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Abstract:

This thesis reports on the preparation of a tunable few-fermion system using ultracold
6Li atoms in an optical dipole trap. We prepare ground state systems consisting of 1
to 10 fermions with fidelities of ∼90%. This system has the unique property that key
parameters such as particle number, inter-particle interactions and external confining
potential are tunable.
We use this model system to explore two interacting atoms confined in a one-dimensional
potential. For increasing repulsion we measure a decrease of the tunneling time of one
atom through a barrier which is created by tilting the potential. From the measured
tunneling time we calculate the interaction energy of the system using the WKB tech-
nique. This requires detailed knowledge of the confining potential, which we obtain by
controlling the motional quantum state of a single atom in the trap.
To increase the preparation fidelity of the few-particle systems a high-resolution objec-
tive has been designed during this thesis. It will allow us to explore tunable quantum
systems in two and three dimensions confined in arbitrary potentials.
Because of its great tunability our model system is uniquely suited to explore strongly
correlated few-fermion systems, which is one of the major challenges of modern physics.

Zusammenfassung:

Diese Arbeit beschreibt die Präparation eines einstellbaren Quantensystems bestehend
aus wenigen Fermionen unter Verwendung von ultrakalten 6Li Atomen in einer optischen
Dipolfalle. Wir präparieren Systeme im Grundzustand bestehend aus 1 bis 10 Fermio-
nen mit einer Präparationswahrscheinlichkeit von ∼90%. Unser System hat die einzig-
artige Eigenschaft, dass entscheidende Parameter wie Teilchenzahl, Wechselwirkungen
zwischen den Teilchen sowie das äußere Fallenpotential einstellbar sind.
Wir verwenden dieses Modellsystem, um zwei wechselwirkende Atome in einem ein-
dimensionalen Fallenpotential zu untersuchen. Bei zunehmender Abstoßung wird ein
Abfall der Tunnelzeit eines Atoms durch eine Tunnelbarriere nachgewiesen, welche durch
Kippen des Potentials erzeugt wird. Aus der gemessenen Tunnelzeit berechnen wir die
Wechselwirkungsenergie des Systems unter Verwendung der WKB-Näherung. Dazu ist
eine genaue Kenntnis des Fallenpotentials erforderlich. Dieses bestimmen wir, indem
wir den Quantenzustand der Bewegung eines einzelnen Atoms in der Falle kontrollieren.
Um die Präparationswahrscheinlichkeit der Wenigteilchensysteme zu erhöhen wurde
im Rahmen dieser Arbeit ein hochauflösendes Objektiv entwickelt. Dies wird uns er-
möglichen, einstellbare Quantensysteme in zwei und drei Dimensionen in beliebigen Fal-
lenpotentialen zu erforschen.
Aufgrund dieses hohen Maßes an Einstellbarkeit eignet sich unser System auf einzigartige
Weise Systeme, die aus wenigen wechselwirkenden Fermionen bestehen, zu erforschen,
welches eine der großen Herausforderungen der modernen Physik darstellt.
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1 Introduction

It is the ambitious goal of fundamental research to look past the high diversity
of nature to reveal its underlying structure. A prime example is the exploration
of metals and nuclei. Although both systems show completely different physi-
cal properties, they follow common fundamental principles: Their constituents,
electrons in metals and protons and neutron in nuclei, are fermions. These obey
Pauli’s principle, which states that each quantum state cannot be occupied by two
or more identical fermions. This simple rule has the tremendous consequence to
prevent matter from collapsing: in a metal, it forces electrons to fill up energy
bands up to the Fermi energy and not condense into the lowest energy state.
A variety of phenomena could be successfully explained by extending this basis.
An intriguing example is the superconductivity in metals which could be explained
by the pairing of two fermions within the framework of BCS theory [Bar57]. Only
one year later it has been suggested that pairing of fermions also leads to the
gap which has been observed in the excitation spectrum of nuclei [Boh58]. The
following application of BCS theory to nuclei allowed to explain a large variety of
experimental observations in nuclear physics [Bel59]. Connecting those seemingly
alien worlds is a prime example of successful fundamental research.
Scientific progress crucially depends on two aspects: both the development of the-
oretical models, which describe nature’s behavior based on few simple principles,
and the ability to manipulate key parameters and directly observe the system’s
response. However, theory and experiment, have fundamental limitations: One
example is that the resources which are required to calculate the time evolution of
a quantum many-body system scale exponentially with its size. Even for a moder-
ate particle number this problem becomes intractable. On the experimental side
many properties are set by fundamental constants and thus cannot be changed.
To overcome these limitations R. Feynman proposed a universal quantum simu-
lator, a machine which is capable to simulate any given quantum system [Fey82].
How efficiently pairing in nuclei could be explored when the relevant parameter,
i.e. interaction strength between the constituents, was tunable? So far, this has
remained an experimentalist’s dream.
To approach this goal, researchers created few-particle systems with tunable prop-
erties which they called ’artificial atoms’. The two most important realizations are
quantum dots [Rei02] and atomic clusters [Hee93]. However, these systems are
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generally coupled to their environment which makes the deterministic preparation
of a well defined quantum state challenging.
During this thesis, a few-particle system with full control over the system’s quan-
tum state has been realized using ultracold atoms in an optical dipole trap [Ser11].
Since the key parameter, the inter-particle interaction, is directly tunable, this sys-
tem is uniquely suited to simulate interacting few-fermion systems.
The thesis is structured in the following way. An overview over quantum dots and
atomic clusters is presented. Their impact on fundamental research and techno-
logical applications is discussed as well as their limitations. This sets the stage for
a summary of our approach of realizing an artificial atom using ultracold fermions.
Chapter 3 introduces ultracold atoms as highly tunable quantum systems empha-
sizing the ability to tune inter-particle interactions and tailoring almost arbitrary
confining potentials. The key technique to proceed from a macroscopic quantum
system to the few-particle regime is the spilling technique, which is introduced
in chapter 4. This technique can be used to probe the energy structure of the
system as well, which is also explained in this chapter. Theoretical estimations of
the bound states in a tilted potential and the corresponding experimental observ-
ables, i.e. the lifetimes of those states, are given both for a non-interacting system
as well as for a system with two interacting particles. The experimental setup
with emphasis on the key elements required to prepare and detect the few-body
samples, the microtrap setup, is presented in chapter 5. A new level of tunability
for future experiments can be reached with a high-resolution objective which has
has been designed within the scope of this thesis. Its design goals and benefits
are also presented in this chapter. Chapter 6 and 7 present the main experimen-
tal results of this thesis: the deterministic preparation of a tunable few-fermion
system. While chapter 6 focuses on the preparation of non-interacting samples,
chapter 7 can be seen as a first step towards quantum simulation of interacting
few-fermion systems. This opens up a new playground for the exploration of a
variety of interacting few-particle systems. Chapter 8 summarizes the results of
this thesis and gives an outlook on some of the fascinating experiments that can
be performed with the new model system.
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2 Artificial atoms - Tunable

mesoscopic quantum systems

Researchers created synthetic quantum systems which allowed them to tune the
number of constituents, their mutual interactions and the external trapping poten-
tial. They called them ’artificial atoms’ because of their ability to mimic properties
of real atoms. Just as electrons in an atom, their constituents are fermions. There-
fore each quantum state can be occupied with one particle according to Pauli’s
principle. This leads to the formation of a shell structure in their energy spectrum
with the important consequence that the number of particles occupying the same
energy shell determines the system’s physical and chemical properties. The full
spectrum is given by interactions between the constituents and the shape of the
external potential.
Within the last decades mainly two types of artificial atoms have been developed:
quantum dots and atomic clusters. Their development has had major impact not
only on technological applications but also on the fundamental understanding of
few-fermion systems.
This chapter gives a brief overview over the properties and possibilities of these
systems as well as their limitations. It will set the stage for the introduction of
our approach of realizing an artificial atom using ultracold fermionic atoms. An
overview over few-electron quantum dots can be found in the review paper of
Reimann et al. [Rei02] whereas for atomic clusters the review by de Heer et al.
[Hee93] is recommended.

2.1 Atomic clusters

Atomic clusters are particles composed of 2 to 106 atoms which are typically pre-
pared in molecular beam experiments. Individual cluster sizes are selected by mass
spectrometry and ionized clusters are stored in ion traps [Wal09]. The transition
from the solid-state to the few-particle regime was reached by [Kni84] where clus-
ters consisting of 4 to 100 particles could be produced by vaporizing sodium. A
surprising result was found in the mass spectrometry data of the sodium beam: for
cluster sizes of N = 8, 20, 40, 58, 92 large peaks were found (figure 2.1) indicating
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2.1 Atomic clusters

higher stability of these cluster sizes. These observations could be attributed to
the electronic structure of the clusters which is determined by the valence electrons
of the sodium atoms confined in the electrostatic potential of the ions.

2.1.1 Simple model

The energy spectra can be understood by means of the rather simple Jellium
model. Its main assumption is that the positive charge of the ions is distributed
uniformly over a sphere of the size of the cluster. Since the interactions of the
valence electron with the background charge are incorporated into a spherically
symmetric mean field potential the Schrödinger equation becomes effectively one-
dimensional and can be solved [Bra93]. When a rounded potential well is assumed
as mean field, the energy spectrum of the system yields closed shells which agree
with stable cluster sizes observed in the experiment. When the number of atoms
in the cluster and thus the number of available valence electrons becomes a magic
number of this potential, a shell is filled and the stability of the cluster is enhanced.

2.1.2 Prospects and challenges

The main tuning parameters of the system are the number of atoms in the cluster
and the electronic structure of those atoms. This tunability allowed the field to
proceed towards controlled engineering of clusters to design new materials with well
defined electronic structure. A recent review can found in [Cas09]. These synthetic
systems called ’Superatoms’ are able to mimic chemical properties of real atoms
in the periodic table. An intriguing example is the Al13− cluster consisting of 13
aluminum atoms and 40 valence-electrons. It has a filled shell of valence electrons
which makes it chemically inert similar to noble gases. By exchanging only one
atom the cluster’s outermost shell opens and the system can be made reactive.
These experiments open the door to chemistry at a fundamental level.
The tunability of these systems leads to important technical applications. One
example is the preparation of a ’designer magnetic superatom’ [Rev09], an atomic
cluster with tunable magnetic properties. The prospect of these systems is to
engineer semiconductors with a tunable band gap which has been a long-standing
goal in applied solid state physics.
While researchers are able to create a variety of clusters which differ in the number
of constituents and electronic structure, the size of the cluster cannot be varied
at will. In particular, the size is limited to stable configurations of those self-
organized systems. Furthermore the inter-particle interaction cannot be tuned
directly because it is dominated by Coulomb repulsion of the charged electrons.
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2 Artificial atoms - Tunable mesoscopic quantum systems

Also the confining potential can be tuned only indirectly via the cluster size and
the choice of buffer gas.

Figure 2.1: Abundance spectra of metallic clusters. Stable clusters with N =
8, 20, 40, 58... atoms correspond to magic numbers of the potential.
From [Kni84].

2.2 Quantum dots

To obtain quantum systems whose properties could be manipulated in a simple way
by applying external fields, researchers created quantum dots, micro-fabricated
structures on semiconductor devices. By etching appropriate geometries onto the
surface and applying electrostatic fields, custom confining potentials for electrons
in the conduction band can be created.

2.2.1 Simple model

For most quantum dots the confining potential is well described by a two-dimensional
harmonic oscillator

V (r) =
1

2
m∗ω2

0

(

x2 + y2
)

+ V (z). (2.1)

where m∗ is the effective electron mass and ω0 the trapping frequency. The effec-
tive mass is used to account for Coulomb interaction with charges present in the
environment such as valence and core electrons of the material. The Hamiltonian
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2.2 Quantum dots

can be written as

H = H0 +Hint =
N
∑

i

(

p2
i

2m∗
+ V (r i)

)

+
1

2

N
∑

i<j

e2

4πǫǫ0 |r i − r j|
(2.2)

where ǫ is the dielectric constant of the host semiconductor [Ron06]. For N > 2
the eigenfunctions of the Hamiltonian cannot be calculated analytically. However
the solution for a non-interacting system with Hamiltonian H0 can be obtained
analytically. The energies are given as

En,l = (2n+ |l| + 1) ~ω0 (2.3)

with radial quantum number n = (0, 1, 2...) and angular momentum quantum
number l = (0,±1,±2, ....). The energy levels are d-fold degenerate where d is
given by d = 2n+ |l| + 1.
In particular, the ground state with quantum numbers (n, l) = (0, 0) is 1-fold
degenerate. Therefore, the shell can host two electrons with opposite spin. The
second excited state with energy E(0,−1) is degenerate with state E(0,1). This shell
can be occupied by 4 electrons. The third shell with an energy of E(0,−2) = E(1,0) =
E(0,2) can host 6 electrons in total. This leads to magic numbers of the potential
N = 2, 6, 12....

2.2.2 Tunability

One of the most appealing features of quantum dots is that they can be manipu-
lated and probed by simply applying external electric and magnetic fields.
With a magnetic field applied in the z-direction the effective trapping frequency
ωB of the potential can be tuned as

ω2
B = ω2

0 +
1

4
ω2

c (2.4)

where ωc = e B
m∗ is the the cyclotron frequency of the electron.

When a voltage is applied to the reservoir, the energy of electrons located in the
reservoir with respect to the energy of electrons in the dot can be controlled. By
increasing the voltage electrons from the reservoir can tunnel onto the dot. If there
already is an electron on the dot the second electron has to overcome the coulomb
blockade to tunnel onto the dot. Therefore the minimum voltage increase leading
to another electron on the dot is at least ∆U = e/C with the dot’s capacitance C.
The energy cost of adding further electrons and thus the applied voltage depends
on the configuration of electrons already in the dot. For adding an electron to a
closed shell not only the Coulomb blockade but also the energy difference between
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2 Artificial atoms - Tunable mesoscopic quantum systems

the closed shell and the next shell has to be supplied. The energy spectrum of
the system can be probed simply by counting the number of electrons on the dot
with increasing gate voltage. In a key experiment the number of electrons could
be reduced so far that the regime of few-body quantum physics could be reached
[Tar96]. A measured spectrum of electrons and the corresponding shell structure
is shown in figure 2.2 taken from a review article on quantum dots [Kou01]. When
N = 2, 6, 12 electrons are present the energy cost for adding a further electron
has a maximum. This corresponds to filled shells of the energy spectrum of the
Hamiltonian H0 from equation 2.2.

2.2.3 Prospects and challenges

Because the electronic structure of quantum dots can be manipulated and they
are part of semiconductor devices these systems have a variety of technical appli-
cations. For example they can serve as a light source with tunable wavelength.
However, the main challenge in preparing few-body quantum systems is to prepare
the quantum state in a reproducible way. The limiting factor is the coupling of the
systems to its environment. For quantum dots this problem becomes significant
because of several coupling mechanisms. A summary of the relevant effects can be
found in [Her02]. In different quantum dots optical excitons (electron-hole pairs)
show different emission energy due to electric charges in the materials which are
hard to control. Furthermore electron-phonon coupling leads to fast dephasing and
decoherence of excited states. One approach to avoid coupling to optical phonons
which is one of the major decoherence processes is to cool quantum dots down to
temperatures of T = 6 K. Using cooling techniques the decoherence times could
be extended by three orders of magnitude to a few hundred picoseconds.
Recently carbon nanotube quantum dots could be engineered [Ste09] which pro-
vide a clean environment eliminating major decoherence effects. In such a system
a double well potential with tunable coupling between two dots was realized. Us-
ing clean gate materials the coherence times are expected to be long enough to
use the system for quantum information processing.

To summarize, both quantum dots and atomic clusters provide systems with widely
tunable properties. However they are coupled to their environment which makes
the deterministic preparation of the system’s quantum state challenging. Further-
more, the inter-particle interaction and the confining potential cannot be tuned
independently.
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2.3 Ultracold atoms

2.3 Ultracold atoms

Ultracold neutral atoms are typically cooled to a temperature on the order of
T = 1µK which corresponds to a de Broglie wavelength of

λ = (2π~2/mkBT )1/2 ≈ 1µm (2.5)

where m is the particle mass. This large value of the de Broglie wavelength is the
origin of the system’s tunability and allows to control its quantum state. Since
this will be described within this thesis in detail a brief overview is given here.

2.3.1 Tunability

The de Broglie wavelength is much larger than the characteristic range of the van-
der-Waals potential which determines interactions between two neutral particles.
As a consequence the wavelength of the relative wave function of two colliding
atoms becomes to large to resolve the fine details of the scattering potential.
Therefore the description of the scattering process can be abstracted from the
true scattering potential to a new simplified layer as discussed in chapter 3.1. In
particular the interactions between to atoms with spatial coordinates r1, r2 can
be simply written as a delta function

Vint(r1, r2) = g · δ(r1 − r2). (2.6)

where g is the coupling strength. Because g depends only on one parameter, the
s-wave scattering length a via

g =
4π~2

m
a (2.7)

and we can tune a by means of a Feshbach resonance as discussed in chapter 3.1,
we can realize coupling strengths with any value between

−∞ < g < ∞. (2.8)

The possibility to directly tune interactions between two particles and the fact
that interactions can be described in the most simple way makes ultracold atoms
uniquely suited to explore interacting many-body systems. Furthermore almost
arbitrary external potentials can be realized utilizing optical dipole traps as de-
scribed in chapter 3.2. With those degrees of freedom a variety of Hamiltonians
has been explored in the laboratory reviewed in [Blo08].
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2 Artificial atoms - Tunable mesoscopic quantum systems

2.3.2 Control over the quantum state

Since the de Broglie wavelength becomes comparable to the inter-particle distance,
properties of the system are governed by the quantum statistics of its constituents.
Bosonic atoms follow Bose-Einstein statistics: they condense into the lowest energy
state to form a Bose-Einstein condensate which has been realized experimentally
in 1995 [And95, Bra95, Dav95].
Since the behavior of fermionic atoms is dictated by Fermi-Dirac statistics and
Pauli’s principle one energy state is occupied with one fermionic atom per spin
state and consequently, they form a degenerate Fermi gas [DeM99].
In such a degenerate Fermi gas, the occupation probability for the lowest energy
states approaches unity. Because of this characteristic property we can use a
degenerate Fermi gas as a starting point to proceed from the macroscopic to the
few-particle limit. As the lowest energy states are occupied with one fermionic
atom per spin state with high probability, we obtain control over the number of
particles by controlling the number of occupied quantum states. Our approach, the
spilling technique, is to choose the occupied quantum states by tilting the confining
potential in such a way that only a well defined number of states remains bound.
The ability to select those bound states with single state precision allows us to
gain complete control over the final system’s quantum state as we will show in
chapter 6.

9



2.3 Ultracold atoms

Figure 2.2: Few-electron quantum dots. By increasing the gate voltage electrons
can tunnel onto the dot (a). The distance between the peaks reveals
the shell structure of the energy spectrum. To open up a new shell a
higher voltage increase is required. When the gate voltage is increased
by U = e/C where C is the dot’s capacitance, an additional electron
can tunnel onto an unfilled shell (b). One shell can host N = 2, 6, 12, 20
particles corresponding to the magic numbers of a two-dimensional
harmonic oscillator potential. Adding an electron to a closed shell
requires additional energy ∆E in analogy to noble gases (c). From
[Kou01].
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3 Ultracold atoms – highly tunable

quantum systems

Ultracold gases have the great advantage that they are well isolated from the
environment. With this degree of isolation the system is even suited to perform
precision measurement of time competing with state of the art techniques [Tak05].
Furthermore, interaction between the particles can be tuned directly and almost
arbitrary confining potentials can be realized. Because these degrees of freedom
can be tuned independently these systems provide the unique possibility to explore
Hamiltonians of a general form

H = T + Vint + Vext (3.1)

where T is the kinetic energy, Vint the interaction energy and Vext the energy due
to an external potential. A comprehensive overview over systems which have been
realized using ultracold fermions and bosons can be found in the review papers
[Blo08, Ket08].

3.1 Tuning interactions

A major advantage of ultracold atom systems is that interactions between two
particles can be described in the simplest possible form

Vint(r1, r2) = g · δ(r1 − r2) (3.2)

where g is the coupling strength which can be tuned in the experiment to any
value between

−∞ ≤ g ≤ ∞ (3.3)

In the following section relation 3.2 will be derived and it will be explained how g
can be tuned simply by applying an external magnetic field.
As an introduction basic concepts of quantum mechanical scattering theory are
revisited following [Dal98, Sch07, Zwi06].
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3.1 Tuning interactions

3.1.1 Ultracold scattering

The physics of two interacting particles with coordinates r1 and r2 and mass m is
described by the total wave function ψsc of the system as the stationary solution
of the Schrödinger equation

Hψsc(r1, r2) = Eψsc(r1, r2) (3.4)

with Hamiltonian

H = − ~
2

2m
∇2

1 − ~
2

2m
∇2

1 + Vext(r1) + Vext(r2) + Vint(r1 − r2). (3.5)

When the characteristic length scale of the external confinement x0 is much larger
than the range of the interaction potential r0 the external confinement can be
neglected (Vext(r1) = Vext(r2) = 0). The scenario of potentials with confinement
strong enough to modify the interaction between the particles is treated in chapter
4.3.

General solution for a spherically symmetric potential

For a spherically symmetric potential the wave function separates into a term
depending on the relative coordinate

r = r1 − r2 (3.6)

and a term depending on the center-of-mass coordinate

R = (r1 + r2) /2 (3.7)

of the particles:
ψsc(r1, r2) = ψR(R)ψr(r). (3.8)

The center-of-mass solution is given by a plane wave

ψR(R) ∼ eik·R (3.9)

with wave vector k. This just adds an offset to the system’s total energy

E = ER + Er (3.10)

The equation in the relative coordinate r becomes
(

− ~
2

2µ
∇2

r + Vint(r)

)

ψr(r) = Erψr(r) (3.11)
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3 Ultracold atoms – highly tunable quantum systems

where µ = m/2 denotes the reduced mass. The solution far away from the scat-
tering potential is given by the sum of an incoming plane wave and an outgoing
spherical wave

ψr(r) ∼ eikr + f(k ′, k)
ei kr

r
(3.12)

where k is the direction of the incoming plane wave and k ′ the direction of observa-
tion. The physics of the scattering process is contained in the scattering amplitude
defined as

f(k ′, k) = − µ

2π~2

∫

e−ik′r ′

V (r ′)ψr(r
′) d3r′. (3.13)

Equation 3.13 is important because it relates the wave function far away from the
potential determined by the scattering amplitude (left hand side) with its values
inside the potential ψr(r

′) (right hand side). If ψr(r
′) was known for all r ′, the

problem would be solved.

Scattering amplitude for ultracold collisions

Now the advantage of ultracold atoms comes into play: A simple expression for the
scattering amplitude (left hand side of equation 3.13) can be found without know-
ing the details of the potential V (r ′) (right hand side of equation 3.13). This is
possible because the atoms collide at low momentum k. Therefore their de Broglie
wavelength λ ∼ 1

k
is much longer than the range of the interaction potential r0.

