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Abstract. Deterministic public key encryption (D-PKE) provides an alternative to randomized public
key encryption in various scenarios (e.g. search on encrypted data) where the latter exhibits inherent
drawbacks. In CRYPTO’11, Brakerski and Segev formalized a framework for studying the security of
deterministic public key encryption schemes with respect to auxiliary inputs. A trivial requirement is
that the plaintext should not be efficiently recoverable from the auxiliary inputs.
In this paper, we present an efficient deterministic public key encryption scheme in the auxiliary-input
setting from lattices. The public key size, ciphertext size and ciphertext expansion factor are improved
compared with the scheme proposed by Brakerski and Segev. Our scheme is also secure even in the
multi-user setting where related messages may be encrypted under multiple public keys. In addition,
the security of our scheme is based on the hardness of the learning with errors (LWE) problem which
remains hard even for quantum algorithms.
Furthermore, we consider deterministic identity-based public key encryption (D-IBE) in the auxiliary-
input setting. The only known D-IBE scheme (without considering auxiliary inputs) in the standard
model was proposed by Bellare et al. in EUROCRYPT’12. However, this scheme is only secure in the
selective security setting, and Bellare et al. identified it as an open problem to construct adaptively
secure D-IBE schemes. The second contribution of this work is to propose a D-IBE scheme from lattices
that is adaptively secure.

Keywords: deterministic (identity-based) public key encryption, auxiliary inputs, lattices

? This is the full version of the paper accepted by SCN 2012.



2

1 Introduction

The fundamental notion of semantic security for public key encryption schemes was introduced
by Goldwasser and Micali [16]. While semantic security provides strong privacy guarantees, it
inherently requires a randomized encryption algorithm. Unfortunately, randomized encryption only
allows linear time search [1,10] on outsourced databases, which is prohibitive when the databases
are terabytes in size. Further, randomized encryption necessarily expand the length of the plaintext,
which may be undesirable in some applications such as legacy code or in-place encryption.

Bellare, Bolyreva, and O’Neill [6] initiated the study of deterministic public key encryption
schemes that were oriented to search on encrypted data. Clearly, in this setting, no meaningful
notion of security can be achieved if the plaintext space is small. Therefore, Bellare et al. [6] required
security to hold only when the plaintexts are drawn from a high min-entropic distribution. Very
recently, Brakerski and Segev [11] introduced a framework for modeling the security of deterministic
encryption schemes with respect to auxiliary inputs. This framework is a generalization of the one
formalized by Bellare et al. [6] (and further in [7,9,18]) to the auxiliary-input setting, in which an
adversary possibly obtains additional information that is related to encrypted plaintext, and might
even fully determine the encrypted plaintext information theoretically. An immediate consequence
of having a deterministic encryption algorithm is that no meaningful notion of security can be
satisfied if the plaintext can be recovered from the adversary’s auxiliary information. Therefore,
their framework focuses on the case of hard-to-invert auxiliary inputs. Brakerski and Segev [11]
proposed two schemes satisfy this notion of security. However, these two schemes have large public
key size, ciphertext size and ciphertext expansion factor. One result of this work is to propose a
new scheme from lattices with improved public key size, ciphertext size and ciphertext expansion
factor.

A deterministic identity-based encryption (D-IBE) scheme is an identity-based encryption [22]
scheme with deterministic encryption algorithm. Bellare et al. [8] extended the security definition
under high min-entropy into the identity-based setting. D-IBE allows efficiently searchable identity-
based encryption of database entries while maintaining the maximal possible privacy, bringing the
key-management benefits of the identity-based setting. Bellare et al. proposed a D-IBE scheme
by first constructing identity-based lossy trapdoor functions (IB-LTDFs). Due to the inherent
limitation of IB-LTDFs, their scheme only achieves selective security, and in fact, it has been
identified as an open problem to construct adaptively secure D-IBE schemes [8].

1.1 Our Contributions

In this work, we propose a D-PKE scheme in the auxiliary-input setting from lattices in the standard
model. The security of our scheme is based on the hardness of the LWE problem, which is known to
be as hard as worst-case lattice problems [21,19]. The public key size, ciphertext size and ciphertext
expansion factor are better than the scheme in [11], while the private key size is almost the same. The
computations involved in encryption of our scheme are matrix-vector multiplication and followed
by a rounding step. Matrix-vector multiplication can be implemented very fast in parallel, and
rounding operations can also be computed by small low-depth arithmetic circuits. Therefore, the
encryption can be implemented very fast. In addition, our scheme is secure even in the multi-user
setting (as in [11]) where related messages may be encrypted under multiple public keys. In this
setting we obtain security, with respect to auxiliary inputs, for any polynomial number of messages
and users as long as the messages are related by invertible linear transformations.

Furthermore, we extend the security definition in the auxiliary-input setting to D-IBE, and
propose a D-IBE scheme in the standard model. The only known (selectively secure) D-IBE scheme
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(not under the auxiliary-input setting) in the standard model was proposed by Bellare, Kiltz, Peikert
and Waters [8], based on IB-LTDFs.

Our D-IBE scheme is the first adaptively secure one in the auxiliary-input setting. In Appendix
A, we also give a more efficient selectively secure D-IBE scheme in the auxiliary-input setting
whose ciphertext size and ciphertext expansion factor are comparable to our D-PKE scheme. All
our schemes are secure with respect to auxiliary inputs that are sub-exponentially hard to invert.

1.2 Overview of Our Approach

A crucial technique hurdle is that the hardness of the LWE problem depends essentially on adding
random, independent errors to every output of a mod-q “parity” function. Actually, without any
error, parity functions are trivially easy to learn. Fortunately, Banerjee, Peikert and Rosen [5] intro-
duced a “derandomized” LWE problem, i.e., generating the errors efficiently and deterministically,
while preserving hardness.

The LWEq,n,m,α assumption says that for any m = poly(n), modulus q and error rate α: The
pairs (A,Ats+e), for random matrix A← Zn×mq , random vector s← Znq , and “small” random error
terms e← Zm of magnitude ≈ αq, are indistinguishable from (A,u), where u is uniformly random
in Zmq . The derandomization technique for LWE in [5] is very simple: instead of adding a small
random error term to the vector Ats ∈ Zmq . They deterministically round it to the nearest element
of a sufficiently “coarse” subgroup Zmp where p � q. In other words, the “error term” comes
solely from deterministically rounding Ats to a relatively nearby value. Denoting the rounding
operation as bAtsep ∈ Zmp , Banerjee et al. call the problem of distinguishing (A, bAtsep) from
uniform random samples the learn with rounding (LWRq,p,n,m) problem. In [5], Banerjee et al. show
that the LWRq,p,n,m is at least as hard as LWEq,n,m,α for an error rate α proportional to 1/p, and
super-polynomial q (q � p).

