a lock. This strategy introduces nondeterminism, a dthreading platform. Section 3 presents thet®lix DPRNG,
however, as well as contention on the lock that can adversely affectshowing how pedigrees can be leveraged to implement DPRNG's.
performance. Section 4 describes other pedigree-based DPRNG schemes, focus-
A more practical alternative that avoids lock contention is t0 ing on one based on linear congruential generators [29]. Section 5
useworker-local RNG’s i.e., construct a parallel RNG by having  presents a programming interface for a DPRNG library. Section 6
each worker thread maintain its own serial RNG for generating ran- presents performance results measuring the overhead of runtime
dom numbers. Unfortunately, this solution fails to eliminate nonde- support for pedigrees in MIT Cilk, as well as the overheadsof-D
terminism because the underlying nondeterministic scheduler mayMix in Cilk Plus on synthetic and realistic applications. Section 7

execute a given call to the RNG on different workers during differ- - describes related work, and Section 8 offers some concluding re-
ent runs of the program, even if the sequence of random numbersmarks.
produced by each worker is deterministic.

Deterministic parallel random-number generators (DPRNG's) 2. Pedigrees
exist for pthreading platforms, but they are ineffective for dthread- = ) ) B
ing platforms. For example, SPRNG [35] is an excellent DPRNG A pedigree scheme uniquely identifies each strand of a dthreaded
which creates independent RNG's via a parameterization processProgram in a scheduler-independent manner. This section intro-
For a few pthreads that are spawned at the start of a computationduces “spawn pedigrees,” a simple pedigree scheme that can be
and which operate independently, SPRNG can produce the needec@asily maintained by a dthreading runtime system. We describe the
RNG for each pthread. For a dthreaded program, however, which changes that Intel implemented in their Cilk Plus concurrency plat-
may contain millions ofstrands— serial sequences of executed form to implement spawn pedigrees. Their runtime support pro-
instructions containing no parallel control — each strand may need vides an application programming interface (API) that allows user
its own RNG, and SPRNG cannot cope. programmers to access the spawn pedigree of a strand, which can

Consider, for example, a program that uses SPRNG to generatebe used to implement a pedigree-based DPRNG scheme. We finish
a random number at each leaf of the computation of a parallel, by describing an important optimization for parallel loops, called
exponential-time, recursive Fibonacci calculatiib. Every time “flattening.” _ _
fib spawns a recursive subcomputation, a new strand is created, We shall focus on dialects of Cilk [20, 28, 34] to contextual-
and the program calls SPRNG to produce a new serial RNG streamiZ€e our dISC.USSIOn, since we used CI”( platf_o_rms to lmplement the
from the existing serial RNG. Théib program is deterministic, ~ Spawn-pedigree scheme and study its empirical behavior. The run-
since each strand receives the same sequence of random numbei§ne support for pedigrees that we describe can be adapted to other
in every execution. In an implementation of this program, however, dthreading platforms, however, which we discuss in Section 8.
we observed two significant problems: Background on dynamic multithreading

e When computingfib(21), the program using SPRNG was | et us first review the Cilk programming model, which provides
almost 50,000 times slower than a nondeterministic version that the basic dthreading abstractionfofk-join para"e”sm in which

maintains worker-local Mersenne twister [36] RNG'’s from the  dthreads are spawned off as parallel subroutines. Cilk extends C

GNU Scientific Library [21]. _ with two main keywordsspawn and sync.? A program’s logical

* SPRNG's default RNG only guarantees the independence of parajlelism is exposed using the keywarghwn. In a function,
27" streams, and computingib(n) for n > 21 forfeits this when a function invocatior is preceded by the keyworgbawn,
guarantee. the functionG is spawned and the scheduler may continue to

execute thecontinuation of ' — the statement after thepawn

of G — in parallel with G, without waiting forG to return. The
complement okpawn is the keywordsync, which acts as a local
barrier and joins together the parallelism specifiecspywn. The

Cilk runtime system ensures that statements afterc are not
executed until all functions spawned before #hac statement
have completed and returned. Cilk’s linguistic constructs allow a
Contributions programmer to express the logical parallelism in a program in a
| processor-oblivious fashion.

Dthreading platforms enable a wide range of applications to ex-
ecute deterministically by removing a major source of nondeter-
minism: load-balancing. Cilk’s nondeterministic scheduler, for ex-
ample, is implemented as a collectionwabrker pthreads that co-
operate to load-balance the work of the computation. The Cilk run-

Of course, SPRNG was never intended for this kind of use case
where many streams are created with only a few random numbers
generated from each stream. This example does show, however
the inadequacy of a naive solution to the problem of deterministic
parallel random-number generation for dthreading platforms.

In this paper, we investigate the problem of deterministic paralle
random-number generation for dthreading platforms. In particular,
this paper makes the following contributions:
e Aruntime mechanism, called “pedigrees,” for tracking the “lin-
eage” of each strand in a dthreaded program, which introduces
a negligible overhead across a suite of 10 MIT Cilk [20] bench-

mark applications. . _ _ _ 2The Cilk++ [34] and Cilk Plus [28] platforms use the keywords

® A general strategy for efficiently generating quall'gy determinis- ci1k_spawn andcilk_sync. They also include @ilk_for keyword for
tic parallel random numbers based on compressing the strand’sdefining a parallefor loop, which can be implemented in termsspiawn
pedigree and “mixing” the result. andsync.




time employsrandomized work-stealing5, 20], where a worker
posts parallel work locally, rather than attempting to share it when
the parallel work is spawned, and idle workers bectne/eswho

look randomly among their peers foictims with excess work.
When a thief finds a victim, istealsa functionframe from the
victim, and resumes execution of the frame by executing the contin-
uation after aspawn statement. Cilk-style dynamic multithreading

counter stack tracks the rank of the currently executing instruction
x with respect to the spawned ancestor function closest Thus,

the increment at the bottom of the stack occurs whenever resuming
the continuation of apawn or async statement. This operational
definition of spawn pedigrees satisfies Property 2, because an in-
crement occurs whenever any parallel control is reached and the
values of the pedigrees are strictly increasing according to a lexico-

encapsulates the nondeterminacy of the scheduler, enabling appli-graphic order. Because a spawn pedigree is dependent only on the

cation codes without determinacy ratk8] to produce determin-
istic results regardless of how they are scheduled.

Pedigree schemes

Pedigreesare deterministic labels for the executed instructions in
a dthreaded program execution that partition the instructions into

invocation tree, spawn pedigrees satisfy Property 1.

Runtime support for spawn pedigrees

Supporting spawn pedigrees in parallel in a dthreaded program
is simple but subtle. Let us first acquire some terminology. We
extend the definition of “parent” to instructions, where for any in-

valid strands. For the remainder of this section, assume that thestructionz, the parent of z, denotedparent(z), is the function

dthreaded program in question would be deterministic if each RNG

that executesc. For any nonroot functiorF', define thespawn

call in the program always returned th(_a same ran_dom number parent of F, denotedspParent(F), as parent(F) if F was
on every execution. For such computations, a pedigree schemespawned, orspParent(parent(F)) if F' was called. Intuitively,

maintains two useful properties:

1. Schedule independencd-or any instructionz, the value of
the pedigree for, denoted/(z), does not depend on how the
program is scheduled on multiple processors.

