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Compressive sensing is a sampling method which provides a new approach to e�cient signal compression and recovery by
exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns
in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied,
only a few deterministic sensing matrices have been considered. �ese matrices are highly desirable on structure which allows
fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive
sensing is presented.We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices.
Some recent results on construction of the deterministic sensing matrices are discussed.

1. Introduction

Consider a scenario that x ∈ R
� is a vector wewish to recover.

Let y ∈ R
� (� ≪ �) be a linearmeasurements of the vector x,

which is given by

y = Ax, (1)

where A is the measurement matrix or sensing matrix.
Because this system is underdetermined, the recovery prob-
lem of the vector x from the measurement vector y is an
ill-posed problem. However, two papers by Donoho [1] and
Candès et al. [2] gave us a breakthrough by exploiting sparsity
in recovery problems. �e authors show that a sparse signal
can be reconstructed from very fewmeasurements by solving
via �0-minimization

min
z∈R�

‖z‖0 subject to Az = y, (P0)
�1-minimization

min
z∈R�

‖z‖1 subject to Az = y, (P1)
or adopting a strategy between (P0) and (P1)

min
z∈R�

‖z‖� subject to Az = y. (P�)

�e su�cient conditions for having the solution of (P0) to
coincide with that of (P1) are dependent on either mutual
coherence or Restricted Isometry Property (RIP).�ese con-
ditions are closely related to each other and play an important
role in the construction of sensing matrices. Consider A =[a1 ⋅ ⋅ ⋅ a�] is an � × � sensing matrix we investigate. �en its
mutual coherence is de�ned as


 (A) = max

�����⟨a�, a�⟩���������a�����2�����a������2 , �, � = 1, . . . , �. (2)

Lemma 1 (see [3]). For an � × � sensing matrix A, the Welch
bound is given by

√ � − �� (� − 1) ≤ 
 (A) ≤ 1. (3)

�e existence and uniqueness of the solution can be
guaranteed as soon as the measurement matrixA satis�es the
RIP of order �; that is,

(1 − ��) ‖z‖22 ≤ ‖Az‖22 ≤ (1 + ��) ‖z‖22, where ‖z‖0 ≤ �.
(4)
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�e smallest value of �� is called the Restricted IsometryCon-
stant (RIC). A strict condition �2	 < 1 also guarantees exact
solution via �0-minimization. However, the problem (P0)
remains NP-hard; that is, it cannot be solved in practice. For0 < � ≤ 1, there is no numerical scheme to compute solutions
with minimal ��-norm as well. Furthermore, the problem(P1) is a convex optimization problem, and in fact, it can be
formulated as a linear optimization problem.�en solving via�1-minimization is e�cient with high probability. Hence,
most researchers are interested in the recovery via �1-mini-
mization.

�ere are two common ways to solve these problems.
First, we can exactly recover x via �1-minimization by solving
the problem (P1) or (P1,
) which is given as

min
z∈R�

‖z‖1 subject to
����Az − y

����2 ≤ �. (P1,
)
�e second method is using greedy algorithms for �0-
minimization, such as Matching Pursuit (MP), Orthogonal
Matching Pursuit (OMP), or their modi�cations [4–8].

However, in order to ensure unique and stable recon-
struction, the sensing matrix A must satisfy some criteria.
One of the well-known criteria is 2�-RIP. More attention has
been paid to random sensing matrices generated by identi-
cal and independent distributions (i.i.d.) such as Gaussian,
Bernoulli, and random Fourier ensembles, to name a few.
�eir applications have been shown in medical images pro-
cessing [9], geophysical data analysis [10], communications
[11, 12], and other various signal processing problems. Even
though random sensing matrices ensure high probability in
reconstruction, they also havemany drawbacks such as exces-
sive complexity in reconstruction, signi�cant space require-
ment for storage, and no e�cient algorithm to verify whether
a sensing matrix satis�es RIP property with small RIC
value. Hence, exploiting speci�c structures of deterministic
sensing matrices is required to solve these problems of the
random sensing matrices.