In order to make our D-PKE scheme secure in the auxiliary-input setting, it seems that we
need more than the pseudorandomness of LWRq,p,n,m with uniformly random secret. We hope the
LWRq,p,n,m samples still to be uniformly random even given some auxiliary information of the secret.
That is, we want (A, bAtsep, f(s)) ≈ (A,u, f(s)) for any hard-to-invert function f . Analogous result
of LWE problem was shown in [15], namely (A,Ats + e, f(s)) ≈ (A,u, f(s)) for properly chosen
parameters. We briefly explain this statement. LWE assumption implies that At can be substituted
by Z = B ·C + E, where B← Zm×dq , C← Zd×nq , and E ∈ Zm×n is the error matrix (d is determined
by the function f). Considering the distribution (B,C,E,BCs + Es + e, f(s)). If s is sampled from
“small” subgroup in Znq such as {0, 1}n, Es is “small”. For sufficiently “large” e, the distribution of
e statistically hides Es. Then we only need to consider the distribution (B,C,E,BCs + e, f(s)).
According to the generalized Goldreich-Levin theorem of Dodis et al. in [13], we know that the
distributions of (Cs, f(s)) and (u, f(s)) are statistically close. Applying LWE again, we obtain the
above statement.

Randomized IBE schemes from lattices have been proposed in [14,12,2,3,17]. We adopt some
of the techniques in [2] to construct our D-IBE. A non-trivial problem is how to use the artificial
abort technique. The artificial abort technique in [2] does not work here, because that method only
works on polynomial q. But, to guarantee the security, here we need q to be super-polynomial. We
solve this problem by extending the technique first appeared in [23].

1.3 Related Work

Deterministic public key encryption for high min-entropic messages was introduced by Bellare,
Boldyreva and O’Neill [6] who formalized a definitional framework, which was later refined and
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extended in [7,9,18]. Bellare et at. [6] presented two constructions in the random oracle model:
The first relies on any semantically secure public key encryption scheme; whereas the second relies
on the RSA function. Constructions in the standard model were then presented in [7,9], based on
trapdoor permutations with (almost) uniformly plaintext space [7], and lossy trapdoor functions
[9]. However these constructions fall short in the multi-message setting, where arbitrarily related
messages are encrypted under the same public key. O’Neill [18] made a step forwards addressing
this problem.

Deterministic public key encryption for auxiliary inputs was proposed by Brakerski and Segev
[11]. In the auxiliary-input setting, Brakerski and Segev [11] proposed two constructions in the
standard model. The first one is based on d-linear assumptions. This scheme is also secure in the
multi-user setting, which solved an open problem in [6]. The second one is based on a rather general
class of subgroup indistinguishability assumptions. These two schemes are secure with respect to
auxiliary inputs that are sub-exponentially hard to invert.

Deterministic identity-based public key encryption was introduced by Bellare, Kiltz, Peikert and
Waters [8]. Bellare et al. aimed to construct identity-based lossy trapdoor functions (IB-LTDFs),
which is an extension of lossy trapdoor functions [20]. They built a selectively secure D-IBE as an
application of IB-LTDFs. Bellare et al. gave two constructions of IB-LTDFs, while only the one
based on Decision Linear Diffie-Hellman assumption can be used to get D-IBE schemes3. Since
the inherent limitations of IB-LTDFs, it’s hard to be directly used to construct adaptively secure
D-IBE schemes.

2 Preliminaries

For an integer m, we denote [m] as an integer set {1, ...,m}. We use bold capital letters to denote
matrices, and bold lowercase letters to denote vectors. The notation At denotes the transpose of the
matrix A. When we say a matrix defined over Zq has full rank, we mean that it has full rank modulo
q. If A1 is an n ×m matrix and A2 is an n ×m′ matrix, then [A1|A2] denotes the n × (m + m′)
matrix formed by concatenating A1 and A2. If x1 is a vector of length m and x2 is of length m′,
then we let [x1|x2] denote the length m + m′ vector formed by concatenating x1 and x2. When
doing matrix-vector multiplication, we always view vectors as column vectors.

A function negl(λ) is negligible, if it vanishes faster than the inverse of any polynomial in λ. The
statistical distance between two distributions X,Y over some finite or countable set S is defined as
∆(X,Y ) = 1

2

∑
s∈S

∣∣Pr[X = s]−Pr[Y = s]
∣∣. X and Y are statistically indistinguishable if ∆(X,Y )

is negligible.
For any integer modulus q ≥ 2, Zq denotes the quotient ring of integer modulo q, and we

represent Zq by the numbers {−b q−12 c, ..., d
q−1
2 e}. We define a “rounding” function b·ep : Zq → Zp,

where q ≥ p ≥ 2, as bxep = b(p/q) · xe mod p. We extend b·ep component-wise to vectors and
matrices over Zq.

2.1 Lattices

A full-rank m-dimensional integer lattice Λ ⊆ Zm is a discrete additive subgroup whose linear span
is Rm. Every lattice is generated as the Z-linear combination of some basis of linearly independent
vectors B = {b1, ...,bm} ⊂ Zm, i.e.,Λ = {

∑m
i=1 zibi : zi ∈ Z}. In this work we deal exclusively with

“q-ary” lattices. For a matrix A ∈ Zn×mq , define the integer lattice

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}.
3 The other identity-based lossy trapdoor function is based on LWE assumption.
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Let S = {s1, ..., sk} be a set of vectors in Rm. We use S̃ = {s̃1, ..., s̃k} to denote the Gram-Schmidt
orthogonalization of the vectors s1, ..., sk. We use ‖S‖ to denote the length of the longest vector in
S, and ‖S‖∞ to denote the largest magnitude of the entries in S . For a real-valued matrix R, we
let s1(R) denote the largest singular value of R, i.e. s1(R)=max‖u‖=1‖Ru‖.

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R>0,
let ρσ,c(x) = exp(−π‖x− c‖2/σ2) be the Gaussian function on Rm with center c and parameter
σ. Let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,c over Λ, and let DΛ,σ,c be the discrete

Gaussian distribution over Λ with center c and parameter σ. Specifically, for all y ∈ Λ, we have

DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

. For notional convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ,

respectively.
We recall the learning with errors (LWE) problem, a classic hard problem on lattices defined

by Regev [21]. The (decisional) learning with errors problem LWEq,n,m,α, in dimension n with
error rate α ∈ (0, 1), stated in matrix form, is: given an input (A,b), where A ∈ Zn×mq for any
m=poly(n) is uniformly random and b ∈ Zmq is either of the form b = Ats + e mod q for uniform
s ∈ Znq and e ← DZm,αq or is uniformly random (and independent of A), distinguish which is the
case, with non-negligible advantage. It is known that when αq ≥ 2

√
n, this decision problem is

at least as hard as approximating several problems on n-dimensional lattices in the worst-case to
within Õ(n/α) factors with a quantum computer [21] or on a classical computer for a subset of
these problems [19]. In the following, we list some useful facts that make our constructions work.