2. Strand uniquenessAll instructions with the same pedigree
form a strand.

spParent(F') is the closest proper ancestorifthat is a spawned
function. Define thespawn parentof an instructionz similarly:
spParent(z) = spParent(parent(z)). Therank of an instruc-
tion z, denotedR(z), corresponds to the value in the bottom-most
rank counter at the time is executed in a serial execution, and
each more-distant spawn parent in the ancestry difectly maps

Together, Properties 1 and 2 guarantee that pedigrees identifyto a rank counter higher in the stack.

strands of a dthreaded program in a deterministic fashion, regard-

The primary complication for maintaining spawn pedigrees dur-

less of scheduling. Therefore, one can generate a random numbeing a parallel execution is that while one workeis executing an

for each strand by simply hashing its pedigree.

instructionz in F = spParent(x), another workep’ may steal

The basic idea of a pedigree scheme is to name a given strand bya continuation inf" and continue executing, conceptually modify-

the path from the root of thievocation tree— the tree of function
(instances) wheré’ is aparentof GG, denotedF’ = parent(G),

if F' spawns or callgs. Label each instruction of a function with a
rank, which is the number of calls, spawns, or syncs that precede
it in the function. Then the pedigree of an instructiercan be
encoded by giving its rank and a list of ancestor ranks, e.g., the
instructionz might have rank 3 and be the 5th child of the 1st
child of the 3rd child of the 2nd child of the root, and thus its
pedigree would b&/(z) = (2,3,1,5,3). Such a scheme satisfies

ing the rank counter foF'. To eliminate this complication, when

p spawns a functiods from F, it savesR(G) — the rank-counter
value of F whenG was spawned — into the frame 6f, thereby
guaranteeing that any query of the pedigreefanas access to
the correct rank, even jf’ has resumed execution &fand incre-
mented its rank counter.

Figure 2 shows an API that allows a currently executing strand

s to query its spawn pedigree. For any instructiobelonging to a
strands, this API allowss to walk up the chain of spawned func-

Property 1, because the invocation tree is the same no matter howtions along thee-to-root path in the invocation tree and access the
the computation is scheduled. It satisfies Property 2, because twoappropriate rank value for and each ancestor spawned function.
instructions with the same pedigree cannot have a spawn or syncThe sequence of ranks discovered along this walk is precisely the
between them. reverse of the pedigre&(z).

Spawn pedigreesmprove on this simple scheme by defining We persuaded Intel to modify its Cilk Plus [28] concurrency
ranks using only spawns and syncs, omitting calls and treating platform to include pedigrees. The Intel C/C++ compiler with Cilk
called functions as being “inlined” in their parents. We can define Plus compiles the spawning of a functiéhas a call to aspawn-
spawn pedigrees operationally in terms of a serial execution of a wrapperfunctionG, which performs the necessary runtime manip-
dthreaded program. The runtime system conceptually maintains aulations to effect the spawn, one step of which is calling the func-
stack ofrank counters where each rank counter corresponds to an tion G. Thus, for any functior&, we havespParent(G) = é, and
instance of a spawned function. Program execution begins with afor any instructionz, the pedigree/(z) has a rank counter for each
single rank counter with value on the stack for the rootéin) spawn-wrapper ancestor of
function Fp. Three events cause the rank-counter stack to change:  Implementing this API in Cilk Plus requires additional storage

1. On a spawn of a functio@@, push a new rank counter with value  in spawn-wrapper frames and in the state of eacb worker thread.

0 for G onto the bottom of the stack. For every spawned functiof, the spawn wrappef" stores the
2. On a return from the spawn @f, pop the rank counter (for  following rank information inF’s frame:

G) from the bottom of the stack, and then increment the rank F — brank: a64-bit* value that store®(F).

counter at the bottom of the stack. ° F\—>parent: the pointer tcspParent(ﬁ).

3. On async statement inside a functiof', increment the rank L o .
In addition, every workep maintains two values in worker-local

counter at the bottom of the stack. t for it " ting instructi
For any instruction, the pedigree/(x) is simply the sequence storage for its currently execq Ing nstruction
e p— current-frame: the pointer taspParent(z).

of ranks on the stack whenexecutes. Figure 1 shows the Cilk code . :

for a recursive Fibonacci calculation and the corresponding invoca- ® P~ rank: 264-bit value storingR(x). .

tion tree for an execution dfib(4) with spawn pedigrees labeled ~ As Figure 2 shows, to implement the AP, the runtime system reads
on instructions. Intuitively, the counter at the bottom of the rank- these fields to report a spawn pedigree. In terms of the operational

3 Also calledgeneral raceg39]. 4 A 64-bit counter never overflows in practice, sirk¥ is abig number.



int main (void) {

int x = fib(4);
printf ("x=%d\n", x);
return (x);

int fib(int n) {

1

2

3

4
5}
6

7 if (n < 2) return n;
8

else {
int x, y;

10 x = spawn fib(n-1);

11 y = fib(n-2);

12 sync;

13 return (x+y);

14 3

15 3
QO Instruction  -=--- = Spawn
< syne — call

<0,0,0,0> <0,0,1> D Function invocation

Figure 1: Cilk code for a recursive Fibonacci calculation and the @at@n tree for an execution éfib(4). Pedigrees are labeled for each instruction. For
example sync instruction infib(4) has pedigre€3). A left-to-right preorder traversal of the tree represehésserial execution order. For example, for the
children of the node fofib(4), the first two instructions with ran@ correspond to lines 7 and 9 from Figure 1, the subtree rodtaddefib(4) between
fib(3) and the sync node corresponds to the execution of the syok @ines 10-12), and the last instruction with rah&orresponds to the return in line 13.
Instructions and functions are labeled with their ranks.é@mplefib(3) has a rank 0.

Function Description Implementation

RANK () ReturnsR(x) Returnsp — rank.
SPRRENT() ReturnsspParent(x) Returnsp — current-frame.
RANK (F) ReturnsR(F) ReturnsF’ — brank.
SPRRENT(F) ReturnsspParent(F) ReturnsF’ — parent.
STRANDBREAK() | Ends the currently-executing strandp — rank++.

Figure 2: An API for spawn pedigrees in Intel Cilk Plus. In these opera, « is the currently executing instruction for a worker, aids a spawn-wrapper
function which is an ancestor afin the computation tree. These operations allow the workesail up the computation tree to compufér). A worker can
also call SRANDBREAK() to end its currently executing strand.

definition of spawn pedigrees, thenk field in.p holds the botto.m- (a) On aspawn of F from Gt (b) On stalling at async in G-

most rank counter on the stack for the instructiorthat p is 1 G- rank = p— rank 1 G rank = p— rank

currently executing. 2 G—sp-rep = - —
To maintain these fields, the runtime system requires additional p— current-frame () On resuming the continuation

storage to save and restore the current spawn-parent pointer angd 3 ¥ — brank = G —rank Tasﬁf‘ﬁsg sy ”éﬂgjnk .
rank counter for each worker whenever it enters or leaves a nested g " : P‘”ke”t o G = sp-rep > 5 — current-frame —
. . rank =
spawned function. In particular, we allocate space for a rank and p
. . : . : 6

parent pointer in the stack frame of ev&ijk function — function
that can contaigpawn andsync statements:

e G — rank: a64-bit value that store®(x) for some instruction

x with spParent(z) = G.

