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Abstract: Spectrally-tunable quantum light sources are key elements for the realization of

long-distance quantum communication. A deterministically fabricated single-photon source with

a photon extraction efficiency of η =(20± 2) %, a maximum tuning range of ∆E= 2.5 meV and

a minimum g(2)(τ = 0)= 0.03± 0.02 is presented. The device consists of a single pre-selected

quantum dot (QD) monolithically integrated into a microlens that is bonded onto a piezoelectric

actuator via gold thermocompression bonding. Here, a thin gold layer simultaneously provides

strain transfer and acts as a backside mirror for the QD-microlens to maximize the photon

extraction efficiency. The QD-microlens structure is patterned via 3D in-situ electron-beam

lithography (EBL), which allows us to pre-select and integrate suitable QDs based on their

emission intensity and energy with a spectral accuracy of 1 meV for the final device. Together

with strain fine-tuning, this enables the scalable realization of single-photon sources with identical

emission energy. Moreover, we show that the emission energy of the source can be stabilized to

µeV accuracy by closed-loop optical feedback. Thus, the combination of deterministic fabrication,

spectral-tunability and high broadband photon-extraction efficiency makes the QD-microlens

single-photon source an interesting building block for the realization of quantum communication

networks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum communication protocols promise secure data transmission based on single-photon

technology [1–3]. In this context, implementations of long-distance quantum key distribution

require Bell-state measurements in quantum repeaters [4] to transfer quantum states between

different nodes of a communication network. Two recent experiments, which demonstrate

entanglement swapping of entangled photon pairs consecutively emitted by the same emitter,

impressively underline the high potential of semiconductor QDs in this regard [5,6]. Beyond such

proof-of-principle experiments and to enable large-scale quantum repeater networks, sources

emitting at the same energy, on the order of the homogeneous linewidth of the emitters, are

required in each node of the network.

Semiconductor QDs are promising candidates for such applications, as they emit photons with

simultaneously close-to-ideal indistinguishability, entanglement fidelity and extraction efficiency

when integrated into suitable photonic structures like circular Bragg gratings in a hybrid device

design [7,8]. However, one has to note that the self-assembled Stranski-Krastanov growth mode,

which is typically used to realize high-quality InGaAs QDs, leads to randomly distributed emitters

with varying shape and size, resulting in an emission band with inhomogeneous broadening

of typically 10-50 meV. Noteworthy, values of only a few meV have been realized for QDs

grown on inverted pyramids [9], which, however, is still three orders of magnitude larger than

the homogenous linewidth of the QDs. Therefore, post-growth processing is required to meet

the demands of advanced photonic quantum technology. With respect to the requirement of
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realizing spectrally precisely matched single-photon sources, deterministic in-situ optical and

electron beam lithography techniques [10,11] allow one to pre-select and integrate bright emitters

within the QD ensemble with a spectral accuracy of better than 1 meV. In combination with

spectral fine-tuning, that is key to achieve spectral resonance of multiple single-photon sources

within the QD’s homogeneous linewidth of about 1-2 µeV, which has high potential to enable

entanglement swapping between remote sources in large-scale quantum repeater networks in

the future. Moreover, the precise tunability of single-photon sources is also beneficial for the

coupling of single-photon emitters to other key components of advanced quantum networks,

namely quantum memories, realized e.g. by atomic vapors [12], trapped atoms [13] or solid state

quantum memories [14].

Various methods have been applied to achieve spectral control of the QD emission characteris-

tics, often accompanied with drawbacks: Temperature tuning [15], for instance, suffers from

increased phonon-contributions finally limiting the photon indistinguishability already above

10-15 K [16]. Electric fields can be applied to influence the QD emission via the quantum-

confined Stark effect [17,18]. This scheme, however, requires complex doping and electrical

contacts which complicates the device processing. Strain-tuning proved to be an excellent

alternative, which can be implemented by integration of the emitter onto a piezoelectric material

such as Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) [19,20]. In addition to the spectral-tunability,

strain-tuning can be used to control the exciton binding energies and the fine structure splitting of

QD states, which enables the generation of polarization-entangled photon pairs [21]. In view of

applications of single-photon sources in secure quantum communication scenarios, high photon

extraction and collection efficiencies are desirable to achieve high data transmission rates. So

far, only few attempts have been made to increase the efficiency of strain-tunable single-photon

sources. In one example an extraction efficiency of 57% into a numerical aperture of 0.8 has

been achieved using strain-tunable nanowire antennas [22].