Lemma 1 ([17] Lemma 2.11). Let x ← DZ,r with r > 0, then with overwhelming probability,
|x| ≤ r

√
n.

Lemma 2 ([4] Lemma 2.1). Let q, n,m be positive integers with q ≥ 2 be prime, and m ≥
n lg q + ω(lg λ). Let A ← Zn×mq and R ← {−1, 1}m×m. Then (A,AR) is statistically close to
uniform.

Lemma 3 ([2] Lemma 15). Let R be a k×m matrix chosen at random from {−1, 1}k×m. Then
with overwhelming probability, s1(R) ≤ 12 ·

√
k +m.

Lemma 4 ([4] Lemma 3.5). Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n lg q. There is a
probabilistic polynomial-time algorithm TrapGen(q, n,m) that outputs a pair (A,T) ∈ Zn×mq ×Zm×m

such that A is statistically close to uniform in Zn×mq and T is a basis for Λ⊥(A), satisfying ‖T‖∞ ≤
O(n lg q) and ‖T̃‖ ≤ O(

√
n lg q) (Alwen and Peikert assert that the constant hidden in the first O(·)

is no more than 20).

Lemma 5 ([2] Theorem 17). Let q > 2,m > n, A,B ∈ Zn×mq , TA be a basis of Λ⊥(A), and

σ ≥ ‖T̃A‖ · ω(
√

logm). There exists an efficient randomized algorithm SampleLeft that, takes as
inputs A,B,TA, σ, and outputs a basis S of Λ⊥(U) for U = [A|B] with ‖S‖ ≤ O(σ · m) whose
distribution depends on U, σ.

Lemma 6 ([2] Theorem 18). Let q > 2,m > n, A,B ∈ Zn×mq , B be full rank, R ∈ {−1, 1}m×m,

TB be a basis of Λ⊥(B), and σ ≥ ‖T̃B‖ · s1(R) · ω(
√

logm). There exists an efficient randomized
algorithm SampleRight that, takes as inputs A,R,B,TB, σ, and outputs a basis S of Λ⊥(U) for
U = [A|AR + B] with ‖S‖ ≤ O(σ ·m) whose distribution depends on U, σ. Note that this algorithm
still works if we replace B with kB or CB, where k ∈ Zq is coprime with q and C ∈ Zn×nq is full-
rank.

We consider any auxiliary input f(x) from which it is hard to recover the input x. We say that
a function f is ε-hard-to-invert with respect to a distribution D, if for every efficient algorithm A
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it holds that Pr[A(f(x)) = x] ≤ ε over the choice of x ← D and the internal coin tosses of A. We
describe a useful statement as follows which is crucial to our constructions.

Lemma 7 ([15] Theorem 5). Let k lg t > lg q + ω(lg λ), t = poly(λ). Let D be any distribution
over Znt and f : Znt → {0, 1}∗ be any (possibly randomized) function that is 2−k lg t-hard-to-invert
with respect to D. For any super-polynomial q = q(λ), and any m = poly(n), any α, β ∈ (0, 1) such
that α/β = negl(λ).

(A,Ats + e, f(s)) ≈ (A,u, f(s)),

where A← Zn×mq , s← D ⊆ Znt and u← Zmq are uniformly random and e← DmZ,βq. Assuming the

LWEq,d,m,α assumption, where d , k lg t−ω(lg λ)
lg q .

For the case of simplicity, we denote the AdvLWEq,n,m,β,f (λ) as the advantage of any efficient
distinguisher of the above two distribution in Lemma 7. According to Lemma 7, we know that
AdvLWEq,n,m,β,f (λ) is negligible in λ. Assuming the LWEq,d,m,α assumption, where d , k lg t−ω(lg λ)

lg q .

2.2 Security Definition

In this section, we describe the security notions introduced in [11]. Brakerski and Segev [11] for-
malized three security notions with respect to auxiliary inputs, and proved that all these three are
equivalent. Brakerski and Segev [11] also showed that for the case of blockwise-hard-to-invert (see
[11] for a definition of blockwise-hard-to-invert function) auxiliary inputs, encrypting a single mes-
sage is equivalent to encrypting multiple messages. For the case of simplicity, in this paper, we only
consider the case of a single message. In the single message case, hard-to-invert function and the
blockwise-hard-to-invert function are equivalent. Furthermore, we slightly extend the notion in [11].
We require the ciphertext is indistinguishable from uniformly random elements in the ciphertext
space. This property implies the strong PRIV1-IND notion defined in [11] and recipient anonymity.

A deterministic public key encryption scheme consists of three algorithms: (KeyGen, Enc, Dec).
The probabilistic KeyGen algorithm produces a secret key and a corresponding public key. The de-
terministic Enc algorithm uses the public key to map plaintexts into ciphertexts. The deterministic
Dec algorithm uses the secret key to recover plaintexts from ciphertexts.

Definition 1. A deterministic public key encryption scheme D-PKE=(KeyGen,Enc,Dec) is PRIV1-
INDr-secure with respect to ε-hard-to-invert auxiliary inputs if for any probabilistic polynomial-time
algorithm A, for any efficiently sampleable distributionsM, and any efficiently computable F = {f}
that is ε-hard-to-invert with respect to M such that the advantage of A in the following game is
negligible.

AdvPRIV 1-INDr
D-PKE,A,F (λ) =

∣∣∣Pr[(pk, sk)← KeyGen(λ); b← {0, 1};m←M; f ← F ;

c∗0 = Enc(pk,m); c∗1 ← C; b′ ← A(pk, c∗b , f(m)) : b = b′]− 1/2
∣∣∣.

Where C is the ciphertext space. The probability is taken over the choices of m ←M, (pk, sk) ←
KeyGen(λ), and over the internal coin tosses of A.

The multi-user setting of deterministic public key encryption is a straightforward extension of the
above definition. Namely, for any efficient adversary A, given polynomial many encryptions of the
related messages under multiple public keys and auxiliary information of these message, can not
distinguish them from uniformly random elements in the ciphertext space with the same auxiliary
information.
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A deterministic identity-based public key encryption consists of four algorithms: (IBE.Setup,
IBE.KGen, IBE.Enc, IBE.Dec). The probabilistic IBE.Setup algorithm generates public parameters,
denoted by PP , and a master key MSK. The possibly probabilistic IBE.KGen algorithm uses the
master key to extract a private key skid corresponding to a given identity id. The deterministic
IBE.Enc algorithm encrypts messages for a given identity. The deterministic IBE.Dec algorithm
decrypts ciphertexts using the private key.

Definition 2. A deterministic identity-based public key encryption scheme D-IBE=(IBE.Setup,
IBE.KGen, IBE.Enc, IBE.Dec) is PRIV1-ID-INDr-secure with respect to ε-hard-to-invert auxiliary
inputs if for any probabilistic polynomial-time algorithm A, for any efficiently sampleable distribu-
tion M, and any efficiently computable F = {f} that is ε-hard-to-invert with respect to M, such
that the advantage of A in the following game is negligible.