p— current-frame = F G — sp-rep

Figure 3: How a workerp maintains spawn pedigreds) Fisa pointer to
the spawn wrapper of the functidn being spawned, an@ is a pointer to
the frame of the Cilk function that is spawniiig (b) G is the Cilk function

e G — sp-rep: the pointer taspParent(G). that is attempting to executesgnc. The valuep — current-frame need
These fields are only used to save and restore the correspondingiot be saved intG' — sp-rep, because the firgpawn in G' will have saved
fields for a workerp. Wheneverp is executing a Cilk functior? this value already, and this value is fixed f6r (c) G is the Cilk function
which spawns a functiof, it saves its fields int@> before begin- containing the continuation being resumed.

ning execution off". When a workep’ (which may or may not be

its values fromG. Similarly, saving and restoring also occurs when  c/c++ binaries.

a worker stalls at aync statement. Figure 3 summarizes the run- To implement DPRNG's, it is useful to extend the AP in Fig-

time operations needed to maintain spawn pedigrees. ure 2 to include a BRANDBREAK function that allows the DPRNG
Although the implementation of spawn pedigrees in Cilk Plus o end a currently executing strand explicitly. In particular, if a

required changes to the Intel compiler, ordinary C/C++ functions yser requests multiple random numbers from a DPRNG in a se-

need not be recompiled for the pedigree scheme to work. The rjg| sequence of instructions, the DPRNG can let each call to get

reason is that the code in Figure 3 does not perform any operationsa random number terminate a strand in that sequence using this

on entry or exit to called functions. Consequently, the scheme fynction, meaning that the DPRNG produces at most one random



number per strand. Likespawn or sync, when a workep encoun- 1. a compression functionc : Z7 — Z, that hashes each

ters a SRANDBREAK call, the next instruction after theTBAND- pedigree/ into a single integee(.J) less tharp, and
BREAK thatp executes is guaranteed to be part of a different strand, 2. amixing function p : Z,,, — Z,, that “mixes” the compressed
and thus have a different pedigree. THEREBNDBREAK function pedigree value(J).
is implemented by incrementing— rank. Let us consider each of these functions individually.

The goal of a compression functienis to hash each pedigree
Pedigree flattening for parallel loops J into an integer irZ, such that the probability of eollision —

As an optimization, we can simplify spawn pedigrees for parallel two distinct pe.digrees hashing to the same integer — is small.. To
loops. Intel Cilk Plus provides a parallel looping construct called COMPress pedigrees,d¥Mix computes a dot product of the pedi-

cilk_for, which allows all the iterations of the loop to execute 9rée with a vector of random values [17]. More formalyoTM X
in parallel. The runtime system implementislk_for using a bal- uses a compression functienchosen uniformly at random from

anced binary recursion tree implemented veitawn’s andsync’s, the following hash family.

where each leaf performs a chunk of iterations serially. Rather than pgginiTION 1. LetT = (y1,72, - ..,7p) be a vector of integers
tracking ranks at every level of this recursion tree, the Cilk Plus nosen uniformly at random fromi>. Define the compression
pedigree scheme conceptually “cuts out the middle man’fiatd functioner : Z2 —s 7, by v

tensall the iterations of thecilk_for loop so that they share a P P
single level of pedigree. The idea is simply to let the rank of an iter-

ation be the loop index. Consequently, iterations @i Bk_for can er(J) = (
be referenced within theilk_for by a single value, rather than

a path through the binary recursion tree. To ensurespain and
sync statements within a loop iteration do not affect the pedigrees
of other loop iterations, the body of each loop iteration is treated as
a spawned function with respect to its pedigree. This change sim- Chomix = {Cr ‘Te ZD}
plifies the pedigrees generated &dnk_for loops by reducing the ’ Py
effective spawn depth of strands within thelk_for and as Sec-
tion 6 shows, the cost of reading the pedigree as well.

D
Z’ijk-) mod p,

k=1

whereJ = (j1,j2,...,7p) € Z5. TheDOTMIX compression-
function family is the set

The next theorem proves that the probability is small that a ran-
domly chosen compression function € Cpoormix causes two dis-

3. A pedigree-based DPRNG tinct pedigrees to collide.

This section presents@Mix, a high-quality statistically random  THEOREM1. Leter € Cpormix be a randomly chosen compres-
pedigree-based DPRNG.dIMIx operates by hashing the pedi-  sion function. Then for any two distinct pedigrees/’ € Z)’, we
gree and then “mixing” the result. We investigate theoretical prin- havePr {cr(J) = cr(J')} = 1/p.

ciples behind the design of @Mix, which offer evidence that o ) , o .
pedigree-based DPRNG's can generate pseudorandom numbers OEROOF' LetJ = (j1,J2,...,jp), and let)" = {ji, j,..., jp).
high quality for real applications. We also examine empirical test becauseJ # J', there must exist some indeéxin the range

: : : 1 < k < D such thatj, # ji.. Without loss of generality, assume
results using Dieharder [9], which suggest thatMix generates Yk k
high-quality random numbers in practice. thatk = 1. We therefore have (modulg that

D D
The DOTM1x DPRNG cr(J) = er(J') = yijr — gt + > wkik — D Yk »
k=2 k=2

At a high level, DDTMIx generates random numbers in two stages.
First, DOTMIx compresses the pedigree into a single machine and thuscr(J) — cr(J’) = 0 implies that
word while attempting to maintain uniqueness of compressed pedi-

grees. Second, OTMIx “mixes” the bits in the compressed pedi- . M = g
gree to produce a pseudorandom value. (1 =g = Z 1k = Jk) -
To describe @TMIx formally, let us first establish some nota- k=2
tion. We assume that our computer has a word widtt its. We Consider fixed values fof, J’, andys, . . ., y&. Leta = j1 — ji #
choose a prime < m = 2" and assume that each rapkin the 0, letz = v, and lety = ZkD:Q e (G — k)
pedigree falls in the range < j; < p. Our library implementation We now show that for any fixed choice gfe Z, and nonzero

of DOTMIx simply increments each rank in the spawn-pedigree 4 ¢ Z,, there is exactly one choice of € Z, such thatyy = ax,
scheme from Section 2 to ensure that ranks are nonzerdZ,}et namely,z = a~'y. For the sake of contradiction, suppose that
denote the universe of (unsignedjbit integers over which calcu-  there are two distinct values, andz» such thaty = ax; = azs.
lations are performed, and I, denote the finite field of integers  This supposition implies théit= az, —axs = a(x1 —z2) modulo
modulop. Consequently, we havé, C Z,,. We assume that the 5 which is satisfied if and only if eithet = 0 or z; — z2 = 0,
spawn depthi(z) for any instructionz in a dthreaded program is  sincep is prime. Because # 0, we must haver; — 22 = 0,

bounded byd(z) < D.° A pedigree.J(x) for an instructionz at contradicting the supposition that andz» are distinct. Therefore,
spawn depthi(z) can then be represented by a len@hvector there is one value of satisfyingy = ax. Becauser = ~; is
J(x) = {(j1,j2,--.,jp) € ZY, wherej; = 0 for D — d(x) en- a randomly chosen value frof,, the probability thate satisfies
tries. Which entries are padded out witldoes not matter for the y=axisl/p. [

theorems that follow, as long as distinct pedigrees remain distinct.
In our implementation, we actually pad out the first entries.
For a given pedigred € Z,]?, the random number produced by

DoTMIX is the hashh(.J), whereh(.J) is the composition of

This low probability of collision allows @TMIX to generate
many random numbers with a low probability that any pair collide.
By Boole’s Inequality [16, p. 1195], given distinct pedigrees
and using a random function fropormix, the probability of
a collision among any of their compressed pedigrees is at most
5 A reasonable upper bound 18 = 100. (3)(1/p) = n(n—1)/2p. For the choice of the prime= 2°*—59,




for example, the probability that hashifgnillion pedigrees results Test r Passed Weak Poor Failed
in a collision in their compressed values is less thama million.