Recently, several deterministic sensing matrices have
been proposed. We can classify them into two categories.
First are thosematriceswhich are based on coherence [13–15].
Second are those matrices which are based on RIP or some
weaker RIPs [16–20]. In this paper, we introduce some
highlighted results such as deterministic construction of
sensingmatrices via algebraic curves over �nite �elds in term
of coherence and chirp sensingmatrices, second-order Reed-
Muller codes, binary Bose-Chaudhuri-Hocquenghem (BCH)
codes, and the sensing matrices with statistical RIP in terms
of the RIP.

�e rest of this paper is organized as follows. Section 2
introduces some random sensingmatrices and their practical
disadvantages. In Section 3, we present some highlighted
results in terms of deterministic constructions. Section 4
concludes this paper.

2. Random Sensing Matrices and
Their Drawbacks

Recall that x ∈ R
� is the vector we want to recover. Because

the number of measurements is much smaller than its

dimension (� ≪ �), we cannot �nd a linear identity recon-
struction map; that is, unique solution does not exist for all
x in R

�. However, if we assume that the signal x belongs to a
certain subset Σ� ⊂ R

� which is the set of all �-sparse vectors
as

Σ� (x) = {x ∈ R
� : �� = 0, � ∉ �} (5)

for each index set � ⊆ {1, . . . , �}, the �-best approximation is
given by

"�(x)� = inf {‖x − z‖�, ‖z‖0 ≤ �} , (6)

where ‖ ⋅ ‖� can be any norm inR�. Aswe noted above, the use
of randomly generated sensingmatrices has becomepowerful
in compressive sensing. For an upper bound

� ≤ %�
log (�/�) , (7)

where % is a positive constant, the i.i.d. Gaussian matrix
achieves the �-RIP as well, which guarantees to recover sparse
signals with high probability [21, 22]. �e condition in (7) is
also known to hold for the symmetric Bernoulli distribution

case and changed to � ≤ %�/(log �)6 for the Fourier
measurements [23]. For noiseless recovery, it can be stated as
follows.

�eorem 2 (see [24]). If z ∈ R
� is a �-sparse vector and the

sensing matrix A satis�es

�� (A) + �2� (A) + �3� (A) < 1, (8)

then x is the unique minimizer to (P1).
In practice, the original signals may be a�ected by noise,

so the recovered signals are not exact, and rather they are
almost sparse instead. Hence, some modi�ed criteria were
proposed as follows.

�eorem 3 (see [25]). Suppose that x ∈ Σ� and the noise e =
Az − & satis�es ‖e‖2 ≤ �. If the sensing matrix A has RIP such
that

�3� (A) + 3�4� (A) < 2, (9)

then x∗ which is the output of the reconstruction algorithm
applied to x via (P1,
) will obey

����x∗ − x
����2 ≤ %�, (10)

where the constant % depends on sparsity �.
A new result on RIC was proposed by Candès as follows.

�eorem 4 (see [25]). Given x ∈ Σ�(x) and an upper bound
of noise ‖e‖2 = ‖Az − y‖2 ≤ �, if the sensing matrix A has RIP
such that

�2� < √2 − 1, (11)
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then any solution x∗ of (P1,
) obeys
����x∗ − x

����2 ≤ %1� + %2 "�(x)2√� , (12)

where %1 and %2 are two positive constants depending on
sparsity �.

Several inequalities in terms of RIC have been discovered,
such as �2� < 2/(3 + √2) in [26], �2� < 3/(4 + √6) in [27],
or �2� < 2/(2 + √5) in [28], to name a few. In sum, we can
obtain stable and unique solution by using tools from random
sensing matrices.

Random matrices are easy to construct and ensure high
probability reconstruction. However, they also have many
drawbacks. First, storing random matrices requires a lot of
storage. Second, there is no e�cient algorithm verifying RIP
condition. So far, it is not a good approach because of its lack
of e�ciency. �e recovery problems may be di�cult when
the dimension of the signal becomes large, and we have to
construct a measurement matrix that satis�es RIP with a
small ��, such as �eorem 4.

