
Deterministic Polynomial Time Equivalence of

Computing the RSA Secret Key and Factoring

Jean-Sébastien Coron and Alexander May

Gemplus Card International
34 rue Guynemer, 92447 Issy-les-Moulineaux, France

jean-sebastien.coron@gemplus.com

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn

33102 Paderborn, Germany
alexx@uni-paderborn.de

Abstract. We address one of the most fundamental problems concern-
ing the RSA cryptosystem: does the knowledge of the RSA public and
secret key-pair (e, d) yield the factorization of N = pq in polynomial
time? It is well-known that there is a probabilistic polynomial time algo-
rithm that on input (N, e, d) outputs the factors p and q. We present the
first deterministic polynomial time algorithm that factors N provided
that e, d < φ(N). Our approach is an application of Coppersmith’s tech-
nique for finding small roots of univariate modular polynomials.

Keywords: RSA, Coppersmith’s theorem.

1 Introduction

The most basic security requirement for a public key cryptosystem is that it
should be hard to recover the secret key from the public key. To establish this
property, one usually identifies a well-known hard problem P and shows that
solving P is polynomial-time equivalent to recovering the secret key from the
public key.

In this paper we consider the RSA cryptosystem [7]. We denote by N = pq
the modulus, product of two primes p and q of the same bit-size. Furthermore,
we let e, d be integers such that e ·d = 1 mod φ(N), where φ(N) = (p−1) ·(q−1)
is Euler’s totient function. The public key is then (N, e) and the secret key is
(N, d).

It is well known that there exists a probabilistic polynomial time equivalence
between computing d and factoring N . The proof is given in the original RSA
paper by Rivest, Shamir and Adleman [7] and is based on a work by Miller [6].

In this paper, we show that the equivalence can actually be made deter-
ministic, namely we present a deterministic polynomial-time algorithm that on
input (N, e, d) outputs the factors p and q, provided that e · d ≤ N2. Since
for standard RSA, the exponents e and d are defined modulo φ(N), this gives
ed < φ(N)2 < N2 as required. Our technique is a variant of Coppersmith’s

theorem for finding small roots of univariate polynomial equations [1], which is
based on the LLL lattice reduction algorithm [4]. We also generalize our algo-
rithm to the case of unbalanced prime factors p and q. We obtain that the more
imbalanced the prime factors are, the larger is the required upper bound on ed.
The paper is an extended version of the paper published by A. May at Crypto
2004 [5].

2 Background on Lattices

Let u1, . . . , uω ∈ Z
n be linearly independent vectors with ω ≤ n. The lattice

L spanned by < u1, . . . , uω > consists of all integral linear combinations of
u1, . . . , uω, that is:

L =

{

ω
∑

i=1

ni · ui| ni ∈ Z

}

Such a set {u1, . . . , uω} of vectors is called a lattice basis. All the bases have
the same number of elements, called the dimension or rank of the lattice. We
say that the lattice is full rank if ω = n. Any two bases of the same lattice can
be transformed into each other by a multiplication with some integral matrix of
determinant ±1. Therefore, all the bases have the same Gramian determinant
det1≤i,j≤d < ui, uj >. One defines the determinant of the lattice as the square
root of the Gramian determinant. If the lattice is full rank, then the determinant
of L is equal to the absolute value of the determinant of the ω×ω matrix whose
rows are the basis vectors u1, . . . , uω.

The LLL algorithm [4] computes a short vector in a lattice :

Theorem 1 (LLL). Let L be a lattice spanned by (u1, . . . , uω). The LLL algo-

rithm, given (u1, . . . , uω), finds in polynomial time a vector b1 such that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω

3 The Case of Balanced p and q

In this section, we show the deterministic polynomial-time equivalence between
recovering d and factoring N , when N is the product of two primes p and q of
same bit-size; this is the standard RSA setting. We generalize to an N = pq with
unbalanced prime factors in the next section.

Theorem 2. Let N = p · q, where p and q are two prime integers of same bit-

size. Let e, d be such that e · d = 1 mod φ(N). Then assuming that e · d ≤ N2,

given (N, e, d) one can recover the factorization of N in deterministic polynomial

time.

Proof. Let U = e · d− 1 and s = p + q − 1. Our goal is to recover s from N and
U . Then given N and s it is straightforward to recover the factorization of N .