Although the compression function effectively hashes a pedi- Mersenne twister _~ I ! ! H
gree into an integer less thamwith a small probability of collision, 16 83 6 4 14
two similar pedigrees may yet have “similar” hash values, whereas 2 211 g ‘; ﬁ
we would like them to be statistically “dissimilar.” In particular, DOTMIX (tree) 5 31 5 5 16
for a given compression functiafr, two pedigrees that differ only 1 3 2 3 99
in their kth coordinate differ in their compressions by a predictable 0 0 0 0 107
multiple of .. To reduce the statistical correlation in generated ran-
dom values, @TMIx “mixes” the bits of a compressed pedigree 13 i; 2 S }Z
using a mixing function based on the RC6 block cipher [15, 43]. 4 79 5 ] 15
For anyw-bit input z, where we assume that is even, leté(z) DoTMix (loop) 5 79 4 ] 16
denote the function that swaps the high- and low-ord£2 bits of 1 55 2 8 42
z, thatis, 0 2 0 1 104

o) = | | v e ) cownwe {54 4k
and let

2 Figure 4: A summary of the quality of DTMIX on the Dieharder tests
f(2) = ¢(22" + z) mod m . compared to the Mersenne twister. For the entries labeleé,"tboTM X
DOTMIx uses the mixing functiop(z) = f(rr-)(z)’ which applies generate$20 rgndom numbers in a pa}rallel divide-and-conquer ternary
7 rounds of f(z) to the compressed pedigree valueContini et tree fash|02r10u5|ng spawns. For the entries Iabeleq “Iqopi’lak_for loop
al. [15] prove thatf(z) is a one-to-one function, and hence, for generate8” random numbers. The column labelethdicates the number

0 . , . of mixing iterations. Each successive column counts the nupfliests that
two distinct pedigrees/ and /', the probability that.(c(J)) = produced the given status, where the status of each testongsuted from

p(c(J")) is 1/p, unchanged from Theorem 1. the median of runs of the generator usirigdifferent seeds. The table also
DoTMix allows a seed to be incorporated into the hash of a summarizes the Dieharder test results for LCGM

pedigree. The random number generated for a pedigreeac-

tually the value of a hash functioh(J, o), whereo is a seed. When using Dieharder to measure the quality of a parallel
Such a seed may be incorporated into the computatipii@f(.J)) RNG, we confronted the issue that Dieharder is really designed
in several ways. For instance, we might XOR or otherwise com- to measure the quality of serial RNG’s. Since all numbers are
bine the seed with the result pfcr (J)), computing, for example, generated by a serial RNG in a linear order, this order provides a
h(J,0) = o & p(cer(J)). This scheme does not appear to be par- natural measure of “distance” between adjacent random numbers,
ticularly good, because it lacks much statistical variation between which Dieharder can use to look for correlations. When using an
the numbers generated by one seed versus another. A better schem&NG for a parallel program, however, this notion of “distance”
which DoTMix adopts, is to combine the seed with the compressed is more complicated, because calls to the RNG can execute in
pedigreebeforemixing. DOTM X is formally defined as follows. parallel. The results in Figure 4 use numbers generated in a serial
execution of the (parallel) test program, which should maximize the
correlation between adjacent random numbers due to similarities in
the corresponding pedigrees. In principle, another execution order
of the same program could generate random numbers in a different

DEFINITION 2. For a given number of mixing rounds, thé®oT-
Mix DPRNG generates a random number by hashing the current
pedigreeJ = (j1, j2, - . ., jp) With @ seedr according to the func-

tion order and lead to different Dieharder test results.
hr(J,0) = pler(J,0)) As a practical matter, DTMIX usesr = 4 mixing iterations to
f(r)(C (J,0)) generate empirically high-quality random numbers. The difference
EANE ’ in performance per call to TMix with » = 0 and withr = 4 is
where less thar2%, and thus TMIX can generate high-quality random
er(J,0) = (o + er(J)) mod m numbers without sacrificing performance.

andcr(J) is a hash function chosen uniformly at random from the . )
DoTMIx compression-function family/pormix - 4. Other pedigree-based DPRNG's

o ) This section investigates several other pedigree-based schemes for
The statistical quality ofDOTM1x DPRNG’s. Principal among these schemes is LC&Mwhich

Although DOoTMIx is not a cryptographically secure RNG, it ap- US€s a compression fu_n_ction bas_,ed on linear congruential gener-
pears to generate high-quality random numbers as evinced byators and the same mixing function atMix. We prove that
Dieharder [9], a collection of statistical tests designed to empir- the probability that LCGNK's compression function generates a
ically test the quality of serial RNG's. Figure 4 summarizes the collision is small, although not quite as small as fapMix. We
Dieharder test results for @Mix and compares them to those examine Dieharder results which indicate that LC &N statisti-

of the Mersenne twister [36], whose implementation is provided cally good. We also discuss alternative DPRNG schemes and their
in the GNU Scientific Library [21]. As Figure 4 shows, withor utility. These DPRNG’s demonstrate that pe_dlgrees can _enable not
more iterations of the mixing function,@Mix generates random  only DOTMIx, but a host of other DPRNG implementations. We
numbers of comparable quality to Mersenne twister. In particu- close by observing a theoretical weakness withTlix which

lar, Mersenne twister and @Mix with 2 or more mixing iter- would be remedied by &independent compression scheme.

ations generally fail the same set of Dieharder tests. Because th

Dieharder tests are based dvalues [26], it is not surprising to eTheLCGM IX DPRNG
see statistical variation in the number of “Weak” and “Poor” results LCGMix is related to the “Lehmer tree” DPRNG scheme of [19].
even from high-quality RNG’s. We report the medianffuns LCGMix uses a family of compression functions for pedigrees
using5 different seeds to reduce this variation. that generalize linear congruential generators (LCG’s) [29, 32].



LCGMix then “RC6-mixes” the compressed pedigree to generate

a pseudorandom value using the same mixing function@eMDX .
The basic idea behind LCGIM is to compress a pedigree by

We tested the quality of random numbers produced by LCG-
Mix using Dieharder, producing the results in Figure 4. The data
suggest that, as with @Mix, » = 4 mixing iterations in LCG-

combining each successive rank using an LCG that operates mod-Mix are sufficient to provide random numbers whose statistical

ulo a primep, wherep is close to but less tham = 2%, where
w is the computer word width. LCGM uses only three random
nonzero values, 3,y € Z,, rather than a table, asd¥Mix does.
Specifically, for an instructior at depthd = d(x) with pedigree

J(x) = (j1,J2,---,ja), the LCGMX compression function per-
forms the following recursive calculation modyjo
~y if d =0,
Xg = .
d {Oth1+ﬂjd if d > 0.