In this work, we present a bright spectrally-tunable single-photon source based on a determinis-

tically fabricated QD microlens combined with a piezoelectric actuator by a flip-chip goldbonding

technique. The applied in-situ EBL technique has the important advantage that suitable QDs can

be pre-selected by their emission intensity and emission energy with a spectral accuracy better

than 1 meV before integrating them into photonic nanostructures. Moreover, with a positioning

accuracy of about 30-40 nm [23], broadband enhancement of the photon-extraction efficiency is

achieved. The mentioned uncertainty in emission energy of approximately 1 meV is attributed to

different charge configurations after integration of the QD into a photonic microstructure with

etched surfaces [24]. We show that piezo strain-tuning can compensate this spectral uncertainty

and, thus, promises a scalable route towards large scale quantum networks based on entanglement

distribution between quantum light sources with identical emission energy.

2. Device design and fabrication

The fabrication of our device involves three main processing steps: First a semiconductor

heterostructure is grown by metal-organic chemical vapor deposition. Subsequently, a flip-chip

gold thermocompression bonding process is applied, which results in a thin GaAs membrane

including the QDs attached to the piezoelectric actuator. In a final step, single QDs are

deterministically integrated into microlenses by means of in-situ EBL.

The growth process starts with an Al0.97Ga0.03As layer with a thickness of 1 µm which is

deposited on a GaAs (100) substrate, acting as an etch stop layer later on. Above this layer,

570 nm of GaAs are grown including the InGaAs QDs in a distance of 200 nm to the sample

surface. The QD layer with a wafer-position dependent density of 108−109 cm−2 and an

emission band with an inhomogeneous broadening of 30 meV is centered at 1.33 eV (930

nm). For the flip-chip bonding process, 200 nm of gold are deposited onto the sample using

electron-beam evaporation. Additionally, a 300 nm gold layer is evaporated on a PIN-PMN-PT
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(Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3) crystal. This material is chosen as it has an

increased depoling temperature of TC = 140 ◦C and a higher coercive field of Ec = 6 kV cm−1

as compared to the more commonly used PMN-PT with TC = 90 ◦C and Ec = 2.5 kV cm−1 [25].

Next, the QD sample is placed upside-down onto the piezoelectric actuator with the two gold

layers facing each other (cf. Fig. 1(a)). A pressure of 6 MPa at a temperature of approximately

600 K is applied for 4 hours to achieve a strong cohesion of the gold layers.

Fig. 1. Schematic illustration of the fabrication process of a tunable QD microlens: (a)

Gold thermocompression bonding of the layer structure including InGaAs QDs, followed by

a wet etching step to remove the GaAs substrate and the etch stop layer. (b) Mapping process

for the in-situ EBL. Suitable QDs are chosen and integrated into microlens structures. (c)

The PIN-PMN-PT is contacted to transfer strain to the QD microlens for spectral-tuning of

the single-photon emission.

In the next step, the upper GaAs substrate is removed by a stirred solution of hydrogen peroxide

and ammonium hydroxide until the etching stops at the Al0.97Ga0.03As layer. The latter is removed

by hydrochloric acid such that a semiconductor membrane with a thickness of 570 nm remains

on top of the gold layer.