As a consequence the wave function of the atoms does not resolve the fine details
of the potential.
To obtain an expression for the scattering amplitude the symmetry of the problem
can be used. Because of the spherically symmetric scattering potential, the scat-
tered wave 3.12 must be axially symmetric with respect to the wave vector of the
incident plane wave k. Then, the incoming plane wave and scattered wave can be
expanded into partial waves with angular momentum quantum number l

ψr(r) =
∞
∑

l=0

Pl(cos(θ))Rk,l(r) (3.14)

where Pl(cos(θ)) are the Legendre polynomials and θ denotes the angle between k

and k ′. The radial functions Rk,l(r) can be found solving the Schrödinger equation
for the radial degree of freedom

u
′′

k,l(r) +

(

k2 − l(l + 1)

r2
− 2µV (r)

~2

)

uk,l(r) = 0 (3.15)
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3.1 Tuning interactions

Figure 3.1: Quantum mechanical scattering. Far away from the scattering poten-
tial the relative wave function ψr is a superposition of incident plane
wave and outgoing spherical wave. For two ultracold atoms their scat-
tering process can be described in a very simple form for two reasons.
Because the de Broglie wavelength exceeds the characteristic length
scale of the scattering potential (blue), the wave function does not re-
solve its fine details. Therefore the true scattering potential can be
replaced by a much simpler description. And as the momentum of the
colliding particles is low, collisions only take place at zero angular mo-
mentum. In this case the scattered wave function is simply spherically
symmetric with amplitude a/r where a is the s-wave scattering length.

where Rk,l(r) =
uk,l(r)

r
. Far away from the potential they behave like

Rk,l(r) ∼ 1

r
sin

(

r − l
π

2
+ δl

)

. (3.16)

If only the incident plane wave is expanded the radial functions Rk,l(r) have the
same form but no phase shift δl = 0. Therefore, the effect of the scattering
potential on the incoming wave is simply to add a phase shift of δl to each incoming
wave with angular momentum l.

Inserting the expanded wave function 3.14 into the equation 3.12 one finds for
the scattering amplitude

f(k, θ) =
1

2ik

∞
∑

l=0

(2l + 1)
(

e2iδl − 1
)

Pl(cos(θ)). (3.17)
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3 Ultracold atoms – highly tunable quantum systems

For ultracold collisions the energy of the colliding atoms is too low to overcome
the centrifugal barrier set by the (l (l+1))/r2 term in equation 3.15 for l > 0. This
barrier reflects these partial waves such that they cannot come close enough to be
disturbed by the actual inter-atomic potential. Therefore only s-waves probe the
interaction potential. This simplifies the expression for the scattering amplitude
3.17 to

fl=0 =
1

2ik

(

e2iδ0 − 1
)

=
1

k cot δ0 − ik
(3.18)

where δ0 is the s-wave phase shift. In the limit of low momentum collisions

k ≪ 1

r0

, (3.19)

where r0 denotes the van-der-Waals length of the potential, the term in the de-
nominator of 3.18 can be expanded as

k cot δ0 ≈ −1

a
+ reff

k2

2
(3.20)

where the s-wave scattering length is defined as

a = − lim
k≪1/r0

tan δ(k)

k
(3.21)

and reff denotes the effective range of the scattering potential. For a van-der-Waals
potential the effective range is on the same order as r0.
Using equation 3.20 the scattering amplitude 3.18 can be rewritten as

f(k) = − 1

− 1
a

+ reff
k2

2
− ik

(3.22)

When the de Broglie wavelength of the particles exceeds the range of the potential,
i.e. in the limit reff ≪ 1/k, the expression for the s-wave scattering amplitude
becomes

f(k) = − a

1 + ika
(3.23)

In the limit k |a| ≪ 1 the scattering amplitude is simply given as

f = −a (3.24)

In this case the outgoing wave solution becomes particularly simple: spherically
symmetric as indicated in figure 3.1

ψr(r) ∼ eikr − a

r
ei kr (3.25)

and all the physics is described by a one parameter, the scattering length a.
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3.1 Tuning interactions

Scattering cross sections

Experimentally observable quantities of the scattering process such as the differen-
tial and total cross section can be directly obtained from the scattering amplitude.
The differential cross section is given by

dσ

dΩ
=
∣

∣

∣f
(

k ′, k
)∣

∣

∣

2
(3.26)

and the total cross section

σ =
∫

d3k′
∣

∣

∣f
(

k ′, k
)∣

∣

∣

2
(3.27)

For distinguishable particles the cross section can be found integrating equation
3.17

σd(k) =
4π

k2

∞
∑

l=0

(2l + 1) sin2 δl. (3.28)

For non-distinguishable particles the cross section crucially depends on whether
the particles are bosons or fermions. Under exchange of two non-distinguishable
particles the final state remains the same. This leads to two possible pathways
resulting in the same final state which can interfere.
For bosons the pathways show constructive interference leading to an enhancement
of the cross section

σ(k) = 2 · σd(k), (3.29)

whereas for fermions the interference is destructive. This has the important con-
sequence that the cross section for l = 0 vanishes for identical fermions

σ(k) = 0. (3.30)

To overcome this limitation fermions in different hyperfine states can be used.
Because they are distinguishable their cross section is given by σd(k).
In the low momentum limit k · |a| ≪ 1 the cross section is obtained by integrating
equation 3.24 and can be summarized as

σ =











0 identical fermions
4πa2 distinguishable particles
8πa2 identical bosons.

(3.31)

A simple expression for the scattering potential

Starting from the exact expression for the scattering amplitude as given in equation
3.13

f(k ′, k) = − µ

2π~2

∫

d3r′e−ik′r ′

V (r ′)ψr(r
′)
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3 Ultracold atoms – highly tunable quantum systems

we found a simple expression for the left hand side using the fact that ultracold
atoms collide at low momenta k. This solution was found without evaluating the
right hand side of equation 3.13. Any potential V (r) yielding the right scattering
amplitude 3.24 in the low momentum limit would be a valid description for the
problem. To be able to evaluate the integral although the exact wave function
inside the potential ψr(r

′) is not known one can approximate it with a plane wave

ψr(r
′) = eik·r’. (3.32)

This is the first Born approximation. The scattering amplitude simplifies to

f(k ′, k) = − µ

2π~2

∫

d3r′e−i(k−k′)·r ′

V (r ′) = − µ

2π~2
ṽ(k ′ − k) (3.33)

Therefore the scattering amplitude is just the Fourier transform of the potential.
When the point like interaction potential

Vint(r1, r2) = g · δ(r1 − r2) (3.34)

is plugged into equation 3.33 the scattering amplitude in the Born approximation
becomes

fBorn = − m

2 · 2π~2
g (3.35)

It yields the right scattering amplitude in the limit of low momentum

f = −a (3.36)

if

Vint(r1, r2) = g · δ(r1 − r2) =
4π~2

m
aδ (r1 − r2) (3.37)

Therefore a delta-potential where the coupling strength g is proportional to the
s-wave scattering length is an appropriate description of the scattering process at
low momenta.
Although the Born approximation for the delta-potential yields the right scattering
amplitude in the low momentum limit, the higher order terms in the Born series
diverge because the Fourier transform of the potential does not fall off for large
momenta [Ket08]. However this is only a theoretical problem since every physical
potential falls off at some momentum. To overcome this problem the diverging
terms can be balanced by replacing g with

g =

(

m

4π~2a
− m

~2

∫ d3q

(2π)3

1

q2

)−1

(3.38)

in the calculation. However for the relevant regime of low momentum the Fourier
transform of the delta potential given by equation 3.37 provides a valid description
of the interaction strength.
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3.1 Tuning interactions

Scattering resonance

In this section we will see how the s-wave scattering length a and thus the coupling
strength g can be tuned. To get an intuitive picture on can consider scattering on
a repulsive spherical potential well as indicated in figure 3.2. According to equa-

Figure 3.2: Scattering length for a repulsive box potential. The potential causes
a negative phase shift δ0 of the asymptotic solution of the perturbed
wave with respect to the unperturbed solution (dashed line). Therefore
the wave function gets pushed out of the center. Because δ0 ∼ −a for
small δ0 the scattering length a can be tuned by increasing the height
of the barrier.

tion 3.21, the scattering length is proportional to the relative phase shift of the
asymptotic wave function with and without scattering potential for small values
of δ0. In this picture the perturbed solution acquires a negative phase shift with
respect to the unperturbed wave (dashed line) leading to a > 0. This phase shift
pushes the wave function out of the potential. By increasing the potential height,
a can be increased.
The full tunability of a arises when a bound state is available in an attractive po-
tential as shown in figure 3.3. Here the influence of the potential on the asymptotic
wave function is shown when the well gets deeper. When no bound state exists the
wave function acquires a positive phase shift (a < 0) due to the potential. When
the potential becomes deeper such that a bound state occurs at zero energy, the
phase shift becomes δ0 = π/2 which leads to a divergence of the scattering length
a → −∞ according to equation 3.21. When the potential is made slightly deeper
the phase shift exceeds π/2. Therefore the scattering length changes sign (a > 0).
For finite binding energy the scattering length becomes finite again. By shifting
the energy E0 of the bound state with the potential depth, the value of a can be
tuned between −∞ < a < ∞.
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3 Ultracold atoms – highly tunable quantum systems

Figure 3.3: Scattering length a for a potential without bound state, with bound
state at E0 = 0 and with bound state at finite energy. The radial
solution u(r) for the Schrödinger equation outside the potential (solid
line) is extrapolated to small values of r (dashed line). The scattering
length is the point where the extrapolation crosses the x-axis. Its value
can be tuned to −∞ < a < ∞ by shifting the energy E0 of the bound
state with the potential depth.

3.1.2 Tuning interactions between ultracold atoms

Feshbach resonances

For ultracold atoms this simple picture of changing the depth of the scattering
potential until a bound state becomes degenerate with E0 = 0 cannot be applied
directly. Instead there is a bound state whose energy can be tuned with respect to
the energy of the colliding atoms. The result on the scattering length is effectively
the same. This phenomenon is called a Feshbach resonance and can be described
in the following way: Because of the internal degrees of freedom of the colliding
atoms such as their spin, different scattering channels exist as indicated in figure
3.4. The open scattering channel represents the potential curve for a collision
of atoms with anti-aligned spin, i.e. a singlet configuration, with total spin 0.
Therefore the system has negligible net magnetic moment. There also exists a
closed scattering channel corresponding to parallel spins of the colliding atoms,
i.e. triplet configuration, which results in a net magnetic moment of the system.
When a magnetic field B is applied, the potential curve of the closed channel can
be shifted in energy by an amount of

∆E = ∆µ×B. (3.39)

where ∆µ is the difference in magnetic moment between systems in the two scat-
tering channels. By tuning the magnetic field the energy difference between the
two channels can be tuned. In particular a bound state of the closed channel can
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3.1 Tuning interactions

be made degenerate with the energy of the incident atoms. Far away from the
collision center there is negligible coupling between singlet and triplet channel be-
cause good quantum numbers are the total electronic spin S = s1 +s2 and the total
nuclear spin I = i1 + i2. Therefore the wave function of electronic triplet and sin-
glet configuration have vanishing overlap. The situation changes when the atoms
come close to each other. At short distances the following part of the hyperfine
interaction leads to a coupling of open and closed channel [Moe95]

Vhf ∝ (s1 − s2) · (i1 − i2) . (3.40)

Then the closed channel bound state becomes available to the colliding atoms
which leads to a divergence of the scattering length according to

a = abg

(

1 − ∆B

B −B0

)

(3.41)

where abg is the background scattering length, B0 is the magnetic field where the
bound state becomes resonant and ∆B is the width of the resonance. When the
bound state is tuned slightly above resonance (B > B0), the scattering length a
becomes infinitely negative. For B < B0 the scattering length becomes positive.

6Li as an ideal candidate

A 6Li nucleus is composed of three protons and three neutrons. Therefore its
nuclear spin amounts to I = 1 whereas its electronic spin is determined by the
single valence electron to S = 1/2. At large magnetic fields B > 100 Gauss,
nuclear spin and electronic spin decouple. Therefore the total angular momentum
quantum number F = I+S is not a good quantum number in this regime. Instead
the six non-degenerate energy states of the ground state are split into two groups
according to their z-component of their electronic spin as shown in figure 3.5. Since
only the three lowest states in the mS = −1/2 manifold are stable against dipolar
relaxation which causes atom loss, we only work with those in the experiment.
According to figure 3.5 we label these states |1〉,|2〉 and |3〉. To prepare few-
fermion samples we use a two-component mixture of atoms in state |1〉 and |2〉.
In principle other combinations are possible.
The behavior of the scattering length between possible combinations of atoms
in state |1〉,|2〉 and |3〉 is shown in figure 3.6. The broadness of the Feshbach
resonance (∆B ≈ 300 Gauss) has the main advantage that the interaction can be
controlled more precisely given a limited accuracy of control over the magnetic
field. Because the width is more than two orders of magnitude larger compared
to other fermionic species [Chi10], 6Li is the ideal species to prepare interacting
few-particle systems.
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3 Ultracold atoms – highly tunable quantum systems

Figure 3.4: Principle of a Feshbach resonance. Two free atoms with total spin zero
collide in an open scattering channel (black line) which represents the
total potential energy depending on the relative distance between the
atoms. There is also a closed scattering channel with non-zero total
spin. This channel has an energy offset due to its magnetic moment
which is proportional to the magnetic field. Because this offset can be
tuned the bound state in the closed channel can be made degenerate
with the incident energy of the colliding atoms. Associated with this
bound state is a divergence of the scattering length (see figure 3.6).
From [Ott10].

3.2 Tailoring confining potentials

Utilizing optical dipole traps an almost arbitrary potential landscape can be re-
alized. Here the basic concepts for this are summarized following [Gri00]. When
an electric field E oscillating with frequency ω, such as the light field, acts on a
neutral atom it induces an electric dipole moment

p = αE (3.42)

where α is the complex polarizability. Because this electric dipole moment interacts
with the light field the atom has a potential energy of

Udip = −1/2 〈p E〉 ∝ −Re (α) |E|2 . (3.43)

Therefore the potential energy is proportional to the intensity I ∝ |E|2 of the
oscillating field.
This is the key relationship which allows to realize any external potential term
Vext in the Hamiltonian 3.1 by means of a spatially varying intensity distribution
of light

Vext(r) ∝ I(r) (3.44)

21



3.2 Tailoring confining potentials

Figure 3.5: Zeeman hyperfine levels of the electronic ground state of 6Li. Our
few-fermion system is composed of atoms in states |1〉 and |2〉. Inter-
actions between atoms in these two states can be tuned via a Feshbach
resonance as shown in figure 3.6.

Taking into account the frequency dependence of α and damping due to spon-
taneous emission, the full expression for the dipole potential for large detunings
and negligible saturation can be written as [Gri00]

Udip(r) = −3π c2

2ω3
0

(

Γ

ω0 − ω
+

Γ

ω0 + ω

)

I(r) (3.45)

where ω0 is the frequency of the atomic transition, and Γ is its spontaneous decay
width. When the frequency of the laser ω is lower than the atomic transition
frequency ω0, the oscillating dipole moment of the atom is able to follow the
electric field of the laser. Therefore the induced dipole oscillates in phase with
the light field (blue detuned dipole trap). In this case, the potential energy given
by equation 3.43 is minimized for low light intensities. Therefore the potential
becomes repulsive for increasing light intensities.
In the case of red detuning (ω > ω0), the dipole moment of the atom cannot follow
the oscillation of the light field. Therefore the dipole moment is oriented anti-
parallel with respect to the electric field. The corresponding potential becomes
attractive for increasing light intensities.
In the simplest case the potential is created by a red-detuned focused Gaussian
laser beam propagating along the z-direction. Its intensity distribution can be
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3 Ultracold atoms – highly tunable quantum systems

Figure 3.6: Scattering length as a function of magnetic field between the three
lowest hyperfine states of 6Li. From [Jul].

written as

I(r, z) =
2P

πw2(z)
exp

(

−2
r2

w2(z)

)

(3.46)

where r represents the radial coordinate and P the laser power. The 1/e2-beam

radius w(z) = w0

√

1 +
(

z
zR

)2
is determined by the beam waist w0 and Rayleigh

length zR = πw2
0/λ .

The realization of complex trapping geometries is one of the major challenges
of state-of-the-art experiments. First examples which could be realized are ring
shaped potentials [Hen09] which can be dynamically modified and periodic po-
tentials in various dimensions [Zim11, Blo08]. In principle optical traps along
arbitrary curves in three dimensions can be realized using holographic techniques.
The power of this technique is demonstrated in figure 3.7 where the intensity dis-
tribution of a knotted ring geometry is realized which could potentially serve as a
trap for cold atoms.
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3.2 Tailoring confining potentials

Figure 3.7: Realizing arbitrary optical potentials with light. A hologram and an
objective can be used to create arbitrary optical potential geometries
(left panel). The power of this technique is shown in the middle and
right panel with the intensity distribution of knotted rings realized in
three dimensions. Adapted from [Sha11].
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4 From macroscopic to mesoscopic

ensembles

Ultracold atoms have been used to explore fundamental problems of quantum
physics. So far research has been focused on the exploration of bulk properties of
many-particle systems. To proceed towards the intriguing regime of few-particle
physics several hurdles have to be overcome. The main challenge is to gain full
control over the system’s quantum state, in particular the number of particles.
Our approach to realize a few-particle quantum system, the ’spilling technique’, is
introduced in this chapter. This is followed by a description of the WBK method,
the main theoretical tool, which we use to estimate relevant quantities such as the
energy of the system’s quantum states and their tunneling times. The chapter
closes with the description of the simplest non-trivial few-particle system: two in-
teracting atoms in the ground state of a one-dimensional harmonic potential. The
analytic solution for the system’s energy as a function of interaction strength is dis-
cussed and a calculation is performed how interaction shifts modify the dynamics
of the two particles.

4.1 Controlling the quantum state – the spilling

technique

To proceed from the macroscopic to the few-particle limit we use two fundamental
properties of a degenerate Fermi gas: According to Pauli’s principle each energy
state can be occupied with one fermionic atom per spin state. Furthermore, the
occupation probability for the lowest energy states approaches unity according to
Fermi-Dirac statistics. As a consequence the lowest energy states are occupied
with one fermionic atom per spin state with high probability.
This allows us to obtain control over the number of particles by controlling the
number of occupied quantum states. Our approach, the spilling technique, is to
choose the occupied quantum states by tilting the confining potential in such a
way that only a well defined number of states remains bound.
The starting point for applying this scheme is a degenerate Fermi gas as sketched
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4.1 Controlling the quantum state – the spilling technique

Figure 4.1: The spilling technique. By tilting the trapping potential, the number
of occupied quantum states can be controlled. The strength of the tilt
defines the number of remaining atoms in the trap.

in figure 4.1: Atoms in state |1〉 (red balls) and |2〉 (blue balls) are confined in the
potential of an optical dipole trap whose lowest energy levels are occupied with
one atom per state (A). By applying a magnetic field gradient ∇B the atoms are
subject to a force due to their magnetic moment µ that pushes the atoms out of
the trap

F = ∇(µ · B) = (µ · ∇)B (4.1)

and the potential gets deformed (B). We then wait for a duration tspill until all
atoms occupying states which are not part of the desired final quantum state have
left the trap. Then, we bring the potential back to its original value (C). After
the spilling process is completed, the system ends up in a well defined quantum
state. The number of occupied energy states after the spilling process is chosen by
controlling the strength of the magnetic field gradient and the depth of the optical
potential.
The mapping of the number of occupied energy levels to the number of particles
crucially depends on the system’s dimensionality. For a 1-D system, energy states
are non-degenerate. Therefore each energy level contributes to the final system
with one atom per spin state. In the case of two- and three-dimensional systems
degenerate energy levels exist. Thus one energy shell can host as many atoms as
the degree of degeneracy allows according to Pauli’s principle.
The dimensionality of the system which we realize by the axially symmetric optical
dipole trap is given by the aspect ratio of the trap

η =
ω⊥

ω‖

(4.2)

where ω‖ and ω⊥ is the harmonic trap frequency in axial and radial direction
respectively. If the number of atoms in one spin state is smaller than η + 1,
radially only the lowest energy state is occupied. Then, the system is effectively
one-dimensional. With an aspect ratio of η = 1 : 10 for our dipole trap the system
is expected to remain one-dimensional for up to N ∼ 20 atoms. In this regime
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the simple picture of spilling shown in figure 4.1 is valid. The relevant potential
in axial direction is given as a sum of a Lorentzian according to equation 3.46 and
a linear term due to the applied gradient

V (z) = V0





1 − 1

1 +
(

z
zR

)2





− µB B
′ z (4.3)

where V0 is the depth of the optical potential at (z, r) = 0 and zR the Rayleigh
length of the focused laser. The depth of the trap at its center can be calculated
using equation 3.45 as

V0 = −3π c2

2ω3
0

(

Γ

ω0 − ω
+

Γ

ω0 + ω

)

. (4.4)

4.1.1 Requirements

The scheme can be only applied if two main requirements are met: the occupation
probability for the lowest energy states in the trap has to approach unity and the
occupied quantum states can be selected on a single state level.

Occupation probability

In a degenerate Fermi gas, the occupation probability for a state with energy E is
described by Fermi-Dirac statistics

P (E) =
1

e(E−µ)/k T + 1
(4.5)

where µ is the chemical potential and T the temperature. For T = 0 all states
up to the Fermi energy EF are occupied with unity probability. For non-zero
temperature the occupation probability increases the lower the state’s energy is
compared to the Fermi energy. This allows us to enhance the occupation prob-
ability of the lowest states by increasing the Fermi energy of the system. To
realize this we start with a reservoir of cold atoms trapped in an optical dipole
trap as sketched in figure 4.2 and enhance its Fermi energy by superimposing a
deep microtrap with the reservoir. The maximum enhancement is achieved only
if the width of Fermi edge, which is determined by the temperature, is not in-
creased during the transfer of atoms from the reservoir. This is the case when
the atoms in the microtrap and the reservoir are in thermal equilibrium. To cal-
culate the occupation probability for the lowest state, we use equation 4.5 where
µ ≈ EF = kB TF and typical experimental parameters: the energy of the lowest
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state is given by E0 = ~ω ≈ ~ · 2π × 10 kHz. The temperature of the combined
system is determined by the temperature of the reservoir T = 250 nK assuming
thermal equilibrium between the reservoir and the microtrap. TF is obtained as
the sum T reservoir

F + Tmicrotrap
F ≈ (0.5 + 3.5)µK = 4µK.

As a result we can expect an occupation probability for the lowest state of the
combined system of P (E0) > 0.9999 which is large enough not to constrain our
preparation scheme.

Figure 4.2: Starting point for the preparation of the few-fermion system. The
potential of the optical dipole trap is shown on the right, the corre-
sponding Fermi-Dirac distribution on the left hand side. As a starting
point we prepare a reservoir of cold atoms. To increase the occupa-
tion probability for the lowest energy states we superimpose a deep
microtrap with this reservoir. This increases the Fermi energy of the
combined system. Therefore the occupation probability for the lowest
states approaches unity (black arrow).

