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Abstract

In this paper we discuss a deterministic regularization algorithm to handle the missing cone
problem of three-dimensional optical diffraction tomography (ODT). The missing cone problem
arises in most practical applications of ODT and is responsible for elongation of the reconstructed
shape and underestimation of the value of the refractive index. By applying positivity and
piecewise-smoothness constraints in an iterative reconstruction framework, we effectively
suppress the missing cone artifact and recover sharp edges rounded out by the missing cone, and
we significantly improve the accuracy of the predictions of the refractive index. We also show the
noise handling capability of our algorithm in the reconstruction process.

1. INTRODUCTION

Diffraction tomography is an inverse scattering technique used to reconstruct a three
dimensional object from a series of two dimensional measurements of the scattering field.
The principle of diffraction tomography was proposed by Wolf in 1969 [1]. Based on the
first Born approximation, he suggested a way to map 2-D scattering fields onto a 3-D
frequency spectrum of the scattering potential. The Fourier diffraction theorem was later
extended by Devaney [2] to adopt the first Rytov approximation. Recently, we have applied
Fourier mapping based on the first Rytov approximation to the imaging of live biological
samples [3]. This Fourier mapping is conceptually straightforward and fast, but the mapping
of the 2-D scattering field onto 3-D rectangular coordinates requires an interpolation and
induces an artifact. The filtered back-propagation method [4] resolves this problem, and is
known to provide a better quality [5]. However, the filtered back-propagation is valid only
within the Born approximation, and its 3-D application is quite involved. On the other hand,
iterative reconstruction can overcome these limitations by iteratively updating a trial
solution based on a scattering model and a priori knowledge about a sample. Iterative
reconstruction has been applied to projection tomography that neglects diffraction effects
[6–8] and then to diffraction tomography [9, 10] which Zunino et al. used to find the
magnetization distribution in a buried layer from measurements of magnetic field at the
surface [9]. Bronstein et al. applied it to suppress noise in broad-band ultrasound
tomography [10]. For the optical regime, Belkebir and Sentenac presented an iterative
method to retrieve the map of permittivity in transmission and total internal reflection
microscopy [11], and Maire et al. applied the theory to highly scattering samples in a
reflection configuration [12]. Belkebir et al. presented a full-vectorial nonlinear inversion
scheme to retrieve the 3-D map of permittivity in total internal reflection microscopy [13].
The main benefits of iterative reconstruction come from the regularizing effect of the
iterative process and the capability of incorporating various pieces of information about a
sample such as maximum energy, piecewise smoothness, etc.
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In this paper, we apply iterative reconstruction to 3-D optical diffraction tomography (ODT)
and focus on the recovery of the missing cone. The missing cone originates from incomplete
angular coverage of the incident beam and arises in most practical applications of diffraction
tomography. The missing cone leads to elongation of the reconstructed shape along the
optical axis and to underestimation of the refractive index [2]. It is worthwhile to note that
rotating-sample tomography also suffers from the missing cone problem when the sample is
rotated around one axis [14]. Iterative reconstruction without additional constraints has been
called ART (algebraic reconstruction technique). Ladas and Devaney [15] showed that ART
is capable of reconstructing a sample from a limited amount of data only insofar as the data
are noise-free [5]. A recent overview of optical diffraction tomography principles can be
found in Haeberlé et al [16].

2. ITERATIVE RECONSTRUCTION OF OPTICAL DIFFRACTION

TOMOGRAPHY

In the real experiment, a collimated laser beam is delivered to the sample plane using a
telescopic system, and the incident beam onto a sample can be approximated to a plane
wave since only a small region near the center of the wave front is used [3, 17]. The
interaction of the plane wave with a weakly scattering sample can be reasonably well
described by the scalar theory [18]. A three dimensional object can be represented by the
scattering potential [1],

(1)

where k = 2π/λ, λ is the wavelength of the incident beam in the medium, n(r)⃗ is the
complex refractive index, and n0 is the refractive index of the medium.

Under the first Born approximation, the measured field u(r)⃗ and the scattering potential f(r⃗)
have the following relationship:

(2)

in which uin(r)⃗ is the incident field, and G(r)⃗ = exp(ik|r|⃗)/|r|⃗ is the Green’s function for the
Helmholtz operator.

