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ABSTRACT 

Uncertainties of computer results are of primary interest 
in applications such as high-level waste repository performance 
assessment In which experimental validation is not possible 
or practical. Because of the complex computational structure 
of large computer models, and because of the large number of 
input and data parameters associated with such models, to date 
almost all uncertainty analysis of computer results has been 
performed using a statistical approach. This paper presents a 
deterministic uncertainty analysis (DUA) method fo" calculating 
uncertainties that has the potential to significantly reduce 
the number of computer runs compared to conventional statistical 
analysis. The method is based upon the availability of deriva­
tive and sensitivity data such as that calculated using the 
well known direct or adjoint sensitivity analysis techniques. 
Formation of response surfaces using derivative data and the 
propagation of input probability distributions are discussed 
relative to their role in the DUA method. A sample problem 
that models the flow of water through a borehole is used as a 
basis to compare the cumulative distribution function of the 
Llow rate as calculated by the standard statistical methods and 
the DUA method. Prorogation of uncertainties by the DUA method 
is compared for ten cases in which the number of reference model 
runs was varied from one to ten. The DUA method gives a more 
accurate representation of the true cumulative distribution of 
the flow rate based upon as few as two model executions compared 
to fifty model executions using a statistical approach. 

ix 



I. INTRODUCTION 

The Office of Nuclear Waste Isolation (ONUI) is performing sensitivity 

and uncertainty studies as part of its performance assessment of a high-

level nuclear waste repository in salt. [1,2] The role of the sensitivity 

analysis is Co provide a means to limit the scope of the more complicated 

problem of quantifying uncertainties. Uncertainty analyses will be per­

formed Co support design reliability studies, to produce a cost-benefit 

analysis in conjunction with cost estimates, to insure compliance with 

regulatory criteria, and Co help identify important research and develop­

ment needs. 

For quantification of uncertainties in computer-generatea results, 

the problem can be expressed more precisely as the propagation of input 

uncertainties through models by the laws of probability to obtain output 

uncertainties. Uncertainties of computer results are of primary interest 

in applications such as repository performance assessment in which experi­

mental validation is not possible or practical. Because of the complicated 

nature of the computational structure of large computer models, and because 

of the large number of input and data parameters associated with such 

models, to date almost all uncertainty analysis of computer results has 

been performed using a statistical approach. The purpose of this work 

is to present an alternate deterministic approach that retains the char­

acteristics of analytically computing result uncertainties based upon 

parameter probability distributions. 
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II. BACKGROUND 

The analytical propagation of input uncertainties through a 

calculational model is unfeasible, if not impossible, for all but the 

most simple models. The difficulty lies in mapping probability density 

functions from a multidimensional space of input parameters to the one-

dimensional output distribution function. To circumvent this problem, 

the most common approach is to randomly sample the input distributions and 

then calculate the model output of interest, constructing a probability 

distribution of the output by rerunning the model for each sample set of 

input parameters. The input probability distributions and any parameter 

correlations are handled, in a statistical sense, in the sampling proce­

dure. [3,4] The information available from probability propagation is 

lost, but hopefully the sampling procedure will lead to an output distri­

bution that is representative of that which would result from the actual 

propagation of input probability distributions. As the number of sampling 

sets increases, the difference between the calculated and "true" output 

distribution diminishes. The problems occur in practice when the number 

of runs of the computer model needed to assure a large enough statistical 

sample becomes too expensive. 

Another approach is to discretize the input probabilities into 

histograms and evaluate the model output of interest for ell possibilities 

of parameter combinations to form a probability tree.[5] All parameter 

correlations are incorporated into the tree probability structure. This 

method does not rely on random sampling and probabilities are easily pro­

pagated in probability trees by simple multiplication. The histogram 

probability distributions are not actually propagated, but rather mean or 
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endpoint parameter values are used. This method is quite feasible for 

models with a small number of parameters or even for a large number of 

input parameters if the model is simple (inexpensive). Again the problem 

arises when the computer model has numerous input parameters and/or is 

expensive to run. 

A third approach is the response surface method in which the computer 

model is replaced with a simple analytical expression.[6] The expression 

is constructed by fitting the computed values of the model output "o the 

corresponding input parameters, or more generally, to chosen functions 

of the input parameters. The uncertainty in the computed value of the 

expression is then determined in the usual statistical sense by sampling 

of the input distributions. The advantage of replacing the model with 

the response surface is the drastically reduced computational time to 

compute the expression result compared to running the computer model. 

The disadvantage is the introduction of error in the calculated output 

by replacement of the model with a simple expression. 

This paper introduces a method for calculating the uncertainty in 

computer model results that is analytic (deterministic) *n principal and 

that is firmly based on the model equations. The method combines the 

characteristics of the response surface method and probability trees. 

Statistical sampling is not required and probabilities are propagated 

analytically within discretized numerical meshes that encompass the 

parameter space. This approach is referred to as the Deterministic 

Uncertainty Analysis (DUA) method. 
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III. DETERMINISTIC UNCERTAINTY ANALYSIS METHOD 

The approach underlying the deterministic calculation of uncertainties 

in the DUA method relies upon (1) a replacement of the computer model with 

an analytical function relating the responses of interest to the parameters 

of interest and (2) discretizing the parameter space and calculating the 

expected value of the response within each discrete parameter space "mesh." 

The parameters of interest are chosen to be those that are "uncertain," 

meaning that they have known or assumed probability distributions. The 

parameters of interest may often include the entire set of data used by the 

computer model. 

This deterministic approach differs from the response surface methods 

in two ways. First, the analytical function is constructed based upon 

the response value of interest as well as the partial derivatives of the 

response with respect to each of the parameters. The classical response 

surface method constructs the surface (analytical expression) based only 

upon the response value at each parameter space point. Thus the degrees 

of freedom with which to fit the response to the parameter values is much 

greater in the DUA method than in the response surface methods. There is 

of course no reason to distinguish the DUA method from response surface 

methods if the response surfaces are constructed using derivative data; but 

in the classical response surface methods these derivatives are assumed to 

be unavailable, most likely since the response surface methods grew out of 

experimental design fields in which only set pointr of the control vari­

ables (parameters in our terminology) and the experimental measured values 

(responses) are known. As the response surface methods became to be used 

for replacement of large, complex computer models, again the derivative 

information was not used because of the difficulty of calculating partial 
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derivatives chained through complex computational paths. However, the 

development of efficient methods for calculating derivatives and sensi­

tivities for large-scale computer model results has progressed steadly 

based upon a firm theoretical foundation.[7,8,9,10,11,12] Moreover, now 

new techniques for calculating derivatives within existing computer models 

based upon computer calculus are available.[13,14,15] For these reasons, 

the calculation of derivative information for the purpose of improving the 

formation of response surfaces is both practical and cost effective. This 

availability of derivative information is a key component in the DUA 

method. 

