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Almost fifteen years after the seminal work of Nelson and Plosser (1982), the question

of deterministic vs. stochastic trend in U.S. GNP (and other key aggregates) remains open. 

This discouraging outcome certainly isn't due to lack of professional interest--the literature on

the question is huge.  Instead, the stalemate may be explained by low power of tests of

stochastic trend (or "difference stationarity" in the parlance of Cochrane, 1988) against nearby

deterministic-trend ("trend stationary") alternatives, together with the fact that such nearby

alternatives are the relevant ones.

In an important development, Rudebusch (1993) contributes to the "we don't know"

consensus by arguing that unit-root tests applied to U.S. quarterly real GNP per capita lack

power even against distant alternatives.  Rudebusch builds his case in two steps.  First, he

shows that the best-fitting trend-stationary and difference-stationary models imply very

different medium- and long-run dynamics.  Then he shows with an innovative procedure that,

regardless of which of the two models obtains, the exact finite-sample distributions of the

Dickey-Fuller (e.g., 1981) test statistics are very similar.  Thus, unit root tests are unlikely to

be capable of discriminating between the deterministic and stochastic trend.

The distinction between trend stationarity and difference stationarity is not critical in

some contexts.  Often, for example, one wants a broad gauge of the persistence in aggregate

output dynamics, in which case one may be better informed by an interval estimate of the

dominant root in an autoregressive approximation.  Hence the importance of Stock's (1991)

clever procedure for computing such intervals.  But the distinction between trend stationarity

and difference stationarity is potentially important in other contexts, such as economic
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forecasting, because the trend- and difference-stationary models may imply very different

dynamics and hence different point forecasts, as argued by Stock and Watson (1988) and

Campbell and Perron (1991).

Motivated by the potential importance of unit roots for the forecasting of aggregate

output, as well as other considerations that we discuss later, we extend Rudebusch's analysis

to several long spans of annual U.S. real GNP data.  We examine both the Balke-Gordon

(1989) and Romer (1989) pre-1929 real GNP series, in both levels and per capita terms, and

we examine the robustness of all results to variations in the sample period.  As we shall show,

the outcome is both surprising and robust.

*Others who have found that the U.S. is TS but the rest of the world is DS:

de Haan and Zelhorst (1993, 1994 and another forthcoming in JMCB)

I.  Construction of Annual U.S. Real GNP Series, 1869-1993

Three annual "raw" data series underlie the annual series used in this paper.  We create

the first two, which are real GNP series, by splicing the Balke-Gordon and Romer 1869-1929

real GNP series to the 1929-1993 real GNP series reported in Table 1.10 of the National

Income and Product Accounts of the United States, measured in billions of 1987 dollars.  The

two historical real GNP series are measured in billions of 1982 dollars, which we convert to

1987 dollars by multiplying by 1.166, which is the ratio of the 1987 dollar value to the 1982

dollar value in the overlap year 1929, at which time both the Balke-Gordon and Romer series
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are in precise agreement.

The third series is the total population residing in the United States in thousands of

people, as reported by the Bureau of the Census.  For 1869-1970, we take the data from Table

A-7 of Historical Statistics of the United States.  For 1971-1993, we take the data from the

Census Bureau's Current Population Reports, Series P-25.

From these underlying series we create and use:

GNP-BG ("GNP, Balke-Gordon"):  Gross national product, pre-1929 values from
Balke-Gordon;

GNP-R ("GNP, Romer"):  Gross national product, pre-1929 values from Romer;

GNP-BGPC ("GNP, Balke-Gordon, per capita"):  Gross national product per capita,
pre-1929 values from Balke-Gordon;

GNP-RPC ("GNP, Romer, per capita"):  Gross national product per capita, pre-1929
values from Romer.

In each case, of course, the post-1929 values are identical.  In the earlier years, however, they

differ because of the differing assumptions underlying their construction.