Under the first Rytov approximation [2],

(3)

As with other inverse scattering problems, optical diffraction tomography can be considered
as a problem of minimizing the following functional:

(4)

in which Φμ(f;g) is the cost functional, α is a regularization parameter, J(f) is the penalty
functional, f is the objective function to be reconstructed. An is the nth diffractive projection
of f onto the plane z=0, and it provides 2-D scattering field of a 3-D object for the incident
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angle (uin(θn), vin(θn), win(θn)). gn is the measured scattering field, u(r⃗)/uin(r)⃗)−1 in the first
Born approximation, or gn is ln(u(r)⃗/uin(r)⃗ in the first Rytov approximation.

There are several methods for choosing the regularization parameter α [19]. In our
simulation, we have used α = 10−5, and it produced good results for various samples of
different values of the refractive index (1.35 – 1.37). Equation (4) is minimized by the
function fμ that can be found by the following iteration [20]:

(5)

in which τ is the relaxation parameter, and An
† is the adjoint operator defined below.

The exact form of the penalty functional is determined by the kind of constraint used for the
regularization. For example, the penalty functional for the Tikhonov regularization J(f) =1/2
∫ |f|2 dV penalizes the energy of the objective function so that the optimized solution
possesses minimal energy of noise [21]. Alternatively, the functional that penalizes the
gradient of the objective function may be used to smooth out the noise while preserving the
sharp edge. The so-called edge preserving regularization corresponds to using the piecewise
smoothness constraint. Charbonnier et al. suggested criteria for the form of the penalty
functional that will define an edge preserving regularization with guaranteed convergence to
a solution [22]. Equation (6) shows an example satisfying those criteria; it will be used in
this paper.

(6)

in which f is the objective function, dV is the volume element in space, , and β
is an arbitrary, small number that prevents ψ′(t) from having a singular value at t=0.

In this paper the piecewise smoothness constraint is used together with the positivity
constraint in a deterministic framework. In Gibb’s ringing, a sharp edge reconstructed from
a spectrum of finite bandwidth displays an undershoot below the background amplitude.
Similarly, the refractive index profile reconstructed from a finite bandwidth spectrum
contains negative regions with the refractive index below that of the medium. Since the
refractive index is proportional to the concentration of dry mass, the medium is assumed to
have the smallest refractive index [23]. Hence, using this prior knowledge we can force
those negative regions to have the same refractive index as the medium, and in this way we
can introduce new information that may improve the overall image quality. We already
showed the positivity constraint together with the Fourier mapping are capable of recovering
the missing cone to some extent [3]. This use of the positivity constraint to retrieve out-of-
band information is also known as the Gerchberg-Papoulis algorithm [24, 25]. Our interest
here is to further improve the image by combining the piecewise smoothness constraint with
the others in an iterative reconstruction framework. This edge preserving technique has been
used for 2-D microwave tomography in the Bayesian framework [26]. In Assayo et al., a
priori knowledge that a sample consists of a finite number of homogeneous regions has been
incorporated by means of the Gauss–Markov–Potts model in the Bayesian framework [27].
However, in many applications, computation time is critical, so the deterministic strategy is
preferable [22].

One can use the projection operator to incorporate the positivity constraint into the iterative
reconstruction as follows:
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(7)

in which DΩ is the band-limiting operator preserving only the components inside the
frequency band Ω, D̄Ω is a complementary operator to DΩ preserving only components
outside of the band, Ω is the frequency support of the measured spectrum, and P+ is the
projection operator for the positivity constraint which is defined as P+fμ = fμ if fμ > 0, and 0
otherwise.

Using the Fourier diffraction theorem derived by Wolf, we define the forward operator for
the 3-D optical diffraction tomography as follows:

(8)

in which f ̃is the Fourier transform of f, , W = w −

win(θn), and .

For the adjoint operator An
†, we define inner products as in Ladas & Devaney [28]:

(9)

in which X, Y are the Hilbert spaces of square integrable functions defined on  and ,
respectively. Then, the adjoint operator An

† satisfies the following relationship:

(10)

which can be calculated by

(11)

Finally, the composite operator in Eq. (5) may be simplified as follows:

(12)

Figure 1 summarizes the iterative reconstruction process described in this section. Once f(k)

is calculated, we apply Eq. (7) to get f′(k) and calculate Eqs. (11) and (12) with f′(k).