2

First, we assume that we are given the high-order bits s0 of s. More precisely,
we let X be some integer, and write s = s0 · X + x0, where 0 ≤ x0 < X. The
integer s0 will eventually be recovered by exhaustive search. Moreover, we denote
φ = φ(N). From φ = (p − 1) · (q − 1) = N − s = N − s0 · X − x0 we obtain the
following equations :

U = 0 mod φ (1)

x0 − N + s0 · X = 0 mod φ (2)

Let m, k be integers. We consider the polynomials :

gij(x) = xi · (x − N + s0 · X)j · Um−j

for 0 ≤ j ≤ m and i = 0, and for j = m and 1 ≤ i ≤ k. Then from equations (1)
and (2), we have that for all previous (i, j) :

gij(x0) = 0 mod φm

Our goal is to find a non-zero integer linear combination h(x) of the polynomials
gij(x), with small coefficients. Then h(x0) = 0 mod φm, and using the following
lemma [3], if the coefficients of h(x) are sufficiently small, then h(x0) = 0 over the
integers. Then x0 can be recovered using any standard root-finding algorithm;
eventually from x0 one recovers the factorization of N . Given a polynomial
h(x) =

∑

hix
i, we denote by ‖h(x)‖ the Euclidean norm of the vector of its

coefficients hi.

Lemma 1 (Howgrave-Graham). Let h(x) ∈ Z[x] which is a sum of at most

ω monomials. Suppose that h(x0) = 0 mod φm where |x0| ≤ X and ‖h(xX)‖ <
φm/

√
ω. Then h(x0) = 0 holds over the integers.

Proof. We have :

|h(x0)| =
∣

∣

∣

∑

hix
i
0

∣

∣

∣
=

∣

∣

∣

∣

∑

hiX
i
(x0

X

)i
∣

∣

∣

∣

≤
∑

∣

∣

∣

∣

hiX
i
(x0

X

)i
∣

∣

∣

∣

≤
∑

∣

∣hiX
i
∣

∣

≤
√

ω‖h(xX)‖ < φm

Since h(x0) = 0 mod φm, this gives h(x0) = 0. ⊓⊔

We consider the lattice L spanned by the coefficient vectors of the polyno-
mials gij(xX). One can see that these coefficient vectors form a triangular basis
of a full-rank lattice of dimension ω = m + k + 1 (for an example, see Fig. 1).
The determinant of the lattice is then the product of the diagonal entries, which
gives :

det L = X(m+k)(m+k+1)/2Um(m+1)/2 (3)

3

1 x x2 x3 x4 x5 x6

g00(xX) U3

g01(xX) ∗ U2X

g02(xX) ∗ ∗ UX2

g03(xX) ∗ ∗ ∗ X3

g13(xX) ∗ ∗ ∗ X4

g23(xX) ∗ ∗ ∗ X5

g33(xX) ∗ ∗ ∗ X6

Fig. 1. The lattice L of the polynomials gij(xX) for k = m = 3. The symbol ’∗’
correspond to non-zero entries whose value is ignored.

Using LLL (theorem 1), one obtains a non-zero short vector b whose norm is
guaranteed to satisfy :

‖b‖ ≤ 2(ω−1)/4 · (det L)1/ω

The vector b is the coefficient vector of some polynomial h(xX) with ‖h(xX)‖ =
‖b‖. The polynomial h(x) is then an integer linear combination of the polyno-
mials gij(x), which implies that h(x0) = 0 mod φm. In order to apply Lemma
1, it is therefore sufficient to have that :

2(ω−1)/4 · (detL)1/ω <
φm

√
ω

Using the inequalities
√

ω ≤ 2(ω−1)/2, φ > N/2 and ω − 1 = m + k ≥ m, we
obtain the following sufficient condition :

det L ≤ Nm·ω · 2−2·ω·(ω−1)

From equation (3) and inequality U < N2, this gives :

X(m+k)(m+k+1)/2 ≤ Nm·k · 2−2·ω·(ω−1)

which gives the following condition for X :

X ≤ Nγ(m,k)

16
, γ(m, k) =

2 · m · k
(m + k) · (m + k + 1)

Our goal is to maximize the bound X on x0, so that as few as possible bits will
eventually have to be exhaustively searched. For a fixed m, the function γ(m, k)
is maximal for k = m. The corresponding bound for k = m is then :

X ≤ 1

16
· N 1

2
− 1

4m+2 . (4)

In the following we denote by log the logarithm to the base 2. For an X satisfying
the previous inequality, the previous algorithm applies the LLL reduction algo-
rithm on a lattice of dimension 2 ·m + 1 and with entries bounded by O(N2m).

4

Since the running-time of LLL is polynomial in the dimension and in the size of
the entries, given s0 such that s = s0 · X + x0 with 0 ≤ x0 < X, the previous
algorithm recovers the factorization of N in time polynomial in (log N,m).