Control on the single quantum state level

The deterministic preparation of the few-particle system requires that all atoms
occupying states which are not part of the desired final quantum state leave the
trap during the duration of the spilling process tspill. To see how this requirement
can be fulfilled the energy spectrum for the system in the tilted configuration
has to be considered as shown in figure 4.3. Atoms with an energy higher than
the potential barrier E > V0 (gray shaded region) are unbound and escape on a
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timescale given by the trap frequency ω‖. The escape of these atoms is guaranteed
as long as

tspill ≫ 1/ω‖. (4.6)

In the case of a true bound state with E < V0 atoms can tunnel through the barrier.
To prepare a system with atoms occupying energy levels E0...EN in a reproducible
way two conditions have to be fulfilled: First, tunneling of these atoms during the
spilling process has to be avoided. Therefore the corresponding tunneling time
constants τ0...τN have to fulfill

τ0...τN ≫ tspill. (4.7)

Second, the atoms occupying the energy level closest to the continuum EN+1 have
to tunnel with a probability close to 1. Therefore the time constant has to satisfy

τN+1 ≪ tspill. (4.8)

To be able to reach this regime in the experiment, the separation of the energy
levels needs to be on the same order of magnitude as the potential barrier height
V0. This requires a tight microtrap as discussed in chapter 5.6.1.

4.2 Model of the system–the WKB method

This section introduces the WKB (Wentzel-Kramers-Brillouin) method as a theo-
retical tool to model our experiment. We use it to obtain relevant quantities such
as the energy of the single particle states. Furthermore we calculate tunneling
times of bound states for the tilted potential in a non-interacting system, similar
to [Ott10]. We also determine the energy shift caused by interaction for two re-
pulsively interacting particles. A full description of the method can be found e.g.
in [Sch07, Mer98] which is the basis of the following introduction.
In the presence of a potential V (x) the Schödinger equation for one particle reads

− ~
2

2m
∇2ψ = (E − V (x))ψ (4.9)

If V = V0 is constant, the trivial solution is a plane wave A · exp(±i kx). This
motivates the ansatz of the WKB method: For a potential V (x) which varies
slowly with x, the wave function can be written by means of an amplitude and a
phase term according to

ψ(x) = A(x)eiS(x)/~ (4.10)

where the phase term S(x) is in general not linear in k due to the the influence of
the potential. To solve the problem, solutions for A(x) and S(x) have to be found.
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Figure 4.3: Energy spectrum of the system during the spilling process. Systems
with 2N atoms are prepared with high fidelity when the duration of
the spilling process tspill is long enough to remove all atoms occupying
energy states EN+1 and above. To remove atoms occupying continuum
states (gray region) the spilling duration must exceed 1/ω‖ ≪ tspill,
where ω‖ is the trap frequency of the potential. For atoms occupying
the energy state close the the continuum EN+1 the tunneling time
through the barrier τN+1 has to fulfill tspill ≪ τN+1. Tunneling of
atoms which are part of the final system has to be suppressed for the
duration of tspill which requires τ0...τN ≫ tspill.

The slow variation of the potential V (x) translates into a condition of momentum

λ

∣

∣

∣

∣

∣

dp

dx

∣

∣

∣

∣

∣

≪ |p(x)| (4.11)

where
p(x) =

√

2m (E − V (x)) (4.12)

is the classical momentum and λ(x) = 2π~/p(x) the local wavelength. In this semi
classical picture the change of the particle’s momentum over one wavelength has
to be small compared to the momentum itself.
In this case, the parameters of equation 4.10 are found to be

S(x) = ±
∫ ∞

−∞
dx′
√

2m (E − V (x′)) (4.13)

and

A(x) =
C

√

S ′(x)
(4.14)
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4 From macroscopic to mesoscopic ensembles

where S ′(x) = ∂/∂xS(x) and a numerical coefficient C. The wave function which
solves the Schrödinger equation 4.9 is then given by

ψ(x) =
∑

±

C ′
±

√

p(x)
e±i

∫ x
dx′p(x′)/~ (4.15)

where C ′
± are coefficients which have to be determined by boundary conditions.

Depending on the particle’s energy E two different types of solution exist:
For E > V as it is the case for a particle moving in a potential, p(x) is real leading
to an oscillating wave function with a phase proportional to

∫

dx′ p(x′).
For E < V , p(x) is imaginary. Therefore the exponent in solution 4.15 is real. The
corresponding wave function decreases, respectively increases exponentially.
For the tilted potential used in the experiment both scenarios are relevant depend-
ing on the regions shown in figure 4.4. In region I E > V , therefore the solution
is a bound state of the potential. Region II represents the tunneling barrier where
E < V . In region III E > V , thus the particle is free. With the WKB method
both the energies of the bound states in region I and the tunneling probability
through the barrier can be calculated.

Figure 4.4: Tunneling barrier for the tilted potential. During the spilling process,
atoms occupying bound states in region I can tunnel through the bar-
rier (region II) to become free particles (region III). Both the energy
levels of the bound states and the tunneling time constants are calcu-
lated using the WKB method (see text).

Bound states

In the vicinity of the classical turning points x1 and x2, the WKB solution becomes
invalid, because p goes to zero. However a solution for x close to x1 can be found
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4.2 Model of the system–the WKB method

by approximating the potential linearly V = V ′x near the turning point. The
Schrödinger equation for the wave function near x1 becomes

d2

dx2
ψ = −c2xψ (4.16)

where c =
√

−2mV ′/~. This equation is solved by Airy functions which far away
from the turning point behave like

ψx1(x) ∼ sin
(

1

~

∫ x

x1

dx′p(x′) +
π

4

)

. (4.17)

A similar solution ψx2(x) can be found for the second turning point x2.

ψx2(x) ∼ sin
(

1

~

∫ x2

x
dx′p(x′) +

π

4

)

(4.18)

= sin
(

1

~

(∫ x2

x1
dx′p(x′) −

∫ x

x1
dx′p(x′)

)

+
π

4

)

(4.19)

Away from both turning points, the solutions ψx1(x) and ψx2(x) have to agree.
This yields a condition on the integral over the momentum

1

~

∫ x2

x1

dx p(x) = π(n+ 1/2) (4.20)

where n = 0, 1, 2, ....
Equation 4.20 is equivalent to the Bohr-Sommerfeld quantization of classical mo-
mentum. The bound state energies of any slowly varying potential V (x) can be
calculated by inserting the potential into 4.12 and evaluating the integral 4.20 for
a given energy E. The values of E which fulfill equation 4.20 are the energies of
the bound states in the potential.

Tunneling probabilities

A tunneling barrier represented by region II in figure 4.4 with E < V (x) leads to
an imaginary value of p(x). This causes the solution for the wave function 4.15 to
decay exponentially. The transmission probability can be obtained as

|S(E)|2 = exp



−2
∫ x2

x1

√

2m(V (x) − E)

~
dx



 (4.21)
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4 From macroscopic to mesoscopic ensembles

To calculate the tunneling rate of an atom the transmission probability 4.21 has
to be weighted with the rate at which the atom hits the barrier. This ’knocking
frequency’ ν(E) can be determined via the particle’s energy E

ν(E) =
E

h
. (4.22)

The tunneling rate then becomes

R(E) = ν(E) · |S(E)|2. (4.23)

The mean lifetime of the atom is given by

τ(E) =
1

R(E)
=

1

ν
· 1

|S(E)|2
. (4.24)

4.2.1 Energies and lifetimes for a non-interacting system

For realistic experimental parameters, the tilted potential 4.3 takes the form

V (z) = s · 3, 326µK kB





1 − 1

1 +
(

z
9.975·10−6m

)2





−µB · 18.92 Gauss/cm · z (4.25)

where 0 < s < 1 is a variable representing the relative depth of the optical trap
when the gradient is applied. In the experiment we use s to control the number of
atoms of the prepared system as discussed in chapter 6. The detailed characteriza-
tion of the potential which leads to the parameters for the calculation is discussed
in chapter 7.3. In figure 4.5 the potential is plotted for three exemplary values of
s.

With the mean lifetime for each state given by equation 4.24, the mean occu-
pation probability for an energy level Ei after a spilling duration of tspill can be
calculated to

P (Ei) = e−tspill/τ(Ei) (4.26)

From that, the mean atom number in the final system can be obtained as

n = 2 ·
N
∑

i=1

P (Ei) (4.27)

where N is the number of bound states. The factor of 2 accounts for the fact that
each energy state is occupied by 2 atoms. The mean atom number is calculated as
a function of s assuming a spilling duration of tspill = 25 ms. The result is shown
in figure 4.5. In certain ranges of s stable plateaus for even atom numbers exist.
In this regime, the lifetime for atoms occupying the highest lying bound state is
short compared to the spilling duration and atoms occupying lower lying states
have long lifetimes.
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4.3 Two interacting particles

Figure 4.5: Tilted potential for parameters used in the experiment. The parameter
s represents the depth of the microtrap when the gradient is applied.
We control the number of atoms by tuning s to a value such that
atoms occupying the highest bound state tunnel through the barrier
while at the same time tunneling of atoms occupying lower lying energy
states is suppressed. The y-axis is scaled in units of ~ωax where ωax is
the harmonic trap frequency of the s = 0.82 potential curve without
gradient applied.

4.3 Two interacting particles

In the following an analytic solution for two interacting particles in a harmonic
trap is given according to [Bus98, Idz06]. The solution for a spherically symmetric
potential as well as a cigar-shaped axially symmetric potential, as it is used in the
experiment, is discussed. With these solutions the system’s interaction energy can
be directly calculated for any value of the inter-particle interaction strength. As
we tune the interaction strength via a magnetic Feshbach resonance as described
in chapter 3.1.2, the system’s interaction energy is calculated as a function of the
magnetic field. In the last part the WKB method is used to derive the tunneling
time constants τ for the tilted potential depending on the value of the applied
magnetic field.
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Figure 4.6: WKB calculation for the mean atom number. The mean atom number
is determined by the lifetime of bound states in the tilted potential.
The lifetimes are controlled by means of the depth of the microtrap
potential. Plateaus in the mean atom number indicate that the system
only consists of atoms occupying long lived bound states and excess
atoms on higher energy levels tunnel on a fast timescale. This is re-
quired for deterministic preparation. Parameters for the calculation
are B′ = 18.92 Gauss/cm, P = 291.5µW and w0 = 1.838µm.

4.3.1 Analytical solution

For two interacting particles in an external trapping potential, the Hamiltonian is
of the form

H = − ~
2

2m
∇2

1 − ~
2

2m
∇2

1 + Vext(r1) + Vext(r2) + Vint(r1 − r2) (4.28)

where r1 and r2 denote spatial coordinates of the atoms. Vext denotes the external
trapping potential and Vint the interaction between the atoms. The interaction
between two ultracold atoms, as explained in chapter 3.1, is fully determined by
the s-wave phase shift of the scattering process which is fixed by a single parameter,
the scattering length a. To model the interaction any potential can be used as long
as it reproduces the right scattering amplitude in the limit reff ≪ 1/k where reff is
the effective range of the potential and k the relative momentum of the colliding
particles. In particular a point-like potential can be used leading to an interaction
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4.3 Two interacting particles

term in the Hamiltonian

Vint(r2 − r1) =
4π~2a

m
δ3D(r2 − r1) (4.29)

where δ3D is the delta function in three dimensions. The drawback of this potential
is that the Hamiltonian is not self adjoint in three dimensions, the corresponding
matrix is not hermitian.

Spherically symmetric 3D harmonic trap

To overcome this problem, a regularized delta function

δreg (r) = δ3D (r)
∂

∂r
r. (4.30)

has been used by Busch et al. [Bus98] to model the interaction between the two
particles. With this potential the interaction term of the Hamiltonian becomes

Vint(r) =
4π~2a

m
δ3D (r)

∂

∂r
r. (4.31)

For a harmonic trap with spherical symmetry the full Hamiltonian becomes

H = − ~
2

2m
∇2

1 − ~
2

2m
∇2

1 +
m

2
ωr2

1 +
m

2
ωr2

2 +
4π~2a

m
δ3D (r)

∂

∂r
r (4.32)

where ω is the trap frequency. The Schrödinger equation for this Hamiltonian can
be solved because center-of-mass and relative motion of the particles decouple.
Therefore the Hamiltonian can be written as a sum H = HCM +Hrel with

HCM = − ~
2

2M
∇2

R +
M

m
Vext(R) (4.33)

and

Hrel = − ~
2

2µ
∇2

r +
µ

m
Vext(r) + Vint(r) (4.34)

where R = (r1 + r2) /2 is the center of mass coordinate, r = r1 − r2 the relative
coordinate of the atoms, M = 2 · m the total mass and µ = m/2 the reduced
mass. By expressing all lengths in units of the harmonic oscillator length x0 =
√

~/(µω) =
√

2~/(mω) and energies in units of ~ω the Schrödinger equation for
the relative motion simplifies to

(

−1

2
∇2

r +
1

2
r2 + 2πaδ3D (r)

∂

∂r
r

)

Ψ(r) = EΨ(r) (4.35)
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4 From macroscopic to mesoscopic ensembles

which reduces the equation to an effective one-particle problem.
To solve the equation the unknown wave function Ψ(r) is expanded in terms of
harmonic oscillator wave functions φn(r)

Ψ(r) =
∞
∑

n=0

cnφn(r) (4.36)

with coefficients cn which have to be determined. They are found by inserting
the expansion into the Schroedinger equation 4.35 and projecting the result onto
the harmonic oscillator function φ∗

n(r). After some algebra one obtains for the
coefficients

cn = A
φ∗

n(0)

En − E
(4.37)

where A is a numerical factor which normalizes the wave function. With these
coefficients the wave function 4.36 can be reinserted into 4.35 yielding

2π

[

∂

∂r

(

r
∞
∑

n=0

φ∗
n(0)φn(r)

En − E

)]

r→0

= −1

a
. (4.38)

After inserting the actual orbitals of the harmonic oscillator φn(r), the left hand
side of equation 4.38 can be evaluated. One finds the important solution which
relates the interaction strength given by a and the total energy in the relative
degree of freedom of the two particles Etot

2
Γ(−Etot/2 + 3/4)

Γ(−Etot/2 + 1/4)
=

1

a
(4.39)

where Γ is the Gamma function. As we are interested in the interaction shift the
offset energy of 3/2 in units of ~ω has to be subtracted. For the interaction shift
ǫ one finds

2
Γ(−ǫ/2)

Γ(−ǫ/2 − 1/2)
=

1

a
. (4.40)

Axially symmetric harmonic trap

For a system with axial symmetry the analytic solution has been found by Idziaszek
et al. [Idz06]. The solution can be given analytically because center of mass motion
and relative motion decouple as in the spherically symmetric case. Furthermore
the motion in longitudinal direction decouples from the motion in radial direction.
In relative coordinates the Schrödinger equation for an axially symmetric harmonic
oscillator writes

(

−1

2
∇2

r +
1

2

(

η2ρ2 + z2
)

+ 2πaδ (r)
∂

∂r
r

)

Ψ(r) = EΨ(r) (4.41)
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4.3 Two interacting particles

where η = ω⊥

ω‖
is the aspect ratio of the trap determined by the trap frequencies

in longitudinal ω‖ and transversal ω⊥ direction respectively. Energies are given
in units of ~ω‖ and lengths in units of the reduced harmonic oscillator length

x‖ =
√

2~/mω‖. The solutions can be determined in the same way as in the
symmetric case: by expanding the wave function in terms of harmonic oscillator
functions, in this case in polar coordinates Φn(ρ, φ) and the harmonic oscillator
wave function in z direction Θk(z)

Ψ(r) =
∑

n,k

cn,kΦn(ρ, φ)Θk(z). (4.42)

After the coefficients cn,k have been found in a similar way as in the previous case,
the ansatz 4.42 can be inserted into the Schrödinger equation 4.41. This leads to
the equation which relates the interaction strength to the system’s energy. For
the case of a cigar-shaped trap with η > 1 and η = n being a positive integer, the
relation is given by

2Γ(−ǫ/2)

Γ(−ǫ/2 − 1/2)
− Γ(−ǫ/2)

Γ(−ǫ/2 + 1/2)

n−1
∑

m=1

F
(

1,
ǫ

2
,
ǫ

2
+

1

2
, ei2π m

n

)

=
1

a
(4.43)

where F is the hyper-geometric function (Hypergeometric2F1 in Mathematica).
For the spherically symmetric case n = η = 1 the second term in equation 4.43
vanishes leading to the same result as found in the previous section.
A simpler expression which can be used to calculate the lowest energy states ǫ <
η ~ω‖ reads

−√
ηξH

(

1

2
, 1 − ǫ

2η

)

− η
Γ(−ǫ/2)

Γ(−ǫ/2 + 1/2)
=

1

a
(4.44)

where ξH denotes the Hurwitz zeta function (HurwitzZeta in Mathematica). Ex-
pressions for pancake shaped traps with aspect ratio η < 1 can be found in [Idz06].

Coupling strength in one dimension

So far equations which relate the coupling strength of the two particles to their in-
teraction energy have been given for the case of a spherically symmetric (equation
4.40) and axially symmetric (4.43) harmonic potential. In general, the coupling
strength on the right hand side of these equations depends on the scattering am-
plitude f which describes the asymptotic form of the scattered wave function as
discussed in chapter 3.1. When no external potential is present the scattered wave
has radial symmetry. In the limit of low momentum the relative wave function of
the two particles can be written

ψr(r) ∼ eikr − a
ei kr

r
.
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4 From macroscopic to mesoscopic ensembles

Figure 4.7: Energy shift for two atoms as a function of negative inverse coupling
strength. The red lines represent the analytic solution for a spheri-
cally symmetric harmonic oscillator potential according to Busch et
al. [Bus98]. The solution for an axially symmetric harmonic oscillator
potential with aspect ratio of 1 to 10 is indicated by the black lines
according to Idziaszek et al. [Idz06]. Only the latter solution is a valid
description for the bound state E < 0.

according to equation 3.12. An external trapping potential influences the asymp-
totic form of the wave function but can be neglected when the characteristic length
scale of the external potential r0 is large compared to a. When r0 becomes com-
parable to a the scattering amplitude and thus the coupling strength is modified
compared to the free particle case. In an extreme case, the confinement becomes
strong in two dimensions such that the asymptotic wave function is restricted to
one dimension. This effect has been calculated by Olshanii et al. [Ols98] for a
potential symmetric around the z axis with strong harmonic confinement in radial
direction. To solve the problem, two approximations are made which are fulfilled
in our experiment for particle numbers N ≪ 2η where η = 10 denotes the aspect
ratio of the trap: the system is radially in its ground state and the energy of the
colliding particles is not sufficient to excite the first axially symmetric state which
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4.3 Two interacting particles

has an energy difference of 2 ~ω⊥ to the ground state. This sets the condition

~
2k2

z

2µ
< 2~ω⊥ (4.45)

where kz denotes the wave vector of the relative wave function of two interacting
particles. With this approximation the asymptotic form of the wave function
becomes

ψr(z, ρ) ∼
(

eikzz + f · ei k·z
)

φ(ρ)

where φ(ρ) is the wave function of the ground state of the harmonic oscillator in
radial direction. In the limit of low momentum the scattering amplitude has the
following form

f(kz) = − 1

1 + ikza1D

(4.46)

where the scattering length in one dimension is calculated as

a1D = −x2
⊥

2a

(

1 − C
a

x⊥

)

(4.47)

where C = ζ
(

1
2

)

= 1.46..., ζ is the Riemann zeta function and x⊥ =
√

2~/mω⊥

denotes the reduced harmonic oscillator length in radial direction. In this case a
one dimensional delta-potential

V1D(z) = g1Dδ(z). (4.48)

can be used to model the interactions which yields the right scattering amplitude
4.46. This defines the coupling constant to

g1D = −4~2a

mx2
⊥

1

1 − Ca/x⊥

. (4.49)

Compared with the coupling constant in three dimensions 3.37

g3D =
4π~2

m
a

the coupling constant in one dimension can be obtained by rescaling a with a
parameter of the confinement x⊥. In particular, the coupling strength diverges
when a = 1/C x⊥ = 0.68x⊥ This divergence is referred to as a confinement-
induced resonance. Equation 4.49 is important because it allows us to calculate
the coupling strength between two particles for our one-dimensional system. As
we tune the scattering length a by means of a magnetic Feshbach resonance (see
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Figure 4.8: Coupling constant g1D for two ultracold atoms as a function of mag-
netic field. When the scattering length a becomes comparable to the
transverse harmonic oscillator length x⊥ which is the case for a mag-
netic field of B = 783 Gauss, g1D diverges. This phenomenon is referred
to as confinement-induced resonance.

figure 3.6) we calculate g1D as a function of applied magnetic field.
The result is plotted in figure 4.8. The coupling strength diverges at a magnetic
field of BCIR = 783 Gauss because a becomes comparable to x⊥.
The magnitude of x⊥ and ω⊥ are determined by characterizing the optical potential
as discussed in chapter 7.3. In particular, we measure the energy difference between
first and third radial state (E2 −E0)/h. From that we deduce ω⊥ =

√

2.75/4 (2π×
14330) Hz = (2π × 11883) Hz which yields x⊥ = 0.53µm for the chosen relative
depth of the microtrap of s = 2.75/4.
Since we determined the coupling strength for our system as a function of magnetic
field, we can now use the analytical equation 4.40 to calculate the interaction shift
of the particles in the trap. The result is presented in figure 4.9. Starting from a
non-interacting system we can increase the interaction shift by more than 1.5 ~ω‖.

4.3.2 Experimental access to the interaction energy

The tunability of the interaction strength raises the question how this energy shift
can actually be measured in the experiment. Our approach to probe the energy
of the system is to explore the tunneling dynamics of the particles in the tilted
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Figure 4.9: Energy shift as a function of magnetic field. The energy shift for two
interacting atoms in a harmonic potential is calculated using the an-
alytical expression given in equation 4.40 and the coupling strength
in one dimension g1D according to equation 4.49. We can raise the
interaction energy by more than 1.5 ~ω‖ by increasing the magnetic
field.

potential as sketched in figure 4.10. The higher the energy of the system becomes
the smaller is the effective tunnel barrier for the particle and the faster is the
timescale of the tunneling process. Given a precise theoretical mapping between
the tunneling time constant and the system’s energy, the energy of the system can
be determined measuring tunneling times. We use the WKB method described
in chapter 4.2 to establish this link. The model we use assumes that a shift in
interaction energy affects the tunneling time of one atom through the barrier.
The assumption is justified because as soon as one atom tunnels the interaction
shift vanishes. This leads to a suppression of tunneling for the second atom. The
model does not account for pair tunneling which is suppressed according to our
measurements as discussed in chapter 7.1.