AdvPRIV 1-ID-INDr
D-IBE,A,F (λ) =

∣∣∣Pr[(PP,MSK)← IBE.Setup(λ); id∗ ← AIBE.KGen(·)(PP );

b← {0, 1};m←M; f ← F ; c∗0 = IBE.Enc(PP, id∗,m); c∗1 ← C;

b′ ← AIBE.KGen(·)(PP, c∗b , f(m)) : b = b′]− 1/2
∣∣∣.

Where C is the ciphertext space, and oracle IBE.KGen(·) on input id generates a private key skid
for the identity id with the restriction that A is not allowed to query id∗. The probability is taken
over the choices of m←M, (PP,MSK)← IBE.Setup(λ), skid ← IBE.KGen(PP, id,MSK), and
over the internal coin tosses of A.

3 The D-PKE Scheme

In this section, we propose a deterministic public key encryption scheme in the auxiliary-input
setting. Before going to the concrete scheme, we first give a useful lemma, i.e. a trapdoor to invert
the rounding function.

Lemma 8. Let p, q, n,m be positive integers with q ≥ p ≥ 2. Let A ∈ Zn×mq be full-rank, and T

be a basis of Λ⊥(A) with ‖T‖∞ < p/m. Given c = bAtxep, where x ∈ Znt with t ≤ q, there is a
polynomial-time algorithm Invert(c,A,T) that outputs x.4

Proof. Given c = bAtxep, rewrite it into c = (p/q)Atx+e+pv, where e ∈ Rm is an “error” vector
with ‖e‖∞ ≤ 1/2, and v ∈ Zm. Then compute Ttc = (p/q)(AT)tx + Tte + pTtv. Since T is a
basis of Λ⊥(A), we have Ttc = pv′+ Tte + pTtv = Tte + pw, for some v′,w ∈ Zm. Since Ttc and
pw are integer vectors, then Tte is an integer vector as well. Therefore, Ttc = Tte mod p. By the
hypothesis of T, we know ‖Tte‖∞ ≤ 1/2·m·‖T‖∞ < p/2. Then we get that Tte mod p = Tte, and
obtain e, since T is invertible in R. We next compute (q/p)(c− e) = Atx + qv, then, (q/p)(c− e)
mod q = Atx. Since A is full-rank modulo q, x can be recovered by Gaussian elimination. ut

The D-PKE scheme is described as follows. Set the parameters p, q, n,m as specified in Sec. 3.1.

– Key Generation. Algorithm KeyGen(λ) takes as input a security parameter λ. It uses the
algorithm from Lemma 4 to generate a (nearly) uniform matrix and a trapdoor, i.e., (A,T)←
TrapGen(q, n,m). It outputs pk = A ∈ Zn×mq and sk = T ∈ Zm×m.

4 The strong trapdoor presented in [17] can be used here.
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– Encryption. Algorithm Enc(pk,m) takes as input a public key pk = A and a message
m ∈ Znt (⊂ Znq ). It outputs a ciphertext c = bAtmep ∈ Zmp .

– Decryption. Algorithm Dec(sk, c) takes as input a secret key sk = T and a ciphertext c ∈ Zmp .
It first computes m← Invert(c,A,T). Then, if m ∈ Znt it outputs m, and otherwise it outputs
⊥ .

3.1 Correctness and Parameters

For the system to work correctly, we need to ensure that: (1) TrapGen can operate (i.e. m ≥ 6n lg q);
(2) Lemma 8 holds; (3) Lemma 7 holds. To satisfy these requirements we set the parameters
(q, p,m, n) as follows:

n = λ, q = the prime nearest to 2n
δ
, m = d6n1+δe, p = d120n2+2δe,

where δ is constant between 0 and 1. Since A is uniformly random in Zn×mq and m ≥ 6n1+δ, with
overwhelming probability this matrix will have rank n. According to the Lemma 7 and the Theorem
1 which we will give a proof in the next subsection. We obtain that the security of this scheme

is based on the LWEq,d,m,α, where d , k lg t−ω(lg λ)
lg q , and 1/α = 2n

δ′
(0 < δ′ < δ). Given the state

of art algorithms, this problem is sub-exponentially hard. Furthermore, we can choose k lg t to be
sub-linear. Therefore, our auxiliary inputs are sub-exponentially hard to invert.

The public key size, private key size, ciphertext size and ciphertext expansion factor in our
scheme are O(n2+2δ), O(n3+3δ), O(n1+δ lg n), and O(nδ lg n/ lg t) respectively. To optimize the
ciphertext expansion factor, we can choose t = n, which makes the ciphertext expansion factor
to be O(nδ). In [11], these values are n2|G|, n3, n|G| and |G| respectively,5 where |G| denotes the
length of elements in group G with order 2n, It’s easy to see that |G| ≥ n.

3.2 Security of The D-PKE Scheme

Theorem 1. For any k > (lg q+ω(lg λ))/ lg t, t = poly(λ) ≤ q. The D-PKE scheme is PRIV1-INDr-
secure with respect to 2−k lg t-hard-to-invert auxiliary inputs. If Lemma 7 holds, where 1/β ≥
m · p · nω(1), q = nω(1), and p = poly(λ).

Proof. For any distribution M over Znt , let F = {f} be 2−k lg t-hard-to-invert with respect to dis-
tribution M. To prove this theorem, we define a series of games, and give a reduction from the
Lemma 7 with respect to distribution M.

Game G0 This game is the original PRIV1-INDr game with adversary A. By Xi, we denote the
event b = b′ in Game Gi. By definition, |Pr[X0]− 1/2| = AdvPRIV 1-INDr

D-PKE,A,F (λ).

Game G1 This game is identical to game G0, except that the challenger choose A uniformly at
random in Zn×mq , and uses A as the public key given to A. According to Lemma 4, it follows that
|Pr[X1]− Pr[X0]| ≤ negl(λ), for unbounded adversary A.

Game G2 This game is identical to game G1, except the way to generate challenge ciphertext.
The challenger samples m←M, and samples e← DmZ,βq. Let b = Atm+e mod q. The challenger

5 One can encrypt large messages (other that bits) to reduce the ciphertext expansion factor, but in this case, it
needs much more exponent arithmetics to decrypt.
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sets c∗0 = bbep, c∗1 as in game G1, i.e. chosen at random in Zmp . It outputs (A, c∗b , f(m)) to A, but
with one exception: we define a “bad event” Bad2 to be

Bad2 , bb + [−B,B]mep 6= {bbep},

where B = βq
√
n. If Bad2 occurs on any of b, the challenger immediately abort the game.

If Bad2 does not occur for the pair (A,b), then we have bbep = bAtm + eep = bAtmep with
overwhelming probability over the choice of e← DmZ,βq, because ‖e‖∞ ≤ βq

√
n with overwhelming

probability according to Lemma 1. It follows that for any attacker A,

|Pr[X2]− Pr[X1]| ≤ Pr[Bad2] + negl(λ).