Finally, taking the greatest integer X satisfying (4), and using s = p+q−1 ≤
3
√

N , we obtain :

s0 ≤ s

X
≤ 49 · N1/(4m+2)

Then, taking m = ⌊log N⌋, we obtain that s0 is upper-bounded by a constant.
The previous algorithm is then run for each possible value of s0, and the correct
s0 enables to recover the factorization of N , in time polynomial in log N . ⊓⊔

4 Generalization to Unbalanced Prime Factors

The previous algorithm fails when the prime factors p and q are unbalanced,
because in this case we have that s = p + q − 1 ≫

√
N . This implies that s is

much greater than the bound on X given by inequality (4).
In this section, we provide an algorithm which extends the result of the

previous section to unbalanced prime-factors. We use a technique introduced by
by Durfee and Nguyen in [2], which consists in using two separate variables x
and y for the primes p and q, and replacing each occurrence of x · y by N .

The following theorem shows that the factorization of N given (e, d) becomes
easier when the prime factors are imbalanced. Namely, the condition on the
product e · d becomes weaker. For example, we obtain that for p < N1/4, the
modulus N can be factored in polynomial time given (e, d) if e·d ≤ N8/3 (instead
of N2 for prime factors of equal size).

Theorem 3. Let β and 0 < δ ≤ 1/2 be real values, such that 2βδ(1 − δ) ≤ 1.
Let N = p · q, where p and q are two prime integers such that p < N δ and

q < 2 ·N1−δ. Let e, d be such that e ·d = 1 mod φ(N), and 0 < e ·d ≤ Nβ. Then

given (N, e, d) one can recover the factorization of N in deterministic polynomial

time.

Proof. Let U = ed − 1 as previously. Our goal is to recover p, q from N and U .
We have the following equations :

U = 0 mod φ (5)

p + q − (N + 1) = 0 mod φ (6)

Let m ≥ 1, a ≥ 1 and b ≥ 0 be integers. We define the following polynomials
gijk(x, y) :

gijk(x, y) = xi · yj · Um−k · (x + y − (N + 1))k

i ∈ {0, 1}, j = 0, k = 0, . . . ,m
1 < i ≤ a, j = 0, k = m
i = 0, 1 ≤ j ≤ b, k = m

5

In the definition of the polynomials gijk(x, y), we replace each occurrence of x ·y
by N ; therefore, the polynomials gijk(x, y) contain only monomials of the form
xr and yr. From equations (5) and (6), we obtain that (p, q) is a root of gijk(x, y)
modulo φm, for all previous (i, j, k) :

gijk(p, q) = 0 mod φm

Now, we assume that we are given the high-order bits p0 of p and the high-order
bits q0 of q. More precisely, for some integers X and Y , we write p = p0 ·X + x0

and q = q0 · Y + y0, with 0 ≤ x0 < X and 0 ≤ y0 < Y . The integers p0 and q0

will eventually be recovered by exhaustive search.
We define the translated polynomials :

tijk(x, y) = gijk(p0 · X + x, q0 · Y + y)

It is easy to see that for all (i, j, k), we have that (x0, y0) is a root of tijk(x, y)
modulo φm :

tijk(x0, y0) = 0 mod φm

As in the previous algorithm, our goal is to find a non-zero integer linear combina-
tion h(x, y) of the polynomials tijk(x, y), with small coefficients. Then h(x0, y0) =
0 mod φm, and using the following lemma, if the coefficients of h(x, y) are suf-
ficiently small, then h(x0, y0) = 0 over the integers. Then one can define the
polynomial h′(x) = (p0 ·X +x)m+b ·h(x,N/(p0 ·X +x)− q0 ·Y). Since h(x, y) is
not identically zero and h(x, y) contains only x powers and y powers, the poly-
nomial h′(x) cannot be identically zero. Moreover h′(x0) = 0, which enables to
recover x0 using any standard root-finding algorithm, and eventually the primes
p and q. Given a polynomial h(x, y) =

∑

hijx
iyj , we denote by ‖h(x, y)‖ the

Euclidean norm of the vector of its coefficients hij .

Lemma 2 (Howgrave-Graham). Let h(x, y) ∈ Z[x, y] which is a sum of at

most ω monomials. Suppose that h(x0, y0) = 0 mod φm where |x0| ≤ X, |y0| ≤
Y and ‖h(xX, yY)‖ < φm/

√
ω. Then h(x0, y0) = 0 holds over the integers.