Before the results of the WKB calculation are discussed it is important to note
that the analytical solution for the interaction shift given in equation 4.40 is valid
for a harmonic potential. However, to measure the tunneling times we need to
tilt the potential as shown in figure 4.10. Therefore the potential becomes an-
harmonic. In fact, the ratio of ω̃‖ = (E1 − E0)/~ to the harmonic approximation
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Figure 4.10: Principle of measuring the interaction shift U . Interactions between
two particles increases the system’s energy which effectively reduces
the tunneling time of one atom through the barrier. By measuring the
tunneling time we deduce the interaction shift U . Parameters for the
calculation are B′ = 18.92 Gauss/cm, P = 291.5µW, w0 = 1.838µm
and s = 2.75/4.

given by ω‖ amounts to A = ω̃‖/ω‖ ∼ 80% as indicated by the blue and red lines
of figure 4.10. To account for this an-harmonicity we rescale the energy shift in
the harmonic approximation as plotted in figure 4.9 by A. This rescaling leads to
the fact that right at the confinement-induced resonance the energy shift amounts
to ~ω̃‖ rather than ~ω‖ which agrees with our measurements [Zür11].
With this rescaled interaction shift we calculate the tunneling times as function of
the magnetic field. The result is presented in figure figure 4.11.
For experimental parameters chosen, the lifetime of the ground state with vanish-
ing interaction energy is extremely long (t ∼ 1000 s). When the interaction energy
is raised, the tunneling barrier effectively decreases. Therefore the lifetime of the
state is decreased by more than six orders of magnitude.
The most important result of the calculation is shown in figure 4.12 where the
tunneling time is presented as a function of interaction shift. The energy shift is
given in units of ~ω̃‖. This graph allows us to deduce the energy shift caused by
interactions from the tunneling time which is the experimental observable.
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Figure 4.11: Tunneling time as a function of applied magnetic field for the tilted
potential. As the interactions raise the system’s energy for increasing
magnetic field the tunneling barrier effectively decreases. Therefore
the tunneling time can be reduced by more than six orders of magni-
tude.
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Figure 4.12: Tunneling time as a function of interaction shift for the tilted poten-
tial. This dependence allows us to deduce the interaction energy shift
from the measurement of tunneling times.
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5 Experimental Setup

We use two fundamental properties of a degenerate Fermi gas to prepare the few-
particle systems: According to Pauli’s principle each state can be occupied with
one fermionic atom per spin state. Furthermore, the occupation probability for the
lowest states approaches unity according to Fermi-Dirac statistics. Therefore the
lowest states are occupied with one fermionic atom per spin state. This allows us
to control the number of particles by controlling the number of occupied quantum
states. Our approach, the spilling technique, is to choose the occupied quantum
states by tilting the confining potential in such a way that only a well defined
number of states remains bound.
To prepare a system in which the lowest states are occupied with high probability
we use a property of the Fermi-Dirac distribution: the occupation probability
increases the lower the state’s energy is compared to the Fermi energy. This
allows us to enhance the occupation probability of the lowest states by increasing
the Fermi energy of the system. We realize this by starting with a reservoir of
cold atoms trapped in an optical dipole trap and enhance its Fermi energy by
superimposing a deep microtrap with this reservoir.
To successfully apply the spilling technique we need to choose occupied quantum
states on a single state level which requires a small-sized microtrap as discussed it
will be discussed in this chapter.
This chapter presents the experimental implementation of both the reservoir and
the microtrap with a strong emphasis on the microtrap setup which is the focus of
this thesis. One of the major experimental challenges is to probe the few-particle
systems on a single particle level. Our technique of using a magneto-optical trap
as a single atom detector is described. It closes with a description of a high-
resolution objective which has been designed during this thesis. Considerable
effort has been put into this design with the goal to improve the control and the
tunability of the system in several ways: First, the objective allows us to create a
smaller microtrap. As this increases the level of control over the occupied quantum
states in the potential, it should improve the preparation fidelity of the few-particle
systems significantly. Second, we will be able to explore tunable quantum systems
in two and three dimensions in a variety of trapping geometries such as periodic
potentials.
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5.2 Vacuum chamber

5.1 Design goals

A major design goal of the experimental setup is to allow a high-fidelity preparation
of few-particle systems. For this one important requirement is the small size of the
microtrap as it will be discussed in section 5.6.1. To obtain a small-sized dipole
trap a Gaussian laser beam is focused using a high-resolution objective. The size
of the microtrap is determined by the resolution of the objective which is given by

r = 1.22
λ

2 NA
(5.1)

where λ is the wavelength of the light and NA = sin θ the numerical aperture of
the objective which has an opening angle of 2θ. Therefore the realization of a
small microtrap requires good optical access to the vacuum chamber where the
experiments are performed.
Another prerequisite for high-fidelity preparation is that the timescale for collisions
of the sample with background gas atoms is much longer than the timescale for
preparation and detection of the sample. To meet this condition, the vacuum
pressure in the experimental chamber has to be sufficiently low. In current state
of the art experiments [Bak09, She10], a lifetime of t ≈ 60 s is main factor which
limits the detection efficiency. Although the 1/e-lifetime of atoms in our magneto-
optical trap exceeds 250 s, this is just large enough not to limit the detection
fidelity of samples with up to ten atoms as shown in chapter 5.5.
Another major design goal for the whole apparatus was to fulfill those requirements
with a setup as simple as possible since a simpler setup is easier to assemble, debug
and maintain.

5.2 Vacuum chamber

The vacuum chamber is designed to ensure long lifetimes of the prepared samples
and provide large optical access. A sketch of the complete vacuum chamber is
shown in figure 5.1. As the hot lithium oven leads to an increase in pressure,
the oven chamber is separated from the experimental chamber via a differential
pumping tube to be able to reach a low pressure where experiments are performed.
To pump a broad range of gases a combination of pumps is used. Reactive gases
like H2 are gettered with two titanium sublimation pumps which coat the surface
of the two CF100 crosses in both chambers. Two ion pumps efficiently pump
non-reactive gases such as noble gases. As the pumping speed in the heart of the
experimental chamber, the spherical octagon, is limited by the conductance of a
CF40 flange an additional pumping technique is used. The walls of the octagon
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Figure 5.1: Complete vacuum system. To be able to reach low background pressure
in the presence of the hot lithium oven, the vacuum system is divided
into two parts which are connected via a differential pumping tube. In
this way samples with lifetimes exceeding 250 s can be prepared in the
spherical octagon where the experiments are performed. From [Ser07].

are coated with a non-evaporable getter coating (NEG). Its great advantage is that
it lowers the pressure directly where the experiments are performed. With these
three pumping techniques a vacuum on the order of p ≈ 10−12 mbar is reached
which is sufficiently low not to limit the detection fidelity (see chapter 5.5).
The second requirement for the vacuum setup, large optical access, is provided by
reentrant view ports attached to the spherical octagon. A picture of the octagon
with the view ports is shown in figure 5.2. They allow a numerical aperture of
NA= 0.65 which is large enough to focus the laser beam for the microtrap to a
waist of w0 < 1µm. This is sufficient to prepare few-particle systems with high
fidelity as discussed in chapter 5.6.1.
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Figure 5.2: Octagon with reentrant view ports. The reentrant view ports provide
optical access under a large solid angle. This allows a high numerical
aperture NA = 0.65 for atom detection and for focusing the microtrap
beam to a waist w0 < 1µm. They also provide space for mounting the
Feshbach coils close to the atoms. This minimizes the power the high
magnetic fields require to tune the inter-particle interactions.

5.3 The reservoir

To reach a high occupation probability for the lowest states of the potential we
prepare a reservoir of cold atoms and enhance its Fermi energy by superimposing
a deep microtrap as discussed in section 4.1.1. For this, the reservoir has to fulfill
two major requirements with respect to the number of atoms and its degree of
degeneracy:
First, the maximum enhancement is achieved only if the width of Fermi edge,
which is determined by the temperature, is not increased when both traps are
combined as sketched in figure 4.2. In order to preserve this temperature the
number of atoms which fit into the microtrap has to be small compared to the
number of atoms in the reservoir. In the current setup, the microtrap holds about
600 atoms in two states before the spilling process is applied. Experimentally, we
found that a reservoir consisting of 104 atoms per spin state is sufficiently large to
obtain a high occupation probability for the lowest states.
Second, the occupation probability for the lowest states of the combined system
depends on the initial degree of degeneracy of the reservoir. Thus the degree of
degeneracy of the reservoir has to be high enough to reach an occupation probabil-
ity which is close to one for the lowest states of the combined system. A reservoir
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which is mildly degenerate with T/TF ∼ 0.5 fulfills this requirement.
The following section briefly describes the preparation of the reservoir. A detailed
description can be found in previous theses, for example in [Lom11].
Starting point is an effusive lithium oven where lithium is vaporized into the gas
phase by heating the sample. This creates an atomic beam with particle veloci-
ties corresponding to Tinitial ∼ 103 K. To reach the final temperature the atom’s
kinetic energy has to be reduced by 9 orders of magnitude. This is done in two
steps. First a source of cold atoms is prepared by laser cooling techniques which
are briefly discussed. Final part of this cooling stage is the magneto-optical trap
which contains 108 atoms at T = 0.5 mK. These atoms are transferred into the
optical dipole trap where evaporative cooling is performed to prepare the final
reservoir.

5.3.1 Cold atom source

Laser cooling

A source of cold atoms is required to load the optical dipole trap in order to
prepare the reservoir. The preparation of the cold atom source exploits the spon-
taneous force which acts on an atom due to absorption and spontaneous emission
of photons. The absorption of a photon from the laser-field changes the atoms
momentum by

∆patom = pphoton = ~k (5.2)

Because the subsequent spontaneous emission is isotropic, the momentum transfer
gained in the emission process averages to zero. Hence, the spontaneous force
acting on an atom can be written as

〈F〉 = ~kγp (5.3)

where γp is the scattering rate. The scattering rate depends on the detuning of the
laser with respect to the atomic transition δ = ω0 − ωlaser, where ω0 denotes the
frequency of the atomic transition. Its magnitude is given according to [Met99]

γp =
s0γ/2

1 + s0 + (2δ/γ)2
(5.4)

where γ is the natural line width of the transition and s0 is the saturation param-
eter given by s0 = I/Isat where I is the laser intensity and Isat = ~ω3

0γ/ (12πc2).
For 6Li, γ = 2π · 5.7 MHz and Isat = 2.54 mW/cm2.
The maximum force which can be achieved is given Fmax = ~kγ/2 leading to a
deceleration of amax ≈ 105 g. Although the momentum change of the atom caused
by the absorption of a single photon is tiny a lithium atom can be slowed down
from 1000 m/s to 10 m/s within a distance on the order of 1 m.
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Zeeman Slower

In the simplest scenario the spontaneous force is applied by sending a laser beam
counter-propagating to an atomic beam. As the atoms in the atomic beam move
with a velocity v, their transition frequency becomes Doppler shifted by an amount
of δv = −kv, where k denotes the wave vector of the laser beam. Thus, the laser has
to be red-detuned by the same amount in order to decelerate the atoms. As soon as
the atoms decelerate their Doppler shift changes leading to a decrease in scattering
rate according to equation 5.4 which prevents further deceleration. To compensate
for the changing Doppler shift during the deceleration we use the Zeeman effect to
shift the atomic resonance frequency such that the atoms remain resonant during
the whole deceleration process. The device which provides the required magnetic
fields is called a Zeeman slower. The shape of the required magnetic field and the
properties of the Zeeman slower which we use in the experiment are discussed in
[Ser07].

Magneto-optical trap

In three dimensions atoms can be slowed down by means of 6 counter-propagating
laser beams which are red detuned with respect to the atomic transition frequency.
Higher velocities of the atoms lead to decreasing detuning with respect to the
counter-propagating beam which increases the spontaneous force acting on the
atoms. This result in a damping force which is proportional to the atoms’ velocity
in the regime of low light intensities. Therefore this scheme is called an optical
molasses.
To add a spatial confinement, the force has to become not only velocity- but also
position-dependent. As the force only depends on the scattering rate, a spatial
varying scattering rate is sufficient to create the confinement. Such a configuration
is realized within a magneto-optical trap (MOT). A magnetic quadrupole field is
applied which causes an increase in the magnetic Zeeman shift which is propor-
tional to the distance of the atoms from the zero of the magnetic field. The larger
the distance of an atom from the center becomes the more photons are scattered.
When circular polarized light is used the atoms absorb more photons from the
beam that pushes them to the center of the trap. The minimum temperature
which can be achieved in a magneto-optical trap depends on the equilibrium of
cooling force and heating due to spontaneous emission. For low saturation inten-
sities this value is given as [Met99]

TD =
~γ

2kB

. (5.5)
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For Lithium, the Doppler temperature has a value of TD = 140µK. In principle
there exists techniques to overcome this limit such as polarization gradient cooling.
However these techniques cannot be applied to Lithium because of its light mass.
A fundamental limit poses the increase in energy due to the absorption of a single
photon given by the recoil temperature

TR =
~

2k2

2kBm
. (5.6)

For lithium, the recoil temperature takes a value of TR = 3.5µK.
Our magneto-optical trap is able to load 108 atoms/s at a temperature of 0.5mK.
A detailed description can be found in [Ser07]. For most experiments we start
with 108 atoms which requires a loading time of 1 s. To reduce the temperature of
the sample below the Doppler limit, evaporative cooling in an optical dipole trap
is performed.

Laser system

Following previous considerations, a laser system is required which provides light
with a variable detuning with respect to the atomic transition. Furthermore, to
apply laser cooling techniques the detuning of the laser has to be controlled with a
precision which is small compared to the natural line width of γ = 2π × 5.8 MHz.
These conditions are met by grating stabilized diode lasers (DL100 Toptica) which
emit on a single longitudinal mode. In this configuration, a laser diode and a grat-
ing form a cavity whose length and therefore the output wavelength is controlled
by moving the position of the grating with respect to the diode using a piezoelectric
actuator. As a frequency reference we stabilize one diode laser using the technique
of Doppler free spectroscopy of 6Li in a vapor cell to the F = 3/2 → F ′ = 5/2
transition (see figure 5.3). The other diode lasers are stabilized with respect to
the reference laser by a beat offset locking technique [Sch98, Ser07, Lom08], which
allows us to change the detuning of the laser with respect to the transition fre-
quency dynamically.
A further requirement on the laser system is to provide sufficient output power

in order to saturate the atomic transitions in all optical beams. For lithium the
required saturation intensity is Isat = 2.54 mW/cm. As the output power of our
diode lasers is limited to P ∼ 25 mW we use an amplifier chip (Toptica, TA100)
to obtain P ∼ 400 mW of total power with the spectral properties of the seeding
diode laser.
We use the F = 3/2 → F ′ = 5/2 transition for laser cooling. However, as the
excited hyperfine states cannot be resolved (see figure 5.3), the probability for the
atom to decay into the F = 1/2 ground state manifold is significant: the optical
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Figure 5.3: Level scheme of 6Li. For laser cooling the D2 transition is used. Due
to the natural line-width of the transition of 6 MHz the excited hy-
perfine states are not resolved. As the decay probability into the
F = 1/2 manifold of the ground state is significant, a re-pump laser is
required.

transition is not closed. Therefore a re-pump laser is required. To obtain both fre-
quencies with a single laser we lock the diode laser seeding the TA to the crossover
between the two ground state manifolds and split the output light into two parts.
We generate the two frequencies by shifting the frequency of one part of the light
by −114 MHz (cooler) and the second part by +114 MHz (re-pumper) using of
two acousto-optical modulators (aom). They also allow us to control the intensity
of cooler and re-pumper light. This is a crucial requirement for the operation of
the magneto-optical trap as single atom detector as described in section 5.5. We
combine the parts containing the two frequencies again into a single beam which
is coupled into fibers to distribute them to the experiment.
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5.3.2 Optical dipole trap

To perform evaporative cooling atoms are transferred from the magneto-optical
trap into an optical dipole trap. This trap creates a conservative potential whose
strength is proportional to the spatial intensity distribution of the trapping light
as discussed in section 3.2.
In the experiment the dipole trap is formed by two laser beams (λ = 1070 nm)
focused to a waist of w0 = 40µm and both crossed at an angle of 15◦. We transfer
about 1% of the atoms, i.e.106 atoms from the MOT into the dipole trap. We
remove the hottest atoms of the sample by reducing the depth of the dipole trap
by lowering the intensity of the trapping light using an acousto-optical modulator
(aom) over a couple of seconds. A detailed description of the evaporation process
can be found in [Lom11]. As the efficiency of evaporative cooling crucially relies
on the time the sample needs to thermalize high elastic collision rates are required.
Since the cross section for identical fermions vanishes, as discussed in chapter 3.1,
we use a mixture of atoms in two different hyperfine states (|1〉 and |2〉, see chapter
3.1) in order to perform evaporative cooling. To obtain a high collision rate we
tune the inter-particle interactions using a Feshbach resonance. The final number
of atoms in the sample and its degeneracy depends on the efficiency of the evap-
oration process. In principle this efficiency is maximized by evaporating in the
vicinity of the Feshbach resonance. However, for a large positive scattering length
a molecular bound state is populated if the temperature of the sample becomes
comparable to the binding energy of the molecule. Evaporating in this regime leads
to the formation of bosonic molecules which can form a molecular Bose-Einstein
condensate. In our apparatus we can prepare condensates consisting of 150000
molecules at a temperature of 100 nK.
To prepare a degenerate Fermi gas, the population of the molecular branch has
to be avoided. We reach this by starting the evaporating close to the resonance.
Before the formation of molecules sets in we continue the evaporation with a neg-
ative value of the scattering length (B = 300 Gauss) because there is no molecular
bound state which can be populated. Using this technique we prepare degenerate
Fermi gases consisting of 75000 atoms per state with T/TF ≈ 0.28. These are the
starting point for our previous experiments.
In order to prepare the reservoir for loading the microtrap we perform the com-
plete evaporation at a field of B = 300 Gauss. The final system consists of
N ≈ 2·104 atoms per spin state at a temperature of T . 250 nK which corresponds
to T/TF ≈ 0.5. This is completely sufficient for the preparation of few-particle
systems as it will be discussed in the next chapter.
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Figure 5.4: Microtrap setup. Systems with up to 10 fermions are prepared with 6Li
atoms in a micrometer sized optical dipole trap created by the focus
of a single laser beam. The number of atoms in the sample is detected
with single atom resolution by transferring them into a magneto-optical
trap and collecting their fluorescence on a CCD camera. A Feshbach
resonance allows us to tune the interaction between the particles with
a magnetic offset field.

5.4 The microtrap

The key elements of the experimental setup which are required to create a tunable
few-particle system are presented in figure 5.4. After a brief summary this section
describes the parts in detail.
Heart of the setup is the trapping beam which is focused with a high-resolution
objective to create the microtrap. To perform the spilling process, the gradient
coils are used to apply a magnetic field gradient in z-direction. The interac-
tions between the particles are tuned by means of a magnetic Feshbach resonance.
Therefore large homogeneous offset fields are required which are created by the
offset coils. To detect the samples on a single atom level, they are transferred into
the magneto-optical trap where their fluorescence signal is recorded via a CCD
camera.
The setup for focusing the trapping beam to create the microtrap is shown in fig-
ure 5.5. To obtain a focus as small as possible, a clean Gaussian beam is required.
Therefore the setup is divided into two parts connected with a single mode po-
larization maintaining optical fiber (Thorlabs P3-1064PM-FC-5) which cleans the
beam profile. The part before the fiber (left panel of figure 5.5) is referred to as
’low noise trapping light source’, the part after the fiber as ’focusing setup’.
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Figure 5.5: The microtrap setup. To obtain a clean beam profile and pointing
stability for the microtrap beam, the setup is divided into two parts
which are connected with an optical fiber. The intensity of the micro-
trap beam after the fiber is monitored with a photo diode and stabilized
by means of an acousto-optical modulator.

5.4.1 Low-noise trapping light source

A high preparation fidelity requires intensity stability of the optical potential be-
cause intensity noise directly translates into a variation of tunneling times of the
bound states in the tilted potential. This variation hinders the deterministic ap-
plication of the spilling scheme.
According to WKB calculations (figure 5.17), the required relative intensity stabil-
ity for a trap with a waist of w0 = 1.8µm as used in the experiment is on the order
of 10−3. Therefore, an intensity stabilization scheme which is significantly more
accurate than 10−3 is required. The scheme has to work in two different frequency
domains: First, the system is extremely sensitive to noise with a frequency on
the order of the trap frequency, i.e. up to 100 kHz. Therefore, it is essential to
minimize the noise in this frequency band. Furthermore, long-term drifts have to
be minimized because they cause shot-to-shot variations of the tunneling times of
the system in the tilted potential which degrades the overall preparation fidelity
of the system.
The required intensity stability is reached by using a laser with low intrinsic in-
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tensity noise in combination with an intensity stabilization scheme.

Microtrap laser

As light source with low intrinsic noise we use a green laser pointer (100 mW
http://greenlaserdepot.com) as it is used in presentations. A sketch of its interior
is shown in figure 5.6. It contains a laser diode emitting at λp = 808 nm pumping a

Figure 5.6: Working principle of a green laser pointer. A laser diode emitting at
λ = 808 nm pumps a Yttrium orthovanadate crystal which is doped
with neodymium. The crystal emits at λ = 1064 nm which is frequency
doubled to green light λ = 532 nm by means of a nonlinear crystal.
Image from [CAS].

Yttrium orthovanadate crystal which is doped with neodymium (Nd:YVO4). This
active medium emits light at λ = 1064 nm which is frequency doubled to green
light at λ = 532 nm with a nonlinear crystal. As the reflectivity does not reach
100% for λ = 1064 nm at the output facet of the crystal, the laser pointer also
emits P ≈ 4 mW at λ = 1064 nm. At this wavelength, the laser runs on a single
longitudinal mode. A characterization of the laser can be found in [Haf11].
To have as much laser light available for trapping as possible, high fiber coupling
efficiency is desired. Therefore the diameter and divergence of the beam is matched
to the lens of the fiber coupler (Thorlabs C240TME-B) by means of a lens with
f = 800 mm placed directly in front of the laser pointer. In this way fiber coupling
efficiencies exceeding 50% are reached. A color filter which only transmits light at
λ = 1064 nm (Thorlabs FGL610S) is used to remove the green light. A picture of
this setup is shown in figure 5.7. After the filter, a polarizing beam splitter is used
to clean the polarization of the beam. This makes the setup more robust against
polarization drifts which is crucial to stabilize the intensity of the microtrap. The
intensity of the beam is controlled with the acousto-optical modulator (see below).
For fine alignment of the beam polarization with respect to one of the main axes
of the polarization maintaining fiber a λ/2-plate is placed directly in front of the
fiber coupler.
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Figure 5.7: Laser pointer as low-noise light source for the microtrap beam. The
green light (λ = 532 nm) is removed with a wavelength filter (red glass)
leaving only the fundamental wave(λ = 1064 nm) which is coupled into
a fiber. The intensity noise of the output light is low enough to allow
a high fidelity preparation process.