We do not directly bound the probability of Bad2 occurring in G2, instead deferring it to the anal-
ysis of the next game, where we can show that it is indeed negligible.

Game G3 In this game, the challenger chooses b ∈ Zmq uniformly at random, and samples
m←M. It then sets c∗0 = bbep, and chooses c∗1 uniformly at random in Zmp . The challenger gives
(A, c∗b , f(m)) to A, subject to the same “bad event” Bad3 and abort condition as described in the
game G2 above. Under Lemma 7, and by the fact “bad event” can be tested efficiently given b,6

a straightforward reduction implies that |Pr[X3] − Pr[X2]| ≤ negl(λ) for any efficient attacker A.
For the same reason, it also follows that∣∣Pr[Bad3]− Pr[Bad2]

∣∣ ≤ negl(λ).

Now for each uniform b, Pr[Bad3] ≤ m(2B+ 1)p/q = negl(λ), by assumption on q and β. It follows
that

Pr[Bad2] ≤ negl(λ) ⇒ |Pr[X2]− Pr[X1]| ≤ negl(λ).

Game G4 This game is similar to game G3, with b being chosen uniformly at random, m being
sampled from M, and Bad4 being defined similarly. However, in this game the challenger always
returns (A, c∗b , f(m)) to A, even when Bad4 occurs. By the analysis above, we have that for any
adversary A,

|Pr[X4]− Pr[X3]| ≤ Pr[Bad4] = Pr[Bad3] ≤ negl(λ).

Since f(m) is independent of b and the statistical distance between U(Zn×mq ,Zmp ) and U(Zn×mq )×
bU(Zmq )ep is at most mp/q = negl(λ) by assumption on q, so we have |Pr[X4]− 1/2| = negl(λ) for
any efficient adversary A.

Finally, by the triangle inequality, we have |Pr[X0]− 1/2| ≤ negl(λ) for any efficient adversary
A, which completes the proof. ut

The Multi-User Setting It’s easy to extend the above theorem to multi-user setting where
linear related messages m1, ...,mk are encrypted under any polynomial number of public keys
A1, ...,Ak. Linear related messages mean that there exist invertible and efficiently computable ma-
trices V2, ..,Vk ⊆ Zn×nq and vectors w2, ...,wk ∈ Znq , such that mi = Vim1+wi (2 ≤ i ≤ k). In this
case, the joint distribution of ciphertexts is (bAt

1m1ep, ..., bAt
kmkep). I.e., (bAt

1m1ep, bAt
2V2m1 +

At
2w2ep, ..., bAt

kVkm1 +At
kwkep). Since Vi is invertible and Ai is uniformly random for 2 ≤ i ≤ k,

then At
iVi is uniformly random. Because Lemma 7 holds for any m = poly(n), Vi,wi are efficient

computable, using the technique in the above proof, we can obtain that our D-PKE scheme is
secure in the multi-user for linear related messages. We omit the proof here.

6 Given b = (b1, ..., bm), for each bi, one can compute bbi − Bep and bbi + Bep and tests these two values equal to
bbiep or not.
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4 The D-IBE scheme

In this section, we describe our D-IBE scheme. Set the parameters p, q, n,m, σ as specified in Sec.
4.1. We treat an identity id as a non-zero sequence of ` bits, i.e, id = (b1, ..., b`) ∈ {0, 1}`\{0`}.

– Setup. Algorithm IBE.Setup(λ) takes as input a security parameter λ. It uses the algorithm
from Lemma 4 to generate a pair (A0,T) ← TrapGen(q, n,m). Select ` + 1 uniformly random
matrices A1, ...,A`,B in Zn×mq . It outputs PP = (A0,A1, ...,A`,B), MSK = T.

– Key Generation. Algorithm IBE.KGen(PP,MSK, id) takes as input public parameters PP ,
a master secret key MSK, and an identity id ∈ {0, 1}`. It first computes Fid = [A0|

∑`
i=1 biAi+

B], then it uses the algorithm in Lemma 5 to generate a basis of Λ⊥(Fid): TFid ← SampleLeft(A0,∑`
i=1 biAi + B,T, σ). It outputs skid = TFid .

– Encryption. Algorithm IBE.Enc(id,m) takes as input public parameters PP , an identity
id ∈ {0, 1}`, and a message m ← Znt . It first computes Fid = [A0|

∑`
i=1 biAi + B], then

let c = bFt
idmep. It outputs c.

– Decryption. Algorithm IBE.Dec(PP, id, skid, c) takes as input public parameters PP , an iden-
tity id, a secret key skid and a ciphertext c ∈ Z2m

p . It first computes m← Invert(c,Fid, skid).
Then, if m ∈ Znt it outputs m, and otherwise it outputs ⊥ .

4.1 Correctness of Parameters

To ensure the correctness condition, we require: (1) TrapGen can operate (i.e. m ≥ 6n lg q); (2)
Lemma 8 holds; (3) Lemma 7 holds; (4) σ is sufficiently large for SampleLeft and SampleRight.
To satisfy all these requirements, we set the parameters (q, p,m, n, σ) as follows:

n = λ, q = the prime nearest to 2n
δ
, m = d6n1+δe, σ = 6`n1.5+δ, p = d3`n3.5+3δe,

where δ is constant between 0 and 1. According to Lemma 7 and Theorem 2 which we will give
a proof in the next subsection. We obtain an adaptively secure scheme whose security is based

on the LWEq,d,m,α, where d , k lg t−ω(lg λ)
lg q , and 1/α = 2n

δ′
(0 < δ′ < δ). Given the state of art

algorithms, this problem is sub-exponentially hard. Furthermore, we can choose k lg t to be sub-
linear. Therefore, our auxiliary inputs are sub-exponentially hard to invert.

The public key size, private key size, ciphertext size and ciphertext expansion factor in our
scheme areO(3(`+2)n2+2δ),O(n3+3δ),O(2n1+δ lg `n), andO(nδ lg `n/ lg t) respectively. To optimize
the ciphertext expansion factor, we can choose t = `n, which makes the ciphertext expansion factor
to be O(nδ).

Remark. We also give a more efficient selectively secure D-IBE, the security definition and the
concrete construction are given in Appendix A.

4.2 Security of D-IBE.

Theorem 2. For any k > (lg q + ω(lg λ))/ lg t, t = poly(λ), prime integer q = nω(1), and p =
poly(λ). Assume an adversary A on D-IBE’s PRIV1-ID-INDr security with respect to 2−k lg t-hard-
to-invert auxiliary inputs, makes at most Q(λ) secret key queries. Then for every polynomial S(λ)
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and 1/β ≥ `m2 · p · nω(1) we have

AdvPRIV 1-ID-INDr
D-IBE,A,F (λ) ≤

2AdvLWEq,n,m,β,f (λ)

∆
+

1

S(λ)
+ negl(λ)

where ∆ = 1
8(`+1)Q , and f is any 2−k lg t-hard-to-invert function.