To enhance the photon-extraction efficiency and to pre-select bright QDs with a specific

emission energy, 3D in-situ EBL at 10 K is applied. This method allows us to conveniently

choose QDs with a target emission energy and high emission intensity within a scanned area of

the sample by their cathodoluminescence (CL) characteristics. Figure 1(b) illustrates the CL

mapping process. Sample areas of 20 µm x 20 µm are scanned and suitable QDs are chosen.

A microlens is written into the resist on top of it, which is afterwards developed such that the

structure can be transferred into the GaAs top layer by reactive-ion-enhanced plasma etching.

The whole selection and EBL process takes less than 10 minutes per write field, each including

up to about 5 QD-microlenses, so that tens of such devices with emission at the target wavelength

can be realized in a few hours. For more details on the 3D in-situ EBL process we refer to [11].

The final device is shown in Fig. 1(c). The device and lens geometry were optimized beforehand

using the commercially available software-package JCMsuite by the company JCMwave, which

is based on a finite-element method. The optimum lens geometry leads to a photon extraction

efficiency of 42% for a numerical aperture of 0.4 and is identified as a spherical segment with a

height of 370 nm and a radius of 1264 nm.

3. Micro-photoluminescence characterization

The optical properties of the final device are investigated by means of micro-photoluminescence

spectroscopy under non-resonant excitation (laser wavelength: 665 nm) at a temperature of

10 K with a spectral resolution of 27 µeV. Figure 2(a) shows a spectrum of a QD microlens

device (QDM1) at saturation of the excitonic lines. Excitation-power- and polarization dependent

measurements are used for the assignment of the emission lines to respective quantum dot states.

The most intense line at EX− = 1.3520 eV is identified as a charged excitonic transition (X−), the
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transition at EX = 1.3536 eV as the neutral excitonic transition (X) due to its polarization splitting

of ∆EFSS = 7 µeV, while a charged biexcitonic line is observed at EXX+/− = 1.3490 eV. To evaluate

the photon-extraction efficiency η of the microlens device, we use a Titan-Sapphire laser (f = 80

MHz) to excite the QD state X− at saturation and detect the emitted photons using a calibrated

experimental setup (cf. Experimental Section). At zero bias voltage applied to the piezo element

we observe η(X−) = (17 ± 2) % for the charged excitonic transition with a linewidth of 46 µeV

(FWHM). This value is smaller than 42% expected for an optimized spherical microlens, where

the deviation is mainly attributed to the nonideal shape of the realized structure with noticeable

surface roughness and a rather flat top. Indeed, a micromesa with similar geometry would yield a

photon extraction efficiency of 18% [26]. Thus, further work needs to focus on a more precise

lithography and processing of spherical microlenses or circular Bragg reflectors on top of a gold

bonded structure to enhance the extraction efficiency.

Fig. 2. (a) Microscope image of CL map areas taken during in-situ EBL with QD microlenses.

(b) Scanning electron microscope image of a microlens. (c) Micro-photoluminescence

spectrum of a QD microlens (QDM1) at T= 10 K. (d) Photon-autocorrelation measurements

stating single-photon emission with g(2)(τ=0)= 0.03± 0.02.

Next, we verify the single-photon emission of our spectrally-tunable microlens device under

pulsed wetting-layer excitation at λ = 897 nm. The photon-autocorrelation measurement at

saturation of the X− line in Fig. 2(d) shows pronounced antibunching at τ = 0. To quantitatively

evaluate the suppression of multi-photon emission events, the experimental data was fitted with a

sequence of equidistant two-sided exponential functions
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2ln2 width, accounting

for the timing resolution of the Hanbury-Brown and Twiss setup.

The ratio of the peak amplitudes at zero-time delay p0 and at finite time delays pt reveals

the second-order photon-autocorrelation value g(2)(τ = 0) = 0.03 ± 0.02 (td = (0.69 ± 0.01) ns).