Intensity stabilization

To stabilize the intensity of the microtrap, the intensity of the light after the fiber
is monitored with a photo diode (Hamamatsu G8370-81) whose output signal is fed
into a digital PID-controller. Details of the implementation of the PID-controller
can be found in [Zür09]. Deviations from the set value are corrected by adapting
the laser intensity before the fiber with an acousto-optical modulator (Crystal
Technology 3110-197). The light intensity is controlled by adjusting the amplitude
of the radio-frequency (rf) signal which causes the sound wave in the aom. The aom
requires a 110 MHz radio-frequency (rf) signal for optimum diffraction efficiency
which is generated with a voltage-controlled oscillator (VCO). A sketch of the
stabilization scheme is shown in figure 5.8. To control the rf-intensity at high
bandwidth and large dynamic range we multiply the output of the PID-controller
with the output of the radio-frequency source using two mixers. Parameters of the
PID loop can be optimized over the whole dynamic range if the feedback loop has
a linear response. Therefore we compensate the non-linear characteristic of the
two mixers by using a look-up table in the PID loop. This can be realized since
the PID controller is implemented digitally.
The noise suppression is evaluated by taking the Fourier transform of the photo
diode voltage using a digital oscilloscope (TiePie HS3). In the frequency range up
to 100 kHz, which is large compared to typical trap frequencies of 1 − 30 kHz, the
scope shows a noise level of (20 log ∆U/1V) = −70 where U is the output voltage
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Figure 5.8: Setup to control the acousto-optical modulator (aom). To obtain high
bandwidth and large dynamic range we use two mixers to control the
radio-frequency signal which is fed into the aom. Parts from Mini-
circuits.

of the photo diode. This corresponds to relative intensity noise
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where
〈

δP 2
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〉

is the mean-square optical intensity fluctuation in a 1-Hz bandwidth,
P 2

opt denotes the square of the average optical power and bs the bin size of the scope
in the frequency domain. For comparison, a commercially available low-noise light
source (Innolight Mephisto) reaches values of RIN< −130 dB/Hz in the same
frequency band. To evaluate long term drifts, we measured the laser intensity by
means of a second photo diode which placed in the focus of the objective. For
a measurement duration of 10 hours, we achieve a relative intensity stability of
5 · 10−4 between the two photo diodes.
To reach this level of accuracy several hurdles had to be overcome. First, it is
crucial to remove the cover glass of the photo diodes because interference effects
due to reflections from the cover glass result in intensity drifts. The second source
of error is caused by polarization drifts of the light source. Although we used a
polarization-maintaining fiber with a polarizing beam splitter at its entrance port
it turned out to be necessary to clean the polarization after the fiber by means of
a second polarizing beam splitter. In addition, the out-coupling of the light for
the PID photo diode after the fiber has to be made as robust to polarization drifts
as possible. This is fulfilled when a polarization drift causes only a low relative
change in intensity on the photo diode. Therefore we use a 50/50 non-polarizing
beam splitter which reflects a significant portion of the light and whose reflectivity
is almost the same for s and p polarization.
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wavelength 1064 nm 671 nm
focal length 40.7 mm
image distance ∞ 2570 mm
field of view (diameter ) 200µm
max. diffraction limited NA 0.44 0.27
entrance aperture at max NA (diameter) 36 mm 22 mm
resolution 1.4µm 1.5µm
waist of the focus 0.9µm 1µm

Table 5.1: Design parameters for the focusing objective.

5.4.2 The focusing setup

The main goal of the optical setup after the fiber is to create the small focus which
is required to prepare the microtrap. This is done by collimating the beam after
the optical fiber with a f = 190 mm doublet (CVI Melles Griot LAI-190.0-50.0)
and focusing it using the f = 40.7 mm focusing objective.
Additionally, the setup provides a monitoring port for the intensity stabilization.
To pick up a significant portion of the beam a 50/50 non polarizing cube (Edmund
Optics 49005) is placed after the polarizing beam splitter which eliminates the
effects of polarization drifts.
The objective has been designed using the optical design software OSLO. In the
following, the design of the focusing objective is discussed as well as its measured
performance. Furthermore the integration into the optical setup for the MOT is
described.

Design parameters for the objective

The focusing objective has been designed to meet several requirements. First, the
setup has to be as simple as possible. Therefore the number of optical elements
should be minimized and commercially available catalog lenses are preferred. Fur-
thermore, the magnification of the setup should be flexible. For that reason an
infinite conjugate design has been chosen to be able to change the magnification
by simply choosing a different second lens. This design has also the advantage
that optical elements like dichroic mirrors for imaging purposes can be inserted
into the path between the objective and the second lens without degrading the
performance of the objective which was not possible with the previous design (see
[Ott10]).
To obtain high preparation fidelity, the system should be optimized to create a

small focus at λ = 1064 nm. The size of the focus should be much smaller than the
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size of the focus of the previous objective with w0 ∼ 3µm. At the same time the
objective should have a decent imaging performance at λ = 671 nm. The setup
should be also easy to align, which requires a large field of view.
Before the actual design is discussed a brief overview over relevant parameters is
given. The diffraction-limited resolution of an imaging system is given as

r = 1.22
λ

2NA
(5.8)

where NA denotes the numerical aperture. This value corresponds to the distance
from the maximum to the minimum of the objective’s point-spread-function (psf)
which is given as an Airy function for a diffraction limited objective.
The waist of the focused Gaussian laser beam is defined as the 1/e2-radius of the
intensity distribution. It depends on the illumination of the entrance pupil of the
objective [Cvi]. Therefore, the 1/e2-radius of the image spot can be written as

w0 = K
λ

2NA
, (5.9)

where K is a constant depending on the illumination of the entrance pupil. Only
for a uniformly illuminated pupil, the intensity distribution in the image plane is
given by the Airy function. If the entrance pupil is illuminated with a Gaussian
intensity distribution the side maxima of the Airy pattern vanish but also the
1/e2−radius of the focus increases. For a qualitative analysis it is useful to define
a truncation ratio

T =
wap

rap

(5.10)

where wap is the waist of the Gaussian beam at the objective’s aperture which has
a radius of rap. For a given truncation ratio the value of K can be calculated using
the formula [Cvi]

K(T ) = 0.82 +
0.32

(T − 0.28)1.82 − 0.27

(T − 0.28)1.89 . (5.11)

Values for K for T = 0, 0.5, 1, 2,∞ are shown in table 5.2. For a Gaussian beam
with a waist which is equal to the aperture radius the truncation becomes T = 1.
Thus the waist in the focus will be about 12% larger compared to a uniformly
illuminated case. The important relation between the imaging resolution and the
1/e2-radius of the point spread function is given by K(∞)/1.22 = 0.67.
Starting point for the design was a high numerical aspheric lens with long working
distance (Thorlabs AL5040) to be able to insert further elements between the lens
and the view port. The lens is designed for λ = 780 nm and works diffraction
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Truncation ratio spot size [λ/2NA]
∞ 0.82
2 0.85
1 0.92

0.5 1.26

Table 5.2: 1/e2-spot size and truncation ratio. The resolution according to the
Rayleigh is defined as 1.22λ/2NA.

Radius 1 245.39 mm
Radius 2 600 mm
Thickness 4 mm
Focal length 800 mm
Material BK7
Distance to aspheric lens 4.3 mm

Table 5.3: Properties of the meniscus lens (JML OPTICAL CMN11281).

limited up to NA= 0.55. However the diffraction-limited numerical aperture for
λ = 1064 nm is significantly reduced to NA= 0.35. In addition, the 6 mm thick
fused silica window of the reentrant view port introduces aberrations and degrades
the performance further. This limits the numerical aperture to NA= 0.22. Placing
an additional element between aspheric lens and view port provides the degrees
of freedom to bring the diffraction limited performance up to NA= 0.44. Closest
to the ideal solution comes a positive meniscus lens (JML OPTICAL CMN11281,
for details see table 5.3). A sketch of the objective is shown in figure 5.9. As
the meniscus lens is only available with 50 mm diameter, its diameter was reduced
using a lathe to 34 mm to fit into the mount. With this lens configuration, the
parameters of the nominal system are given in table 5.1. According to the final
design parameters, the trapping beam can be focused to a waist of w0 < 1µm
which is sufficiently small to prepare few-particle systems at high fidelity.
The lenses are mounted within an aluminum tube as shown in figure 5.10. The
right distance between the aspheric lens and the meniscus lens is set by a spacer
which also centers the meniscus lens with respect to the optical axis. The aspheric
lens is centered to the same axis via a tube which is fixed by means of a retaining
ring. As the alignment of the objective requires the degree of freedom to tilt it
with respect to the optical axes and translate it in three directions we mount the
objective using a 5-axis mount (Newport LP2a) whose stability we increase by
enforcing it with additional aluminum sheets. Although the adjustment of the
focus in z-direction causes a tilt of the objective with respect to the optical axes,
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Figure 5.9: The objective consists of two elements, one aspheric lens and a positive
meniscus lens which compensates spherical aberrations caused by the
vacuum view port. It is designed to focus the trapping light to a waist
of w0 ∼ 1µm in order to create a small volume dipole trap. Units in
mm.

the mount has the main advantage that it is stable. Therefore, we need to realign
the microtrap only every four months.

Performance test

The performance of the objective was evaluated in two steps as sketched in figure
5.11. In a first setup, the point spread function of the objective was determined by
imaging an object whose extension is small compared to the targeted resolution.
The imaging resolution can be directly determined from the intensity distribution
of the corresponding image. It is given as the distance between the maximum
intensity to the first minimum of the Airy disc. To extract this distance, a 2-D
Gaussian is fitted to the intensity distribution of the image. From the fit param-
eter the 1/e2 radius wfit was obtained and the imaging resolution was calculated
according

r = 1.22/K(∞) · 1/M · wfit = 1.5/M wfit, (5.12)

where M is the magnification of the system.
To measure the magnification, the object was displaced in the x, y-plane perpen-
dicular to the optical axis. The magnification is obtained via M = di/do where
do(di) is the distance the object (image) translates. For the magnification a value
of M = 20.3±1.2 was measured where the error stems from the uncertainty in the
position of the translation stage. Within two standard deviations, the measured
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Figure 5.10: Mount for the lenses of the focusing objective. The right distance
between the aspheric lens and the meniscus lens is set by a spacer
(red) which also centers the meniscus lens with respect to the optical
axis. The aspheric lens is centered to the same axis via a tube which
is fixed by means of a retaining ring.

value agrees with the theoretical calculated from the ratio of the focal lengths
Mtheo = 750 mm/40.7 mm= 18.4.
To obtain an accurate result for the intensity distribution a high signal-to noise-
ratio is desired. This is optimized when just the test object itself but not the
background is transmissive. Therefore a pinhole (Data Optics) with a specified
diameter of d < 0.8µm was used as test target.
The alignment of the test setup was done in several steps which are briefly sum-
marized in the following. The trapping laser beam defines the optical axis and all
components are subsequently aligned with respect to this axis according to figure
5.11.
First, the CCD camera and an iris were aligned with respect to the trapping light.
The position of the iris defines the optical axis. It is later used to align the ob-
ject within the field of view of the objective. Its position was chosen to be in
between the CCD and the f = 750 mm lens but as close to the lens as possible.
To minimize the number of degrees of freedom, the f = 750 mm lens was added
into the housing of one of the objectives. Then, the angle of the objective with
respect to the optical axis was aligned by overlapping the back reflections from the
flat side of the aspheric lens with the incoming trapping light. At this stage the
position of the meniscus lens with respect to the aspheric lens in the housing was
optimized by overlapping the back reflections of the two lenses with the trapping
light. To do so, the retaining ring which fixes the lenses in the mount had to be
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5.4 The microtrap

Figure 5.11: Setup for testing the performance of the objective.(A) By imaging a
pinhole onto a CCD camera, the point spread function of the objec-
tive can be directly measured. (B) The focusing performance can be
evaluated by imaging the focus created by one objective with a second
identical one.

loosened and tightened again. The next step was to align the x, y-position of the
objective with respect to the optical axis. Since a decentered objective causes an
asymmetric image of the trapping light and the iris on the CCD, this image is used
to optimize the position of the objective. Then the test window and the pinhole
were aligned. To make sure that the pinhole’s x, y-position is within the field of
view of the objective, it had to be translated to the center of the optical axis which
is defined by the image of the iris on the camera. Using this alignment technique,
the Airy function on the camera showed slightly asymmetric side maxima which
could be caused by imperfect alignment.
In order to use this objective to image the focus created by the second objective,
imaging errors introduced by the first objective have to be minimized. Therefore
a symmetric point-spread-function of the imaging objective is desired. We achieve
this by translating the pinhole within the field of view of the imaging objective
until the point-spread-function becomes symmetric. This translation only affects
the side maxima of the Airy pattern, the resolution is not altered. The images
of the pinhole is shown in figure 5.12 (a). We fit a 2-D Gaussian to the intensity
distribution of the image to characterize the point-spread-function of the imaging
objective. We obtain a resolution of rx = ry = (1.6 ± 0.1)µm according to equa-
tion 5.12. Within two standard deviations the experimental value agrees with the
diffraction limit rdiff = 1.4µm.
Then, the pinhole is removed inserting the second objective which creates the fo-
cus of the trapping beam. We image this focus with the imaging objective. The
result is shown in figure 5.12 (d). We obtain an upper limit for the size of the
focus wy = (1.3 ± 0.1)µm.
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In the experiment we limit the beam diameter to d = 30 mm in order to fit it
through the 2" dichroic mirror which is placed at 45° with respect to the optical
axis. This limits the NA for focusing to 0.37. With a truncation ratio of T ≈ 1.3
we expect a spot size of wtheo

0 = 1.3µm according to equation 5.9.
According to trap frequency measurements, the focus size obtained in the exper-
iment is w0 ≈ 1.8µm as discussed in chapter 7.2. This deviation could be caused
by slight misalignment of the objective in the experiment or by the surface quality
of the vacuum view port.

Integrating the objective into the MOT setup

To detect few-particle samples after they have been prepared, we transfer them
from the microtrap into the magneto-optical trap. Therefore, both components
must be operated at the same time. We realize this by separating the beam for the
magneto-optical trap from the microtrap beam using a dichroic mirror. In order to
retro-reflect the beam for the magneto-optical trap it needs to pass the objective
twice. To obtain a collimated beam at the position of the MOT, additional optical
elements are required. A sketch of the setup is shown in figure 5.13. The beam for
the magneto-optical trap is collimated with a f = 250 mm lens and retro-reflected
through the objective (A). The 1" diameter of the lens limits the diameter of this
beam at the position of the magneto-optical trap to d ∼ 4 mm, which is sufficiently
large to operate it in the detection mode. However, in order to load the reservoir
a larger beam diameter is required. Therefore we dynamically insert the required
optical elements into the optical path using a motorized stage during the loading
phase of the reservoir (B). A picture of this setup is shown in figure 5.14.

5.4.3 Magnetic field coils

Two pairs of coils are used to control the few-particle systems. To perform the
spilling process, a gradient field is required. The second pair of coils provides both
homogeneous offset fields for tuning the inter-particle interaction and a quadrupole
field to operate the magneto-optical trap as a single-atom detector.

Spilling gradient

In order to perform the spilling scheme we apply a magnetic field gradient along
the z-axis. This gradient is produced by means of a pair of coils in approximately
anti-Helmholtz configuration which is also used to create the magnetic field for the
magneto-optical trap in order to prepare the reservoir (see section 5.3.1) [Ser07].
To spill atoms we typically apply a gradient of B′

spill = 18.9(2) Gauss/cm. This
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Figure 5.12: Evaluation of the performance of the focusing objective. The square
pixels have a width of 4.65µm, the measured magnification amounts to
20.3±1.2. The determined imaging resolution rx = ry = (1.6±0.1)µm
agrees within two standard deviations with the diffraction limit of
rtheo = 1.4µm. The focus has a measured waist of wx = (1.2±0.1)µm,
wy = (1.3 ± 0.1)µm. This size is small enough to prepare few-fermion
systems with high fidelities.
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Figure 5.13: Setup for retro-reflecting the MOT beam for the detection of the
prepared samples (A) and loading of the reservoir (B). To obtain a
collimated beam at the MOT center a combination of lenses, a λ/4-
plate and a mirror is used. During the loading phase(B), the whole
assembly is inserted into the optical path using a motorized stage.

magnitude is deduced from the gradient which is necessary to levitate the atoms
against the gravitational force given by B′

grav = mg/µB. It is worth to note that
applying higher gradients does not lead to an increase in preparation fidelity as
shown in figure 5.18 (b).

Feshbach field and quadrupole field

We tune the inter-particle interaction with a magnetic Feshbach resonance as de-
scribed in section 3.1.2. Therefore large homogeneous fields up to 1500 Gauss have
to be applied. They are created by a set of coils, the Feshbach coils, which are
approximately in Helmholtz configuration. To produce these high magnetic fields
high currents are required. Therefore a large amount of heat has to be dissipated.
The required power is minimized by reducing the distance between the two coils
as much as possible. However, the coils still produce several kW of heat, thus a
sophisticated cooling scheme has been developed. A description of the Feshbach
coils can be found in [Ser07, Lom08, Zür09].
To operate the magneto-optical trap as a single atom detector, a we apply a strong
quadruple field with a gradient of 250 Gauss/cm as discussed in section 5.5.
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5.5 Single atom detector

Figure 5.14: Microtrap setup. The laser beam which is focused to create the mi-
crotrap passes a dichroic mirror from above and enters the objective
(black tube). To prepare the reservoir of cold atoms a motorized mir-
ror is inserted into the beam path for operation of the magneto optical
trap.

5.5 Single atom detector

We use the magneto-optical trap not only as the first stage of cooling but also
as a single-atom detector. This principle was first demonstrated in [Hu94] where
discrete steps in the fluorescence of a magneto-optical trap could be recorded
using a photo diode. The key advantage over other detection schemes is that the
observation time and therefore the number of collected photons can be made almost
arbitrarily large. Ultimately, it is only limited by the lifetime of the magneto-
optical trap, which is mainly determined by collisions with the background gas. In
principle also light-assisted collisions of two lithium atoms can lead to a reduction
of the lifetime. In our experiment the 1/e-lifetime of atoms in the magneto-optical
trap exceeds 250 s which is only limited by collisions with the background gas.
Although this value seems to be more than sufficient it can be a limiting factor
as the estimation of detection fidelity as a function of atom number and exposure
time shows. With the value of the lifetime a maximum allowed exposure time tex

can be estimated given a desired detection fidelity. The detection fidelity per atom
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can be calculated according to

p = e−tex/250 s. (5.13)

Therefore the detection fidelity of samples consisting of ten atoms amounts to

P =
(

e−tex/250 s
)10

. (5.14)

To reach a detection fidelity exceeding 98% the maximum exposure time is as short
as texp = 0.5 s. Therefore the detection setup has to be optimized to maximize the
number of scattered photons within this time.
The fluorescence signal of the atoms in the magneto-optical trap is collected with
a CCD camera (AVT Guppy F038B NIR) as sketched in figure 5.4. The light is
collected by a plano-convex gradium lens with f = 120 mm and focused on the
CCD with using a plano-convex gradium lens with f = 200 mm. The number
of collected photons is given by the solid angle covered by the first lens, which
yields a numerical aperture of NA = 0.18. Therefore a fraction of 0.8% of the
emitted photons is collected. With a calibration of the CCD camera of k =
226 photons/count [Ott10] and a measured signal of 150 counts/(atom s) we obtain

Nphoton = 226
photons
count

× 150
counts
atom s

× 0.5 s = 17000
photons

atom
(5.15)

which corresponds to a scattering rate of

γ =
1

0.008
226 × 150 Hz = 4.2 MHz ∼ 0.2

γ

2
. (5.16)

where γ
2

= π × 5.8 MHz is the maximum scattering rate. These parameters differ
significantly from the ones used for the magneto-optical trap to load the reservoir
[Ser07].
The main optimization goal to operate the MOT as a single-atom detector is to
obtain a large signal-to-noise ratio which first requires to reduce stray light as
well as possible. We achieve this by decreasing the beam diameter of the MOT
beams to d = 4 mm by means of motorized irises in the optical path as shown in
figure 5.15. To minimize the size of the region on the CCD chip where stray light
contributes to the background we apply a rather strong gradient of 250 Gauss/cm
to compress the MOT.
Under these constraints we maximize the scattering rate to record as many photons
as possible within the given exposure time. This requires a high scattering rate,
which can be realized with a small detuning and a light intensity above saturation.
However, the parameters have to be chosen such that no new limitations arise. If
the detuning is chosen too small the operation of the MOT becomes unstable
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5.5 Single atom detector

Figure 5.15: Setup for single atom fluorescence imaging. The fluorescence signal
of the atoms in the MOT is recorded with a CCD camera from the
left. Great care has to be taken to shield the CCD from stray light.
For that reason motorized irises (right hand side) have been installed
to minimize the diameter of the MOT beams.

because small shifts in the detuning lead to a blue detuning of the beams with
respect to the atomic transition which immediately causes an atom loss. For a
detuning of twice the natural line width the operation of the MOT remains stable.
The light intensity is chosen such that the gain in scattering rate exceeds the
additional amount of stray light.
To deduce the atom number from the fluorescence signal we bin the data into a

histogram. Peaks in the histogram correspond to an integer number of atoms. We
extract the calibration factor

κ = fluorescence signal/atom (5.17)

from the distance between two peaks. As both intensity of the MOT beams and
the detuning fluctuate on a timescale of minutes, the scattering rate and thus κ
drifts on a few percent level. We compensate this drift by rescaling κ for each
measurement with a scaling factor which is determined from κ̄(n), i.e. the mean
of κ averaged over measurements (n− 10) to (n+ 10). To calculate κ̄(n) we only
consider measurements with fluorescence signals close to a peak in the histogram,
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Figure 5.16: Histogram of the normalized fluorescence signal. The black curves
are Gaussian fits to the data. The small overlap between the peaks
demonstrates that the imaging setup is suited to determine the num-
ber of atoms in the prepared sample on a single atom level. The
2-atom (8-atom) peak is separated from its adjacent peaks by 7σ
(5.7σ). From [Ser11].

i.e. within 1σ. The rescaled data is binned into a histogram and Gaussian are
fitted to the peaks as shown in figure 5.16. The large separation of the peaks of
about 6σ allows us to distinguish the prepared systems on a single atom level.
The data points within 2σ of each peak are binned to an integer number yielding
the number of atoms in the prepared system. The 5% of measurements outside
the 2σ environment are rejected (black bars).
An important property of the single-atom detector is its capture efficiency of the
samples released from the microtrap. Since we cannot directly measure this ef-
ficiency we deduce a lower bound of 98(1)% from the preparation fidelity of the
samples (see chapter 6).

5.6 A high-resolution objective

To prepare quantum systems with a new level of flexibility a high-resolution ob-
jective has been designed during this thesis. This section motivates its design
and discusses major design parameters. Unfortunately the objective could not be
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tested within the duration of this thesis because the delivery of the glass blanks
to the company which cuts, coats and assembles the lenses (Jenoptik) was delayed
significantly.