According to Lemma 7 and because S is arbitrary, we obtain:

Corollary 1. Let q = nω(1) be a prime integer, p = poly(λ), 1/β ≥ `m2·p·nω(1), and α/β = negl(λ).

Assuming LWEq,d,m,α assumption with d , k lg t−ω(lg λ)
lg q , then for any k > (lg q + ω(lg λ))/ lg t,

t = poly(λ), the D-IBE scheme is PRIV1-ID-INDr-secure with respect to 2−k lg t-hard-to-invert
auxiliary inputs.

Proof. For any distribution M over Znt , let F = {f} be 2−k lg t-hard-to-invert with respect to dis-
tributionM. To prove this theorem, we define a series of games, and give a reduction from Lemma
7 with respect to distribution M.

Game G0 This game is the original PRIV1-ID-INDr game with adversary A. We assume without
loss of generality that A always makes exactly Q = Q(λ) secret key queries. We denote these queries
by idj for 1 ≤ j ≤ Q, and the challenge identity chosen by A as id∗. By Xi, we denote the event
b = b′ in Game Gi. By definition, |Pr[X0] − 1/2| = AdvPRIV 1-ID-INDr

D-IBE,A,F (λ). In the following, Let

IDQ = (id∗, id1, ..., idQ).

Game G1 In this game, the challenger slightly changes the way to generate the matrices Ai, i ∈ [`]
and B. At the setup phase, the challenger first sets an integer M = 4Q, and chooses an integer
k uniformly at random in between 0 and `. It then chooses a random ` + 1-length vector, x =
(x′, x1, ..., x`), where x′ is chosen uniformly at random in {1, ...,M} and xi for i ∈ [`] are chosen
uniformly at random in ZM . We define F (id) = (q−kM)+x′+

∑`
i=1 bixi, note that −kM+x′ 6= 0.

And we define a binary function K(id) as

K(id) =

{
0 if x′ +

∑`
i=1 bixi = 0 mod M

1 otherwise.

Next it chooses matrices B′ uniformly at random in Zn×mq , and chooses Ri ← {−1, 1}m×m for i ∈ [`].
The challenger sets B = (q−kM+x′)B′ mod q, and constructs Ai for i ∈ [`] as Ai = A0Ri+xiB

′.
Since B′ is uniform, and q is prime, then B is uniform (since −kM + x′ mod q 6= 0 for sufficiently
large q). By Lemma 4, A0 is uniform with overwhelming probability, then according to Lemma 2,
Ai is statistically close to uniform. Therefore, we have |Pr[X1]− Pr[X0]| ≤ negl(λ). Note that, in
G1,

Fid = [A0|A0

∑̀
i=1

biRi + (q − kM + x′ +
∑̀
i=1

bixi)B
′] = [A0|A0

∑̀
i=1

biRi + F (id)B′] mod q.

Furthermore, F (id) = 0 mod q implies K(id) = 0, since q is super-polynomial, and ` and M are
polynomials, we can assume q � `M for any reasonable values of q, ` and M .

Game G2 In this game, after the adversary has terminated, the challenger throws an event Good2
independently with probability ∆ = 1

8(`+1)Q . The challenger aborts the experiment (and outputs a

uniformly random bit) if ¬Good2 occurs. We get

Pr[X2]− 1/2 = Pr[Good2](Pr[X1]− 1/2) = ∆ · (Pr[X1]− 1/2).
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Game G3 In this game, the challenger changes the abort policy. We define a function as

τ(x, IDQ) =

{
0 if (∧Qi=1K(idi) = 1) ∧ x′ +

∑`
i=1 b

∗
ixi = kM

1 otherwise.

Let E denote the event that τ(x, IDQ) evaluates to 0 for a given choice of x. According to the
analysis in [23] (Claim 2), we know that pE = Pr[E] ≥ ∆ = 1

8(`+1)Q . Ideally, we would like to replace
event Good2 from game G2 with event E. Unfortunately, E might not be independent of A’s view,
so we use artificial abort techniques. That is, given the identities in all IDQ, we approximate pE
by sufficiently often sampling values of x. Hoeffding’s inequality yields that with dλS/∆e samples,
we can obtain an approximation p̂E ≥ ∆ of pE that satisfies Pr[|pE − p̂E | ≥ ∆/S] ≤ 1/2λ. Now the
challenger finally aborts if E does not occur. But even if E occurs (which might be with probability
pE ≥ ∆), the challenger artificially enforces an abort with probability 1−∆/p̂E . We call Good3 be
the event the challenger does not abort. We always have

Pr[Good3] = 1−
(

(1− pE) + pE(1−∆/p̂E)
)

= ∆ · pE/p̂E .

Hence, except with probability 1/2λ,

|Pr[Good3]− Pr[Good2]| = |∆−∆ · pE/p̂E | = ∆ · |(pE − p̂E)/p̂E | ≤ ∆ ·∆/Sp̂E ≤ ∆/S.

Since the above inequality holds for arbitrary IDQ except with probability 1/2λ, we obtain that
the statistical distance between the output of game G2 and G3 is bounded by ∆/S + 2−λ. Hence,
|Pr[X3]− Pr[X2]| ≤ ∆/S + 2−λ.

Game G4 In this game, the challenger makes the following conceptual change regarding secret key
queries and challenge ciphertext. Namely, upon receiving a secret key query for id ∈ IDQ\id∗, the
challenger immediately aborts (with uniform output) if K(id) = 0. Upon receiving the challenge
identity id∗, the challenger immediately aborts (with uniform output) if x′+

∑`
i=1 b

∗
ixi 6= kM . This

change is purely conceptual: since K(id) = 0, for id ∈ IDQ\id∗, or x′ +
∑`

i=1 b
∗
ixi 6= kM , event E

cannot occur, so the Game G4 would eventually abort as well. We get Pr[X4] = Pr[X3].

Game G5 In this game, the challenger changes the ways to generate A0,B
′ and to answer secret

key queries. By the change from game G4, we may assume that K(id) = 1 for all id ∈ IDQ\id∗
and x′ +

∑`
i=1 b

∗
ixi = kM for id∗. This implies that F (id) 6= 0 mod q for all id ∈ IDQ\id∗, and

F (id∗) = 0 mod q. The challenger chooses A0 uniformly at random in Zn×mq and use Lemma 4
to generate B′ with a trapdoor (B′,TB′) ← TrapGen(q, n,m). From Lemma 4 we know that the
distribution of A0,B

′ are statistically close. Upon receiving a secret query for id, the challenge use
the algorithm TFid ← SampleRight(A0,

∑`
i=1 biRi,B

′,TB′ , σ), this could be done, since F (id) 6= 0
mod q. This results in the same distribution of secret keys as in Game G4 with sufficiently large σ,
up to negligible statistical distance. Thus |Pr[X5]− Pr[X4]| ≤ negl(λ). Note that, in this case the
matrix of the challenge ciphertext is as Fid∗ = [A0|A0R

∗], where R∗ =
∑`

i=1 b
∗
iRi.