3. Deterministic Sensing Matrices

3.1. Chirp Sensing Matrices. A discrete chirp of length � has
the form

*�,
 = 1√� exp {27�� 8� + 27�� 9�2} , �, 8, 9 ∈ Z�, (13)

where 9 is the chirp rate and 8 is the base frequency. �e full

chirp sensing matrix A of size � × �2 can be written as

Achirp = [U�1 U�2 ⋅ ⋅ ⋅ U��] . (14)

Each matrix U�� (@ = 1, . . . , 8) is an � × � matrix with
columns given by the chirp signals having a �xed chirp rate 9�
with base frequency 8 varying from 0 to � − 1. For instance,
given � = 2 and 9,�, � ∈ {0, 1}, we obtain

U�1 = [1 11 B��] , U�2 = [ 1 1B�� B��+�2�] . (15)

Hence, we get the 2 × 4 deterministic sensing matrix A as

Achirp = [U�1 U�2] = [1 1 1 11 B�� B�� B��+�2�] . (16)

Note that when 9 = 91 = 0, the matrix U�1 corresponding to
chirp rate 91 becomes the Discrete Fourier Transform (DFT)
matrix.

Most of the sensing chirp matrices admit a fast recon-
struction algorithm which reduces the complexity toD(�� log�).
3.2. Second-Order Reed-Muller SensingMatrices. �esecond-
order Reed-Muller code is given as follows:

EP,b (a) = (−1)�(b)√2� �(2b+Pa)�a, (17)

where P is a F×F binary symmetric matrix, b is a F×1 binary
vector in Z

2
�, and G(b) is the weight of b, that is, number

of bit-1 entries. In practice, the matrices P are set as all-zero
matrices or the matrices with zero diagonals. �us, there are

only 2�(�−1)/2 matrices P satisfying this condition, which are{P1, . . . ,P2�(�−1)/2}, and the functions {EP,b(a)} are real valued.
�e set

FP = {EP,b | b ∈ Z
�
2} (18)

forms a basis of Z
�
2 . �e inner product on FP is de�ned as

follows. For any two vectors EP,b and EP� ,b� inFP,

⟨EP,b, EP� ,b�⟩ = {{{
1√2� 2� times,

0 2� − 2� times, (19)

where � = rank(P−P�).�e deterministic sensingmatrix has
the form

ARM = [UP1
UP2

⋅ ⋅ ⋅ UP2�(�−1)/2
]2�×2�(�+1)/2 , (20)

where UPi
is the unitary matrix corresponding to F�� (� =1, . . . , 2�(�−1)/2). Note that if we set � = 2� and � = 2�(�+1)/2,

we get an � × � sensing matrix ARM. For instance, let F = 2;
then

Z
2
2 = {[00] , [01] , [10] , [11]} . (21)

�ere are only 22(2−1)/2 = 2 binary symmetric matrices P of
size 2 × 2 satisfying the condition. �ese are

P1 = [0 00 0] , P2 = [0 11 0] . (22)

Hence, we get the deterministic sensing matrix A as

ARM = [UP1
UP2]

= [[[
[

1 −1 −1 1 1 −1 −1 11 1 −1 −1 1 1 −1 −11 −1 1 −1 1 −1 1 −11 1 1 1 −1 −1 −1 −1
]]]
]22×23

. (23)

Reconstruction algorithms using the second-order Reed-
Muller sensing matrices can outperform the standard com-
pressive sensing using randommatrices via �1-minimization,
especially when the original signal is not sparse and the noise
is present. Moreover, the nesting of the Delsarter-Goethals
sets of the Reed-Muller codes is still feasible if the dimension
of the original signal is large [17, 29].

3.3. Binary BCHMatrices. Denote � as a divisor of 2� − 1 for
some integer F ≥ 3, and X ∈ GF(2�) as a primitive �th root
of unity and assume that F is the smallest integer for which
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� divides 2� − 1. If we set Y = X(2�−1)/�, then Y has order �.
De�ne a codeC over GF(2�) by

H =
[[[[[[[[[[[
[

1 Y Y2 ⋅ ⋅ ⋅ Y(�−1)1 Y3 Y6 ⋅ ⋅ ⋅ Y3(�−1)
...

...
...