3. EDGE PRESERVING REGULARIZATION FOR THE NOISE REDUCTION

For the numerical simulation, we generate scattering fields by using the forward operator
that is valid within the first Rytov approximation. As a sample we used a 3-D Shepp-Logan
phantom [29] modified to have the real refractive index of usual biological samples (1.35 –
1.37) with negligible absorption. Fig. 2(a)–(b) shows the schematic of the set-up for the
numerical simulation. In Fig. 2(a), z is the optical axis, and the thick, purple line represents
the wave vector of the incident beam. Fig. 2(b) is the center cross-section of the 3-D
phantom, and the color represents the refractive index value. Fig. 2(c)–(e) show scattering
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fields from the modified 3-D Shepp-Logan phantom for various illumination angles. The
measurement plane is the center of the object, more exactly it is the image plane conjugated
to the center of the object. For the reconstruction of the tomogram, 200 phase images were
used for incident angles varying from 0° to 60° with respect to the optical axis. The
numerical aperture for the detection is 60°, the same as for the illumination. Since the index
of refraction of the phantom is real, the phase delay induced in the scattering field contains
information about the sample.

Now we introduce into the scattering fields some noise, the physical origin of which can be
speckle, dust in the beam path, phase unwrapping error, etc. For example, Fig. 3(a) shows
the same cross-section as Fig. 2(c) after being corrupted by Gaussian noise adjusted to have
a noise level of the same order of magnitude as the signal. From the corrupted scattering
fields, we try to reconstruct the original 3-D phantom first by the Fourier mapping and then
by the iterative reconstruction with the edge preserving regularization. Fig. 3(b)–(c) show
the center cross-section of the reconstructed 3-D refractive index map. In the Fourier
mapping process, there can be an overlap in the frequency domain since the data are
collected from various illumination angles. In such a case, we take the average, which helps
to suppress the noise to some extent. For example, in Fig. 3(b) the boundary of internal
structures is visible. This visibility is surprising considering the noise level in the scattering
fields as in Fig. 3(a). Fig. 3(c) is the same cross-section as Fig. 3(b), but after the iterative
reconstruction using the edge preserving regularization defined in Eq. (5). As the figure
clearly shows, most of the noise in the scattering fields is suppressed, while the boundaries
of the internal structure stay sharp. The noise handling capability of the edge preserving
regularization was demonstrated by Bronstein et al. [10] in the 2-D diffracting field under
the first Born approximation. However, here we show the edge preserving regularization can
restore the absolute value of the 3-D refractive index, even when the scattering fields are
corrupted by the same level of phase noise as the signal. In addition, our result is based on
the first Rytov approximation, which is more appropriate for the optical imaging of
biological samples [3].

4. MISSING CONE PROBLEM OF OPTICAL DIFFRACTION TOMOGRAPHY

In the coherent imaging of a 3-D object, only the limited information of a sample can pass
through an optical system because of the Bragg condition and the finite numerical aperture.
This is the reason we need to take several measurements at different illumination angles
with respect to a sample. To make such measurements we could rotate a sample with the
illumination beam fixed [14], or we could rotate the illumination beam with the sample fixed
on a stage [3, 17]. For reconstruction, the former is more straightforward, but it is very
difficult to rotate a sample in an accurately controlled manner, especially with the resultant
perturbation to the sample. On the other hand, rotating the incident beam minimally perturbs
a sample, and hence is more suitable for the high resolution imaging of a live biological
sample. Murdy et al. showed that the axial resolution of a tomographic microscopy can be
drastically improved by mounting the sample on a perfect mirror [30]. However, the
isotropic resolution can be achieved only with complete angular coverage from −90° to 90°
with respect to the optical axis. Such coverage is hard to achieve in most practical
applications.

To analyze the imaging characteristics of ‘rotating-beam’ optical diffraction tomography, we
examine the transfer function. Figs. 4(a) and (b) show the transfer functions for 2-D and 3-D
optical diffraction tomography, respectively. Fig. 4(a) may be considered as the U-W cross
section of the 3-D transfer function shown in Fig. 4(b). In this case the arcs in Fig. 4(a)
represent the cross-sections of the Ewald sphere, the hemispherical surface, with the U-W
plane in Fig. 4(b) for various illumination angles. It is important to note there exists a region
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that is not covered by the transfer function even with the maximum angular coverage of the
incident beam, from −90° to 90° with respect to the optical axis. A similar missing cone
occurs in ‘rotating-sample’ tomography when a sample is rotated with respect to one axis.

Figs. 4(c) and (d) show how the missing cone affects the reconstruction of a homogeneous,
spherical bead. In this simulation, the scattering field was generated by the same method as
used in the 3-D Shepp-Logan phantom case, and the Fourier mapping was used for the
reconstruction. The angular coverage is from −60° to 60°, which is about the maximum
practically achieved with the high NA (1.4) oil immersion lens. Fig. 4(c) is the cross-section
of the reconstructed bead within the plane containing the optical axis, and Fig. 4(d) is the
refractive index profile along the optical axis. As expected from Gibbs ringing, the missing
cone is responsible for the elongation of the reconstructed object along the optical axis
direction. In addition, the refractive index of the bead is underestimated correspondingly.