As a guide to subsequent specification, we report here the results of conventional

Dickey-Fuller tests of difference stationarity.  The augmented Dickey-Fuller regression is

and a unit root corresponds to  = 1.  The Dickey-Fuller statistic is ˆ = (ˆ  - 1)/SE(ˆ), where

SE(ˆ) is the standard error of the estimated coefficient, ˆ .  

We give particular care to the determination of k, the augmentation lag order, and we

examine the sensitivity of test results to variation in k, because it's well-known that the results
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of Dickey-Fuller tests may vary with k.  A number of authors have recently addressed this

important problem, exploring the properties of various lag-order selection criteria.  For

example, Hall (1994) establishes conditions under which the Dickey-Fuller test statistic

converges to the Dickey-Fuller distribution when data-based procedures are used to select k,

and he verifies that the conditions are satisfied by the popular Schwarz information criterion. 

Ng and Perron (1995), however, argue that t and F tests on the augmentation lag coefficients

in the Dickey-Fuller regression are preferable, because they lead to less size distortion and

comparable power.

We report estimates of the augmented Dickey-Fuller regressions in Table 1.  The

analysis is conducted for the four real GNP variables discussed above and for k=1 through

k=6.  The common sample period for all variables and for all values of k is 1875 to 1993. 

The selected lag order in the Dickey-Fuller regression for all four variables is k=2, regardless

of whether we use the Schwarz criterion, the Akaike criterion, or conventional hypothesis-

testing procedures to determine k.  More precisely, all diagnostics indicate that k=1 is grossly

inadequate and that k>2 is unnecessary and therefore wasteful of degrees of freedom.  Thus,

in terms of a "reasonable range" in which to vary k, we focus on k=2 through k=4, and our

attention centers on k=2.  Throughout the relevant range of k values, and for each series, we

consistently reject the unit-root hypothesis at significance levels better than one percent,

strongly supporting the trend-stationary model.

III.  Evidence From Rudebusch's Exact Finite-Sample Procedure

Now we perform a Rudebusch-style analysis.  In Table 2 we display the full-sample
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estimates of the selected trend-stationary and difference-stationary models for each of the four

GNP series.  For each series, the two models fit about equally well, but they imply very

different dynamics, as can be seen by comparing the forecasts shown in Figure 1, in which we

graph GNP per capita using Romer's pre-1929 values (GNP-RPC), 1869-1933, followed by

the forecasts from the best-fitting trend- and difference-stationary models, 1934-1993, made

in 1933.  1932 and 1933 are of course years of severe recession, so the forecasts are made

from a position well below trend.  The forecasts from the trend-stationary model revert to

trend quickly, in sharp contrast to those from the difference-stationary model, which are

permanently lowered.

For each series, we compute the exact finite-sample distribution of ˆ under the best-

fitting difference-stationary model and the best-fitting trend-stationary model, and then we

check where the value of ˆ actually obtained (call it ˆ ) lies relative to those distributions. sample

This information is summarized in the p-values Prob(ˆ ˆ f (ˆ)) andsample DS

Prob(ˆ ˆ f (ˆ)), where f (ˆ) is the distribution of ˆ under the difference-stationarysample TS   DS

model and f (ˆ) is the distribution of ˆ under the trend-stationary model.  In Table 3 we showTS

the p-values for k=2 through k=4.  The results provide overwhelming support for the trend-

stationary model.  For each value of k and each aggregate output measure, the p-value

associated with ˆ under the difference-stationary model is very small, while that associated

with ˆ under the trend-stationary model is large.  In the leading case of k=2, to which all

diagnostics point, the p-value under the difference-stationary model is consistently less than

.01, while that under the trend-stationary model is consistently greater than .59.