5.6.1 Motivation and design goals

Increasing the preparation fidelity

For the preparation of few-particle systems in a deterministic way we need to
control the lifetimes of bound states in the tilted potential as described in chapter
4.1.1. To find out to what extend this is feasible in the experiment, it is instructive
to consider the simplest case: the preparation of a system consisting of two atoms
in two spin states occupying the ground state of the potential. To prepare such
a system deterministically, the occupation probability for the lowest energy state
has to approach unity. Furthermore, the occupation probability for the second
state has to vanish after the spilling process has been performed.
We calculate the mean occupation number from the tunneling time τ which we
obtain from a WKB calculation according to equation 4.26 as

P (Ei) = e−tspill/τ(Ei),

where i = 0, 1 labels the energy state and tspill = 25 ms denotes the duration of the
spilling process. The magnitude of τ(Ei) depends on the height of the tunneling
barrier which is controlled by the depth of the optical potential and the applied
magnetic field gradient. To evaluate the accuracy which is required to control the
depth of the optical potential the gradient is kept constant at B′ = 19 Gauss/cm.
The occupation probabilities for the two lowest energy states as a function of the
depth of the optical potential are plotted in figure 5.17 for three different sizes
of the optical trap. The regime where the first energy level is occupied with
a probability p0 > 0.995 and the second with p1 < 0.005 is indicated as the
gray shaded region. Within this window the fidelity of preparing a system with
one atom is larger than p > 0.995 · (1 − 0.995) ≈ 0.99. Taking into account the
second spin state, the fidelity to prepare two atoms in the ground state amounts to
Ptot = 0.99 · 0.99 ≈ 0.98. For smaller trap sizes the width of this window increases
significantly as shown in figure 5.18. From the occupation probability one finds
that the depth has to be controlled with an accuracy of only a few percent for trap
sizes below one micrometer which can be easily achieved in the experiment. On
the other hand, the required accuracy is on the order of 0.1 percent level for a trap
with w0 = 2.8µm as it was the case of the first implementation of the microtrap.
This value is close to the accuracy achieved in the experiment and may explain
the reduced fidelity obtained with the first micro-trap setup. For the current setup
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(a) w0 = 2.8µm (b) w0 = 1.8µm (c) w0 = 0.8µm

Figure 5.17: Window of deterministic preparation. For a deterministic preparation
of a two-atom system the occupation probability for the first energy
level (black dashed line) has to approach 1 whereas the probability for
the second level has to vanish (red solid curve) after the spilling pro-
cess. The occupation probabilities have been calculated using WKB
methods. The regime of trap depths where the first energy level is
occupied with a probability p0 > 0.995 and the second p1 < 0.005 is
indicated as the gray shaded regions. For smaller trap sizes the width
of the window increases significantly. Note the different axes.

an accuracy of 0.6% is required. This level is about one order of magnitude lower
compared to the accuracy reached in the experiment as shown in section 5.4.1. It
is not clear that this limits the preparation fidelity in the experiment. However,
if the window of high fidelity preparation is small the system becomes extremely
sensitive to other sources of noise which are present in the experiment such as
mechanical vibrations. With a trap size below 1µm the optical depth is definitely
eliminated as a source of error.

Preparing systems in a variety of potential landscapes

The new objective will allow us to explore few-body systems in a variety of po-
tential landscapes. A first starting point is the realization of a three-dimensional
system with a small number of particles. In three dimensions there are degenerate
energy levels which leads to the formation of a shell structure. This gives rise to
magic numbers corresponding to systems with closed shells, as it is known from
nuclei. Since we can tune interactions between the particles the system is uniquely
suited to explore pairing effects as discussed in chapter 8.
To prepare a 3-D system, the level spacing in radial direction has to similar in
axial direction which requires a trap with low aspect ratio η = ω⊥/ω‖ → 1. The
aspect ratio of the trap formed by a focused Gaussian laser beam is given in the
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Figure 5.18: Required microtrap power stability versus microtrap size (a) and ap-
plied magnetic field gradient (b). The values are given for the prepa-
ration of samples consisting of two atoms with preparation fidelity
exceeding 98%. For smaller trap sizes, the relative control over the
trap depth becomes less critical at a given gradient. Comparing the
new objective with the implemented one, the sensitivity will be low-
ered by a factor of ten. When the magnetic field gradient is lowered,
the sensitivity of the preparation fidelity on the relative power sta-
bility is reduced. However, the overall trap frequency is also reduced
which makes the system more sensitive to low frequency noise. For
the calculation a gradient of 19 Gauss/cm was used in (a), a waist of
w0 = 1.8µm in (b).
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harmonic approximation as [Gri00]

η =
ω⊥

ω‖

=

√

4V0

mw2

0

√

2V0

mz2

R

=
√

2
zR

w0

∝ w0 (5.18)

where w0 is the waist, zR = πw2
0/λ the Rayleigh length and V0 the maximum

potential depth. To realize a trap with an aspect ratio close to unity a small waist
is required. For that reason, the ability to create a small focus is a major design
goal of the objective. With an expected waist of w0 < 0.8µm, an aspect ratio of
η ≈ 3 can be realized.
The objective will also enable us to realize multi-well configurations such as a
double well or a periodic potential as discussed in chapter 3.2. Recently a first
approach towards the preparation of a system with tunable properties in a multi-
well potential has been demonstrated [Zim11].
By subsequently adding more potential wells to our system a controlled transition
from the few-particle regime to the many-particle regime is feasible. This can be
viewed as extending the artificial atom to a molecule and in the extreme limit to
a solid state system as it will be discussed in chapter 8.

Probing the system

The momentum distribution of a macroscopic system can be accessed directly via
time-of-flight absorption imaging techniques [Ket99]. However, this technique can-
not be applied directly to a few-particle system due to the the vanishing absorption
signal of the few atoms. One way to overcome this hurdle is to use fluorescence
imaging as discussed in the previous section.
However, to access the momentum distribution the fluorescence signal has to be
taken after time of flight, and furthermore the atoms have to be spatially resolved
which is extremely challenging due to the low signal-to-noise ratio. There are
two approaches to overcome this hurdle: First the signal-to-noise can be increased
by averaging over many realizations. Using this technique a time-of-flight image
of a single atom could be recorded recently [Fuh10]. The second approach is to
recaptured the atoms after time-of-flight in a deep optical lattice to increase the
observation time in order to detect their fluorescence signal [Bak09].
For both approaches a high opening-angle of the imaging system is required to col-
lect as many photons as possible. Therefore the designed objective has a numerical
aperture of NA= 0.6 which enables us to collect 10% of the emitted photons. To
be able to create a deep lattice with the objective using near resonant light it is
designed to allow a high-resolution also for λ = 671 nm. The high imaging resolu-
tion can also be used to probe the quantum state of atoms in a periodic potential.
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Provided a high signal-to-noise ratio, the resolution of the designed objective is
sufficient to resolve single sites of an optical lattice with commonly used lattice
spacing of d = 532 nm.

5.6.2 Design

Optimization procedure

A first step in optimizing an optical design is to define the figure of merit which
has to be minimized. One possibility therefore is the root-mean-square (rms)
radius at the image plane of a set of rays which are traced through the optical
setup. However, in the limit of a perfect lens the rms radius vanishes, which is
an unphysical result. Because of diffraction the intensity distribution and thus
the point-spread-function (psf) is given as an Airy function as discussed in section
5.4.2. In this limit, the optical path difference (opd) between the real wavefront
and a spherical reference wavefront created by a perfect lens can be used as a figure
of merit. Aberrations introduced by a real lens cause an increase in opd which
degrades the image. In general, the exact relationship between the opd and the
image degradation is not trivial. For opd ≪ λ the main effect is that the maximum
of the psf gets reduced to a ratio whose value is defined as Strehl ratio S. It has
been shown by Rayleigh, that a peak-to-valley opd of λ/4 leads to a Strehl ratio
of S = 0.8, without decreasing the resolution which is given by the minima of
the Airy function. Since the corresponding image cannot be distinguished from a
perfect image such an imaging system is called ’diffraction limited’. Although this
criterion is widely used one has to consider that it is only valid for an opd which
is caused by first order spherical aberrations. As a figure of merit which accounts
for a variety of aberrations the rms value of the opd can be used to determine the
Strehl ratio on a few percent level according to [Mah82]

S = e(−2πWrms)2

(5.19)

where Wrms is the rms wavefront error in units of λ. The diffraction limit, a Strehl
ratio of S= 0.8, corresponds to opdrms = 0.07λ. Following these considerations
Wrms was chosen as a figure of merit to optimize the performance of the objective.
The second step to design the objective was to find an initial design as starting
point. Two main considerations helped to find this design. Since the objective
should perform up to a high numerical aperture, spherical aberrations had to
be kept to a minimum. Therefore a biconvex lens with two aspheric surfaces
was chosen as first element. Furthermore, the system needs to be achromatic for
two wavelengths. The chromatic focal shift due to dispersion between the two
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wavelengths λ1 < λ3 of a thin spherical lens is given as

∆f ≈ f

ν
(5.20)

where f is the focal length and ν is the Abbe number of the glass. This is defined
as

ν =
n2

n1 − n3

. (5.21)

where ni denotes the refractive index at λi with λ1 < λ2 < λ3.
Commonly, the Abbe number is given for the visible regime where λ1,2,3 corre-
sponds to blue, green and red light. For a system with two lenses with focal
lengths fa > 0 and fb the chromatic shift can be compensated if [Wit05]

∆

(

1

fa

)

+ ∆

(

1

fb

)

= 0 (5.22)

⇔ 1

νafa

= − 1

νbfb

⇔ fa

fb

= −νb

νa

Since ν is positive, fb has to be negative. To obtain a positive focal length for
the total system it follows that fa < |fb| which requires νb < νa. To minimize
aberrations the numerical aperture of the diverging lens has to be kept as small
as possible. Therefore |fb| has to be as large as possible which requires a large
ratio of Abbe numbers between the focusing and the diverging lens according to
equation 5.22.
To correct the system for two wavelengths in the NIR regime λ1, λ3 with λ1 =
671 nm, λ3 = 1064 nm and λ2 = (λ3 + λ1)/2 = 868 nm, the corresponding Abbe
numbers for the glasses in the catalog were calculated according to equation 5.21
and two glasses (N-SF66, ν = 31, N-PK51, ν = 92) with a high ratio in Abbe
number where chosen for an achromat. Because of the positive focal length of the
aspheric lens a glass with high Abbe number (N-FK5, ν = 75) had to be selected
under the constraint to be hard enough for machining which requires a Knoop
hardness K > 400.

The initial design consists of a biconvex lens with two aspheric surfaces and
one achromat for the NIR regime. A sketch of this setup is shown in figure 5.19.
With only two elements it provides a diffraction-limited performance for both
wavelengths at a NA= 0.5 with a field of view of 200µm diameter. To increase the
numerical aperture further to NA=0.6, an additional element was added to the
design. This also serves the purpose to decrease the required size of the incoming
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10 mm

Figure 5.19: Starting point for the final design of the objective. The initial design
consists of two elements, one achromat which corrects the chromatic
shift for the two wavelengths λ1 = 671 nm and λ2 = 1064 nm, and
one double-sided aspheric lens to minimize spherical aberrations. It
provides a diffraction-limited performance for a NA∼ 0.5 with a field
of view with a diameter of 200µm.

beam. As a consequence optics with 1 inch diameter can be used in the further
optical setup. Since this element had to be also achromatic a doublet of (N-BK7,N-
SF11) was used.

Nominal design

wavelength 1064 nm 671 nm
focal length 20.3 mm
image distance ∞
diameter field of view 200µm
max. diffraction limited NA 0.6
entrance aperture diameter at max NA 24.4 mm
resolution 1.08µm 0.68µm
waist of focus 0.72µm 0.45µm

Table 5.4: Design parameters of the high-resolution objective.

Figure 5.20 presents a sketch of the final design consisting of the small achromat,
the large achromat and the double sided aspheric lens. To evaluate how well
the chromatic focal shift is compensated figure 5.21 presents the chromatic focal
shift as a function of the wavelength in the paraxial approximation. The use
of glasses with adequate Abbe numbers leads to two zero-crossings of the focal
shift approximately at the design wavelengths λ1 = 671 nm and λ2 = 1064 nm.
The expected focal shift for an on-axis point for the two wavelength without the
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small achromat

large achromat asphere
vacuum window15 mm

iris

Figure 5.20: Scheme of the high-resolution objective. With the objective it should
be possible to improve the preparation fidelity of the few-particle
systems by creating a microtrap with smaller volume. Furthermore
the creation of arbitrary potentials becomes possible. The objective
has been designed to focus the trapping beam (λ2 = 1064 nm) to a
waist of w0 = 780 nm. The large opening angle is extremely useful for
position-resolved imaging of single atoms. Since 10% of the emitted
photons can be collected which should provide enough signal- to-noise
to image few-particle samples on a single-atom level after time-of-
flight. The expected spatial resolution is r = 700 nm for λ1 = 671 nm
which should give allow to detect ordering phenomena of correlated
many-body systems in periodic potentials.

Figure 5.21: Chromatic focus shift in the par-axial approximation. The large
achromatic doublet consisting of glasses with adequate Abbe numbers
leads to two zero crossings of the focal shift approximately at the de-
sign wavelengths λ1 = 671 nm and λ2 = 1064 nm. The expected focal
shift for an on-axis point for the two wavelength is ∆f < 1µm.
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5.6 A high-resolution objective

paraxial approximation is ∆f < 1µm. For 671 nm< λ < 1064 nm, the focal shift
increases up to 18µm.
Figure 5.22 evaluates the performance as a function of the field of view. The field

(a) λ1 = 671 nm (b) λ2 = 1064 nm

Figure 5.22: Root-mean-square (rms) of the optical path difference as a function
of object height. The nominal design works diffraction limited for a
field of view with a diameter up to d1 = 2·240µm for λ1 = 671 nm and
d2 = 2 · 350µm for λ2 = 1064 nm. Manufacturing tolerances decrease
the expected field of view down to d ≈ 200µm.

of view for the nominal design is as large as d671 ≈ 480µm and d1064 ≈ 700µm.
Design goal was a field of view of d = 200µm which is a more realistic value
when manufacturing tolerances are taken into account. To evaluate the focusing
and imaging capability of the objective its simulated point spread function for an
on-axis point is plotted in figure 5.23. The point spread function for λ1 = 671 nm
yields a resolution of r < 0.7µm whereas the size of the focus has a waist of w0 <
0.8µm for λ2 = 1064 nm. The parameters of the nominal design are summarized
in table 5.4.

Tolerancing

The performance of a real system is worse compared to the nominal design because
manufacturing tolerances introduce aberrations which degrade the performance of
the system. Therefore, the nominal design has to be significantly better than the
diffraction limit corresponding to S = 0.8 Strehl ratio in order to have a sufficiently
large budget accounting for errors. Our nominal design has a Wrms = 0.026λ which
is a factor of 2.8 lower than the value for the diffraction limit Wrms = 0.074λ. This
corresponds to a Strehl ratio of S = 0.97. The available error budget amounts to
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5 Experimental Setup

(a) Point spread function for
λ1 = 671 nm yielding a
resolution of 0.68µm.

(b) Point spread function for
λ2 = 1064 nm yielding a
resolution of 1.08µm.

(c) Intensity distribution of
the focus for an illumina-
tion of the entrance pupil
with truncation ratio of
1.5. The waist is smaller
than w0 < 0.8µm.

Figure 5.23: Imaging and focusing performance of the objective.

Figure 5.24: Mount for the lenses of the high-resolution objective. The critical
alignment of the aspheric lens with respect to the large achromat de-
fines the optical axis of the system. After their alignment the lenses
are glued into the mount. To compensate for manufacturing tol-
erances the small achromat can be translated perpendicular to the
optical axes. The iris (red) defines the numerical aperture of the
objective to NA = 0.6.

(0.074 − 0.026)λ = 0.048λ.
An overview over the most critical elements can be obtained by evaluating the
tolerances which cause an increase of ∆Wrms = 0.01λ. Most tolerances can be
fulfilled with little effort, such as air spaces, radius tolerances and surface irreg-
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5.6 A high-resolution objective

Power fringes 1
Irregularity fringes 1
Air spaces [mm] 0.1
Lens thickness [mm] 0.05
Refractive index ±2 × 10−4

Refractive index homogeneity ±1 × 10−6

Table 5.5: Tolerances which are fulfilled with little to moderate effort. For detail
see [Fis08].

ularities.These are assigned to the lens as shown in table 5.5. A more detailed
description of tolerances in general can be found in [Fis08]. Tolerances which are
more difficult to fulfill are assigned to the lens according to the capabilities of the
manufacturing company. The system’s tolerances can be significantly relaxed by
introducing compensator variables. In our design we allow for a focus shift and
the small achromat can be decentered perpendicular to the optical axis as shown
in figure 5.24. After assigning critical tolerances to the lens their influence on the
system’s performance is evaluated. Tolerances leading to an increase in in rms opd
which exceeds 0.02λ are presented for different values of the numerical aperture
in table 5.6. The most critical items is the wedge of the vacuum view port of 1.5′

which we measured using an interferometric technique. It is followed by the thick-
ness tolerance of the view port which is specified to 0.1mm, the thickness of the
aspheric lens and the tilt of its surface with respect to the optical axis. For a de-
creasing numerical aperture the system becomes more insensitive. The worst case
scenario corresponds to a rms opd which is in 95.4% of possible realizations less or
equal to the value given in table 5.6. In the worst case, the system is diffraction
limited for a numerical aperture between 0.4 and 0.5. We expect the view port not
to be the limiting performance factor of the objective in future experiments since
the quality of the vacuum view port of the new experimental apparatus which is
currently set up is significantly better than the one used in the old experiment.
A complementary error analysis was carried out using the technique of Monte
Carlo simulation. The performance of 100 realizations of the objective differing
within the range of their manufacturing tolerances was simulated. The results
are shown in figure 5.25. For a numerical aperture up to 0.5 there is significant
probability that the objective works diffraction limited.
As a summary, the performed error analysis is suitable to give a worst case sce-
nario for the performance of the objective based on statistics. In the worst case we
obtain a objective with diffraction-limited performance at a numerical aperture of
0.4 − 0.5. Considering only the focusing performance for λ2 = 1064 nm light, the
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NA Item Tolerance Change in rms opd [λ]

0.6 Surface tilt view-port [’] 1.5 0.078
Thickness view-port [mm] 0.1 0.067
Thickness aspheric lens [mm] 0.025 0.055
Surface tilt aspheric lens [’] 0.5 0.035
Thickness large achromat [mm] 0.05 0.032
Tilt large achromat [’] 0.5 0.023
worst case rms opd 0.172

0.5 Surface tilt view-port [’] 1.5 0.046
Surface tilt aspheric lens [’] 0.5 0.023
Thickness view-port [mm] 0.05 0.022
worst case rms opd 0.100

0.4 Surface tilt view-port [’] 1.5 0.023
worst case rms opd 0.057

Table 5.6: Tolerances which increase the rms opd by more than 0.02λ. Most critical
elements are the vacuum view port and the aspheric lens. For lower
numerical aperture the system becomes less sensitive. In the worst case
the system is diffraction limited with NA= 0.4-0.5.

worst case scenario yields numerical aperture of 0.55. This results in a waist of
w0 = 830 nm which is 10% lower than the design goal.
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5.6 A high-resolution objective

(a) NA= 0.6. (b) NA= 0.5.

(c) NA= 0.4. (d) NA= 0.55, λ = 1064 nm only.

Figure 5.25: Monte Carlo simulation of the increase in rms opd due to tolerances.
The system is diffraction limited when the change in error function is
smaller than 0.045. For a decreasing numerical aperture the success
probability to obtain a diffraction limited objective increases. Calcu-
lations are performed for 100 realizations of the objective.
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6 Deterministic preparation of a

tunable few-fermion system

We started setting up an apparatus to prepare a tunable few-fermion system at
the end of 2006. The idea was to start from a reservoir of cold atoms and spill all
but a few atoms which compose the final quantum system. Since the preparation
of the reservoir relies on established techniques, a first implementation could be
realized already at the beginning of 2009. The reservoir was the starting point
for experiments with three-component Fermi gases [Ott08, Lom10a]. In particu-
lar, we successfully associated a universal three-body state, an Efimov trimer, and
measured its binding energy as a function of the interaction strength [Lom10b].
After this ‘distraction’ we focused again on the realization of a few-fermion system.
The main experimental challenges we had to overcome was the implementation of
a single atom detection scheme and the realization of a small microtrap. To be
able to count few atoms, the idea was to use a magneto optical trap to record the
fluorescence signal of the atoms. A proof of principle experiment was successful in
mid of 2009 when we found parameters for the magneto-optical trap that count-
ing of single atoms became possible. Around the same time the first generation
of the microtrap was implemented and tested [Zür09]. After we optimized the
detection fidelity mainly by reducing stray-light we could make first attempts to
spill the microtrap to contain only a few atoms in April 2010. We successfully
prepared systems consisting of only one to ten atoms. However, the fluctuations
in atom number were so high that only a preparation fidelity of less than 40%
could be realized, which is far from being deterministic. Possible limitations for
the preparation fidelity were the size of the microtrap, its intensity stability and
its mechanical stability. As the size of the microtap cannot be reduced by simple
means as discussed in chapter 5 we decided to first improve on the intensity stabil-
ity as discussed in the previous chapter. The main limiting factor was the intensity
fluctuations caused by interference fringes on the cover glass of the photo diode
whose output signal was used to stabilize the light power of the microtrap. In
addition the setup was sensitive to polarization drifts which we eliminated using a
polarizing element after the fiber. With these methods we could achieve a relative
intensity stabilization of 0.5 · 10−4. However, this did not increase the preparation
fidelity beyond 60%. This lead us to install the second generation microtrap in
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Juli 2010 which allowed us to reduce the microtrap size significantly. A smaller
microtap size makes the setup less sensitive to intensity fluctuations as discussed
in the previous chapter. This turned out to be the right step because all data for
the publication [Ser11] could be taken in August 2010.
Before the main experimental results are presented the chapter starts with a de-
scription of the experimental sequence and how initial parameters for the trans-
fer of atoms into the microtrap were found. Then, main results are shown and
compared with theoretical expectations. This is followed by a description of the
technique we use to probe whether the systems are prepared in their ground state.
The chapter finishes with a description of the preparation of imbalanced systems
and a state sensitive detection technique.