The second feature that distinguishes the DUA method from response 

surface methods, and a feature that it has in common with probability tree 

methods, is that the entire parameter space is spanned. In the response 

surface methods, the construction of response surf&c«s has been primarily 

used to dramatically increase the number of sampling points in a statisti­

cal determination of response probability distributions since the evalua­

tion of the analytical response surface expression is much less expensive 

to obtain than the corresponding computer model result. However, only by 

spanning the entire parameter space can probabilities be propagated, either 

through a computer model or through an analytical expression. Spanning the 

entire parameter space is practical only if the discretization of parameter 

probability distributions is performed over a reasonably large cesh. In 

probability tree methods, for example, the probability distributions are 

typically replaced with the high and low values of the distribution. The 

DUA method extends the probability tree methods into a more rigorous pro­

pagation of probabilities in two ways: (1) Since an analytical expression 

relates the response to the parameters, the expected value of the response 
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over each discretized mesh can be calculated analytically and thus gives 

a more meaningful value than just a single sampling point within the mesh. 

(2) Because the computer model is replaced with an analytical expression, 

a finer mesh size can be constructed over the parameter space and a more 

accurate representation of the parameter probability distributions of most 

interest can be obtained. 

Another point to be made in favor of propagating probabilities through 

an expression that only approximates the original computer model, but one 

that makes the DUA method possible for computer models with a large number 

of parameters, is Che integral nature of the probability distribution of 

the response. The probability distribution of the response of interest is 

an integral quantity and errors introduced by replacement of the computer 

model by an analytical expression are most often washed out when the 

parameter space is completely spanned. 
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IV. FORMATION OF RESPONSE SURFACE USING DERIVATIVE INFORMATION 

The DUA method replaces the computer model with an analytical 

expression by relating the response of interest as calculated by the 

computer model to the parameter values by techniques that incorporate 

knowledge of the partial derivatives of the response with respect to 

the parameters of interest. The simplest scheme is linear extrapolation 

from reference space points to each mesh of the discretized parameter 

space. Within each mesh the response surface is linear with respect to 

the parameters, and the calculation of the expected value of the response 

within the mesh, given parameter probability functions, is straightforward. 

Various extrapolation schemes are possible; several are discussed and 

compared in the sample problem discussion. 

A more general approach for construction of a response surface is 

a least-squares fitting technique. In Appendix A, linear least-squares 

fitting is reviewed, and possible schemes for incorporating derivative 

information into the standard fitting technique are presented. Basically, 

to construct a response surface to a given order of expansion, the use of 

derivative information reduces the number of computer runs required to 

uniquely determine the expansion coefficients by a factor of approximately 

1/K, where K is the number of parameters. One can either construct a 

global response surface or define local response surfaces over subregions 

of the parameter space. A local fit of the response values and derivatives 

using a low-order function may be more desirable than a global fit using a 

higher order function to fit a large portion of the data because a higher 

order fit involving many response points may result in a very radically 

behaved function in the parameter space not near the fitted points. For 

this reason most of our research to date has focused upon either local 
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fitting or linear extrapolation from reference parameter space points. By 

careful selection of these parameter space points for which model results 

will be obtained, the number of computer runs can be held to a small frac­

tion ( « 1/K) of the number required for the conventional construction of 

a response surface. 

Finally, sensitivity analysis plays an important role in the formation 

of the response surface by eliminating those parameters that have a negli­

gible effect on the resulv of interest based on their sensitivities and 

uncertainty ranges. Also, the derivative information from the reference 

model runs can be used to identify the occurrence of parameters that occur 

exclusively in a given combination. Such identification reduces the 

parameter space by replacement of the individual parameters with the 

particular combination. For example, if the derivative of the response 

with respect to each of two parameters is the same at each reference space 

point sampled, the two parameters most likely appear in the model as a 

sum, and a single parameter representing the sum of the two can be used 

in the formation of the response surface in place of the two individual 

parameters. The sample problem exemplifies these uses of sensitivity and 

derivative data in the formation of the response surface. 
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V. PROPAGATION OF PROBABILITIES 

The propagation of paraaeter probability distributions from the 

multidimensional paraaeter space to the singly-dimensioned result space 

is determined by the governing system of equations and the input variable 

probability density functions (pdf's). In theory, this propagation can 

be performed analytically by convolution of the integral of the parameter 

space into a discrete number of integrals of the singly-dimensioned 

response space, in which each integral is over a monotonically changing 

function representing the result. However, because the identification of 

the convolution integrals, in particular the limits of the integrals, is 

virtually impossible for all but the simplest problems, and because the 

model equations are nonlinear and complexly intertwined in general, the 

propagation of probability distributions through computer model cannot be 

treated analytically in the strictest sense. 

The propagation of parameter probability distributions in the DUA 

approach is performed by discretizing the K-dimensional parameter space 

(K - number of parameters) into L meshes, each mesh denoted by mj. The 

probability of mesh raj occurring within the entire parameter space, p(mj), 

is calculated as well as the expected value of the response function within 

the mesh, E(r^), where rj represents the response function within mg. The 

probability p(mj) is assigned to E(rj) to obtain the probability of E(rj) 

within the discrete space of expected values. The pairs of p(mj) and E(rj) 

are reordered such that E(ri) < E(r2) < ... E(TL) and as such constitute 

the probability distribution fun-tion of the response r over the parameter 

space. The cumulative distribution function of r, F(r), is the running sum 

of the reordered p(raj) paired with the corresponding value of E(rj). In 
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the liait as L =» «, F(r) approaches the true cumulative distribution 

function of r as calculated using the response function. 

Let the functional form of the response within mj be given by 

rl * 6|00 (1) 

where gj(x) is the response surface function within m/ resulting either 

from a fitting procedure or from a linear expansion from one or more 

reference space points. The vector x is the K-dimensional parameter 

column vector given by x - {x\,X2,...t»K' > wh® 1* tlie superscript T 

denotes the transpose. Given the joint probability function of x as 

P(x) - P(xi,X2....XR), the probability that x c mj is given by 

p(»i) - P(x c m|) - f P(x) dx 

and the expected value of the response r wi fn mj, E(r|), is 

EUi; - J^g/*) ?(«) dx /p(m|) . 