To illustrate the starkness of the results, we graph in Figure 2 the exact distributions of



-7-

ˆ for the best-fitting difference-stationary and trend-stationary models for GNP-RPC with

k=2.  It is visually obvious that ˆ  is tremendously unlikely relative to f (ˆ) but very likelysample      DS

with respect to f (ˆ).TS

All of our results are robust to reasonable variation in the sample's beginning and

ending dates.  We subjected every part of our empirical analysis to extensive robustness

checks, varying both the starting and endings date over a wide range, with no qualitative

change in any result.  In Figure 3, for example, we show the exact finite-sample p-values of ˆ

under the best-fitting difference-stationary model for GNP-RPC and k=2, computed using the

Rudebusch procedure over samples ranging from t  through t , with t  = 1875, ..., 1895 and t1  T   1      T

= 1973, ..., 1993.  The p-value is always below .05 and typically below .01.

Finally, it is of interest to reconcile our results with those of Nelson and Plosser.  In

Figure 4, we show U.S. real GNP per capita, using the Romer pre-1929 values (GNP-RPC),

together with a fitted linear trend, 1869-1993.  Nelson and Plosser used only the shaded

subsample, 1909-1970.  Two issues are relevant.  First, the Nelson-Plosser sample is

obviously much shorter than ours, and on that ground alone Nelson and Plosser had less

power to detect deviations from difference stationarity.  Second, Figure 4 makes clear that the

only prolonged, persistent deviation of output from trend is the depression and the ensuing

World War II, which sits squarely in the center of the Nelson-Plosser sample.  If we restrict

our analysis to the Nelson-Plosser years, we obtain ˆ= -3.26 and we would not reject the

difference-stationary model at conventional levels.  If we trim fifteen years from each end of

the Nelson-Plosser sample, using only 1924-1955, we obtain ˆ= -2.71, corresponding to even

less evidence against the difference-stationary model.  Conversely, as we expand the sample
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to include years both earlier and later than those used by Nelson and Plosser, the evidence

against difference-stationarity grows quickly, because the earlier and later years included in

our sample are highly informative with respect to the question of interest, as output clings

tightly to trend.  By the time we use the full sample, 1875-1993, we obtain  ˆ= -4.57 and we

reject difference-stationarity at any reasonable level.

IV.  Concluding Remarks

There is no doubt that unit root tests do suffer from low power in many situations of

interest.  Rudebusch's analysis of postwar U.S. quarterly GNP illustrates that point starkly. 

We have shown, however, that both Rudebusch's and more conventional procedures produce

very different results on long spans of annual data -- the evidence distinctly favors trend-

stationarity.  Interestingly, the same conclusion has been reached by very different methods in

the Bayesian literature (e.g., DeJong and Whiteman, 1992) and in out-of-sample forecasting

competitions (e.g., Geweke and Meese, 1984; DeJong and Whiteman, 1993).  And of course,

allowing for trend breaks in the spirit of Perron (1989) would only strengthen our results. 

Thus, the U.S. aggregate output data are not so uninformative as many believe.

We have already stressed the importance of our results for forecasting aggregate

output.  They are also important for macroeconometric modeling more generally.  For

example, recent important work by Elliott (1995) points to the non-robustness of cointegration

methods to deviations of variables from difference-stationarity.  More precisely, even very

small deviations from difference-stationarity can invalidate the inferential procedures

associated with conventional cointegration analyses.  Our results suggest that, at least for U.S.
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aggregate output, deviations from difference stationarity are likely to obtain -- the dominant

autoregressive root is likely close to, but less than, unity.  This points to the desirability of

additional work on inference in macroeconometric models with dynamics that are either

short-memory with roots local to unity, as in Elliott, Rothenberg and Stock (1992), or long-

memory but mean-reverting, as in Diebold and Rudebusch (1989).
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Table 1
Studentized Statistics from Dickey-Fuller Regressions  