The next section will show how in the iterative reconstruction framework additional
constraints suppress these artifacts and improve the accuracy of the prediction of the
refractive index. More specifically, we will use both the positivity constraint and the
piecewise smoothness constraint for the reconstruction of several samples. It is important to
note that these constraints can be used for any kind of sample without additional
measurement.

5. RECOVERY OF MISSING CONE REGION

In this section, we apply the edge-preserving regularization to 3-D optical diffraction
tomography, and show how it recovers the sharp edge smoothed by the missing cone and
improves the accuracy of the prediction of the refractive index. Delaney & Bresler applied
edge-preserving regularization to the missing cone problem of projection tomography for the
case of a non-diffracting source [7]. They showed the edge-preserving regularization can
recover edges that were smoothed out by the missing cone. For projection tomography, the
reconstruction uses the inverse Radon transform, which assumes the incident field
propagates rectilinearly within the sample [31]. This assumption is not valid in optical
imaging of a biological sample because small organelles within the sample diffract the
transmitted light. Therefore, projection tomography cannot be used for high-resolution,
optical imaging of 3-D biological samples. For the case of the recovery of the sharp edge,
we look at the refractive index profile along the optical axis. The index profile in the
transverse direction is not affected by the missing cone, and it is sharp with two times better
resolution than the diffraction limit [3]. For a more precise prediction of the refractive index,
we introduce the refractive index histogram shown in Fig. 5(b). An ideal reconstruction of a
homogeneous sample will provide a delta-function like peak, so the width of the broadened
peak can be used to estimate the accuracy of the prediction.

Let us consider as a sample a spherical bead with a homogeneous refractive index of 1.37,
the same as in the previous section. Fig. 5(a) shows profiles of the refractive index along the
optical axis after reconstruction by various methods. As observed before, for angular
coverage from −60° to 60° the Fourier mapping provides an edge smoothed out
approximately over the radius of the bead. The positivity constraint helps to recover the
edge, but it induces a strong oscillation of the profile at the center of the bead. On the other
hand, the iterative reconstruction together with the positivity and the piecewise smoothness
constraint provide a sharp edge with noticeable reduction in the oscillation of the profile.
Fig. 5(b) shows more dramatically how the missing cone artifact is reduced by additional
constraints. In case of the Fourier mapping, the peak of the index histogram is formed near
1.367, an underestimate of the refractive index by 0.003. Because the refractive index of a
biological sample usually differs from the culture medium by less than 0.03, this
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underestimate can be a significant error. The positivity constraint helps to increase the mean
value almost to the original one, but the width of the peak, which is about 0.005, indicates
the index prediction across the volume is still not accurate enough. However, iterative
reconstruction, using the positivity and the piecewise smoothness constraints, provides a
sharp peak centered at 1.37 with width less than 0.001. This result suggests that we can
obtain a 3-D refractive index map with an accuracy of less than 0.001 using practically
attainable angular coverage from −60° to 60°.

The missing cone artifact becomes more serious when a sample is squashed in the optical
axis direction as in Fig. 6(a). As a result, the flattened sample has an elongated spectrum in
the W direction as in Fig. 6(b), in which W is the spatial frequency corresponding to the
optical axis, Z. The frequency support of the transfer function is fixed for a given angular
coverage, while the elongated spectrum has more information missing.

Fig. 7 shows refractive index profiles along the optical axis and corresponding index
histograms of the squashed bead after reconstruction using various methods. As shown in
Fig. 7(a), the edge of the squashed bead is smoothed out more broadly than the spherical
bead, and the index histogram in Fig. 7(b) has a peak near 1.359 corresponding to an
underestimate of 0.011. Interestingly, the index histogram has another peak near 1.34, which
is an artifact caused by the missing cone. As for the spherical bead, the positivity constraint
helps to recover the edge of the squashed bead. However, the index histogram predicts the
refractive index of the squashed bead with 0.003 overestimate. In contrast, the iterative
reconstruction used with the positivity and the piecewise smoothness constraints restores the
edge more sharply, and predicts the refractive index within 0.001 accuracy.

It is important to note that the positivity constraint is given to the negative region mainly
formed outside of a sample, while the piecewise smoothness constraint is given to the
overall region. For this reason the smoothness constraint may be more effective than the
positivity constraint in a non-homogeneous sample containing various internal structures.
Consider a sample consisting of two regions of different refractive index as in Fig. 8. This
configuration may be thought of as a simplified model of a biological cell with the inner part
representing the nucleus.