Proof. We have:

|h(x0, y0)| =
∣

∣

∣

∑

hijx
i
0y

i
0

∣

∣

∣
=

∣

∣

∣

∣

∑

hijX
iY j

(x0

X

)i (y0

Y

)j
∣

∣

∣

∣

≤
∑

∣

∣

∣

∣

hijX
iY j

(x0

X

)i (y0

Y

)j
∣

∣

∣

∣

≤
∑

∣

∣hijX
iY j
∣

∣

≤
√

ω‖h(xX, yY)‖ < φm

Since h(x0, y0) = 0 mod φm, this gives h(x0, y0) = 0. ⊓⊔

We consider the lattice L spanned by the coefficient vectors of the polyno-
mials tijk(xX, yY). One can see that these coefficient vectors form a triangular
basis of a full-rank lattice of dimension ω = 2m + a + b + 1 (for an example,

6

1 x y x2 y2 x3 y3 x4 x5 y4

g000(xX, yY) U3

g100(xX, yY) ∗ U3X

g001(xX, yY) ∗ ∗ U2Y

g101(xX, yY) ∗ ∗ ∗ U2X2

g002(xX, yY) ∗ ∗ ∗ ∗ UY 2

g102(xX, yY) ∗ ∗ ∗ ∗ ∗ UX3

g003(xX, yY) ∗ ∗ ∗ ∗ ∗ ∗ Y 3

g103(xX, yY) ∗ ∗ ∗ ∗ ∗ ∗ ∗ X4

g203(xX, yY) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X5

g013(xX, yY) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Y 4

Fig. 2. The lattice L of the polynomials gijk(xX, yY) for m = 3, a = 2 and b = 1. The
symbol ’∗’ correspond to non-zero entries whose value is ignored.

see Fig. 2). The determinant of the lattice is then the product of the diagonal
entries, which gives :

detL = X(m+a)(m+a+1)/2Y (m+b)(m+b+1)/2Um(m+1) (7)

As previously, using LLL, one obtains a non-zero polynomial h(x, y) such
that:

‖h(xX, yY)‖ ≤ 2(ω−1)/4 · (det L)1/ω

In order to apply Lemma 2, it is therefore sufficient to have that :

2(ω−1)/4 · (detL)1/ω < φm/
√

ω

As in the previous section, using
√

ω ≤ 2(ω−1)/2, φ > N/2 and ω − 1 ≥ m, it is
sufficient to have :

det L ≤ Nm·ω · 2−2·ω·(ω−1) (8)

Let a = ⌊(u− 1) ·m− 1⌋ and b = ⌊(v− 1) ·m− 1⌋ for some reals u, v. We obtain
that (m + a)(m + a + 1) ≤ m2u2 and (m + b)(m + b + 1) ≤ m2v2. We denote
X = N δx and Y = N δy . From equation (7) we obtain that :

log(det L)

log N
≤ m2 ·

(

δx · u2

2
+ δy · v2

2
+ β

)

+ β · m (9)

Moreover, using m(u + v) − 3 < ω ≤ m(u + v), we obtain :

log
(

Nm·ω · 2−2·ω·(ω−1)
)

≥ m (m(u + v) − 3) log N − 2m2(u + v)2 (10)

Therefore, we obtain from inequalities (8), (9) and (10) the following sufficient
condition :

u + v − δx
u2

2
− δy

v2

2
− β ≥ β + 3

m
+

2

log N
(u + v)2

7

The function u → u− δx · u2/2 is maximal for u = 1/δx, with a maximum equal
to 1/(2δx). The same holds for the function v → v − δy · v2/2. Therefore, taking
u = 1/δx and v = 1/δy, we obtain the sufficient condition :

1

2δx
+

1

2δy
− β ≥ β + 3

m
+

2

log N

(

1

δx
+

1

δy

)2

(11)

For X = N δx and Y = N δy satisfying the previous condition, given p0 and q0,
the algorithm recovers x0, y0 and then p and q in time polynomial in (m, log N).

In the following, we show that p0 and q0 can actually be recovered by ex-
haustive search, while remaining polynomial-time in log N .