These results confirm that our advanced multi-step device processing enables the realization of

bright single-photon sources with a high suppression of multi-photon emission events.
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4. Strain-tunability of single-photon emission

To demonstrate the spectral tunability of QD emission, a voltage of −600 to+ 600 V is applied

to the PIN-PMN-PT material, corresponding to an electric field F of −20 to+ 20 kVcm−1. A

positive (negative) voltage corresponds to an in-plane compression (extension) of the piezoelectric

crystal transferred to the semiconductor material and the QD layer. Using the full tuning range

results in a shift of the X− emission by ∆E = 2.5 meV as shown in Fig. 3(a).

Fig. 3. (a) Energy tuning of the X− emission line of QDM1 by application of an electric field

F to the piezoelectric actuator. (b) Extraction efficiency (black, left axis), equal-time second-

order photon autocorrelation (g(2) (τ=0)) results (red squares, right axis) and calculated

g(2)(τ=0) taking the F-dependent extraction efficiency into account (red circles, right axis).

X− emission energy for the full tuning range (blue, right axis).

Besides the tunability of the emission energy, Fig. 3(a) also reveals a change in the emission

intensity with the applied electric field, which we further investigated by measuring the photon
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extraction efficiency in pulsed excitation. As can be found in Fig. 3(b), the highest efficiency

is achieved at an applied field of Fmax = 12 kV cm−1 with η(X−, Fmax) = (20 ± 2)%. The

efficiency decreases down to η(X−, Fmin) = (6 ± 1) % at the lowest field value Fmin = −20

kV cm−1. Additionally, we investigated the second-order photon autocorrelation function for

different detunings. The suppression of multi-photon emission events g(2)(τ = 0) remains

constant and below 0.05 over a wide tuning range and increases at high negative electric fields

to g(2)(0) = 0.10 ± 0.03 at F = −15 kV cm−1. The associated X− emission energy plotted in

blue shows that we can obtain an effective tuning range of about 1 meV in which high extraction

efficiency > ≈ 15% and high multi-photon suppression with g(2)(0) < 0.05 can be achieved. This

tuning range covers well the in-situ EBL spectral accuracy so that a combination of both enables

the scalable realization of SPS with identical emission energy as we demonstrate in the next

section. An increased g(2)(0) can be explained by a decrease of the signal (S) to uncorrelated

background (B) ratio. To support this statement we consider g(2)(τ) = 1 + ρ2(g(2)
BF
(τ) − 1)., with

ρ = S/(S + B) and the background free value g
(2)
BF
(τ) [27], to describe the field dependence

of g(2)(0). A direct connection to the photon extraction efficiency is obtained by taking into

account that S is proportional to the measured extraction efficiency (black data points in Fig.

3(b)) and that a constant uncorrelated background contribution of ηB is present which leads

to g(2)(τ) = 1 + (ηDevice/(ηDevice + ηB))2(−1). under the assumption that the background free

g
(2)
BF
(0) is zero. Very good agreement between experimental data (red squares in Fig. 3(b),

with ηDevice = ηNA=0.4) and the calculated values (open red circles in Fig. 3(b)) is obtained for

ηB = 0.0035, which supports our interpretation of a signal-to-background dependent increase of

g(2)(0) for negative F. The strain influence on the extraction efficiency could be connected to

electric fields caused by charge states on the surface of the microlens. The charge states create a

field distribution around the QD which depends on the external strain. Previous studies showed

that the processing of microstructures by in-situ EBL gives a lateral positioning accuracy of

34 nm [23]. Such a deviation from the center could be sufficient for the QD to be influenced

by the mentioned strain-induced electric field distribution, leading to a slight separation of the

electron and hole wavefunction, which in return can reduce the emission rate as we observe

in the experiment. Measurements of the decay time of the QD X- emission yield a value of

approximately 0.65 ns, which is not significantly be influenced by the electric field F applied

to the piezo actuator, the rise time increases from about 200 ps to 350 ps with decreasing F

below zero. This change of rise time could indicate a lower capture probability in agreement with

the reduced photon extraction efficiency in this field range. A more detailed description would

require a detailed knowledge of the QD position in the microlens which is beyond the scope of

the present work.