Fig. 9 shows refractive index profiles along the optical axis and corresponding index
histograms for the sample shown above. From the Fourier mapping, the reconstructed
sample has two boundaries, both of which are smoothed out by the missing cone, and the
index histogram shows a similar underestimation of the refractive index for both regions. In
case of the Fourier mapping with the positivity constraint, the outer boundary is restored,
while the inner boundary shows considerable deviation from the original one. From the
index histogram, the refractive index of the outer region is increased to near 1.37 although
with some broadened profile. However, the peak for the inner region is not clear, but
vaguely indicates a value somewhere below 1.36. In contrast, the iterative reconstruction
together with the positivity and the piecewise smoothness constraints restores the inner
boundary as sharply as the outer one. What is more important, the index histogram indicates
the refractive index for both regions is predicted within 0.001 accuracy. Since a biological
sample consists of various organelles with different refractive indices, the piecewise
smoothness constraint would be critical for the accurate prediction of the refractive index of
internal organelles.

6. CONCLUDING REMARKS

In this paper, we have applied the deterministic regularization algorithm to 3-D optical
diffraction tomography. By using constraints of piecewise smoothness and positivity as prior
information, we are able to suppress both the missing cone artifact and noise. Using a
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practically attainable angular coverage from −60° to 60°, we are able to predict the
refractive index to an accuracy within 0.001 irrespective of the shape of the sample. Using a
simple model of a biological cell, we showed that the refractive index of internal organelles
can be predicted with the same accuracy. Note that the regularization does not completely
remove the ill-posedness of an inverse problem, but only helps to alleviate it. There is no
doubt that more a priori information about a sample will generate more credible data in the
region where no direct measurement is available. This algorithm will not work well with
features that have gradual change in refractive index. For accurate imaging of such a sample,
it needs to be rotated with respect to two axes which are orthogonal to the optical axis and to
each other.
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Figure 1.
Flow chart for iterative reconstruction of optical diffraction tomography.
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Figure 2.
Modified 3-D Shepp-Logan phantom and its scattering fields calculated for various
illumination angles: (a) 3-D rendered phantom with the wave vector of the incident wave
shown as a thick, purple line, (b) center cross-section of the phantom refractive index, (c)–
(e) scattered fields calculated for the incident angle of (c) αx = 90°, αy = 90°, (d) αx = 90°,
αy = 49.5°, (e) αx = 51.5°, αy = 78.3°. Color bar for (c)–(e) indicates the phase delay in
radian after the phase unwrapping. Scale bar for (b), 2 μm; scale bar for (c), 5 μm.
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Figure 3.
(a) An example of a scattering field corrupted with additive noise, (b) horizontal cross-
section of the reconstructed 3-D image using direct mapping by the Fourier diffraction
theorem, (c) horizontal cross-section of the reconstructed 3-D image by the iterative
reconstruction with the edge preserving penalty. Scale bar, 2 μm.
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Figure 4.
(a) Transfer function of 2-D diffraction tomography and (b) 3-D diffraction tomography, (c)
vertical cross-section of the reconstructed refractive index map using the Fourier mapping,
(d) index profile of (c) along the dotted line. The sample used for the simulation is a
homogeneous, spherical bead with the refractive index 1.37. (U,V,W) are the spatial
frequency components corresponding to the spatial coordinates (X,Y,Z). Scale bar for (c), 5
μm.
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Figure 5.
Simulation with a spherical bead: (a) comparison of index profile along the optical axis, (b)
histogram of the 3-D refractive index map, which was reconstructed by various methods.
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Figure 6.
(a) A spherical bead squashed in the optical axis direction with the aspect ratio of 2 to 1, (b)
spatial frequency spectrum of (a), in which the frequency support of the transfer function for
the angular coverage from −60° to 60° is drawn as a dotted line. The color bar indicates the
amplitude of the spectrum in the logarithmic scale with base 10.
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Figure 7.
Simulation with a squashed bead in Fig. 6(a): (a) comparison of index profiles along the
optical axis, (b) histograms of the 3-D refractive index map reconstructed by various
methods.
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Figure 8.
A non-homogeneous sample consisting of two regions of different refractive index. The
numbers in the figure are the values of the refractive index.
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Figure 9.
Simulation with a non-homogeneous sample representing a biological cell: (a) comparison
of index profiles along the optical axis, (b) histograms of the 3-D refractive index map
reconstructed by various methods.
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