(2) 

(3) 

The values of p(m|) and E(rj) as calculated by Eqs. (2) and (3) are used to 

construct the probability density function and cumulative distributions 

function of the response r. 
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VI. SAMPLE PROBLEM 

Reference 16 describes a sample problem that exemplifies the use of 

uncertainty analysis in high-level waste applications. The sample problem 

consists of three coupled equations with eight input parameters and three 

dependent variables. The analysis focuses on one of the three dependent 

variables as the response of interest, and statistical techniques are used 

to calculate the cumulative distribution of the flow rate given probability 

distributions for the eight input parameters. 

The governing equations describe the downward flow of water through a 

borehole that is drilled from the ground surface through two aquifers. For 

a fully penetrating well and no ground-water gradient, the steady-state 

flow through the upper aquifer into a borehole is given by 

_ 2w(Hu - H ^ T u 
in(r/rw) 

(4) 

where 

Q - flow, wr/yr 

T u - transmissivity of upper aquifer, vr/yr 

H u - potentiometric head of upper aquifer, m 

Hyu - steady-state potentiometric head in borehole at upper aquifer, m 

r - radius of influence, ro 

r w - radius of borehole, m. 

Similarly the steady-state flow from the borehole to the lower 

aquifer is given by 

_ -2»(He - HyjjTi ( 5 ) 

in(r/rw) 
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where 

T| - transmlssivity of lover aquifer, mvy* 

H| - potentloaetrlc head of lower aquifer, n 

Rgjt - steady-state potentloaetrlc head In boreholes at lower aquifer, m 

The flow of water through the borehole Is assumed to be laminar and 

isothermal and Is given by 

Q _ * rw (Hwu " Hwi)** ^ (6) 

L 

where 

K,, - hydraulic conductivity of borehole, m/yr. 

L - length of borehole, m. 

in Eqs. (4-6), Q, H^. and Hyj are dependent variables; tne flow rate 

of water, Q, is the response of interest. The uncertainty problem is to 

calculate the cumulative distribution function of Q, F(Q), given the proba­

bility density functions of *• .a eight input parameters r w, r, T u, Tj, H u, 

Hj, Ky, and L. The probability density functions of these eight parameters 

are shown in Table B.l of Appendix B, which is taken from Ref. 16. 

The standard statistical approach for calculating F(Q> is o define 

a design matrix based upon the pdf's of the parameters. Several sampling 

procedures are available for determining a suitable design matrix. For 

this problem, Ref. 16 investigates the formation of design matrices based 

upon the Latin Hypercube Sampling (LHS) procedure using 10 and 50 design 

points. The 10-point and 50-point LHS design matrices are given in Tables 

B.2 and B.3 of Appendix B, along with the calculated values of Q, H^, anc* 

Hwi-
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The choice of the sets of input parameters in a design matrix hope­

fully accounts for the parameter pdf's and any parameter correlations such 

that each calculated value of the response is of equal probability. Thus, 

the probability cf a calculated response is 1/N, where N is the number of 

input sets in the design matrix and formation ot F(Q) is performed by 

ranking the values of Q from lowest to highest and apportioning a proba­

bility of 1/N to each value. Figure B.l of Appendix B shows the plots 

of T(Q) resulting from the use of the 10-point and 50-point LHS design 

matrices. Clearly, the 10-point LHS design matrix does not result in a 

good approximation of F(Q) when compared to the 50-point set. It is 

important to keep in mind that a design matrix based on N input sets 

requires that the computer model be run N times to determine F(Q). For 

this sample problem, the "computer model" consists of Eqs. (4-6) and these 

were solved 10 times for the 10-point design matrix and 50 times for the 

5C-point design matrix. 



17 

VII. APPLICATION Or DUA TO THE SAMPLE PROBLEM 

The DUA method was applied to this sample problem and the results 

compared to the published statistical results of Ref. 16. The choice of 

N reference points from which the response surface is formed in the appli­

cation of DUA to this problem was chosen to be a subset of the 10-point 

LHS design matrix. For each reference point i, i-l,...,N, defined by the 

T 
8-dimensional parameter vector X£ - {r , r , T , T-, H , H., K , L ) , 

the derivative vector qj - lOQ/3r w)i, (aQ/ar)£, OQ/3T u)i, («Q/3Tj) i ? 

OQ/aH^i, (aQ/aHj)!, (30/31^)1, (aQ/aL) i} T, and the response Q(x£) were 

calculated. First-order sensitivities of Q with respect to each param­

eter, defined by (aQ/3xK)£ (x K i/Q(xi)), were also computed. Parameters 

with sensitivities and uncertainty ranges such that their influence on 

Q was negligible were dropped from the parameter space for the purpose 

cf forming the response surface. (The values of the derivatives and sen­

sitivities for the 10-point LHS design matrix are listed in Table fi.4.) 

As a result, the parameters T u, r, and Tj were not used in the formation 

of the response surface. In addition, the derivatives of Hy and H| are 

equal but opposite in sign indicating that the two parameters occur in 

the model in the combination of (H u-H^). In fact, in this case we can 

verify this relationship between Q and H u and Hj by direct solution of 

Eqs. (4-6) for Q; the solution is given by Q - 2w T U(H U - Hj)/((in(r/rw)) 

[1 + 2LT u/(in(r/r w)r w
2K w) + Ty/T^]}. Therefore these two parameters were 

replaced by the single parameter (H u-Hj). The response surface was Chen 

constructed based on only the four significant parameters (H u-H^), r w, K w, 

and L. This reduction in the number of significant parameters and combi­

nation of parameters illustrates the role of sensitivity analysis in the 

DUA method as applied to this sample problem. 
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In this application, the response surface was foraed by linear 
extrapolations of Q from the reference points. Three extrapolation schemes 
were first tested. The accuracy of each of the tested extrapolation 
scheaes was evaluated by coaparison of the extrapolated value of Q to the 
actual calculated value at the space points Baking up the SO-point LHS 
design aatrix. 