Let ε be such that 0 < ε ≤ δ/2. We have the following inequalities :

1

δ − ε
=

1

δ(1 − ε
δ)

≥ 1

δ

(

1 +
ε

δ

)

and
1

1 − δ − ε
≥ 1

1 − δ

(

1 +
ε

1 − δ

)

From 2βδ(1 − δ) ≤ 1, we obtain :

2β ≤ 1

δ(1 − δ)
=

1

δ
+

1

1 − δ

which gives :

1

δ − ε
+

1

1 − δ − ε
− 2β ≥ ε

(

1

δ2
+

1

(1 − δ)2

)

Therefore, taking δx = δ−ε and δy = 1−δ−ε, we obtain from (11) the following
sufficient condition :

δ

2
≥ ε ≥ 2 ·

(

β + 3

m
+

2

log N

(

1

δ
+

1

1 − δ

)2
)

(

1

δ2
+

1

(1 − δ)2

)−1

Taking m = ⌊log N⌋, this condition can always be satisfied for large enough
log N . Taking the corresponding lower-bound for ε, we obtain ε = O(1/ log N),
which gives Nε ≤ C for some constant C. Therefore, we obtain that p0 and q0

are upper-bounded by the constants C and 2C:

p0 ≤ p

X
≤ N δ−δx ≤ Nε ≤ C

q0 ≤ q

Y
≤ 2N1−δ−δy ≤ 2Nε ≤ 2C

This shows that p0 and q0 can be recovered by exhaustive search. The total
running-time is still polynomial in log N . ⊓⊔

8

5 Practical Experiments

We have implemented the two algorithms of sections 3 and 4, using Shoup’s NTL
library [8]. First, we describe in Table 1 the experiments with prime factors of
equal bit-size, with e · d ≃ N2. We assume that we are given the ℓ high-order
bits of s; the observed running time for a single execution of LLL is denoted by
t. The total running time for factoring N is then estimated as T ≃ 2ℓ · t. We
obtain that the factorization would take a few days for a 512-bit modulus, and
a few years for a 1024-bit modulus.

N bits given dimension t T

512 bits 14 bits 21 70 s 13 days
512 bits 10 bits 29 7 min 5 days
512 bits 9 bits 33 16 min 5 days

1024 bits 26 bits 21 7 min 900 years
1024 bits 19 bits 29 40 min 40 years
1024 bits 17 bits 33 90 min 23 years

Table 1. Bit-size of N , number of bits to be exhaustively searched, lattice dimension,
observed running-time for a single LLL-reduction t, and estimated total running-time
T , with e · d ≃ N2. The experiments were performed on a 1.6 GHz PC running under
Windows 2000/Cygwin.

The experiments with prime factors of unbalanced size with e · d ≃ N2 are
summarized in Table 2. In this case, it was not necessary to know the high-order
bits of p and q, and one recovers the factorization of N after a single application
of LLL. The table shows that the factorization of N is easier when the prime
factors are unbalanced.

N δ dimension t

512 bits 0.25 16 2 s
512 bits 0.3 29 2 min

1024 bits 0.25 16 15 s
1024 bits 0.3 29 10 min

Table 2. Bit-size of the RSA modulus N such that p < Nδ, lattice dimension, observed
running-time for factoring N , with e · d ≃ N2. The experiments were performed on a
1.6 GHz PC running under Windows 2000/Cygwin.

9

6 Conclusion

We have shown the first deterministic polynomial time algorithm that factors an
RSA modulus N given the pair of public and secret exponents e and d, provided
that e · d < N2. The algorithm is a variant of Coppersmith’s technique for
finding small roots of univariate modular polynomial equations. We have also
generalized our algorithm to the case of unbalanced prime factors.

References

1. D. Coppersmith, “Small solutions to polynomial equations and low exponent vul-
nerabilities”, Journal of Cryptology, Vol. 10(4), pp. 223–260, 1997.

2. G. Durfee and P. Nguyen “Cryptanalysis of the RSA Schemes with Short Secret
Exponent from Asiacrypt’99”, Proceedings of Asiacrypt 2000.

3. N. Howgrave-Graham, “Finding small roots of univariate modular equations revis-
ited”, Proceedings of Cryptography and Coding, Lecture Notes in Computer Science
Vol. 1355, Springer-Verlag, pp. 131–142, 1997

4. A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients”, Mathematische Annalen, Vol. 261, pp. 513–534, 1982

5. A. May, “Computing the RSA Secret Key is Deterministic Polynomial Time Equiv-
alent to Factoring”, Proceedings of Crypto 2004, LNCS Vol. 3152, pp. 213-219.

6. G. L. Miller, “Riemann’s hypothesis and tests for primality”, Seventh Annual ACM
Symposium on the Theory of Computing, pp. 234–239, 1975

7. R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”, Communications of the ACM, Vol. 21(2), pp.120–
126, 1978

8. V. Shoup, NTL: A Library for doing Number Theory, available online at http://

www.shoup.net/ntl/index.html

10