Game G6 In this game, the challenger changes the way to generate challenge ciphertext. The
challenger samples m←M, and sample error vector e← DmZ,βq. we denote b = At

0m + e mod q.

It sets ĉ = [bt|btR∗]t and let c∗0 = bĉep, c∗1 be as in the game G5, i.e. chosen at random in Z2m
p .

The challenger returns (c∗b , f(m)) to A, but with one exception: we define a “bad event” Bad6 to
be

Bad6 , bĉ + [−B,B]2mep 6= {bĉep},
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where B = `βq
√
nm. If Bad6 occurs on any of ĉ, the challenger immediately abort the game.

Since (R∗)tb = (A0R
∗)tm + (R∗)te, and R∗ =

∑`
i=1 b

∗
iRi, where Ri ∈ {−1, 1}m×m, we have

‖(R∗)te‖∞ ≤ `βq
√
nm with overwhelming probability, since e ← DmZ,βq according to Lemma 1. If

Bad6 does not occur for some ĉ, then we have

bĉep =

[
bAt

0m + eep
b(A0R

∗)tm + (R∗)teep

]
=

[
bAt

0mep
b(A0R

∗)tmep

]
= bFt

id∗mep.

It immediately follows that for any adversary A

Pr[X6]− Pr[X5] ≤ Pr[Bad6] + negl(λ).

We do not directly bound the probability of Bad6 occurring in game G6, instead deferring it to the
analysis of the next game, where we can show that it is indeed negligible.

Game G7 In this game the only difference is that challenger chooses b ∈ Zmq uniformly at
random, and samples m←M. To generate the challenge ciphertext, it sets ĉ = [bt|btR∗]t, and let
c∗0 = bĉep. It returns (c∗b , f(m)) to A, subject to the same “bad event” Bad7 and abort condition
as described in the game G6 above. Under Lemma 7 and by the fact “bad event” can be tested
efficiently given ĉ, this implies that |Pr[X7]− Pr[X6]| ≤ AdvLWEq,n,m,β,f for any efficient attacker
A. For the same reason, it also follows that∣∣Pr[Bad7]− Pr[Bad6]

∣∣ ≤ AdvLWEq,n,m,β,f .

Let us consider the pair (bt,btR∗), where b ∈ Zmq is uniformly random, R∗ =
∑`

i=1 b
∗
iRi and

Ri’s are pairwise independently chosen from {−1, 1}m at random. Since id∗ 6= 0`, there exists j,
such that b∗j = 1. By Lemma 2 (when n = 1), we have that (bt,btRj) is statistically close to

U(Z2m
q ). Because Ri’s are pairwise independent, we obtain that (bt,btR∗) is statistically close to

U(Z2m
q ). This means that ĉ is statistically close to U(Z2m

q ), therefore for each uniform ĉ, Pr[Bad7] ≤
2m(2B + 1)p/q = negl(λ), by assumption on q and β. It follows that

Pr[Bad6] ≤ AdvLWEq,n,m,β,f + negl(λ)

⇒ |Pr[X6]− Pr[X5]| ≤ AdvLWEq,n,m,β,f + negl(λ).

Game G8 This game is similar to game G7, with b ∈ Z2m
q being chosen uniformly at random,

m being sampled from M, and Bad8 being defined similarly. However, in this game the challenger
always returns (c∗b , f(m)) to A, even when Bad8 occurs. By the analysis above, we have that for
any adversary A,

|Pr[X8]− Pr[X7]| ≤ Pr[Bad7] = Pr[Bad6] ≤ negl(λ).

According to the analysis in Game7, we know ĉ is uniformly random, up to negligible statistical
distance. Since f(m) is independent of ĉ and the statistical distance between U(Z2m

p ) and bU(Z2m
q )ep

is at most 2mp/q = negl(λ) by assumption on q, so we have Pr[X8]−1/2 ≤ negl(λ) for any efficient
adversary A.

Finally, by the triangle inequality, we obtain the result of Theorem 2. ut
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A The D-sIBE Scheme

Definition 3. A deterministic identity-based public key encryption scheme D-IBE=(IBE.Setup,
IBE.KGen, IBE.Enc, IBE.Dec) is PRIV1-sID-INDr-secure with respect to ε-hard-to-invert auxiliary
inputs if for any probabilistic polynomial-time algorithm A, for any efficiently sampleable distribu-
tion M, and any efficiently computable F = {f} that is ε-hard-to-invert with respect to M, such
that the advantage of A in the following game is negligible.

AdvPRIV 1-sID-INDr
D-IBE,A,F (λ) =

∣∣∣Pr[id∗ ← A(λ); (PP,MSK)← IBE.Setup(λ);

state← AIBE.KGen(·)(PP ); b← {0, 1};m←M; f ← F ; c∗0 = IBE.Enc(PP, id∗,m); c∗1 ← C;

b′ ← AIBE.KGen(·)(PP, c∗b , f(m), state) : b = b′]− 1/2
∣∣∣.

Where C is the ciphertext space, and oracle IBE.KGen(·) on input id generates a private key skid
for the identity id with the restriction that A is not allowed to query id∗. The probability is taken
over the choices of m←M, (PP,MSK)← IBE.Setup(λ), skid ← IBE.KGen(PP, id,MSK), and
over the internal coin tosses of A.

In this section, we propose a selectively secure deterministic IBE scheme in the auxiliary setting.
Set the parameters p, q, n,m, σ as specified in Sec. A.1. We treat an identity id as an element in
Znq .

– Setup. Algorithm sIBE.Setup(λ) takes as input a security parameter λ. It uses the algo-
rithm from Lemma 4 to generate a pair (A0,T) ← TrapGen(q, n,m). Select two uniformly
random matrices A1,B in Zn×mq , and a full-rank differences (FRD)7 function H. It outputs
PP = (A0,A1,B, H), MSK = T.

– Key Generation. Algorithm sIBE.KGen(PP,MSK, id) takes as input public parameters PP , a
master secret keyMSK, and an identity id ∈ Znq . It first computes Fid = [A0|A1+H(id)B], then

it uses the algorithm in Lemma 5 to generate a basis of Λ⊥(Fid): TFid ← SampleLeft(A0,A1 +
H(id)B,T, σ). It outputs skid = TFid as a secret key for id.

– Encryption. Algorithm sIBE.Enc(PP, id,m) takes as input public parameters PP , an identity
id ∈ Znq , and a message m← Znt . It first computes Fid = [A0|A1 +H(id)B], then it computes
c = bFt

idmep. Finally it outputs c.

– Decryption. Algorithm sIBE.Dec(PP, id, skid, c) takes as input public parameter PP , an iden-
tity id, a secret key skid and a ciphertext c ∈ Z2m

p . It first computes m← Invert(c,Fid, skid).
Then, if m ∈ Znt it outputs m, and otherwise it outputs ⊥ .