GNP-R GNP-RPC
Augmentation Lag Order (k) Augmentation Lag Order (k)

k=1 k=2 k=3 k=4 k=5 k=6 k=1 k=2 k=3 k=4 k=5 k=6 
Regressor
c  3.02  4.86  4.47  4.17  3.64  3.58 -2.62 -4.53 -4.14 -3.81 -3.19 -3.14

t  2.73  4.66  4.26  3.94  3.39  3.32  2.64  4.50  4.13  3.80 -3.20  3.16

y(-1) -2.83 -4.74 -4.34 -4.02 -3.47 -3.41 -2.69 -4.57 -4.19 -3.86 -3.25 -3.20

y(-1)  6.46  6.01  5.81  5.53  5.39  6.37  5.92  5.76  5.46  5.34

y(-2) -0.05   0.05 -0.13 -0.11 -0.00  0.03 -0.16 -0.11

y(-3)  0.29 -0.10  0.14 -0.10  0.23  0.29

y(-4) -1.15 -1.16 -1.13 -1.18

y(-5)  0.24  0.36

SIC -5.91 -6.18 -6.14 -6.10 -6.07 -6.03 -5.90 -6.16 -6.12 -6.08 -6.05 -6.02

AIC -5.98 -6.27 -6.25 -6.24 -6.23 -6.22 -5.97 -6.26 -6.24 -6.22 -6.22 -6.20

GNP-BG GNP-BGPC
Augmentation Lag Order (k) Augmentation Lag Order (k)

k=1 k=2 k=3 k=4 k=5 k=6 k=1 k=2 k=3 k=4 k=5 k=6
Regressor
c  3.15  4.42  4.57  3.96  3.61  3.30 -2.84 -4.18 -4.38 -3.73 -3.33 -3.00

t  2.87  4.20  4.36  3.73  3.37  3.04  2.85  4.16  4.36  3.73  3.35  3.02

y(-1) -2.96 -4.29 -4.44 -3.81 -3.45 -3.13 -2.91 -4.24 -4.43 -3.78 -3.39 -3.06

y(-1)  4.62  4.25  4.14  3.83  3.58  4.58  4.21  4.11  3.80  3.56

y(-2)  1.20  1.33  1.29  1.10  1.30  1.41  1.37  1.20

y(-3) -0.88 -0.77 -0.80 -0.80 -0.71 -0.74

y(-4) -0.51 -0.38 -0.48 -0.39

y(-5)  0.69 -0.51

SIC -5.71 -5.84 -5.82 -5.78 -5.75 -5.71 -5.71 -5.84 -5.81 -5.78 -5.74 -5.70

AIC -5.78 -5.94 -5.93 -5.92 -5.91 -5.90 -5.78 -5.93 -5.93 -5.92 -5.90 -5.89

Notes to table:  The dependent variable is y.  c is a constant term, t is a linear trend, and y is the log of
Romer's GNP (GNP-R), the log of Romer's GNP per capita (GNP-RPC), the log of Balke and Gordon's GNP
(GNP-BG), or the log of Balke and Gordon's GNP per capita (GNP-BGPC).  All series are annual, 1875 to
1993.  Entries in the table are the studentized statistics associated with the estimated coefficients.  The last two
rows report the Schwarz Information Criterion (SIC) and the Akaike Information Criterion (AIC).  The results
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corresponding to the selected augmentation lag orders are shown in boldface.
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Table 2
Selected Trend- and Difference-Stationary Models

__________________________________________________________________________________

Variable c t y(-1) y(-2) y(-1) SER
__________________________________________________________________________________

Trend-Stationary
(Dependent variable is y.)

GNP-R  .879  .577 1.330 -.514 -- .043
(.181) (.124) (.080) (.079)

GNP-RPC -1.072  .309 1.332 -.510 -- .043
(.237) (.069) (.080) (.080)

GNP-BG  .900  .586 1.206 -.393 -- .050
(.204) (.139) (.085) (.085)

GNP-BGPC -1.139  .328 1.202 -.392 --  .051
(.272) (.079) (.086) (.085)

Difference-Stationary
(Dependent variable is y.)