To demonstrate the scalability of our device concept, we evaluated the strain-tuning behavior

of four additional QD-microlenses QDM2-5 which were fabricated together with QDM1 on the

same sample with the same target emission energy. In Fig. 4 the excitonic emission energies of

these microlenses are plotted relative to the X− emission of QDM1 as function of the electric

field applied to the piezo actuator. The emission energy of all four lenses can be tuned through

resonance with the emission energy of QDM1 (indicated by the dashed line). This feature will be

very helpful in future experiments aiming at entanglement swapping between remote QD-SPSs.

The fact that spectral resonance between the five sources cannot be achieved at the same electric

field is not relevant for this application, for which the sample could either be split or different

samples with the same target emission energy could be realized by in-situ EBL.
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Fig. 4. Strain-tuning of four QD microlenses (QDM2-5) which were deterministically

fabricated together with device QD1 on the same piece of sample. The excitonic emission

energies of these QDM2-5 microlenses are plotted relative to the X− emission energy of

QDM1. They can be tuned through resonance with QD microlens QDM1 by applying

suitable electrical fields between about −20 kVcm−1 and 10 kVcm−1 to the piezo actuator.

5. Theoretical analysis of strain-transfer and strain-tuning of QD structures

To further analyze the effects of the external strain we compare our measurements to results

obtained by theoretical modeling of the microlens device. The additional strain exerted by the

piezoelectric actuator is accounted for by adjusting the lattice constant a0 of the lowest GaAs

layer above the gold mirror to ã = a0 − c · a0, and the strain distribution inside the full GaAs

device is calculated in the framework of continuum elasticity. One has to distinguish between

the permanent strain caused by the inherent lattice mismatch between the GaAs substrate and

the InGaAs QD, and the effects of the external strain caused by the piezo-tuning. Moreover,

the hydrostatic strain component can be separated from the biaxial strain component. Figure 5

shows the calculation results for the permanent strain without external influence ((a1) and (b1))

as well as the additional strain effects induced by an applied external compressive as well as

tensile strain ((a2) and (b2)). The distribution across the lens structure is almost uniform, only a

slight relaxation effect is visible for the hydrostatic strain component as compared to the planar

area around the lens. Possible shear strain was not taken into account in the simulations, because

this would add a complexity to the calculation that is outside of the scope of this work.

Applied strain may affect the energies of the localized electronic states via (i) deformation

potentials, thus, changing the local band positions, (ii) the alteration of the quantization energies,

and (iii) the change in electron-hole Coulomb interaction. Careful analysis using eight-band k·p
theory together with the configuration interaction method [28], however, revealed that effect (i)

constitutes the governing contribution, whereas (ii) and (iii) are only minor contributions, which

are neglected in the following discussion. The achieved tuning of ∆E = 2.5 meV corresponds to a

change in the lattice constant of c = ±1.2 · 10−3 for compressive (+) and tensile (-) strain. At the

position of the QD the resulting sum of the relative hydrostatic and biaxial strain components in

all three directions are calculated separately to ∆ǫhy(c) = ±8.1 · 10−4 and ∆ǫbiax(c) = ±4.65 · 10−3,

where the hydrostatic strain is responsible for band-shifts and the biaxial strain for the heavy-hole

light-hole splitting [29]. The sum of both effects is driving the change in the luminescence energy.

Combined with the deformation potentials in In0.7Ga0.3As, ag = −6725.9 meV for the hydrostatic
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Fig. 5. Calculated hydrostatic (a1/a2) and biaxial (b1/b2) strain distributions in a QD

microlens. (a1/b1) refer to the situation in absence of external strain, while (a2) and (b2)

show the additional effects by external tensile (left) and compressive strain (right). The

domain is divided into (i) air, (ii) lens, (iii) QD, (iv) wetting layer, (v) spacer layer, and (vi)

the piezoelectric actuator. Red (blue) color indicates the relative tensile (compressive) strain.

strain and bv = −1897.2 meV for the biaxial strain, the energy shift can be calculated as

∆E(c) = ag(∆ǫhy(c)) −
1

2
bv(∆ǫbiax(c)) = ± 1.25 meV.