6.1 Loading the microtrap

To prepare few-particle samples in a deterministic way, the occupation probability
for the lowest states of the potential is required to approach unity as discussed in
section 4.1.1. Since the occupation probability for an energy state is determined by
the Fermi-Dirac distribution, it increases the lower the state’s energy is compared
to the Fermi energy. This allows us to enhance the occupation probability of the
lowest states by increasing the Fermi energy of the system. Therefore, we start
with a reservoir of cold atoms and enhance its Fermi energy by superimposing a
deep microtrap with the reservoir as discussed in chapter 4.1.1. The maximum
enhancement is achieved only if the width of Fermi edge, which is determined by
the temperature, is not increased during the transfer of atoms from the reservoir
into the microtrap (see figure 4.2). Therefore, atoms in the microtrap and in the
reservoir have to be in thermal equilibrium during the transfer which requires a
high elastic collision rate. This is obtained for a large value of the scattering
length |a| between atoms in states |1〉 and |2〉 which can be realized by applying
a magnetic field which is close to the Feshbach resonance. However this has some
drawbacks since we need to ramp the magnetic field to the zero-crossing of the scat-
tering length (B = 527 Gauss, see figure 6.1) in order to prepare non-interacting
samples: For positive scattering length there is a molecular bound state which
is populated by three-body recombination of three particles into a dimer and a
free atom. The formation of molecules can be avoided by transferring the atoms
into the microtrap with the scattering length tuned to a negative value where no
bound state exists. We obtain a maximum value for |a| by applying a magnetic
field of 300 Gauss as indicated in figure 6.1. In this way the magnetic field can
be ramped to the zero crossing of the scattering length without populating the
molecular branch after the transfer has been completed.
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6 Deterministic preparation of a tunable few-fermion system

Figure 6.1: Scattering length for the |1〉-|2〉 and |1〉-|3〉 spin mixture. For an ef-
ficient transfer high elastic collision rates are required. Therefore the
magnetic field is tuned to 300 Gauss during the transfer of a |1〉-|2〉 mix-
ture. After the transfer, the magnetic field is ramped to B ≈ 527 Gauss
in order to prepare a non-interacting few-particle system (black arrow).

If atoms in the microtrap and the reservoir are in thermal equilibrium, the micro-
trap is completely filled. In that sense, the filling of the microtrap can be used as
an indicator for thermalization.

To determine the maximum number of atoms which fit into the microtrap we
prepare a strongly interacting sample by using a mixture of atoms in state |1〉
and |3〉 (figure 6.1) because negative scattering lengths up to a13 = −894 a0 can
be realized. Optimum transfer parameters are found by recording the number of
transferred atoms as a function of the interaction strength, the temperature of the
reservoir and the time to load the microtrap tload. We control the temperature of
the reservoir by adjusting the final depth of the optical dipole trap at the end of the
evaporation process. This depth is controlled using an acousto-optical modulator
(aom) as described in chapter 5.3. No difference in the filling of the microtrap is
found for 20 ms < tload < 500 ms which suggests that the timescale for thermaliza-
tion is below 20 ms. The atom number in the microtrap for tload = 20 ms is shown
in figure 6.2. For a magnetic field below 520 Gauss, corresponding to a scattering
length of a = −440 a0 and control voltage of the reservoir aom Vaom ≤ 0.2 V, the
microtrap is completely filled. Setting a value of Vaom = 0.2 V yields a reservoir
which consists of 2 · 104 atoms per state at a temperature of T ≤ 250 nK which
corresponds to T/TF = 0.5. To summarize, rates for thermalization seem to be
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Figure 6.2: Transfer efficiency from the reservoir into the microtrap. An unfilled
microtrap indicates that the system has not thermalized yet which
hinders the deterministic preparation of the few-fermion system. To
determine the maximum filling, a mixture of atoms in state |1〉 and
|3〉 is prepared and the number of atoms in the microtrap is recorded
for different temperatures of the reservoir which is determined by the
control voltage of the reservoir aom. Below 568 Gauss, i.e. the field
where the scattering length crosses zero, the sample is attractively
interacting leading to a maximum filling of the microtrap of ∼ 250
atoms. At the zero-crossing of the scattering length, the microtrap does
not get populated since the sample does not interact. For a magnetic
field above 600 Gauss atoms are lost due to molecule formation and
subsequent inelastic collisions.
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6 Deterministic preparation of a tunable few-fermion system

faster than 20 ms at a scattering length of a = −440 a0. As the interactions can be
made comparable strong for a |1〉-|2〉 mixture by applying a field of B = 300 Gauss,
we are also able to fill the microtrap using this mixture which is more convenient
to work with.
Having optimum transfer parameters found, the experimental sequence to prepare
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Figure 6.3: Experimental sequence to prepare few-fermion systems. In the first
part (I) a reservoir of cold atoms is prepared. This is done by evapora-
tive cooling, i.e. by decreasing the depth of the reservoir trap with an
aom. The atoms are transferred into the microtrap (II) by ramping up
the microtrap intensity within 100 ms. Then the reservoir is removed
by switching off the reservoir dipole trap. The transfer ends by adjust-
ing the Feshbach field such that the system becomes non-interacting.
The spilling scheme (III) is applied by reducing the depth of the micro-
trap potential linearly to a value Vspill for a duration of tspill = 25ms
during which the magnetic field gradient is applied. Then, the poten-
tial of the microtrap is restored to its maximum value to suppress fur-
ther tunneling of atoms. This ends the spilling process. To detect the
prepared sample, the atoms are transferred into the magneto-optical
trap where their fluorescence signal is collected for 500 ms (IV). The
quadrupole field required to operate the magneto-optical trap is cre-
ated by the same coils used for tuning the interactions.

non-interacting few-fermion systems consists of four parts as indicated in figure
6.3. In the first step (I) the reservoir of cold atoms is prepared. For this, the
atomic cloud is evaporatively cooled by decreasing the intensity of the reservoir
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6.2 Preparing non-interacting samples

trap which is controlled by an aom (red line). This is followed by the second part
of the sequence (II), the transfer of atoms into the microtrap. As both the prepa-
ration of the reservoir and the transfer into the microtrap require high collision
rates, the Feshbach field is set to 300 Gauss during that time to maximize inter-
actions (blue line). The transfer ends by turning off the interactions, i.e. setting
the Feshbach field to B0 = 523 Gauss where the scattering length approaches zero,
and switching off the reservoir. The spilling scheme is performed in the third part
of the sequence (III). As soon as the spilling gradient has stabilized to its final
value the depth of the optical potential is reduced linearly, kept at the desired
value for 25 ms to spill atoms and restored to its original value to suppress further
tunneling. In the last part (IV) the prepared sample is detected by transferring it
into the magneto optical trap and recording the fluorescence signal for 0.5 s.

6.2 Preparing non-interacting samples

To control the number of particles in the system we choose a ratio

s =
Vspill

V0

(6.1)

during the spilling process as indicated in figure 6.3. To determine the preparation
fidelity the experimental cycle is repeated 200 times with the same value for s.
Figure 6.4 presents the fluorescence signal of the prepared systems which has been
normalized to the number of atoms in the trap. Every 200 runs the value of s and
therefore the depth of the microtrap during the spilling process is varied by the
same amount. For certain values for s we prepare systems consisting of an even
number of atoms with high probability. In between these stable regions determined
by low atom number fluctuations, there are regions with high fluctuations. The
corresponding mean becomes odd.

For a systematic preparation of the few-particle systems more data has been
taken in the range 0.645 < s < 0.9. The mean atom number is calculated and
plotted against s. The resulting graph is shown in figure 6.5. Each data point is
the average of about 190 measurements.
It presents the main finding of this thesis: We can select the number of particles
in the final system ranging from 1 to 10 by choosing an appropriate value for s.
Plateaus for a range of values of s exist where systems with an even atom number
are prepared. Between these plateaus there is a smaller regime where the prepared
systems consist of an odd number of atoms.
This behavior can be understood quantitatively by calculating the occupation
probability of the energy levels after the spilling process using the WKB technique
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Figure 6.4: Normalized fluorescence signal. Every 200 runs the depth of the mi-
crotrap potential is reduced in equidistant steps. This allows us to
control the number of atoms in the final system. For trap depths cor-
responding to an even atom number fluctuations are almost completely
suppressed whereas for an odd atom number they are significant.

as described in chapter 4.2. The occupation probability of the ith energy level is
determined by the tunneling time constant τ(Ei) of the atoms through the barrier
in the tilted potential according to equation 4.26 as

P (Ei) = e−tspill/τ(Ei).

This allows to calculate the mean atom number according to

n = 2 ·
N
∑

i=1

P (Ei)

where N is the number of bound states. The factor of 2 accounts for the fact that
each energy state is occupied by 2 atoms, one per spin state.
The red line in figure 6.5 presents the result of the calculation. The quantitative
agreement of the theoretical curve with the data proofs that we control the number
of particles by controlling the number of bound states in the tilted potential on

93



6.2 Preparing non-interacting samples

0.85 0.80 0.75 0.70 0.65

0

2

4

6

8

10

 

M
e
a
n
 a

to
m

 n
u
m

b
e
r

Optical trap depth [fraction of initial depth]

Figure 6.5: Control over the particle number. We choose the number of particles
in the system by controlling the depth of the microtrap potential s
while the magnetic field gradient is applied. The red line represents
a WKB calculation with the parameters for the potential used in the
experiment. The atom number of the final system is determined by
tunneling of atoms through the barrier during the spilling process.
Each data point is the average of ∼ 190 measurements.

a single state level. As tunneling for atoms occupying lower states is completely
suppressed, the mean atom number in the trap directly depends on the occupa-
tion probability for the highest bound state. A plateau in the mean atom number
corresponds to a negligible occupation probability of the highest bound state and
the second highest bound state is occupied with high probability. The width of
the plateau is determined by the derivative of the occupation probability ∂sP (s).
When the potential depth is tuned right between two plateaus the occupation
probability for the highest state approaches 0.5 resulting in a mean occupation
number of 2 · 0.5 = 1. At this value of s the derivative ∂sP (s) has a maximum,
therefore the atom number becomes extremely sensitive to the magnitude of s
which is subject to fluctuations in the experiment. Therefore, one expects large
fluctuations in the atom number.
To perform an accurate calculation the potential has to be known precisely. We
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6 Deterministic preparation of a tunable few-fermion system

characterize the potential by controlling the motional quantum state of a single
atom as discussed in chapter 7.3 which leads to the parameters which enter the cal-
culation: a gradient of B′

theo = 18.92 Gauss/cm, a light power of Itheo = 291.5µW
for the microtrap and a waist of w0 = 1.838µm. These values agree within the
errors with the parameters used in the experiment B′

exp = (18.9 ± 0.2) Gauss/cm
and Iexp = (265 ± 26.5)µW. Since the values of s which correspond to plateaus in
the mean atom number drifted about 2% over the time of some months and the
potential has been characterized with the new parameters, s was rescaled in the
calculation by 2.637/2.685 = 0.98 to compensate for the drift.
The measured fluctuations in the atom number are presented in figure 6.6. For

0 2 4 6 8 10

0.00

0.25

0.50

0.75

V
a

ri
a

n
c
e

Mean atom number

Figure 6.6: Atom number fluctuations. For an even atom number, the fluctuations
are strongly suppressed. For eight atoms, the variance reaches a low
value of var= 0.017. This corresponds to a suppression of 18 dB of
var/ 〈N〉 compared to a system obeying Poissonian statistics.

systems with up to 10 atoms and an even atom number the fluctuations are sig-
nificantly reduced. For eight atoms, we achieve

var
〈N〉 =

σ2

〈N〉 = 0.017 (6.2)

which corresponds to a suppression of 18 dB compared to a system obeying Pois-
sonian statistics. With fluctuations reduced that far we prepare systems consisting
of an even number of atoms ranging from 2 to 10 with a fidelity exceeding 90%.
Figure 6.7 (a) and (c) present the corresponding histograms for the preparation
of systems with two and eight atoms. The fidelity to prepare a two (eight)-atom
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6.2 Preparing non-interacting samples

system amount to 96(1)% (92(2)%). The error represents the statistical error.
With this fidelity a deterministic preparation of a few-fermion system has been
realized.
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Figure 6.7: Histogram for the preparation of systems consisting of two and eight
particles. (a,c) The systems are prepared by performing the spilling
process once. (b,d) The histograms after a second spilling process
reveal the degree of excitations as sketched in figure 6.8. From [Ser11].

6.3 Are they in the ground state?

To gain an estimate of the fraction of systems which are not in the ground state
of the potential it is instructive to consider the two-atom case. The simplest ex-
citation is given when only one atom occupies the ground state of the potential
(probability P1) and the second atom occupies the first excited energy level (prob-
ability P2). Since the atoms do not interact the probability for this excitation
amounts to

Pex = P1 · P2. (6.3)
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An upper bound P1 ≤ 0.02 can be deduced from the histogram given in figure 6.7
(b) as the probability to prepare a system with only one atom, i.e. one atom is
missing on the lowest level. The probability to prepare systems with three atoms,
i.e. one atom on the first excited state, leads to an upper bound P2 ≤ 0.02 yielding
a total probability of P = (0.02)2 = 4 · 10−4. Therefore only a negligible fraction
of two-atom systems is not in the ground state after the potential has been tilted.
However, the system can still be excited during the ramp which restores the poten-

Figure 6.8: To determine whether the prepared few-particle systems are in their
ground state, the spilling process is performed twice. This removes
atoms which occupy exited single-particle states after the first spilling
process. From [Ser11].

tial to complete the spilling process. To evaluate the degree of excitation caused
by this ramp, a second spilling process is performed as this removes any excited
particles with high fidelity as sketched in figure 6.8. The influence of the second
spilling process on the atom number distribution is shown in figures 6.7 (b) and
(d). After the second spilling process the number of systems containing two atoms
is reduced from 96(1)% to 92(2)%. As the second spilling process removes any
particles occupying the second energy level, all systems consisting of three atoms
after the first spilling process are converted into two-atom systems after the second
spilling process. Therefore, one expects that the number of two-atom systems is
increased by that amount to 98%. On the other hand, any excitation which is
caused by ramping up the potential after the first spilling process should lead to
a decrease in the number of two-atom systems after the second spilling process.
Since we observe that 92(2)% of the systems consist of two atoms the difference of
6% gives an upper limit on the number of two-atom systems which where excited
while ramping the barrier up.
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6 Deterministic preparation of a tunable few-fermion system

6.3.1 Theoretical expectation

The expected excitation rate for an atom in the ground state of the microtrap
has been calculated analytically for increasing and decreasing trap depths [Zha07,
Wei11]. The main results are discussed in the following. The solution is found
by solving the time dependent Schrödinger equation for the harmonic oscillator
potential. Since the excitation operator corresponding to the change in trap depth
has even symmetry, the smallest possible excitation is a transition from the first to
the third energy state of the harmonic oscillator potential with energy difference
∆E = 2~ω‖. The criterion for adiabaticity yields [Zha07]
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where ξ denotes the adiabaticity factor, a numerical factor corresponding the de-
gree of adiabaticity of the process, φg (φe) the wave function of the ground (excited)
state and
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2 holds for the harmonic oscillator. The differential
equation 6.4 relates the speed of the change in trap frequency to the degree of
adiabaticity. To maintain a constant ξ during the ramp, its shape has to follow

ω(t) =
ωi

1 − 4
√

2ξωi t
. (6.5)

where ωi (ωf) is the initial (final) trap frequency. The ramp time T can be calcu-
lated according to

T =
1 − ωi

ωf

4
√

2ξωi

. (6.6)

For the excitation probability one finds

Pe(t) =
4ξ2

1 + 4ξ2
sin2







√

2ξ2 + 1/2 log
(

1 − 4
√

2ξωit
)

4ξ





. (6.7)

To evaluate the degree of adiabaticity in our system we calculate ξ for experimen-
tally used parameters. To end the spilling process we ramp the trap frequency
of the microtrap within T = 8 ms from ωi = 2π × 779 Hz to ωf = 2π × 1340 Hz
while the gradient is applied. As we vary the trap depth linearly the slope of the
trap frequency does not follow equation 6.5, therefore the magnitude of ξ is not
kept constant during the ramp. An upper limit for ξ can be estimated by using
equation 6.4

ξ ≤ 1

4
√

2

ω′
max

ω2
(6.8)
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6.4 State sensitive detection and imbalanced systems

where ω′
max < 2π×140 Hz/ms is the maximum change in trap frequency during the

ramp. We estimate an adiabaticity factor of ξ < 7 · 10−3 which yields a maximum
excitation probability according to equation 6.7 as Pmax = 4ξ2/(1+4ξ2) = 2 ·10−4.
Therefore we expect no excitations with the ramp speeds chosen in the experiment.
In comparison, shortening the ramp to 1 ms yields ω′

max = 2π× 1100 Hz/ms and a
corresponding excitation probability of 1%.
It is worth to note that it is in principle possible to obtain fast non-adiabatic ramp
speeds without exciting the system because of the oscillatory behavior of equation
6.7. For this, the timing has to be chosen such that the excitation probability has
a minimum.

6.4 State sensitive detection and imbalanced

systems

We prepare systems with an imbalanced number of atoms in state |1〉 and |2〉. To
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Figure 6.9: Fidelity of the preparation of an imbalanced system with 5 particles.
By applying the state sensitive spilling technique arbitrary imbalances
of the two components can be created. Here, a system with three atoms
in state |2〉 and two atoms in |1〉 is prepared with 87% fidelity.

prepare such systems we utilize the fact that the atoms’ magnetic moment depends
on the magnetic offset field. In the high field regime (for fields above 100 Gauss),
the magnetic moment is given as

µHF ≃ µBgJmJ (6.9)

where gJ = 2 and mJ = 1/2 for the two lowest states of 6Li. Therefore the force
due to the applied magnetic field gradient is approximately the same for both
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6 Deterministic preparation of a tunable few-fermion system

states. In the intermediate regime for B ≈ 40 Gauss, the magnetic moment of
state |2〉 vanishes (inset of figure 6.10 (a)). At this offset field, only atoms in

(a) When the spilling process is performed at an offset field of 40 Gauss, only
atoms in state |1〉 are subjected to the force due to the magnetic field
gradient because the magnetic moment of atoms in state |2〉 is negligible.
Therefore only atoms in state |1〉 are spilled.

(b) The technique can be used to prepare systems with an imbalanced number
of atoms in state |1〉 and |2〉 because the potential is tilted only for atoms
in state |1〉. Furthermore it allows us to determine the number of atoms
in state |2〉 by spilling all atoms in state |1〉 and counting the number of
atoms remaining in the trap.

Figure 6.10: Spilling of one spin state.

state |1〉 are spilled when the gradient is applied (figure 6.10 (b)). For example,
to prepare a system with three atoms in state |2〉 and two atoms in state |2〉 we
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6.4 State sensitive detection and imbalanced systems

initially prepare a system consisting of three atoms in state |1〉 and |2〉 each. In
an additional spilling process performed at an offset field of 40 Gauss, we remove
one atom in state |1〉 as shown in figure 6.9.

The preparation fidelity of an imbalanced sample consisting of 5 atoms amounts
to 87% as shown in the corresponding histogram.
In addition to the preparation of imbalanced systems this technique allows us to
determine the number of atoms in state |2〉 by spilling all atoms in state |1〉 and
counting the number of atoms remaining in the trap.
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7 Entering the playground

After the first preparation of non-interacting few-fermion samples we used our new
model system to explore one of the simplest non-trivial few-body systems: two
repulsively interacting atoms confined in a one-dimensional harmonic potential.
Such a two-particle systems forms the elementary building block of strongly cor-
related many-body systems in one dimension: Examples are the Tonks-Girardeau
gas [Gir10] or the Luttinger liquid [Gia03].
Our results are presented in the first section of this chapter. One of the main
findings is that we can utilize the spilling technique not only to prepare the sam-
ples, but also to determine the interaction energy of the system. We determine
this energy by recording the tunneling time of one atom through the barrier as a
function of the repulsion strength. Performing a precise measurement in this way
requires detailed knowledge of the trapping potential, which we obtain by map-
ping out the energy levels of the potential. This is the focus of the second part
of the chapter. With the measurement of the energy levels we fully characterize
the potential described in the last part of the chapter. This allows us to relate the
tunneling time to the energy of the system.
The techniques we developed to map out the confining potential allow us to con-
trol the motional quantum state of a single atom. Similar to the case of ions
[Die89, Jak99] this degree of control is a crucial requirement for implementing
quantum information schemes with neutral atoms [Hay07]. Here, we demonstrate
this in a single optical dipole trap.