A.1 Correctness and Parameters

For the system to work correctly, we need to ensure that: (1) TrapGen can operate (i.e. m ≥ 6n lg q);
(2) Lemma 8 holds; (3) Lemma 7 holds; (4) σ is sufficiently large for SampleLeft and SampleRight.
To satisfy these requirements we set the parameters (q, p,m, n, σ) as follows:

n = λ, q = the prime nearest to 2n
δ
, m = d6n1+δe, σ = 6n1.5+δ, p = d3n3.5+3δe,

7 I.e., H maps Znq to Zn×nq , and for id 6= id′, H(id)−H(id′) is full-rank.
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where δ is constant between 0 and 1. According to Lemma 7 and Theorem 3 which we will give a
proof in Appendix B. We obtain a selectively secure deterministic identity-based encryption scheme

whose security is based on the LWEq,d,m,α, where d , k lg t−ω(lg λ)
lg q , and 1/α = 2n

δ′
(0 < δ′ < δ).

Given the state of art algorithms, this problem is sub-exponentially hard. Furthermore, we can
choose k lg t to be sub-linear. Therefore, our auxiliary inputs are sub-exponentially hard to invert.

The public key size, private key size, ciphertext size and ciphertext expansion factor in our
scheme are O(3n2+2δ), O(n3+3δ), O(2n1+δ lg n), and O(nδ lg n/ lg t) respectively. To optimize the
ciphertext expansion factor, we can choose t = n, which makes the ciphertext expansion factor to
be O(nδ).

B Security of D-sIBE

Theorem 3. For any k > (lg q + ω(lg λ))/ lg t, t = ploy(λ) ≤ q. The D-sIBE scheme is PRIV1-
sID-INDr-secure with respect to 2−k lg t-hard-to-invert auxiliary inputs. If Lemma 7 holds, where
1/β ≥ m2 · p · nω(1), q = nω(1), and p = poly(λ).

Proof. For any distribution M over Znt , let F = {f} be 2−k lg t-hard-to-invert with respect to dis-
tributionM. To prove this theorem, we define a series of games, and give a reduction from Lemma
7 with respect to distribution M.

Game G0 This game is the original PRIV1-sID-INDr game with adversary A. By Xi, we denote
the event b = b′ in Game Gi. By definition, |Pr[X0]− 1/2| = AdvPRIV 1-sID-INDr

D-sIBE,A,F (λ).

Game G1 In this game, the challenger changes the ways to generate A0,A1,B and answer queries.
The challenger chooses A0 uniformly from Zn×mq , and generate (B,TB) ← TrapGen(q, n,m). Let
R← {−1, 1}m×m, and let A1 = A0R−H(id∗)B. Since A0 is uniformly random, then by Lemma
2, (A0,A0R) is statistically close to unform in Zn×mq × Zmq , and so is (A0,A0R −H(id∗)B). Be-
cause B is statistically close to uniform according to Lemma 4, the public parameters in game
G0 and G1 are statistically close. When A queries on id 6= id∗, the challenger computes Fid =
[A0|A0R+ (H(id)−H(id∗))B], where H(id)−H(id∗) is full rank for id 6= id∗. The challenger uses
SampleRight to generate TFid ← SampleRight(A0,R,B,TB, σ). For sufficiently large σ the distri-
bution of TFid is statistically close in game G0 and G1. It follows that |Pr[X1]−Pr[X0]| ≤ negl(λ)
for any unbounded adversary A.

Game G2 This game is identical to game G1, except the way to generate challenge ciphertext.
The challenger samples m ← M, and samples e ← DmZ,βq. Let b = At

0m + e mod q. It sets

ĉ = [bt|btR]t. The challenger sets c∗0 = bĉep, c∗1 as in the game G1, i.e. chosen at random in Z2m
p .

It outputs (c∗b , f(m)) to A, but with one exception: we define a “bad event” Bad2 to be

Bad2 , bĉ + [−B,B]2mep 6= {bĉep},

where B = βq
√
nm. If Bad2 occurs on any of ĉ, the challenger immediately abort the game.

Since Rtb = (A0R)tm + Rte, and R ∈ {−1, 1}m×m, we have ‖Rte‖∞ ≤ βq
√
nm with over-

whelming probability, since e← DmZ,βq and according to Lemma 1. If Bad2 does not occur for some
ĉ, then we have

bĉep =

[
bAt

0m + eep
b(A0R)tm + Rteep

]
=

[
bAt

0mep
b(A0R)tmep

]
= bFt

id∗mep.
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It immediately follows that for any adversary A

|Pr[X2]− Pr[X1]| ≤ Pr[Bad2] + negl(λ).

We do not directly bound the probability of Bad2 occurring in game G2, instead deferring it to the
analysis of the next game, where we can show that it is indeed negligible.

Game G3 In this game the challenger chooses b ∈ Zmq uniformly at random, and samples
m←M. To generate the challenge ciphertext, it sets ĉ = [bt|btR]t. The challenger sets c∗0 = bĉep
and outputs (c∗b , f(m)) to A, subject to the same “bad event” Bad3 and abort condition as described
in the game G2 above. Under Lemma 7 and by the fact “bad event” can be tested efficiently given
b, this implies that |Pr[X3]−Pr[X2]| ≤ negl(λ) for any efficient attacker A. For the same reason, it
also follows that

∣∣Pr[Bad2]−Pr[Bad3]
∣∣ ≤ negl(λ). Let us consider the pair (bt,btR), where b ∈ Zmq

is uniformly random, R ← {−1, 1}m×m. From Lemma 2 (when n = 1), we have that (bt,btR) is
statistically close to U(Z2m

q ). This means that ĉ is statistically close to U(Z2m
q ), therefore for each

uniform ĉ, Pr[Bad3] ≤ 2m(2B + 1)p/q = negl(λ), by assumption on q and β. It follows that

Pr[Bad2] ≤ negl(λ) ⇒ |Pr[X2]− Pr[X1]| ≤ negl(λ).

Game G4 This game is similar to game G3, with b ∈ Zmq being chosen uniformly at random,
m being sampled from M, and Bad4 being defined similarly. However, in this game the challenger
always returns (c∗b , f(m)) to A, even when Bad4 occurs. By the analysis above, we have that for
any adversary A,

|Pr[X4]− Pr[X3]| ≤ Pr[Bad4] = Pr[Bad3] ≤ negl(λ).

According to the analysis in Game3, we know ĉ is uniformly random, up to negligible statistical
distance. Since f(m) is independent of ĉ and the statistical distance between U(Z2m

p ) and bU(Z2m
q )ep

is at most 2mp/q = negl(λ) by assumption on q, so we have |Pr[X4]−1/2| ≤ negl(λ) for any efficient
adversary A.

Finally, by the triangle inequality, we have AdvPRIV 1-sID-INDr
D-sIBE,A,F (λ) ≤ negl(λ) for any efficient

adversary A, which completes the proof. ut
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