Using the piezoelectric coefficient d31 ≈ 1500 pC N−1 as published by the manufacturer (CTS

Corporation), we can compare the theoretically evaluated strain with the experimentally applied

value. The maximum strain that is induced in one lateral direction during the measurement can

be estimated to

ǫexp
= d31 · Fmax = 1500 pC N−1 · 20 kV cm−1

= 3 · 10−3,

as compared to the theoretical value of c = 1.2 · 10−3. Matching the calculation results with

the achieved tuning, it can be estimated that a fraction of c
ǫ exp = 40 % of the strain effect at the

piezoelectric crystal is transferred to the position of the studied QD.

6. Closed-loop stabilization of emission energy

A critical aspect of our target application in quantum communication networks is the long-term

spectral stability of our energy-tunable SPSs. In this regard the well-known creep behavior of

piezoelectric actuators is a severe issue [30]. To illustrate this point, the time-dependence of

the emission energy of another strain-tunable QD-microlens device is presented in Fig. 6(a),

where the electric field was changed up from zero to 12 kVcm−1 at time t= 0. In the first 30

minutes of the measurement series, the emission energy increased rather strongly by about 350

µeV. Subsequently, in the next 120 minutes a further linear blue-shift of about 30 µeV took

place because of the typical creeping behavior of the piezo-materials, before the emission finally

approaches a stable value. Thus, for applications requiring large tuning ranges, a stabilization

time of approximately 3 hours needs to be considered before stable operation of the SPS in this

open-loop scenario. Moreover, even in the ‘stable state’ creep related spectral shifts on the order

of several µeV do occur, preventing the implementation of entanglement swapping which requires

sub-µeV spectral stability.

To improve the strain-tuning behavior and the long-term spectral stability of our devices we

implemented an active feedback loop with a proportional–integral–derivative (PID) controller.

We use an experimental approach similar that reported in Ref. [20]. Essentially, in this rather

straight-forward approach the signal emitted by the QD-microlens is coupled to a spectrometer

at adjustable time intervals of typically a few ten seconds to monitor the emission wavelength
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Fig. 6. (a) Time series of the excitonic emission energy of a QD-microlens after changing

the piezo field from zero to F = 12 kV cm−1 at time t= 0 in open-loop configuration. (b)

Time-dependence of emission energy in closed loop configuration using an active optical

feedback control. The jump in intensity at t= 2 min was caused by an intentional perturbation

of the system. (c) Zoom-in view of the emission energy relative to the set point (error bars

in shaded grey). (d) Corresponding histogram of relative emission energies with a standard

deviation of 0.5 µeV.

with a spectral accuracy of 0.8-1.0 µeV with an integration time between few tens milli-seconds

and few seconds depending on the signal strengths. We installed a short (1 m) single-mode fiber

section in the detection path before focusing the optical signal to the input slit of the spectrometer.

This fiber section is crucial to enhance the spectral accuracy of the implemented control loop,

as small angle deviations of the detection beam path change the position of the emission line

on the spectrometer’s CCD, thus preventing a reliable detection of the emission energy with

the required accuracy. Within a PID control loop with optical feedback, the center energy of

the target emission line is determined in each iteration by Lorentzian fitting of the detected

spectrum and is compared to the setpoint energy. In case of deviations from the target energy, the

voltage output to the piezo actuator is readjusted to shift the emission line back to the setpoint via

adapted strain. To ensure best performance of the control loop, the optimum PID parameters are

determined by the pulse response of the system.

To illustrate the functionality of the described control-loop we stabilized the emission energy

of a QD-microlens to a setpoint of 1.3529485 eV. Figure 6(b) shows the corresponding time

evolution of the feedback-controlled center energy for a time period of approximately 90 minutes.