The three extrapolation scheaes, denoted ESI, ES2, and ES3, are 
described below. To account for the fact that the dimensionality of the 
parameters varies, the metric djj used to define the "distance" between a 
reference space point X£ and the space point xj to which the response is 
to be extrapolated was chosen as 

i(HH 2 s? k,i 
dii - ~ ~ ' ~'~ ' • (7a) 

K 2 
* S k i 

where X^ j and Xfc ̂  are the elements of xj and xj_, and where S k ^ is the 
sensitivity of the response Q with respect to parameter k at point i, 
defined as S^ j • (dr/dxy)i (x K i/Qi). Note that x K >t cannot equal zero 
if Eq. (7a) is used. However, if x^ £ - 0, djj can be alternatively 
expressed, using the definition of S^ £, as 

K 0 7 
I (*k,J - *k,i> OQ/3x k)f 

di.i " 1 ^ • (7b) 
0 o 

Q; I (Sk,i> 
1 k-l 

Equation (7b) can be used if the x^ i can take on zero values and Qj^ 
does not equal zero; In most applications the responses of interest are 
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non-zero. Equations (7a) and (7b) remove the dimensionality of each 

parameter by normalization of the parameter value change to its value at 

the reference point. Also, djj as defined above makes use of sensitivities 

to weight the more important parameters. 

The calculated value of the flow rate by extrapolation from point X£ 

to point X{, Q(xj) , for each of the three extrapolation procedures is: 

ESI : Q(xj) - Q(xi) + (xj - *i>Tqi . (8a) 

i 3 d u • min {d^} , n - l.N 

ES2 : Q(x i) - l/2(Q(xi) + Q ( X J ) ) (8b) 

+ l/2{(xi - Xi)Tqi + (xj - Xj)Tqj) ; 

i 3 Au - minldni); j 3 djj - mintdnj), n*i . 

(Q(xj) + (xj - Xj)Tqj) (8c) 

(Q(xt) + (xt - Xi)Tq!) ; 

i and j as in ES2 

Recall that the vector qt is the derivative vector which has as its 

elements the partial derivatives of the response with respect to the 

parameters. 

Scheme ESI simply extrapolates from the nearest point as defined by 

the metric dfj in Eq. (7b). ES2 averages the extrapolated value of the 

nearest two points, and ES3 weights the extrapolated value of Q of the two 

nearest points by their respective closeness to the point of interest. 

ES3 : Q(xj) - ii 
dii + djJ 

ji 
d i 2 + dj| 



The vectors x± and xj in Eqs. (8a,8b,8c) are of dimension K where 

K (used in Eqs. (7a) and (7b)) is equal to the total nuaber of problem 

parameters if the sensitivity and parameter range data is not used to 

reduce the parameter space. However, as discussed previously, in most 

applications, many parameters may have a negligible effect upon the 

response, and an examination of the sensitivity data and parameter ranges 

can be used to reduce the parameter space before the response surface is 

formed. In this sample problem, for example, the parameter space was 

reduced from eight, to four parameters, and Eq. (7b) and Eqs. (8a,8b,8c) 

were evaluated for the reduced parameter set. 

These three schemes were compared for ten different cases in which the 

number of reference points N was varied from one to ten. In general, the 

number of reference points (model runs) in the DUA method would initially 

be one or two. The CDF of the response of interest would be calculated and 

additional reference points added one by one until the CDF did not change 

appreciably. The choice of reference points could be determined dynami­

cally based upon knowledge of the sensitivities and derivatives already 

calculated, or statistically using techniques such as LHS (but where the 

number of reference points is very small compared to the number required 

for statistical determination of the CDF). For this sample problem, how­

ever, the reference points used in the DUA approach for the ten cases were 

a near-optimal selected subset of the 10-point LHS design set. Algorithms 

for choosing optimal reference points are a problem for further investiga­

tion, particularly dynamic schemes based upon prior knowledge. The 

extrapolated points xj were chosen to be the parameter space points of 

the 50-point LHS design matrix. The results are summarized in Table 1. 
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Table 1. PERCENT DIFFERENCE BETWEEN CALCULATED AND EXTRAPOLATED 
VALUES FOR EXTRAPOLATION FROM N POINTS TO THE 50-POINT LHS SPACE POINTS 

VALUES SHOWN ARE FOR EXTRAPOLATION SCHEME ESI* 

Nunber of Points Froa Which the Extrapolations Are Performed 

N-9 N-8 N-7 N-* N-5 N-* N-3 N-2 N-l 

-1.1 -4.5 -0.9 

-0.4 

-48.2 

-11.0 

0.5 0 

-3.0 

0.4 
0 

0.9 

-1.0 

-2.4 -9.9 -0.8 -59.7 

Space N-10 
Point 

1 0.3 
2 -0.2 
3 -0.6 
4 2.1 
5 -0.5 
6 -1.4 
7 -0.9 
8 -0.1 
9 0.9 
10 -5.6 
11 -2.6 
12 -8.0 
13 -0.2 
14 -1.6 
15 -6.0 
16 -0.1 
17 -0.4 
18 3.6 
19 1.2 
20 -0.5 
21 0.8 
22 -0.2 
23 -17.9 
24 0.2 
25 -0.8 
26 -0.8 
27 -1.4 
28 0.6 
29 -1.6 
30 -1.1 

1.8 0.6 
-3.8 
14.5 -2.0 -57.8 

-16.4 
-4.1 

8.4 
-52.9 

-31.9 
-2.0 2.0 
-3.7 -10.5 

-6.1 
9.7 0.7 -2.5 

1.7 
-10.0 

-1.7 -2.0 9.0 

31 0.1 -0.6 -17.7 
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Table 1. (Continued). 

Space N-10 N-9 N-6 N-7 S-6 H-5 N-4 N-3 N-2 N-l 
Point 

32 -0.6 
33 0.5 
34 -0.2 
35 0.1 
36 -1.8 
37 1.8 
38 1.7 
39 0.4 
40 -19.1 
41 -1.0 
42 -? 0 
43 -0.2 
44 0.4 
45 0.1 
46 -1.9 
47 0 
48 0.3 
49 -1.5 
50 -ll.l 

1.2 

-34.2 

-7.3 -0.1 
-2.4 

-0.7 -1.8 
-2.4 

-44.1 5.5 -92.6 
0.7 -0.6 -22.8 

-2.4 2.0 
-5.9 

2.7 

-6.3 0.8 
-0.3 

-0.7 

-14.8 

R (ESI)* 177.9 168.0 191.6 211.0 361.4 359.6 373.4 486.4 379.8 2868.6 

R (ES2) 300.0 345.2 544.4 558.6 618.7 2132.9 2389.0 2614.0 3009.0 2156.C 

R (ES3) 281.8 288.8 1098.0 439.2 645.5 2508.4 3028.0 2614.0 3009.0 4126.0 

*ES1 refers to extrapolation from nearest point; ES2 refers to extrapola­
tion from nearest two points with each point weighted equally; ES3 refers 
to extrapolation from nearest two points with the points weighted by their 
respective proximity to the extrapolated point. 