...
...1 Y2�−1 Y2(2�−1) ⋅ ⋅ ⋅ Y(�−1)(2�−1)

...
...

...
...

...1 Y2�−1 Y2(2�−1) ⋅ ⋅ ⋅ Y(�−1)(2�−1)

]]]]]]]]]]]
]�×�

. (24)

�e BCH codeC is de�ned by

C = {% ∈ F2� | Z ⋅ %† = 0} . (25)

In other words, if we denoteN as the null-space of the above
matrix of GF(2�), then the BCH codeC = N ∩ F2� .

An example of binary matrices formed by BCH code is
given as follows. Let � = 15, F = 4, and @ = 1, and let X be a

primitive element ofGF(24) = GF(16) satisfying X4+X+1 = 0.
�en Y = X(2�−1)/� = X(24−1)/15 = X. �e BCH code is the set
of 15 tuples that lie in the null space of the matrix

H = [1 Y Y2 ⋅ ⋅ ⋅ Y14] . (26)

Since

^ (�) = (�4 + � + 1) (�4 + �3 + �2 + � + 1)
= �8 + �7 + �6 + �4 + 1 (27)

satis�es ^(Y3) = 0, we have[1 0 0 0 1 0 1 1 1 0 0 0 0 0 0]� as a
codeword in the BCH code. �e binary matrix is obtained as
follows:

Abin

= [[
[
0 0 0 1 0 0 1 1 0 1 0 1 1 1 10 0 1 0 0 1 1 0 1 0 1 1 1 1 00 1 0 0 1 1 0 1 0 1 1 1 1 0 01 0 0 0 1 0 0 1 1 0 1 0 1 1 1

]]
]

.
(28)

Since BCH code is cyclic, we can describe it in terms of a
generator polynomial which is the smallest degree polyno-

mial having zeros Y, Y3, . . . , Y2�−1, . . . , Y2�−1. �e advantages
of these matrices are deterministic construction, simplicity
in sampling process, and reduced computational complexity
compared with the DeVoice’s binary sensing matrices. How-
ever, the generated matrices formed by BCH codes do not
acchieve the RIP constraint yet.

3.4. Sensing Matrices with Statistical Restricted Isometry Prop-
erty. In [18], the authors proposed some weaker Statistical
Restricted Isometry Properties (StRIPs) de�ned as follows.

De�nition 5 (StRIP). An � × � matrix * is called StRIP of
order � with constant � and probability 1 − � if

Pr (‖Ax‖2 − ‖x‖2) ≥ 1 − � (29)

with respect to a uniform distribution of vector x among all�-sparse vectors in R� of the same norm.

De�nition 6 (UStRIP). An � × � matrix * is called UStRIP
of order � with constant � and probability 1 − � if it satis�es
StRIP and

{z ∈ R
� : Az = Ax} = {x} (30)

with probability exceeding 1 − � with respect to a uniform
distribution of vector x among all �-sparse vectors in R� of
the same norm.

�ese constructions allow recovery methods for which
expected performance is sublinear in � and quadratic in�, compared to the superlinear in � of the BP or the MP
algorithms. �e criteria are simple; however, when satis�ed
by a deterministic sensing matrix, they guarantee successful
recovery in an exponentially small fraction of �-sparse sig-
nals. �e authors also showed that such sensing matrices sat-
isfying these aforementioned properties could be constructed
by chirps, second-order Reed-Muller codes, and BCH codes
[16–18].