7.1 Two interacting atoms in a harmonic potential

As a starting point we prepare two non-interacting atoms in two spin states in the
ground state of the potential. To determine the energy of the system, we tilt the
potential by applying a magnetic field gradient of B′ = 18.9(1) Gauss/cm and
measure the tunneling rates of atoms through the barrier as plotted in figure 7.1.
An increase in interaction energy U effectively reduces the height of the tunneling
barrier and therefore causes a decrease in the tunneling time. To measure the tun-
neling time of atoms occupying the lowest energy state we reduce the tunneling
time t0 of this state to experimental accessible timescales by choosing a slightly
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7.1 Two interacting atoms in a harmonic potential

Figure 7.1: Measurement of the interaction energy U . We determine U by tilt-
ing the potential and recording the tunneling rate of atoms through
the barrier. An increase in interaction energy U effectively reduces
the height of the tunneling barrier and thus causes a decrease in the
tunneling time.

lower value s = 2.66/4 = 0.665 for the optical potential than the one we use for
the preparation. To measure the tunneling time, we hold the system in the tilted
configuration for a hold time thold, ramp the potential back up to suppress further
tunneling and record the mean atom number as function of the hold time. We
perform this measurement for a strongly repulsive system by applying an offset
field of 760 Gauss where the scattering length takes a value of a = 4100 a0. We
compare this result to the non-interacting case (a = 0).
Figure 7.2 presents our main results. For a non-interacting system we obtain a

value for the tunneling time of t = (630±120) ms. According to WKB calculations
we obtain a tunneling of t = 790 ms which agrees within 1.5σ with the experimen-
tal value. With repulsive interactions one atom leaves the trap on a fast timescale
with t = (6.8 ± 0.5) ms. After the atom has left the trap, tunneling of the second
atom becomes suppressed.
We observed a decrease in tunneling time by two orders of magnitude due to
the raise in interaction energy in this measurement. However, a quantitative link
between the tunneling time and the value of the scattering length a requires addi-
tional theoretical understanding. Because of the strong transverse confinement of
the trapping potential the three dimensional scattering length a has to be rescaled
by the strength of the confinement to obtain the right value for the effective in-
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7 Entering the playground
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Figure 7.2: Interaction induced dynamics. We choose the height of the barrier
such that two noninteracting atoms (a = 0) tunnel on a timescale of
t = (630 ± 120) ms (black squares). With repulsive interactions (a =
4100 a0), one atom escapes on a fast timescale with t = (6.8 ± 0.5) ms.
After this atom has left the trap, tunneling of the second atom becomes
suppressed (red circles). Each data point is the average of ∼ 190
measurements. According to WKB calculations we obtain a tunneling
of t = 790 ms for the non-interacting case which agrees within 1.5σ
with the experimental value. From [Ser11].

teraction strength between the particles [Ols98] as discussed in chapter 4.3. Using
this model, the energy shift in one dimension is calculated in the same way as
done in chapter 4.3 for a parameter of s = 2.66/4 = 0.665 as used in this ex-
periment. Since the values of s which correspond to plateaus in the mean atom
number drifted about 2% over the time of some months and the potential has
been characterized with the new parameters, s was rescaled in the calculation by
a factor of 2.637/2.685 = 0.98 to compensate for the drift. The coupling strength
in one dimension is calculated as a function of magnetic field according to equation
4.49. With the value of the coupling strength the energy shift can be calculated
using equation 4.39.
The expected shift is presented in figure 7.4 as a function of the applied magnetic
field. The black line corresponds to the analytical solution, which is valid in the
case of a one dimensional harmonic oscillator potential. For a magnetic field of
B = 760 Gauss we expect an energy shift which is on the order of ~ω‖ and thus
comparable to the level spacing of the potential. Since the tilted potential devi-
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7.1 Two interacting atoms in a harmonic potential

ates from the harmonic approximation, the actual expected energy shift is lower
as discussed in chapter 4.3 . For the tilted potential, we obtain a ratio

A =
ω̃‖

ω‖

∼ 80% (7.1)

where ω̃‖ = (E1 − E0)/~ is obtained from the energy difference of the first and
second bound state of the potential and ω‖ denotes the trap frequency in the
harmonic approximation. In a complementary measurement of the energy shift
for g1d → ∞, i.e. on the confinement induced resonance (B ≈ 784 Gauss), we
found that the energy shift amount to ~ω̃‖ rather than ~ω‖. Therefore we deduce
that rescaling the energy shift in units of ~ω̃‖ yields a more accurate solution in
the case of an an-harmonic potential [Zür11].
As the tilted potential only supports one bound state, the magnitude of ω̃‖ cannot
be directly calculated but has to be extrapolated from a potential depth where
two bound states exist. For a depth corresponding to s = 2.66/4 = 0.665 as used
in the experiment a value of A = ω̃‖/ω‖ = 0.75 is extrapolated (figure 7.3). With
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Figure 7.3: An-harmonicity of the tilted potential as a function of the microtrap
depth. To obtain an estimation ω̃‖ = (E1 − E0)/~ for a microtrap
depth at which the potential does not support two bound states we
extrapolate the value ω̃‖ < 0.75(1)ω‖ (green diamond) from the region
where the potential supports two bound states.

this parameter we obtain a first order approximation for the expected energy shift
by rescaling the solution for the harmonic case with A. The result is shown as
the red curve in figure 7.4. The blue data points are obtained by calculating the
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7 Entering the playground

energies from the measured tunneling times by means of WKB calculations. For
the noninteracting case, the measured energy shift of (0.02±0.02)~ω‖ agrees within
its error with the theoretical expectation. For the interacting case the measured
energy shift amounts to (0.48 ± 0.01)~ω‖. This value is about 26% lower than
the magnitude expected for the an-harmonic potential. This discrepancy can be
attributed to the fact that the extrapolation of the magnitude of ω̃‖ yields only an
upper limit. Quantitative agreement can be obtained when the an-harmonicity of
the potential is reduced by increasing the optical trap depth [Zür11].
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Figure 7.4: Energy shift caused by the interaction between the two particles. The
energy shift is calculated analytically for a one-dimensional harmonic
oscillator potential (black line). For a magnetic field of 783 Gauss the
coupling strength diverges leading to a confinement-induced-resonance
(CIR). On resonance the corresponding energy shift amounts to U =
1~ω‖. For a magnetic field of B = 760 Gauss as applied in the ex-
periment the shift becomes U = 0.87 ~ω‖. As the tilted potential is
an-harmonic the energy shift is expected to be lower (red line). The
blue points represent the energy shift which is calculated from the
measured tunneling time for a non-interacting and strongly repulsive
interacting system.
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7.2 Controlling the motional quantum state of a single atom

7.2 Controlling the motional quantum state of a

single atom

We map out the energy levels of the an-harmonic potential by manipulating the
motional quantum state of the atom in the trap. Similar to standard spectroscopic
techniques we record the excitation probability of the system as a function of the
excitation frequency. An overview over the measured transitions is presented in
figure 7.5.

To drive transitions between states with different parity such as the transition

Figure 7.5: Experimental characterization of the an-harmonic potential. We map
out the energies of the potential by driving transitions between the
corresponding energy levels.

from level 0 to level 1, an operator with odd symmetry is required. We realize this
operator by translating the center position of the potential x0 with the excitation
frequency ω by shaking the mirror in the optical path of the microtrap beam with
a loudspeaker as shown in figure 7.6. Transitions where initial and final state have
the same symmetry, e.g 0 → 2 and 2 → 4 are excited by modulating the depth of
the optical potential V0. The sequence we use to determine the frequency difference
ω01 between the first and second energy level is sketched in figure 7.7 (a). As a
starting point we prepare two non-interacting atoms in the ground state of the
trap and excite them to the next energy level by modulating x0. To determine
the number of atoms in the ground state we spill atoms occupying excited states
after the excitation pulse. The mean atom number in the ground state is plotted in
figure 7.7 (b) as a function of the modulation frequency. We observe a minimum in
the ground state population, i.e. a maximum excitation efficiency, for a frequency
of ω01 = 2π (1486 ± 11 )Hz according to a Lorentzian fit to the data.
The determination of the frequency difference between the first and third energy
level ω02 is sketched in figure 7.8 (a). We start with one atom in the ground state
of the trap which we prepare as discussed in section 6.4. Then we excite the atom
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7 Entering the playground

Figure 7.6: To excite an atom in the ground state to the first excited state with
frequency ω01 the symmetry of the wave function has to change which
requires an operator with odd symmetry. We realize this operator by
translating the center position of the potential by shaking the micro-
trap mirror with a loudspeaker.

to the third energy level by modulating the depth of the potential. To record the
mean atom number in the ground state we perform another spilling process which
only leaves ground state atoms trapped in the potential. Figure 7.8 (b) shows the
mean atom number as a function of modulation frequency. The data show that
we coherently drive this transition, in contrast to the 0 → 1 case. For a two-level
system with ground and excited state the ground state population is given by the
Rabi formula

Pg = 1 − Pe = 1 −
(

|Ω|
Ωeff

)2

sin

(

Ωeff

2
t

)2

(7.2)

where Ωeff =
√

|Ω|2 + δ2 is the effective Rabi frequency, δ = ω02 − ω denotes the
detuning and Ω the Rabi frequency on resonance. Driving the system with a
constant detuning δ results in Rabi oscillations of the occupation probability of
ground and excited states with a frequency given by Ωeff.
To determine the resonance frequency of the transition we measure the occupation
probability as a function of ω, which changes the effective Rabi frequency Ωeff. We
drive the system with pulses with N = 150 cycles. From a fit of equation 7.2 to the
data we extract the Rabi frequency given by the coupling strength between the two
states and the resonance frequency ω02 of the transition. We find Ω = 2π×32(1) Hz
where the error indicates the error of the fit and ω02 = 2π × (2985 ± 10) Hz. This
error is estimated by the width of the peak. The coherence time of the system
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7.2 Controlling the motional quantum state of a single atom

(a) To determine the frequency difference ω01 between the first and
second energy level we prepare two non-interacting atoms in the
ground state of the trap and excite them to the next energy level
by modulating the center position of the potential. By spilling
atoms in the excited state we determine the number of atoms in
the ground state as a function of modulation frequency.
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(b) Modulating at a frequency corresponding to the energy difference of first
and second energy state yields a maximum in the number of atoms which
are transferred to the excited state. Fitting a Lorentzian one finds ω01 =
2π (1486 ± 11 )Hz where the error is given by the width of the peak.

Figure 7.7: First experiments with the few-particle system to characterize the po-
tential.

exceeds t ≈ 150 cycles/3 kHz= 50 ms.
The transition frequency ω24 is determined in a similar way. To ensure that only
the two relevant levels are involved the system is initialized as sketched in figure
7.9 (a). One atom occupying the third state of the trap is prepared by applying
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7 Entering the playground

(a) To determine the frequency difference ω02between the first and third en-
ergy level we prepare one atom in the ground state of the trap by applying
the state sensitive spilling technique to a two atom system (see text). We
excite the atom to the third energy level by modulating the depth of the
potential. After applying the spilling technique again we record the mean
atom number in the ground state as a function of modulation frequency.
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(b) A fit according to the Rabi formula for a two level system 7.2 shows that
we drive the transition coherently from the ground state to the second ex-
cited state. We find ω02 = 2π (2985±10) Hz, where the error corresponds
to the width of the main peak.

Figure 7.8: Coherent control of a single atom’s motion in the microtrap.

a π−pulse with the measured frequency ω02 to a ground state atom. Since the
pulse populates also higher levels, all atoms above the third level are removed by
applying another spilling process. This yields a system with one atom occupying
the third level. We excite the atom to the fifth level by modulating the depth of the
potential as described previously. After applying the spilling technique again we
measure the mean atom number in the third state as a function of the modulation
frequency. The mean atom number as a function of modulation frequency is plotted
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7.2 Controlling the motional quantum state of a single atom

(a) The frequency difference ω24 between the third and fifth energy level is
determined in a similar way. One atom is prepared in the third state
of the trap by applying a π−pulse to a ground state atom. Since the
π−pulse populates also higher levels, all atoms above the third level are
removed by applying a spilling process. Then we excite the atom to the
fifth level by modulating the depth of the potential. After applying the
spilling technique again we record the mean atom number in the third
state as a function of the modulation frequency.
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(b) This transition is also driven coherently. A fit according to the Rabi
formula for a two level system 7.2 yields ω24 = 2π (2900 ± 20) Hz where
the error corresponds to the width of the peak.

Figure 7.9: Determination of ω24 via coherent excitation.

in figure 7.9 (b) together with a fit according to equation 7.2. We observe that we
drive this transition coherently as well, with pulses consisting of N = 71 cycles.
For the Rabi frequency we obtain Ω = 2π× 49(3) Hz where the error indicates the
error of the fit, and for the resonance frequency ω24 = 2π × (2900 ± 20) Hz. The
error is estimated by the width of the peak.
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7 Entering the playground

We determine the transitions from level 0 to level 2 of the radial degree of freedom
ω⊥02 in the same way we obtain ω02. Figure 7.10 presents the results. As the trap is
slightly elliptic in radial direction, we obtain the two transition frequencies ω(1)

⊥02 =

2π × (28262 ± 220) Hz and ω
(2)
⊥02 = 2π × (29066 ± 62) Hz. These parameters are

important since they determine the coupling strength g1d as discussed in chapter
4.3. In particular, g1d diverges when the scattering length a becomes reaches
0.68x⊥ where

x⊥ =

√

2~

mω⊥

(7.3)

denotes the harmonic oscillator length. To calculate the position of the confinement-
induced-resonance we obtain for the radial trap frequency

ω⊥ =
ω

(1)
⊥02/2 + ω

(2)
⊥02/2

2
= 2π × 14330 Hz. (7.4)

This value is used to calculate g1d as done in chapter 4.3. According to this, the
confinement induced resonance is at a magnetic field of 783 Gauss.

7.3 Characterizing the potential

As discussed in section 4.1, the potential can be treated purely one-dimensional.
In z direction it can be written as a sum of a Lorentzian given in equation 3.46
and a linear term due to the applied magnetic field gradient B′. The combined
potential becomes

V (z) = V0





1 − 1

1 +
(

z
zR

)2





− µB B
′ z

where V0 is the depth of the optical potential at the trap center, zR = πw2
0/λ the

Rayleigh length of the focused laser with λ = 1064 nm. According to equation
3.45 and 3.46 V0 is given by

V0 = −3π c2

2ω3
a

(

Γ

ωa − ω
+

Γ

ωa + ω

)

2Pm

πw2
0

, (7.5)

where ωa = 2π · 4.468 · 1014 Hz is the frequency of the atomic transition, Γ =
2π · 5.872 MHz its spontaneous decay width and ω = 2πc/λ. Therefore three pa-
rameters are sufficient to determine the shape of the tilted potential: the power
in the microtrap Pm, the size of the focus given by its waist w0 and the applied
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Figure 7.10: Radial trap frequencies. By modulating the depth of the micro-
trap we excite the system from the radial ground state to the sec-
ond excited state. Since the trap is slightly elliptic the degener-
acy of the eigenstates corresponding to the two main axes of the
ellipse is lifted. Therefore we observe two transition frequencies
ω

(1)
⊥02 = 2π × (28262 ± 220) Hz and ω

(2)
⊥02 = 2π × (29066 ± 62) Hz

where the error is given by the width of the peaks.

magnetic field gradient B′.
To determine optimum parameters for w0 and Pm, the energy states of the Lorentzian
potential without gradient are calculated as described in chapter 4.2 for a combi-
nation of values w0 and Pm. The energy difference between the states

ωcalc
01 = (Ecalc

1 − Ecalc
0 )/~ (7.6)

ωcalc
02 = (Ecalc

2 − Ecalc
0 )/~ (7.7)

ωcalc
24 = (Ecalc

4 − Ecalc
2 )/~ (7.8)

is calculated and compared to the measured values. Optimum parameters are
found by minimizing the sum of squares of the deviations from the measured values.
The difference in measurement accuracy for the three transitions is accounted for
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7 Entering the playground

experimental value theoretical value
ω01 2π(1486 ± 11) Hz 2π 1504.38 Hz
ω02 2π(2985 ± 10) Hz 2π 2983.73 Hz
ω24 2π(2900 ± 20) Hz 2π 2884.46 Hz

Table 7.1: Measured and calculated values for the three transition frequencies
agree within 1σ for ω02, ω24 and 2σ for ω01

parameter experimental value theoretical value
Pm 265µW±10% 291.5µW
w0 1.838µm
B′ 18.9(1) Gauss/cm 18.92 Gauss/cm

Table 7.2: Final parameters used for the WKB calculation.

by weighting the squared deviations accordingly. We find

SQ = 2
(

ωcalc
01 − ωexp

01

)2
+ 2

(

ωcalc
02 − ωexp

02

)2
+ 1

(

ωcalc
24 − ωexp

24

)2
(7.9)

The function SQ is minimized under the constraint that the value of Pm agrees
with the measured value P = 265µW within the experimental uncertainty of 10%.
The minimum is obtained for w0 = 1.838µm and Pm = 291.5µW. Table 7.1 lists
both experimental and calculated values for the three frequencies. The values
agree within 1σ for ω02, ω24 and 2σ for ω01.

For the trap depth at the center V0 we find

V0 = 3.326µK kB. (7.10)

After the parameters Pm and w0 have been fixed the third parameter, the mag-
netic field gradient B′, is determined independently by calculating the tunneling
times through the potential barrier. We compare these with the tunneling times
measured in the experiment. For a relative trap depth of s = 2.75/4 = 0.6875 we
measure a tunneling time of t0 = 74 ms for an atom occupying the second energy
level which yields a value for the gradient of B′

theo = 18.92 Gauss/cm. This is in
excellent agreement with the measured gradient of B′ = 18.9(1) Gauss/cm. When
this gradient is used as input parameter for the WKB calculation of the mean
atom number as a function of relative microtrap depth according to equation 4.26,
the theoretical expectation agrees well with the measurement for a broad range of
trap depths as shown in figure 6.5. This strongly supports the choice of parameters
for the potential. Table 7.2 lists the final parameters used for the calculation.
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8 Conclusion and Outlook

During this thesis we deterministically prepared a few-fermion system using ultra-
cold 6Li atoms in an optical dipole trap. Ground-state samples consisting of one to
ten fermions were prepared with a fidelity of ∼ 90%. This system has the unique
property that important parameters such as particle number confining potential
and inter[particle interactions are tunable.
We used this model system to explore one of the simplest non-trivial few-particle
system possible: two interacting fermions in a one-dimensional harmonic poten-
tial. To determine the interaction shift which is caused by the repulsion of the
particles we tilted the potential and measured the tunneling time of atoms through
the resulting potential barrier. We deduce the interaction shift from the measured
tunneling times using a WKB calculation. This requires detailed knowledge of the
confining potential which we obtain by mapping out its energy states.
In contrast to other tunable quantum systems such as quantum dots and atomic
clusters, inter-particle interaction and confining potential can be tuned indepen-
dently. This makes our system uniquely suited to explore pairing in few-fermion
systems.

8.1 Pairing in few-fermion systems

Strongly correlated few-fermion systems are the challenge of modern nuclear physics.
A prime example is the Halo nucleus 11Li [Neu08] which is stable because of pair-
ing between fermions.
One approach to treat pairing in few-particle systems is to separate pairing effects
from the rest of the system’s Hamiltonian. This is the concept of the seniority
model [Zel03, Mar10] which assumes that the Hamiltonian of the system can be
written as a sum

H = H0 + Vpair (8.1)

where H0 includes kinetic energy, potential energy and inter-particle interactions
which can be incorporated into a mean field description. The pairing term Vpair

accounts for correlations which cannot be incorporated into this mean field. The
Hamiltonian is simplified by assuming that all single-particle states which are
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8.1 Pairing in few-fermion systems

determined as the solution of H0 form one degenerate energy shell near the Fermi
surface as sketched in figure 8.1. On top of this energy offset the spectrum is added
which is caused by pairing of particles within this shell. This pairing spectrum is
calculated analytically by diagonalizing the pairing term Vpair of the Hamiltonian.
It is characterized by the number of unpaired particles denoted by the seniority
s. The ground state is obtained for a fully paired system corresponding to s = 0.
Since a system with odd particle number always leads to one unpaired particle,
those systems are less strongly bound which causes the oscillation in binding energy
as a function of particle number.

To observe non-trivial pairing effects, each energy level has to be occupied by

Figure 8.1: Energy spectrum of a few-fermion system. The effects of pairing can be
isolated from the rest of the spectrum by assuming that single particle
states form one degenerate energy shell near the Fermi surface.

more than two fermions. According to the Pauli’s principle this requires degenerate
energy shells which is fulfilled in a two- or three-dimensional system.
Thus, we can use a two-dimensional system as a starting point to explore pairing
effects.
The corresponding Hamiltonian for ultracold atoms takes a form which is similar
to the case of quantum dots as discussed in chapter 2.2. It reads

H = H0 +Hint =
N
∑

i=1

(

− ~
2

2m
∇2

i +
m

2
ωr2

i

)

+
1

2
g
∑

i6=j

δ2D (r i − r j) (8.2)

The difference to the case of quantum dots is that the Coulomb term has been
replaced with a term describing interactions between ultracold atoms. In our
system, the coupling strength g can be tuned to any value −∞ < g < ∞.
The interaction term of the Hamiltonian Hint has been solved by Rontani et al.
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8 Conclusion and Outlook

[Ron09] using the seniority model. They compare their result with their numerical
solution of the full Hamiltonian using the full configuration interaction method
(CI) [Ron06].
The energy spectrum of such an artificial atom can be characterized by means of
two quantities [Cap07]: its ionization potential defined as

I(N) = E(N − 1) − E(N) (8.3)

and the electron affinity

A(N) = E(N) − E(N + 1) (8.4)

where E(N) denotes the ground state energy of the N -particle system. The dif-
ference of those two quantities yields the fundamental energy gap

∆2(N) = |I(N) − A(N)| . (8.5)

The physical meaning of this parameter becomes evident when the solutions for
a non-interacting system is compared with an attractively interacting system as
done in figure 8.2. The green line corresponds to the solution of a weakly interact-
ing system. Its energy structure is given by the eigenstates of the two dimensional
harmonic oscillator as discussed in chapter 2.2. A maximum of ∆2(N) appears for
closed shells (N = 2, 6 particles) because the ionization potential has a maximum
and the electron affinity vanishes, similar to the case of noble gases. For increas-
ing attraction (figure 8.2 (b)) even-odd oscillations in the fundamental energy gap
appear. This accounts for the fact that a pair has to broken to remove one particle
from a system with even number of constituents . Therefore the ionization po-
tential oscillates as a function of particle number. These results are qualitatively
reproduced with the seniority model (figure 8.2 (c)).
To summarize, with the model system we can explore pairing in a two-dimensional
few-fermion system by measuring the system’s energy as a function of attractive
interaction strength. We can directly compare these results to analytical and nu-
merical predictions.
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Figure 8.2: Pairing in a two-dimensional system. The energy spectrum of this
system is characterized by the fundamental gap which denotes the
difference in ionization energy and electron affinity. We can directly
test numerical calculations for (a) repulsive and (b) attractive interac-
tions. Results from the seniority model adapted from nuclear physics
are shown in panel (c). The absolute value of interaction strength
increases from the green, red, blue to black curve. The green curve
corresponds to small interactions. The peaks for N = 2, 6 particles
correspond to magic number of the potential. From [Ron09].
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8.2 Quantum simulation of many-body systems

The understanding of correlated many-fermion systems in periodic potentials is
the key challenge of condensed matter physics. The simplest possible description
of interacting fermions in a periodic potential is the Fermi-Hubbard model, the
most intensively studied model in the field. Its Hamiltonian only contains two pa-
rameters as sketched in figure 8.3 (A): The tunneling matrix element of particles
to adjacent lattice sites t and the on-site interaction U , the energy shift caused by
the interactions between the particles.
In spite of the simplicity of this model, it can only be solved analytically in one
dimension. In two and three dimensions numerical predictions for its phase dia-
gram can be given which still disagree in parts after decades of intensive research.
Solving the model is considered as an important step towards the understanding
of high-TC superconductivity, one of the big open questions in condensed matter
physics.
For repulsive interactions the low-temperature phase of this Hamiltonian is char-
acterized by magnetic ordering. In the case of a three dimensional cubic lattice
the system is predicted to undergo a phase transition into an antiferromagnetically
ordered state if the temperature is reduced below the Néel temperature. In this
phase two adjacent lattice sites are occupied with fermions in different spin states
as sketched in figure 8.3 (B) for the case of an one-dimensional system.
The observation of such antiferromagnetic order in an ultracold Fermi gas is the
biggest challenge in the field of cold quantum gases. To reach this goal the most
crucial difficulty is to reduce the entropy per particle. However, this could not be
reached in spite of intensive effort.
We prepare few-fermion systems in the ground state of a single trap with near
zero entropy. In a bottom-up approach we can extend our system to an artificial
molecule by splitting the trap adiabatically into multiple wells while preserving full
control over the system’s quantum state as indicated in figure 8.3 (B). This allows
us to realize the building block of quantum spin systems in a finite, isolated system
with control over the number of atoms, their spin state, the number of wells and
the inter-particle interaction. Adding multiple potential wells in two dimensions
brings us in the outstanding position to simulate the Fermi-Hubbard Hamiltonian
in a two-dimensional system. Since we can tune the inter-particle interactions the
determination of the long-sought phase diagram is in experimental reach. The
magnetic ordered phases of the ground state can be directly detected using our
spin selective detection scheme.
This achievement would be the first quantum simulation of an open and highly
relevant problem in quantum physics.



8.2 Quantum simulation of many-body systems

Figure 8.3: Fermi-Hubbard model and possible experimental realization. (A) The
physics of interacting fermions in two spin states confined in a periodic
potential is described by the Fermi-Hubbard model. It depends on two
parameters, the tunneling matrix element t of atoms to adjacent lattice
sites and the on-site interaction U given by the interaction strength.
(B) Its main building block can be simulated with our model system
by preparing a ground state sample in the microtrap and splitting the
trap adiabatically into multiple potential wells.
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