The jump at t= 2 min marks an intentional (mechanical) perturbation, to test the dynamic

response of the control loop. Within a characteristic dynamic response time of about minutes, the

emission energy returns to the setpoint. Subsequently, the emission energy is stabilized efficiently

by the control-loop as can be seen in the zoom-in view of the emission energy relative to the

setpoint. The data yields a standard deviation as low as 0.5 µeV (1.2 µeV FWHM) as shown



Research Article Vol. 10, No. 1 / 1 January 2020 / Optical Materials Express 85

by the corresponding histogram (obtained for the time range of 7 to 90 minutes) in Fig. 6(d).

Importantly, this value compares well with the typical homogenous linewidth (approximately

1-2 µeV) of the InGaAs QDs under study and, thus, can pave the way for future entanglement

swapping experiments between remote quantum light sources.

7. Experimental section

7.1. In-situ electron beam lithography

With the in-situ EBL step, QDs are chosen by their cathodoluminescence (CL) signal and

integrated into microlens structures. The samples are prepared by spin-coating with the electron-

beam resist AR-P 6200 (CSAR 62) and mounted onto the cold finger of a He-flow cryostat of a

customized scanning electron microscope for low-temperature operation at 10 K. The reaction of

the resist during development depends on the applied electron dose during exposure. This resist

has a positive-tone regime at low electron doses, which are used for mapping of the CL signal.

The luminescence signal is focused into a monochromator and detected with a Si charge-coupled

device camera. Based on that data, QDs are chosen and microstructures are written into the

resist above them with a higher electron dose. Above a certain threshold value, the resist enters a

negative tone regime, such that the structures remain after development. The transition range to

the complete negative-tone regime is used to create quasi-3D designs (see Ref. [11] for details).

Finally, dry etching is performed by inductively-coupled-plasma reactive-ion etching.

7.2. Optical measurements

The sample is mounted in a helium-flow cryostat and cooled down to 10 K. It is optically excited

using a Titan-Sapphire laser that can be operated in quasi-continuous wave (CW) or pulsed

(f = 80 MHz) mode. The photoluminescence is collected using a microscope objective with an

NA of 0.4 and spectrally dispersed by a grating monochromator, before it is detected using a Si

charge-coupled device camera. The setup is also equipped with a fiber-coupled Hanbury-Brown

and Twiss setup using single-photon counting modules based on Si avalanche photo diodes. To

evaluate the extraction efficiency into the first lens of our experimental setup, the transmission of

the complete setup was measured to be ηSetup = (1.1 ± 0.1) % following the procedure described

in Ref. [11]. Using a laser with repetition rate f a detected count-rate nQD corresponds to a

photon-extraction efficiency of ηDevice =
nQD

ηSetup∗f . Furthermore, the photon extraction efficiency

is defined as ηDevice = ηgeoηX− , where ηgeo denotes the purely geometrical contribution to the

photon extraction efficiency of the device, while ηX− the probability of emitting a photon by

the X− per excitation pulse. The latter includes the occupation probability and the quantum

efficiency of this QD transition, which can be influenced by the applied mechanical strain under

non resonant excitation.

8. Conclusion

In conclusion, we presented a spectrally-tunable single-photon source with a maximum photon

extraction efficiency of η = (20 ± 2) % and a total tuning range of ∆E = 2.5 meV. This tuning

range is reduced to about 1 meV when focusing on an operation regime of η > 15% and g(2)(0) <

0.05. The emission energy of our device is pre-selected with an accuracy of about 1 meV by

using in-situ EBL applied to a planar sample bonded onto a piezoelectric actuator via flip-chip

gold thermocompression bonding. In addition, a feedback-loop is implemented which enables

locking the emission energy with a standard deviation of 0.5 µeV (FWHM: 1.2 µeV). Thus, the

achieved effective tuning can serve to adjust the emission to meet the exact transition energy

required e.g. for entanglement distribution in multi-node quantum networks or for the interfacing

of QD based single-photon sources with quantum memories.
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