R is a measure of the fit of the extrapolated points to the 50 LHS points; 
50 

R - Z «X*i> " Q c ^ ) ) 2 -
i-1 

Blank entries indicate that the value is unchanged from the value at the 
left. 
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(Table 1 is based upon using a metric djj that did not weight with sensi­

tivities but the values listed in the table are not appreciably different 

than if Eq. (7a) had been used.) The columns represent the results of 

extrapolation using all 10 of the input parameter sets of the 10-point LHS 

design matrix (far left column) down to extrapolation from a single input 

parameter set of the 10-point LHS design matrix (far right column). The 

numbers at the extreme far left represent the 50 input parameter sets of 

the 50-point LHS design matrix listed in Table B.3. The entries in Table 1 

are the percent differences between the extrapolated value of Q(xj) from 

Eq. (8a) and the actual value of Q, (^(xj), at the 50 points as calculated 

by the model. Blank entries indicate no change from the value of the per­

cent difference from cnat of the column to the immediate left. A blank 

value thus indicates that the same reference point was chosen from which 

to extrapolate as in the previous case. Below each column is listed the 

variable R which represents the sum of the squares of the differences 

between Qi'xj) and the actual value of Q for each of the three extrapolation 

schemes. For this problem, scheme ESI gives the most accurate prediction 

of the flow rate. Using information from the second closest point does not 

improve the extrapolated value of Q; and weighting based upon distance to 

the desired space point is better than straight averaging in or.ly a few 

cases. Using 7 to 10 reference points has approximately the same accuracy, 

then the accuracy drops somewhat when using 2 to 6 reference points. How­

ever, examination of R for the best extrapolation scheme, ESI, reveals that 

the decrease is not monotonic as the number of reference points increases, 

indicating only that the selection of the reference parameter space point 

to eliminate from case to case was not optimal. The actual values of Q 

were assumed to be unknown.) 
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Extrapolation scheme ESI was chosen for the formation of the response 

surface over which the parameter probabilities were to be propagated. The 

entire parameter space of significant parameters as identified in the 

sensitivity analysis (rw, Hu-Hj, Ky, and L) was divided into L discrete, 

nonoverlapp~'ng meshes, mj, i- .,,,L. The expected value of Q within each 

mesh, E(Qj), was determined by replacing Qj for gj(x) in Eq. (3). Hero, 

Qj - Q(x), x c i | , where within mj, Q(x) was calculated using Eq. (8a). 

The mesh probability p(mj) was calculated from Eq.(2> using the parameter 

probability distributions from Table B.l (note that p(Hu-Hj) had to be cal­

culated separately using the individual distributions given in Table B.l). 

For calculating the values of djj needed for the extrapolation scheme, the 

value of X£ chosen for each m^ was E(x), x c m^. The probability assigned 

to each E(Q^), i-l,,,L, was the corresponding value of p(mj). As discussed 

earlier, in the DUA method the number of meshes, L, is chosen such that 

the entire reduced parameter space is covered by nonoverlapping discrete 

meshes and therefore the entire probability space is complete in that 

L L 
I P(mi) - I p(E(Qi)) - 1. 
i-1 i-1 

As a benchmark against which a comparison of the DUA method and the 

statistical results from Ref. 16 could be compared, the sample problem 

model was executed 2304 times in order to determine the "true" CDF of Q 

for this problem. A comparison of this benchmark 2304-pt CDF to the 

statistical 50-point CDF from Ref. 16 is shown in Fig. 1. The CDF based 

upon the 50-point LHS design matrix is a fairly accurate represention of 

the true CDF of Q. DUA method results wore obtained for three cases. 

The first case propagates probabilities over a 144-mesh parameter space 
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Fig. 1. Comparison of the 50-Point LHS CDF to the 2304-Point 

Benchmark CDF. 
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by extrapolation frorc two reference model runs, and the second case by 

extrapolation from 10 reference model runs. Figure 2 compares the CDF's 

for these two DUA cases to the benchmark ">304-pt CDF. The DUA method for 

both cases gives a somewhat more accurate representation of the true CDF 

than the use of a 50-point LHS design matrix. The curves in Fig. 2 also 

indicate the integral nature of a CDF: although individual values of Q 

may be inaccurately predicted using a response surface (see Table 1), the 

CDF of Q is accurately represented. In addition, the accuracy of the CDF 

was only slightly improved for this problem by increasing the number of 

computer runs from two to ten. 

The effect of the number of discretized meshes over which probabili­

ties are propagated was evaluated in the third DUA case by increasing the 

number of meshes from 144 to 2304. The resulting CDF based upon the two-

point extrapolated response surface is compared to the benchmark CDF in 

Fig. 3, in which only every fortieth point of the DUA-generated curve is 

plotted. For this problem, the increase in the number of meshes from 144 

to 2304 leads to a somewhat more accurate representation of the true CDF. 

The apparent discontinuous nature of the deterministic curves in Fig. 2 

arises as a result of duplications in the response for different values of 

H u and H4. These singularities tend to disappear with increasing number of 

discretized meshes. Thus, the number of meshes over which probabilities 

are to be propagated should be as high as possible within constraints of 

the cost effectiveness of constructing the response surface and propagating 

the probabilities. 
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Fig. 2 . Comparison of 2-Point and 10-Point Determinis t ic CDF by 
polat ion to 144 Discrete Meshes with the 2304-Point Benchmark CDF, 
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0 10 20 30 40 50 60 70 BO 90 100 110 120 130 MO 150 160 
FLOW RATE (M**3/YR) 

Fig. 3. Comparison of the Decerministic CDF Based on an 
Extrapolation from Two Points to 2304 Discrete Meshes Compared to 
the 2304-Point Benchmark CDF. (For clarity, avery fortieth point 
is plotted for the extrapolated values.) 
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VIII. CONCLUSIONS 