The value X, is the compressed pedigree. Thus, the LCIGM
compression function need only perform two multiplications mod-
ulo p and one addition modulp per rank in the pedigree.

Assume, as for DTMIX, that the spawn deptti(z) for any
instructionz in a dthreaded program is boundeddiy:) < D. The
family of compression functions used by LCG#can be defined
as follows.

DEFINITION 3. Let «, 3,y be nonzero integers chosen uniformly
at random frontzZ,. Definecq 4,4 : US>, Zi — Z, by

d
o () = (ad7+6zadkjk> mod .,
k=1

whereJ = (j1,j2,...,j4) € Z% TheLCGMIx compression-
function family is the set of functions

CVLCGMIX = {ca,ﬁ,'y : 0‘7577 € ZP - {0}} .

quality is comparable to those produced by the Mersenne twister.

Further ideas for DPRNG's

We can define DPRNG'’s using families of compression functions
that exhibit stronger theoretical properties or provide faster perfor-
mance than either @M 1x or LCGMix.

One alternative is to uséabulation hashing [11] to com-
press pedigrees, giving compressed pedigree values thai- are
independent and have other strong theoretical properties [41]. This
DPRNG is potentially useful for applications that require stronger
properties from their random numbers. To implement this scheme,
the compression function treats the pedigree as a bit vector whose
1 bits select entries in a table of random values to XOR together.

As another example which favors theoretical quality over per-
formance, a DPRNG could be based on compressing the pedigree
with a SHA-1 [38] hash, providing a cryptographically secure com-
pression function that would not require any mixing to generate
high-quality random numbers. Other cryptographically secure hash
functions could be used as well. While cryptographically secure
hash functions are typically slow, they would allow the DPRNG to
provide pseudorandom numbers with very strong theoretical prop-
erties, which may be important for some applications.

On the other side of the performance-quality spectrum, a
DPRNG could be based on compressing a pedigree using a faster
hash function. One such function is the hash function used in
UMAC [3], which performs half the multiplications of @TM1x’s
compression function. The performance of the UMAC compres-
sion scheme and the quality of the DPRNG it engenders offers an
interesting topic for future research.

The next theorem shows that the probability a randomly chosen 4-independent compression of pedigrees

compression function,, s, € CLcemix hashes two distinct pedi-

grees to the same value is small, although not quite as small as for':‘/llthough Theorem 1 shows that the probability is small thatrD

DoTMIX.

THEOREM2. Letca sy € Clcemx be a randomly chosen com-
pression function. Then for any two distinct pedigrdes Z¢ and
J' € 7 we havePr {ca 5., (J) = cap~(J)} < D/(p — 1),
whereD = max {d, d’}.

PrROOF LetJ = (j1,52,---,7a) andJ’ = (51, 55,...,5%). The
important observation is that the differences .~ (J) — ca,5,,(J')
is a nonzero polynomial imv of degree at mosD with coef-
ficients inZ,. Thus, there are at mogP roots to the equation
Ca,8,4(J) — cap~(J") = 0, which are values for that cause
the two compressed pedigrees to collide. Since therg aré pos-
sible values fory, the probability of collision is at mogd /(p —1).
O

This pairwise-collision probability implies a theoretical bound
on how many random numbers LCG¥ can generate before
one would expect a collision between any pair of numbers in the
set. By Boole’s Inequality [16, p. 1195], compressingedigrees
with a random function fronCLcemix gives a collision probabil-
ity between any pair of those compressed pedigrees of at most
(5)D/(p — 1) = n(n — 1)D/2(p — 1). With p = 2°* — 59 and
making the reasonable assumption that< 100, the probabil-

IX’s compression function causes two pedigrees to collidet-D
Mix contains a theoretical weakness. Consider two distinct pedi-
greesJ; and.J, of length D, and suppose that@Mix maps.J;
and.J, to the same value, or more formally, thabDM X chooses
a compression functionr such thatr(J1) = cr(Jz2). LetJ + (5)
denote the pedigree that results from appending the jankthe
pedigree/. Because/; andJ; both have lengttD, it follows that

cr(J1+ () = er(J1) + yp+1J
=cr(J2) + vp+1J
=cr(J2+(j)) -

Thus, DoTMIx hashes the pedigreds + (j) andJ> + (j) to the
same value, regardless of the valuejofn other words, one colli-
sion in the compression of the pedigrees for two strands, however
rare, may result in many ancillary collisions.

To address this theoretical weakness, a DPRNG scheme might
provide the guarantee that if two pedigrees for two strands collide,
then the probability remains small that any the pedigrees collide for
any other pair of strands. #independent hash function [46] would
achieve this goal by guaranteeing that the probability is small that
any sequence dfdistinct pedigrees hash to any particular sequence
of 4 values. Tabulation-basettindependent hash functions for
single words are known [45], but how to extend these techniques

ity that compressing 500,000 pedigrees results in a collision is less 4 hash pedigrees efficiently is an intriguing open problem.

than1 in a million. As can be seen, 500,000 pedigrees is a factor
of 10 less than thé& million for DoTM1x for the same probability.
Since our implementation of LCGM was no faster than our im-
plementation of @TM X per function call, we favored the stronger
theoretical guarantee of@Mix for the Cilk Plus library.

5. A scoped DPRNG library interface

This section presents the programming interface for a DPRNG li-
brary that we implemented for Cilk Plus. This interface demon-



1 template <typename T> 1 uint64_t f (DPRNG<DotMix>* rand, uint64_t seed, int i) {
2 class DPRNG { 2 uint64_t sum = 0;
DPRNG () ; // Constructor 3 DPRNG_scope scope = rand->current_scope() ;

~DPRNG () ; // Destructor 4 rand->set(seed, scope);

DPRNG_scope current_scope(); // Get current scope for (int j = 0; j < 15; ++j) {

void set(uint64_t seed, DPRNG_scope scope); // Init uint64_t val = rand->get();

uint64_t get(); // Get random # sum += val;
3

O~NO U~ W

}

return sum;

. i . . : . 10 }
Figure 5: A C++ interface for a pedigree-based DPRNG suitable for use 11 int main(void) {

with Cilk Plus. The typeT of the DPRNG object specifies a particular 75 t int NSTREAMS = 10:
DPRNG library, such as OTMix, that implements this interface. In ad- 13 anntsf54_tlnsum[NSTREAM5]; ’

5
6
7
8
9
0

dition to accepting an argument for an initial seed, theatitation method 14 uint64_t s1 = Ox42; uint64_t s2 = 31415;
for the DPRNG in line 6 also requires an lexical scope, retitig the scope 15 // Generate NSTREAMS identical streams
where the DPRNG object can be used. 16 cilk_for (int i = 0; i < NSTREAMS; ++i) {
17 DPRNG<DotMix>* rand = new DPRNG() ;
. . 18 sum[i] = f(rand, s1, i);
strates how programmers can use a pedigree-based DPRNG library;g sum[i] += f(rand, s2, i);
in applications. The interface uses the notion of “scoped” pedi- 20 delete rand;
grees, which allow DPRNG'’s to compose easily. g; ]}c Gt § - 1§ < NSTREAMS Y
i i or (int i = 1; i HERt
Scoped pedigrees solve the following problem. Suppose that a 55 assert(sun[1] == sun[01).