3.5. Deterministic Construction of Sensing Matrices via Alge-
braic Curves over Finite Fields. In [14], DeVore used polyno-
mials over �nite �eld F� to construct binary sensing matrices

of size F2 × F�+1, where F is a primer number. Let {_0, _1,. . . , _�} be a subset of F�, and let �̀ be the set of all polynomials
of degree no more than 9 on F� as

�̀ = {a ∈ F� [x] : dega ≤ �} . (31)

�ere are � = F�+1 such polynomials. Any polynomial ` ∈ �̀
can be described as a mapping

` : F� b→ F�,
(�0, �1, . . . , ��) db→ ` (x) = _0�0 + _1�1 + ⋅ ⋅ ⋅ + _����.

(32)

�e set of (x, `(x)) is a subset of F�×F�. We order the element
of F� × F� as (0, 0), (0, 1), . . . , (F − 1, F − 1). For given F�, the

set F� × F� has � = F2 of order pairs. For each ` ∈ �̀, we
denote k� as the vector indexed on F� × F� which is de�ned
by

[ 0̀,0, . . . , 0̀,�−1, 1̀,0, . . . , 1̀,�−1, . . . , �̀−1,0, . . . , �̀−1,�−1]�,
(33)

where

�̀,� = {1, if ` (�) = �,0, otherwise
(34)

for �, � = 0, 1, . . . , F − 1.
�eorem7. LetA0 be the�×�matrices with columns v�,` ∈
�̀ with these columns ordered lexicographically with respect

to the coe
cients of the polynomial. �en the matrix A =(1/√F)A0 satis�es the RIP of order � < F/9+1with RIC value�� = (� − 1)9/F.
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�ere are several deterministic constructions of sensing
matrices via algebraic curves over �nite �elds called algebraic
geometry codes [30–33]. Goppa’s code is one of well-known
results which contain many linear codes with many good
parameters. Hence, these kinds of sensing matrices are good
candidates in reconstruction issues using compressive sens-
ing.

3.6. Binary Sensing Matrices Generated by Unbalanced
Expander Graphs. In [20], a large class of deterministic sen-
sing matrices based on unbalanced expander graphs, that is,
the combinatorial structures, was proposed. Denoting [�] ={1 ⋅ ⋅ ⋅ �}, these bipartite graphs are formalized through the
following de�nitions.

De�nition 8. A bipartite graph with � le� vertices, � right-
vertices, and le�-degree f is speci�ed by a function Γ : [�] ×[f] → [�], where Γ(�, &) denotes the &th neighbor of �. For
a set h ⊂ [i], we write Γ(h) to denote its set of neighbors{Γ(�, &) : � ∈ h, & ∈ [j]}.
De�nition 9. Abipartite graph Γ : [�]×[f] → [�] is a (k, *)
expander if for every set h ⊂ [�] of size �, we have |Γ(h)| ≥* ⋅ k.

�ey constructed a large class of binary and sparse
matrices satisfying a di�erent form of the RIP property called
RIP-F as

(1 − ��) ‖z‖�� ≤ ‖Az‖�� ≤ (1 + ��) ‖z‖��, where ‖z‖0 ≤ �.
(35)

If the sensing matrixA is an adjacency matrix of high-quality
unbalanced expander, then the RIP-F holds for 1 ≤ F ≤ 11 +D(1)/ log(�).
�eorem 10 (see [19]). Consider any � × � matrix A0 which
is the adjacency matrix of an (�, �) unbalanced expander l =(*, m, n), |*| = �, |m| = �with le� degree f, such that 1/� andf < �. �en the scaled matrix A = (1/√f)A0 satis�es the RIP
with RIC value � = %� for some positive constant % > 1.

�is approach utilizes sparse matrices interpreted as
adjacencymatrices of sparsity to recover an approximation to
the original signal. �e new property RIP-� su�ces to guar-
antee exact recovery algorithms.

4. Concluding Remarks

In this paper, various deterministic sensing matrices have
been investigated and presented in terms of coherence and
RIP. �e advantages of these matrices, in addition to their
deterministic constructions, are the simplicity in sampling
and recovery process as well as small storage requirement. It
can be possible to make further improvement in both recon-
struction e�ciency and accuracy using these deterministic
matrices in compressive sensing, particularly when some a
priori information on location of nonzero components is
available.
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