GNP-R  .018   -- -- -- .427 .046
(.005) (.084)

GNP-RPC  .010   -- -- -- .421 .046
(.004) (.084)

GNP-BG  .023   -- -- -- .303 .054
(.006) (.088)

GNP-BGPC  .012   -- -- -- .297
.054

(.005) (.088)
__________________________________________________________________________________

Notes to table:  c is a constant term, t is a linear trend, and y is the log of Romer's gross national product
(GNP-R), the log of Romer's gross national product per capita (GNP-RPC), the log of Balke and
Gordon's gross national product (GNP-BG), or the log of Balke and Gordon's gross national product
per capita (GNP-BGPC).  All series are annual, 1875-1993.  Standard errors are given in parentheses.



-15-

For the trend-stationary models, the trend coefficients and their standard errors have been multiplied
by 100.  The last column reports the standard error of the regression (SER).
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Table 3
p-value of ˆ  Under f (ˆ) and f (ˆ) for Different Lag Orders sample  TS   DS

______________________________________________________

k = 2 3 4 
______________________________________________________

Variable:

GNP-R
Prob(ˆ  ˆ  f (ˆ)) .625 .690 .592sample  TS

Prob(ˆ  ˆ  f (ˆ)) .001 .005 .012 sample  DS

GNP-RPC
Prob(ˆ  ˆ  f (ˆ)) .668 .673 .695sample  TS

Prob(ˆ  ˆ  f (ˆ)) .001 .007 .017 sample  DS

GNP-BG
Prob(ˆ  ˆ  f (ˆ)) .651 .616 .657sample  TS

Prob(ˆ  ˆ  f (ˆ)) .005 .002 .020 sample  DS

GNP-BGPC
Prob(ˆ  ˆ  f (ˆ)) .692 .656 .711sample  TS

Prob(ˆ  ˆ  f (ˆ)) .006 .003 .021 sample  DS

______________________________________________________

Notes to table:  ˆ is the Dickey-Fuller statistic, f (ˆ) is the empirical distributionTS

of ˆ conditional on the trend-stationary model, f (ˆ) is the empirical distributionDS

of ˆ conditional on the difference-stationary model, k is the augmentation lag
order in the Dickey-Fuller regression, and Prob(ˆ  ˆ  f (ˆ)) and Prob(ˆ sample  TS

ˆ  f (ˆ)) are the probabilities of obtaining ˆ  ˆ  under the trend-stationarysample  DS         sample

and the difference-stationary models.  The variables are the log of Romer's gross
national product (GNP-R), the log of Romer's gross national product per capita
(GNP-RPC), the log of Balke and Gordon's gross national product (GNP-BG), or
the log of Balke and Gordon's gross national product per capita (GNP-BGPC).  All
series are annual, 1875-1993.  The underlined entries correspond to the
augmentation lag orders selected by the Schwarz and Akaike criteria.
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Figure 1
GNP Per Capita, Historical and Two Forecasts

          Notes to figure:  Pre-1930 GNP values are from Romer (1989).
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Figure 2
Exact Distributions of ˆ in Best-Fitting

Trend-Stationary and Difference-Stationary Models
U.S. Real GNP per Capita (pre-1929 from Romer)
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Figure 3
Exact p-values of the Dickey-Fuller Statistic 

Under the Difference Stationary Model,
Various Starting and Ending Dates
(Five Percent Plane Superimposed) 
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Figure 4
Log of GNP Per Capita, Actual and Trend
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Abstract:  A sleepy consensus has emerged that U.S. GNP data are uninformative
as to whether trend is better described as deterministic or stochastic.  Although the
distinction is not critical in some contexts, it is important for point forecasting,
because the two models imply very different long-run dynamics and hence
different long-run forecasts.  We show, using a variety of procedures, that the
pessimistic "we don't know" consensus (e.g., Christiano and Eichenbaum, 1990;
Rudebusch, 1993) is unwarranted.  Specifically, long spans of U.S. GNP data are
informative, and the evidence distinctly favors deterministic trend.  This result
accords with those of out-of-sample forecasting competitions, as well as Bayesian
posterior odds computations.