The availability of derivative information gives a much more complete 

basis for creating an accurate response surface than does the use of 

response values alone. The response surface could be sampled in place of 

the original model, or the propagation of probabilities can be performed in 

a rigorous fashion over the response surface. The latter procedure results 

in a strictly deterministic method of probability propagation. The sample 

problem results show that simple linear extrapolation from two space points 

produces a CDF of the response of interest that more closely matches a 

benchmark 2304-point CDF than does the CDF based upon a 50-point LHS design 

matrix. The reduction in model runs by a factor of 25 and the increased 

accuracy in calculating the CDF of the response of interest are strong 

evidence that a substantial savings in computational cost is possible using 

derivative information. This reduction is offset by the additional cost of 

calculating derivatives, but the deterministic calculation of model deriva­

tives has been shown in the published literature to be both feasible and 

cost efficient for large-scale computer models. The availability of auto­

mated precompilers for adding derivative-taking capability to existing 

models makes the DUA approach even more practical. The strong analytical 

foundations of propagating probabilities deterministically is another 

desirable feature of the DUA approach. 
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APPENDIX A - FITTING PROCEDURES USING DERIVATIVE INFORMATION 

The DUA method replaces the computer model with an analytical 

expression by relating the response of interest as calculated by the com­

puter model to the parameter valuta by fitting techniques that incorporate 

knowledge of the partial derivatives of the response with respect to the 

parameters of interest. Before discussing fitting techniques that use 

derivative information, a review of fitting strategies using only response 

values will be helpful. 

A. Linear Least Squares Fitting of Response Values. 

Let the computer model response of interest r be represented by a 

function f of the k parameters such that r-f(x^,X2,.. .x^). Defining the 

parameter space vector at point i as n - {xi,X2,...x^), the corresponding 

observed (calculated) response r^ is given by 

ri ~ f<*i> • (A.l) 

Note that r^ refers to a chosen response of interest, r, at the parameter 

space point i and not to another response. For most computer models, the 

functional form of f is generally too complex to express in closed form. A 

response function g(xj) is sought which closely approximates f over some 

domain of the parameter space. Thus the observed response r£ is to be 

related to X£ by the relation 

ri * g(*i> • (A.2) 
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The basic procedure of linear least-squares fitting begins by choosing 

g(x^) to be a linear combination of simple functions of the parameters. 

Denoting these simple expansion functions as gj(x), then 

J 
g(*l> ~ I cigj(*> ( A 3> 

j-l 

where the selection of the gj and J determines the order and completeness 

of the expansion and the cj are the expansion coefficients to be deter­

mined. Eq. (A.3) becomes 

Defining 

r l ~ I Cjgj(»i) 
j-l J 

r - (r l tr 2 r N} J 

(A.4) 

and 

G(x) 
6l(*l> gj(*l> 

gl<*N> 

c - {c l tc2 cjj 

gj(*N> 

T 

then Eq. (A.4) can be written in matrix form as 

r - C c . (A.5) 

Note that r is an N-dimensional vector of the values of a single response 

for N parameter space points, not a vector of different responses. The 

matrix G is an NxJ matrix whose elements are all known, being simple 

functions of preselected parameter space points. The vector c is a J-

dlmenslonal vector of constants to be determined. If J-N, and if G is 
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non-singular, the vector c can be solved for directly and Eq. (A.3) will 

yield a function g(x) that exactly reproduces r^ for the corresponding 

X£. As an example, for K-2, N-6, and J-6, a fit of six points in a two-

dimensional parameter space can be performed by expanding the response in 

a perfect quadratic form such that 

r — cj_ + C2X^ + C3X2 + ci^\ + c5*2 + C 6 X 1 X 2 • (A-6) 

In general, the relative values of N, J, and K will determine the order 

and completeness of the expansion defined by Eq. (A.3). Often, high-order 

expansions do not prove to be practical because g(x) exhibits unrealistic 

behavior "between" and "outside of" the selected paraaeter space points x^. 

Therefore, for many applications a low-order expansion of g(x) is chosen 

and N will be greater than J. For this case Eq. (A.5) is ovgrdetermined 

and a least-squares fitting technique must be used. In fact, "fitting 

techniques" are often associated with solving for c assuming Eq. (A.5) is 

overdetermined. Least-squares fitting determines the vector c that gives 

the best fit of the members of r to the space points x^, i-l,N, in a least-

squares sense. Defining the sum of the squares of the differences between 

r and Gc as L, 

L - (r - Gc) T (r - Gc) (A.7a) 

or 

L - r Tr - 2c TG Tr + c TG TGc (A.7b) 

The vector c that results in L being a minimum is given by 

— - -2GTr + 2 G TGc . (A.8) 
dc 
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Setting — - 0 
dc 

c - (G TG)- 1 CTr (A.9) 

Equation (A.9) defines the basic fitting solution of the least-squares 

technique when fitting response values. 

B. Fitting Schemes Using Derivative Information. 

One approach to fitting values and derivatives simultaneously is to 

differentiate Eq. (A.5) with respect to a parameter of interest, 
3 r 

- Ckc 
3x k 

(A.10) 

3G where x k is a parameter of interest and G^ - Gg(x) - , G being the same 

matrix as the one in Eq.(A.S). Defining p^ - , 
3*k 

P -
PI 
P2 

Pk 

and G' - G'(x) -

then 

Gl 
C 2 

Gk 

p - C'c (A.11) 

Note that p, the vector of observed (calculated) partial derivatives of the 

response with respect to all parameters of Interest at all of the parameter 

space points, is of length NK and G' is an NKxJ matrix. If the derivatives 

are expanded to first order in the parameters, J-K+1. Thus, for most cases 
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NK>J and Eq. (A.11) is overdetermined, and a least squares fitting proce­

dure could be used. However, the objective for this pare cular procedure 

is to solve Eqs. (A.5) and (A.11) simultaneously. The G matrix of response 

expansion function values and the G' matrix of the evaluated derivatives 

of these functions have the same number of columns (the derivative of a 

constant element of the G matrix is a constant equal to zero in the G' 

matrix). Thus Eqs. (A.5) and (A.11) can be augmented to produce the single 

relationship 

r G 
-; c . (A.12) 

Eq. (A.12) is the system of equations that describe the fitting of both 

response values and derivatives. There are N responses and NK derivatives 
r G 

to be fitted. The vector is N(K+1) x 1 and the matrix is 
P G' 

N(K-t-l) x J. The solution of the J length vector c based upon Eq. (A. 12) is 

discussed for two cases: 

G 1. The matrix — is square. 
G' 

Q 
For this case, J-N(K+1) and the solution for c is unique if --; is 

G 

nonsingular. In such a case, all N response values and NK derivatives are 

reproduced for the response surface defined by Eq. (A.5) where c is the 

solution to Eq. (A.12). However, the -z,-, matrix has been found to be 

singular for some simple situations. For example, consider the quadratic 

expansion in two-parameter space (K-2) given by Eq. (A.6). Fitting the 

responses and derivatives of two space points (N-2), then N(K+l)-6-J, and c 
G r 

can be solved for exactly if --; is nonsingular. For this case, — and 

-£; are given by 
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r 
"p" 