dthreaded program contains a parallel subcomputation that usespa  return o;

a DPRNG, and suppose that the program would like to run this 25 3

subcomputation the same way twice. Using scoped pedigrees, the

program can guarantee that both runs generate the exact sameéigure6: A program that generatésTREAMS identical streams of random
random numbers, even though corresponding RNG calls in the numbers. Inside functiofi, the code in lines 3-4 limits the scope rafnd
subcomputations have different pedigrees globally. so that it can generate random numbers only within

Intuitively, a scope can be represented by a pedigree prefix
that should be common to the pedigrees of all strands generating
Figure 5 shows a C++ interface for a DPRNG suitable for use with random numbers within the scope. Lgthe the instruction cor-
Cilk Plus. It resembles the interface for an ordinary serial RNG, responding to a call taurrent_scope(), and letz be a call to
but it constrains when the DPRNG can be used to generate randonget () within the scope/(y). Let J(z) = (j1, 425+ - -+ Jacz)) and
numbers by_de_flnlng_a_ _“S(_:ope“ for each DPR_NG instance. The Jly) = <ji7jé7 7j(/i(’ )>_ Sincez belongs to the scopé(y), it
set method in line 6 initializes the DPRNG object based on two follows thatd(z) > d(yg and we have > i’ andji = !
quantities: an initial seed and a scope. The seed is the same ag’ ™ ° 7" ) A S0 S0 L G T ) 3 d(é/.) f’“ 'tﬁ
for an ordinary serial RNG. Thecoperepresented by a pedigree 10" @l k < d(y). We now define thescoped pedigreef = wi
J is the set of instructions whose pedigrees haves a common respect to scopé(y) as
prefix. Spgcifying a scope (represented Bytp the DPRNG c_)bj_ect Ty (T) = <jd(y) — j&(w,jd(y)ﬂ, . 7jd(w)> .
rand restricts the DPRNG to generate numbers only within that )
scope and to ignore the common prefixvhen generating random 10 compute a random number fd(z) excluding the scopé(y),
numbers. By default, the programmer can pass in the global scopeWe Simply perform a DPRNG scheme on the scoped pedigree
(0) to let the DPRNG object be usable anywhere in the program. /(v (%). For example, DTMix computegu(cr (/) (x))). Fur-

The interface allows programmers to limit the scope of a DPRNG thermore, one can check for scoping errors by verifying g is
object by getting an explicit scope (line 5) and setting the scope of indeed the prefix of (x) via a direct comparison of all the pedigree
a DPRNG object (line 6). terms. . o

Figure 6 demonstrates how restricting the scope of a DPRNG  Scoped pedigrees allow DPRNG's to optimize the process of
can be used to generate repeatable streams of random number€ading a pedigree. By hashing scoped pedigrees, a call to the
within a single program. Insid€, the code in lines 34 limits the ~ PPRNG need only read a suffix of the pedigree, i.e. the scoped
scope ofrand so that it generates random numbers only within pe(j|g.ree.|tself, rather than the entire pedllgree. To implement this
Because of this limited scope, the assertion in line 23 holds true. If OPtimization, each scope may store a pointer to the spawn parent
the programmer setsand with a global scope, then each callfo for the deepest rank of the scope, anq phen the code for reading the
would generate a different value feum, and the assertion would ~ Pedigree extracts ranks as usual until it observes the spawn parent
fail. the scope points to. One problem with this optimization is that a

Intuitively, one can think of the scope as extension of the seed DPPRNG may not detect if it is hashing a pedigree outside of its
for a serial RNG. To generate exactly the same stream of randomSCope. To overcome this problemODMix supports a separate
numbers in a dthreaded program, one must (1) use the same seedn0de for debugging, in which calls checks their pedigrees term-
(2) use the same scope, and (3) have exactly the same structure dpy-term to verify they are within the scope.
spawned functions and RNG calls within the scope. Evérfidm
Figure 6 were modified to generate random numbers in parallel, 6. Performanceresults
the use of scoped pedigrees still guarantees that each iteration o
the parallel loop in line 16 behaves identically.

Programming interface

tI'his section reports on our experimental results investigating the
overhead of maintaining pedigrees and the cost of tleaNDix

. DPRNG. To study the overhead of tracking pedigrees, we modi-
Implementation fied the open-source MIT Cilk [20], whose compiler and runtime
To implement theget method of a DPRNG, we use the APl in  system were both accessible. We discovered that the overhead of
Figure 2 to extract the current pedigree during the cagett and tracking pedigrees is small, having a geometric mean of o¥ly

then we hash the pedigree. The principal remaining difficulty in the on all tested benchmarks. To measure the costs@fNDIx, we
DPRNG’s implementation is in handling scopes. implemented it as a library for a version of Cilk Plus that Intel en-



Application  Default ~ Pedigree  Overhead DPRNG overheads

fib 11.03 12.13 1.10 To estimate the cost of using DPRNG's, we persuaded Intel to mod-
cholesky 2.75 2.92 1.06 ify its Cilk Plus concurrency platform to maintain pedigrees, and
fft 151 1.53 1.01 then we implemented thed@rMix DPRNG® We compared DT-
matmul 2.84 2.87 1.01 Mix’s performance, using = 4 mixing iterations, to a nondeter-
;ii;:gin ggg g%i 188 ministic parallel implementation of the Mersenne twister on syn-
queens 461 4.60 1.00 thetic benchmarks, as well as on more realistic applications. From
plu 732 7.35 1.00 these results, we estimate that the “price of determinism” for-D
heat 251 2.46 0.98 Mix is about a factor 0.3 in practice on synthetic benchmarks
1lu 7.88 7.25 0.92 that generate large pedigrees, but it can be significantly less for

more practical applications. For these experiments, we coded by
Figure 7: Overhead of maintaining4-bit rank pedigree values for_the Cilk hand an optimization that the compiler could but does not imple-
\?Vi’:ghrrgr?”;rs] fncﬁr&%arggﬁeoréﬁeéjleégugyﬁygﬁ&k g.gigé?ehf;fgrltJSCP ment. To avoid incurring the overhead of multiple worker lookups
clocked at 1.9 GHz. All times are the minimum ©$§ runs measured in on every call to generate a random number, within a stran;: D
seconds. Mix looks up the worker once and uses it for all calls to the API
made by the strand.