"n 
*2 
3r 

**1 1 
3r 
3x! 2 
3r 

3x2 1 
3r 

3x2 2 

(A.13a) 

and 
1 x i ( l ) x 2 ( l ) x i 2 ( l ) x 2

2 ( D x 1 ( l ) x 2 ( l ) 
G 1 xi(2) x2C>) xi 2 (2) x 2

2 ( 2 ) X!(2)x 2(2) 

C 0 1 0 2x!(l) 0 x 2 ( l ) 
0 l. 0 2x x(2) 0 x 2 (2) 
0 0 1 0 2x 2 (D x i ( l ) 
0 0 1 0 2x 2(2) x X(2) _ (A.13b) 

The determinant of -x; can be shown to be algebraically equal to zero 

with a matrix rank of five for this case. In particular, for this case. 

r - h( , \. Physically interpreted, for this case all the deriva-
\dxi 8x2J 

tives are reproduced by the fit, and integration of the derivatives 

introduces only one constant back into the form of the response expansion. 

Therefore only one response point can be fit. Or both responses could be 

fit and differentiating the expressions only introduces enough degrees of 

freedom to fit 3 of the 4 known derivatives. Interestingly, had a func­

tional form other than x^x2 been chosen for gg(x), the determinant would 

not have been zero. 

2. Eq. (A.l?) is overdetermined. 

If Eq. (A.12) 's overdetermined, some fitting procedure must be used 

that will lead to the best fit of the responses while incorporating the 



41 

derivative information. But both responses and derivatives should not 

be fitted using Eq. (A. 12) as is because the response values have units 

different than the derivatives. In fact, the derivatives most likely 

have units different from each other and even the derivatives defined by 

Eq. (A. 11) must be normalized if the system of equations is overdetermined 

and a fitting of the derivatives is to be performed. The fitting of the 

sensitivities would eliminate the normalization problem since the sen­

sitivities are unitless, but the response function itself would not be 

addressed. The main objective is still to identify a response surface that 

would closely reproduce the observed vector of responses r. One possible 

approach is to choose the functions g£ that make up the matrix G and solve 

Eq. (A.9) for c, calculate the derivatives based upon differentiation of 

Eq. (A.10), and calculate the sum of the squares of differences in the 

calculated and observed values of the sensitivities. The process could 

be repeated for various choices of the functions g£ until a set of g^ are 

identified that closely match the responses and the sensitivities. Yet 

another method would be to treat some of the derivative equations as con­

straints and solve Eq. (A.9) with these constraint conditions. Numerous 

other possibilities exist for treating Eq. (A.12) for the case where the 

equations are overdetermined, but no superior method has been identified 

and future research in this area is needed. 

C. Local Pitting and Expansion Bated on Derivative Information. 

A local fit of the response values and derivatives using a low-order 

function may be more desirable than a global fit using a higher order func­

tion to fit a large portion of the data for two reasons: (1) the inversion 

of the matrix G - G/G' in Eq. (A.9) is expensive for large values of NK, 
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and (2) a higher order fit involving many response points may result in a 

very radically behaved function in the parameter space not near the fitted 

points. But another basic difference exists between conventional fitting 

to response values and fitting using derivative information that makes 

local fitting very attractive. Use of derivative information permits a 

fit to a fewer number of points for a fixed order of expansion as compared 

to conventional fitting of just the data. For example, the quadratic 

expansion in two parameters defined by Eq. (A.6) required six data points 

to uniquely determine the expansion coefficients based on fitting six 

response values. However, with the use of derivative information, only 

two points are required to uniquely determine five of the six expansion 

coefficients (see discussion in previous section). In the limit of local 

fitting by linear extrapolation from reference space points, the fitting 

procedure is a series of linear expansions. 



43 

APPENDIX B - SAMPLE PROBLEM DATA FROM REFERENCE 

Table B.I.* Input Parameter Probability Distributions. 

Input 
Parameter Range Distribution 

r w 
0.05 to 0.15 m Normal (M - 0.10. a - 0.0161812)t 

r 100 to 50,000 m Lognormal (/*' - 7.71. a' - 1.0056)** 

T u 
63,070 to 115,600 m2/yr Uniform 

Hu 990 to 1,110 m Uniform 

Tl 63.1 to 116 m2/yr Uniform 

Hi 700 to 820 m Uniform 

L 1,120 to 1,680 m Uniform 

*v 9,855 to 12,045 m/yr Uniform 

*From Ref. 16. 
t/i, a are the mean and standard deviation, respectively, of r v. 

**/*', a' are the mean and standard deviation, respectively, of the In (r) 
(which is normally distributed). 
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FLOW RATE BASED ON LATIN HYPERCUBE SAMPLING 
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Fig. B.I. Cumulative Distribution Functions for 10-Point and 50-Point 
Design Matrices. From Data Published in Ref. 16. 



Table E I . 2 . * LHS Bo 

Run 
No. rw r T 

u 
Hu T l 

1 0.8609E-01 2948.0 0.8337E+05 1044.0 107.0 
2 o.toso 5194.0 0.8840E*05 1093.0 67.7 
3 0.1180 1358.0 0.9471E+05 993.0 98.6 
4 0.9O50E-01 240.0 0.1091E+06 1037.0 81.2 
5 0.9287E-01 1861.0 0.9219E+05 1101,1 103.0 

6 0.1250 1165.0 0.1015E*06 1055.0 86.5 
7 0.9778E-01 902.0 0.6798E*05 1072.0 76.9 
8 0.1100 2616.0 0.6944E*05 1085.0 113.0 
9 0.1000 14690.0 0.7427E*05 1009.0 70.8 

10 0.74S7E-01 8017.0 0.1153E*06 1025.0 90.6 

From Ref. 16. 

r e f l o w Resu l ts , N - 10. 