We used Intel Cilk Plus to perform three different experiments.
gineers had augmented with pedigree support, and we comparecFirst, we used a synthetic benchmark to quantify howTBlix
its performance to a nondeterministic DPRNG implemented us- performance is affected by pedigree length. Next, we used the same
ing worker-local Mersenne twister RNG’s. Although the price of benchmark to measure the performance benefits of flattening pedi-
determinism from using DTMIX was approximately a factor of  grees forcilk_for loops. Finally, we benchmarked the perfor-
2.3 greater per function call than Mersenne twister on a synthetic mance of TMIX on realistic applications that require random
benchmark, this price was much smaller on more realistic codes numbers. All experiments described in the remainder of this section
such as a sample sort and Monte Carlo simulations. These empiri-were run on an Intel Xeon X5650 system with two 6-core CPU's,
cal results suggest that pedigree-based DPRNG’s are amplyfast fo each clocked at 2.67 GHz. The code was compiled using the In-
debugging purposes and that their overheads may be low enoughel C++ compiler v13.0 Beta with the03 optimization flag and
for some production codes. uses the Intel Cilk Plus runtime, which together provide support
for pedigrees.
: First, to understand how the performance abiix varies
Pedigree overheads with pedigree length, we constructed a synthetic benchmark called
To estimate the overhead of maintaining pedigrees, we ran a setCBT. This benchmark successively creatgd: complete binary
of microbenchmarks for MIT Cilk with and without support for  trees, each wittk leaves, which it walks in parallel by spawning
pedigrees. We modified MIT Cilk 5.4.6 to store the necessary 64- two children recursively. The pedigree of each leaf has uniform
bit rank values and pointers in each frame for spawn pedigree3|engthL = 2 + Ig k, and within each leaf, we call the RNG.
and to maintain spawn pedigrees at runtime. We then ran 10 MIT  Figure 8 compares the performance of various RNG's on the
Cilk benchmark programs using both our modified version of MIT CBT benchmark, fixing: = 22° random numbers but varying
Cilk and the original MIT Cilk. In particular, we ran the following  the pedigree lengti.. These results show that the overhead of

benchmarks: DoTMix increases roughly linearly with pedigree length, but that

e fib: Recursive exponential-time calculation of tHéth Fi- DotMix is still within about a factor of2 compared to using
bonacci number. a Mersenne Twister RNG. From a linear regression on the data

e cholesky: A divide-and-conquer Cholesky factorization of a from Figure 8, we observed that the cost per additional term in
sparse000 x 2000 matrix with 10,000 nonzeros. the pedigree for both BTM1x and LCGMX was about5 cycles,

e fft: Fast Fourier transform a2¢* elements. regardless of whether= 4 orr = 16.”

e matmul: Recursive matrix multiplication af000 x 1000 square Figure 9 breaks down the overheads abiMix in the CBT
matrices. benchmark further. To generate a random numb&TNDIX re-

e rectmul: Rectangular matrix multiplication a2048 x 2048 quires looking up the currently executing worker in Cilk (from
square matrices. thread-local storagd)reading the pedigree, and then generating

e strassen: Strassen’s algorithm for matrix multiplication on  a random number. The figure compares the overheadoaiMDx
2048 x 2048 square matrices. with the overhead of simply spawning a binary tree witheaves

e queens: Backtracking search to count the number of solutions while performing no computation within each leaf. From this data,
to the24-queens puzzle. we can attribute at leasts% of the execution time of DTM X

e plu: LU-decomposition with partial pivoting on2048 x 2048 calls to the overhead of simply spawning the tree itself. Also, by
matrix. measuring the cost of reading a pedigree, we observe that for the

e heat: Jacobi-type stencil computation ont@96 x 1024 grid longest pedigrees, roughly half of the cost of an RNG call can be
for 100 timesteps. attributed to looking up the pedigree itself.

e lu: LU-decomposition on 2048 x 2048 matrix.
The results from these benchmarks, as summarized in Figure 7,

show that the slowdown due to spawn pedigrees is generally neg-6 The Intel C++ compiler v12.1 provides compiler and runtime supfor
ligible, having a geometric mean of less tha%. Although the maintaining pedigrees in Cilk.
overheads run as high 8% for fib, they appear to be within  71pjs linear model overestimates the runtime of this benchmark fe; 4
measurement noise caused by the intricacies of modern-day proces¢not shown). For small trees, it is difficult to accurately measand isolate
sors. For example, two benchmarks actually run measurably fasterthe RNG performance from the cost of the recursion itself.
despite the additional overhead. This benchmark suite gives us con- our implementation of a parallel RNG based on Mersenne Twister
fidence that the overhead for maintaining spawn pedigrees shouldrequires a similar lookup from thread-local storage to finel worker-
be close to negligible for most real applications. thread's local RNG.
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Figure 8: Overhead of various RNG’s on the CBT benchmark when gener- Figure 10: Comparison of pedigree lookups in@lk_for loop with
atingn = 220 random numbers. Each data point represents the minimum recursive spawns in a binary tree. The recursive spawnimgrgé&esn
of 20 runs. The global Mersenne twister RNG from the GSL library][2 leaves as in the CBT benchmark, with each pedigree lookumbdvi=

only works for serial code, while the worker-local Merserimgster is a 2 + lgn terms. Thecilk_for loop uses a grain size df, and generates
nondeterministic parallel implementation. pedigrees of length.
Application Ty (DOtMiX)/T1 (mt) T12(DOtMiX)/T12(mt)
fib 2.33 2.25
600 pi 1.21 113
maxIndSet 1.14 1.08
° 500 f sampleSort 1.00 1.00
3 DiscreteHedging 1.03 1.03
Z 400}
8 1
; ** . g Figure 11: Overhead of @TMIx as compared to a parallel version of the
g Sool B.gG-8 8. g.g8 T EE-ET Mersenne twister (denoted by in the table) on four programs. All bench-
P X , gy
X o TR S U R YA g o marks use the same worker-local Mersenne twister RNG's asginr&ig
L°>)~ 200 §.-# i B S DotMiXﬁﬂg i,_ L except forDiscreteHedging, which uses QuantLib’s existing Mersenne
DotMix, r=4 - twister implementation.
Pedigree Lookup
100 Worker Lookup --#-- 1 . . . . . . .
Empty Leaf - @~ e DiscreteHedging: A financial-model simulation using Monte
Yy . . . . . . Carlo methods.
6 & 10 12 14 16 18 20 2 We implemented thpi benchmark ourselves. ThexIndSet and
Pedigree Length L sampleSort benchmarks were derived from the code described
Figure 9: Breakdown of overheads of @Mix in the CBT benchmark, in [4]. The DiscreteHedging benchmark is derived from the

with n. = 220. This experiment uses the same methodology as for Figure 8. QuantLib library for computation finance. More specifically, we
modified QuantLib version 1.1 to parallelize this example as de-
scribed in [25], and then supplemented QuantLib’s existing RNG
) ) ) implementation of Mersenne Twister withdMx.

To estimate the performance improvement of the pedigree-flatten- 1o estimate the per-function-call cost ofoPMix, we also

ing optimization forcilk_for loops 'described in Section 2, we  an the samefib benchmark that was used for the experiment
compared the cost performing pedigree lookups for the CBT  gescribed in Figure 7, but modified so that the RNG is called
benchmark (Figure 9) to the cost of pedigree lookupsdil_for once at every node of the computation. The resultsffds in

loop performingn pedigree lookups in parallel. Figure 10 shows  Figyre 11 indicate that DTMix is about a factor of.3 slower than
that thecilk_for pedigree optimization substantially reduces the using Mersenne twister, suggesting that the price of determinism

cost of pedigree lookups. This result is not surprising, since the for parallel random-number generation in dthreaded programs is at
pedigree lookup for recursive spawning in the CBT benchmark most2-3 per function call.