H l L *w H « l "wu Q 

783.0 1250.0 0.1001E+05 783.754 1044.0 48.5247 
788.0 1181.0 0.1126E+05 790.538 1093.0 99.8815 
758.0 1466.0 0.1174E*05 759.236 992.999 81.8886 
811.0 1534.0 0.1052E+05 811.614 1037.0 39.7706 
711.0 1575.0 0.1075E+05 712.101 1101.0 71.9224 

734.0 1325.0 0.1023E+05 736.033 1055.0 120.885 
715.0 1380.0 0.1116E*05 716.631 1072.0 86.3202 
799.0 1429.0 0.1147E+05 800.233 1085.0 86.8866 
768.0 1672.0 0.1043E+05 769.257 1009.0 46.9832 
738.0 1141.0 0.1202Et0S 739.071 1025.0 52.6204 
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Table B.4.* Derivatives and Sensitivities of the Response Q with 
Respect to Each Parameter for the 10-Point LHS Design Matrix. 

3R ?k a 

Parameter Value 3a da R 

1 R-Q * 48.52464 H*! = 783.7536 H ^ = 1043.999 

Tu 83370.00 0.2156935E-08 0.3705821E-05 
Hu 

1044.00 0.1859182 4.000000 
r 2948.00 -0.4557747E-05 -0.2758951E-03 
rw 0.08609 1124.082 1.994291 
T] 107.00 0.13O9451E-O2 0.2887424E-02 
Hl 783.00 -0.1859182 -3.000000 
*w 10010.00 0.4833502E-02 0.9971089 
L 1250.00 -0.3870748E-01 -0.9971089 

2 R-Q * 99.88144 Hyj = 790.5381 H ^ = 1092.998 

TU 88400.00 0.7200674E-08 0.6372952E-05 
"u 1093.00 0.3274801 3.583607 
r 5194.00 •0.1481603E-04 -0.7704580E-03 
rw 0.105 1886.844 1.983538 
T] 67.70 0.1227723E-01 0.8321550E-02 
Hi 788.00 -0.3274801 -2.583607 
Kw 11260.00 0.8796593E-02 0.9916721 
L 1181.00 -0.8386930E-01 -0.9916721 

3 R-Q = 81.88855 Ĥ i « 759.2360 H ™ = 992.9987 

Tu 94710.00 0.4734320E-08 0.5475582E-05 
Hu 993.00 0.3484619 4.225532 
r 1358.00 -0.3395267E-04 -0.5630546E-03 
rw 0.118 1380.910 1.989868 
Tl 98.60 0.4368129E-02 0.5259557E-02 
Hi 758.00 -0.3484619 -3.225532 
*w 11740.00 0.6938450E-02 0.9947350 
L 1466.00 -0.5556440E-01 -0.9947350 

4 R-Q - 39.77062 H ^ * 811.6145 Huu • 1037.000 

*u 109100.00 0.7377022E-09 0.2023687E-05 
Hu 1037.00 0.1759762 4.58849b 
r 240.00 -0.5719953E-04 -0.3451766E-03 
»w 0.0905 877.3659 1.996489 
Tl 81.20 0.1331737E-02 0.2719018E-02 
Hi 811.00 -0.1759762 -3.588496 
Kw 10520.00 0.3770191E-02 0.9972790 
L 1534.00 -0.25855SSC-ui -0.9972790 

*From Ref. 16. 
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Table B.4. (Continued). 

aR 3R a 
Parameter Value 3a 9a R 

5 R-Q = 71.92241 H*] = 712.1008 H^u = 1100.999 
Tu 92190.00 0.2460308E-08 0.3153618E-05 
Hy 1101.00 0.1844164 2.823C77 
r 1861.00 -0.1102517E-04 -0.2852775E-03 
rw 0.09287 1544.613 1.994485 
Tl 103.00 0.1970982E-02 0.282264IE-02 
«1 711.00 -0.1844164 -1.823077 
*w 10750.00 0.6671550E-02 0.9971741 
L 1575.00 -0.4553598E-01 -0.9971741 

6 R-Q * 120.8852 H*! - 736.0329 H* u = 1054.998 

Tu 101500.00 0.6427935E-08 0.5397149E-05 
Hu 1055.00 0.3765893 3.286604 
r 1165.00 -0.7195967E-04 -0.6534929E-03 
rw 0.125 1922.578 1.988021 
Tl 86.50 0.8850572E-02 0.6333071E-02 
Hi 734.00 -0.3765893 -2.286604 
Kw 10230.00 0.1174183E-01 0.9936614 
L 1325.00 -0.9065580E-01 -0.9936614 

7 R-Q « 86.32016 Hw! - 716.6310 HHU = 1071.998 

Tu 67980.00 0.6562483E-08 0.5168174E-05 
Hu 1072.00 0.2417931 3.002801 
r 902.00 -0.4794403E-04 -0.50O9897E-03 
rw 0.09778 1757.957 1.991343 
Tl 76.90 0.5128352E-02 0.4568693E-02 
Hi 715.00 -0.2417931 -2.002801 
Kw 11160.00 0.7699403E-02 0.9954261 
L 1380.00 -0.6226474E-01 -0.9954261 

8 R-Q = 86.88659 H w l « 800.2331 Hwu = 1084.998 

Tu 69440.00 0.8779252E-08 0.7016403E-05 
Hu 

1085.00 0.3037992 3.793706 
r 2616.00 -0.1423474E-04 -0.4285827E-03 
rw 0.11 1573.013 1.991463 
Tl 113.00 0.3315279E-02 0.4311673E-02 
Hi 799.00 -0.3037993 -2.793706 
Kw 11470.00 0.7542402E-02 0.9956813 
L 1429.00 -0.6053978E-01 -0.9956813 
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Table B.4. (Continued). 

3R 3R a 
Parameter Value 3a 3a R 

9 R=Q = 46.98318 H*] * 769.2566 H ^ = 1008.999 
Tu 74270.00 0.31442505E-08 0.4970363E-05 
Hu 1009.00 0.1949509 4.186722 
r 14690.00 -0.1402964E-05 -0.4386581E-03 
rw 0.10 934.7742 1.989593 
T] 70.80 0.3460010E-02 0.5213967E-02 
Hl 768.00 -0.1949509 -3.186722 
Kw 10430.00 0.4481110E-02 0.9947811 
L 1672.00 -0.2795333E-02 -0.9947811 

10 R-Q * 52.62038 ^ - 739.0709 H* u = 1024.999 

h 115300.00 0.1338124E-08 0.2932O52E-05 
Hu 1025.00 0.1833462 3.571428 
r 8017.00 -0.2115667E-05 -0.3223333E-03 
rw 0.07457 1406.067 1.992582 
l" 90.60 0.2167197E-02 0.3731408E-02 
Hl 738.00 -0.1833462 -2.571428 
«w 12020.00 0.4361387E-02 0.9962656 
L 1141.00 -O.4594555E-01 -0.9962656 
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