Pedigree flattening

cost i_ncreases roughly Iinearly_ witg n, whereas the lookup cost The remaining applications pay a relatively lesser price for

remains nearly constant for using alk_for aslgn increases. determinism for two reasons. First, many of these applications
perform more computation per random number obtained, thereby

Application benchmarks reducing the relative cost of each call t@tMix. Second, many

of these applications call ®rMix within a cilk_for loop, and
thus benefit from the pedigree-flattening optimization to reduce the
cost per call of reading the pedigree.

Figure 11 summarizes the performance results for the various
RNG'’s on four application benchmarks:

e pi: A simple Monte-Carlo simulation that calculates the value

of the transcendental numbeiusing256M samples.

e maxIndSet: A randomized algorithm for finding a maximum 7. Related work
independent set in graphs with approximateM vertices, The problem of generating random numbers deterministically in
where nodes have an average degree of betvem 20. multithreaded programs has received significant attention. SPRNG

e sampleSort: A randomized recursive samplesort algorithm on [35] is a popular DPRNG for pthreading platforms that works by
64M elements, with the base case on 10,000 samples. creating independent RNG's via a parameterization process. Other



approaches to parallelizing RNG’s exist, such as leapfrogging and ment an event-counter mechanism may exist, which would enhance
splitting. Coddington [14] surveys these alternative schemes and composability.

their respective advantages and drawbacks. It may be possible to  Our second enhancement addresses the problem of “climbing
adapt some of these pthreading RNG schemes to create similarthe tree” to access all ranks in the pedigree for each call to the

DPRNG's for dthreaded programs. DPRNG, the cost of which is proportional to the spawn depth
The concept of deterministically hashing interesting locations in Some compression functions, including Definitions 1 and 3, can
a program execution is not new. ThexIndSet andsampleSort be computedncrementally, and thus results can be “memoized”

benchmarks we borrowed from [4] usedashhochashing scheme  to avoid walking up the entire tree to compress the pedigree. In
to afford repeatability, a technique we have used technique our- principle, one could memoize these results ifteane-datacache
selves in the past and which must have been reinvented numerous— a worker-local cache of intermediate results — and then, for
times before us. More interesting is the pedigree-like scheme duesome computations, generate random number@®(ih) time in-
to Bond and McKinley [8] where they use an LCG strategy similar stead ofO(d) time. Preliminary experiments with using frame-data
to LCGMix to assign deterministic identifiers to calling contexts caches indicate, however, that in practice, the cost of memoizing
for the purposes of residual testing, anomaly-based bug detection the intermediate results in every stack frame outweighs the bene-
and security intrusion detection. fits from memoization, even in an example suclf #s, where the
Recently, Salmoet al.[44] independently explored the idea of  spawn depth can be quite large. Hence, we opted not to use frame-
“counter-based” parallel RNG's, which generate random numbers data caches for BTMIx. Nevertheless, it is an interesting open
via independent transformations of counter values. Counter-basedquestion whether another memoization technique, such as selective
RNG’s use similar ideas to pedigree-based DPRNG’s. Intuitively, memoization specified by the programmer, might improve perfor-

the compressed pedigree values generateddsyMDx and LCG- mance for some applications.
Mix can be thought of as counter values, and the mixing function ~ We now turn to the question of how to extend the pedigree ideas
corresponds to a particular kind of transformation. Salwtaal. fo- to “less structured” dthreading concurrency platforms. For some

cus on generating high-quality random numbers, exploring several parallel-programming models with less structure than Cilk, it may
transformations based on both existing cryptographic standards andhot be important to worry about DPRNG'’s at all, because these
some new techniques, and show that these transformations lead tanodels do not encapsulate the nondeterminism of the scheduler.
RNG's with good statistical properties. Counter-based RNG’s do Thus, a DPRNG would seem to offer little benefit over a nonde-
not directly lead to DPRNG's for a dthreaded programs, however, terministic parallel RNG. Nevertheless, some models that support
because it can be difficult to generate deterministic counter val- more complex parallel control than the fork-join model of Cilk do
ues. One can, however, apply these transformations to compresseadmit the writing of deterministic programs, and for these models,
pedigree values and automatically derive additional pedigree-basedthe ideas of pedigrees can be adapted.

DPRNG's. As an example, Intel Threading Building Blocks [42] supports
software pipelining, in which each stage of the pipeline is a fork-
8. Concluding remarks join computation. For this control construct, one could maintain

n outer-level pedigree to identify the stage in the pipeline and
combine it with a pedigree for the interior fork-join computation
within a stage.

Although Cilk programs produce instruction traces correspond-
ing to fork-join graphs, the pedigree idea also seems to extend to
general dags, at least in theory. One can define pedigrees on gen-
eral dags as long as the children (successors) of a node arecbrdere
The rank of a node: indicates the birth order of with respect
to its siblings. Thus, a given pedigree (sequence of ranks) defines
a unique path from the source of the task graph. The complication
arises because in a general dag, multiple pedigrees (paths) may lead
to the same node. Assuming there exists a deterministic procedure
for choosing a particular path as the “canonical” pedigree, one can
still base a DPRNG on canonical pedigrees. It remains an open
question, however, as to how efficiently one can maintain canoni-
cal pedigrees in this more general case, which will depend on the
articular parallel-programming model.

We conclude by discussing two enhancements for pedigrees an
DPRNG's. We also consider how the notion of pedigrees might be
extended to work on other concurrency platforms.

The first enhancement addresses the problem of multiple calls to
a DPRNG within a strand. The mechanism described in Section 2
involves calling the SRANDBREAK function, which increments
the rank whenever a call to the DPRNG is made, thereby ensuring
that two successive calls have different pedigrees. An alternative
idea is to have the DPRNG store for each workanevent counter
ep that the DPRNG updates manually and uses as an additional
pedigree term so that multiple calls to the DPRNG per strand
generate different random numbers.

The DPRNG can maintain an event counter for each worker
as follows. Suppose that the DPRNG stores for each warkke
last pedigree read. When workep calls the DPRNG to generate
another random number, causing the DPRNG to read the pedigree
the DPRNG can check whether the current pedigree matches thep
last pedigree read. If it matches, thep has called the DPRNG
again from the same strand, and so the DPRNG updgtet it
does not match, thep must be calling the DPRNG from a new
strand. Because each strand is executed by exactly one worker, th
DPRNG can safely reset, to a default value in order to generate 99 Acknowledgments
the next random number. Thanks to Ron Rivest and Peter Shor of MIT for early discussions

This event counter scheme improves the composability of regarding strategies for implementing a DPRNG for dthreaded
DPRNG's in a program, because calls to one DPRNG do not af- computations. Ron suggested using the RC6 mixing strategy.
fect calls to another DPRNG in the same program, as they do for Thanks to Guy Blelloch of Carnegie Mellon for sharing his bench-
the scheme from Section 2. In practice, however, event countersmark suite from which we borrowed the sample sort and maximal-
may hurt the performance of a DPRNG. From experiments with independent-set benchmarks. Angelina Lee of MIT continually
the fib benchmark, we found that an event-counter scheme runs provided us with good feedback and generously shared her mastery
approximately20%—40% slower per function call than the scheme  of Cilk runtime systems. Loads of thanks to Kevin B. Smith and es-
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