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Abstract

We prove that for every integer k ≥ 1, two-way alternating k-
pebble automata and one-way deterministic k-pebble automata for
data languages have the same recognition power.

1 Introduction

Recently there has been a considerable amount of research work in the mod-
els of computation for languages over infinite alphabets, or also known as
data languages. Various models have been introduced such as finite memory
automata [4], pebble automata [6], data automata [2], class memory au-
tomata [1] and linear temporal logic with freeze quantifier [3]. Each of these
models has its own advantages and disadvantages. For an extensive survey
of the progress in this area we refer the reader to [7].

In this paper we continue the study of pebble automata for data languages
introduced in [6]. In short, k-PA, which stands for k pebble automata, are
finite state automata with k pebbles, numbered from 1 to k. The automaton
starts the computation with only pebble k on the input word. The pebbles
are placed on/lifted from the input word in the stack discipline according to
the strict order of the pebbles: Pebble i can be placed only when pebbles i+
1, . . . , k are above the input word. Each pebble is intended to mark one
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position in the input word and the smallest numbered pebble on the input
word, or, equivalently the most recently placed pebble, serves as the head of
the automaton. The automaton moves from one state to another depending
on the equality tests among data values in the positions currently marked by
the pebbles, as well as, the equality tests among the positions of the pebbles.

It is shown in [6] that languages accepted by pebble automata are closed
under all boolean operations. However, in general its emptiness problem is
undecidable [6]. For a more extensive study of pebble automata we refer the
reader to [8] and [9].

Observing the stack discipline imposed on the placement of the pebbles,
one can notice the attempt to “descendize” the infinity of data values to finite
alphabet. When pebble i is acting as the head pebble, it makes comparison
of the data value it sees with the data values seen by pebbles i + 1, . . . , k.
Thus, pebble i is essentially acting like the standard finite state automaton
over the “alphabet” of data values seen by pebbles i + 1, . . . , k.

Such observation immediately leads us to conjecture that PA languages
are robust. In fact, for each k ≥ 1, all versions of k-PA: two-way non-
deterministic, two-way deterministic, one-way non-deterministic and one-way
deterministic, have the same recognition power [6, Theorem 4.6].

In this paper we will prove that for each k ≥ 1, two-way alternating and
one-way deterministic k-PA have the same recognition power. Not surpris-
ingly, our proof follows closely the same proof for the equivalence between
two-way alternating and one-way deterministic finite state automata in [5].
The result settles a question left open in [6].

The determinization itself are done inductively from pebble 1 to peb-
ble k. The basis is determinization of the behavior of pebble 1. This step
is a straightforward adaptation of the proof in [5]. The induction step is,
assuming that pebble 1, . . . , i behave deterministically, we show how to de-
terminize the behavior of pebble i + 1.

However, one must note that in terms of applications, decidability is more
important than robustness. See, for example, [1]. Since the emptiness prob-
lem for PA in general is undecidable, it can still be argued that general PA
may not be the right kind of model for data languages in terms of applica-
tions.

This paper is organized as follows. In Section 2 we review the two-way
alternating finite state automata. Especially, we sketch the main idea of the
Ladner, Lipton and Stockmeyer’s proof that one-way deterministic and two-
way alternating finite state automata have the same recognition power. Our
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proof for the pebble automata adopts essentially their idea. In Section 3 we
present the definition of pebble automata for data languages. We present
our proof in Section 4.

2 Two-way Alternating Finite State Automata

A two-way alternating finite state automaton over the finite alphabet Σ is a
system M = 〈Q, q0, F, ∆, D, N, U〉, where

• Q, q0 and F ⊆ Q are the set of states, initial state and the set of final
states, respectively;

• Q is partitioned into D ∪N ∪ U , where N ∩ F = U ∩ F = ∅;
• ∆ is a set of transitions of the form (p, σ) → (q, act), where p, q ∈ Q,

σ ∈ Σ and act ∈ {left, right, stay}.
The states in D, N and U are called the deterministic, nondeterministic
and universal states, respectively. The states in N and U are the states in
which the automaton can perform the disjunctive and conjunctive branching,
respectively.

We assume that the automaton M behaves as follows.

• The input to M is of the form /w., where w ∈ Σ∗ and /, . /∈ Σ are the
left-end and the right-end markers of the input.

• The automaton M starts the computation with the head is reading the
right-end marker ..

• The automaton M can only enter a final state when the head of the
automaton reads the right-end marker ..

• When the automaton M performs disjunctive and conjunctive branch-
ing the head of the automaton is stationery.
That is, if (p, σ) → (q, act) and p ∈ N ∪ U , then act = stay.

Given a word w = σ1 · · · σn ∈ Σ∗, a configuration of M on /w. is a triple
[q, /w., l], where l ∈ {0, . . . , n+2} and q ∈ Q. The positions 0 and n+1 are
positions of the end markers / and ., respectively. The initial configuration
is γ0 = [q0, /w., n + 1]. When l = n + 2, it means that the head of the
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automaton “falls off” the right side of the input word and the automaton
finishes the computation.

The set of transitions ∆ induces the relation ` among the configura-
tions as follows. [q, /w., l] ` [q′, /w., l′] if there exists a transition (q, σl) →
(q′, act) ∈ ∆ and

• if l = l′, then act = stay;

• if l = l′ − 1, then act = left; and

• if l = l′ + 1, then act = right.

The acceptance criteria is based on the notion of leads to acceptance
below. For every configuration γ = [q, /w., l],

• if q ∈ F , then γ leads to acceptance;

• if q ∈ U , then γ leads to acceptance if and only if for all configurations
γ′ such that γ ` γ′, γ′ leads to acceptance;

• if q /∈ F ∪ U , then γ leads to acceptance if and only if there is at least
one configuration γ′ such that γ ` γ′, and γ′ leads to acceptance.

The word w is accepted by M if the initial configuration γ0 leads to accep-
tance.

As usual, a computation of M on the input /w. can be viewed as a
computation tree where each node is labelled with a configuration and

• if a node π is labelled with a configuration [q, /w., l], where q ∈ D∪N ,
then π has only one child labelled with a configuration γ′, where γ ` γ′;

• if a node π is labelled with a configuration [q, /w., l], where q ∈ U ,
then for all configuration γ′ such that γ ` γ′, there exists a child of π
labelled with γ′.

It is shown in [5] that every two-way alternating finite state automaton
can be simulated by one-way deterministic finite state automaton. One im-
portant notion introduced in [5] is the notion of closed terms, which we will
describe below.

For each state q ∈ Q, we define a new symbol q̄ and let Q̄ = {q̄ : q ∈ Q}.
If S ⊆ Q, then S̄ = {p̄ : p ∈ S}. We define a term to be an object q → S,
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where q ∈ Q and S ⊆ Q ∪ Q̄. A term q → S is closed, if S ⊆ Q̄. A partial
response is a set of terms, and a response is a set of closed terms. Note that
since Q is finite, there are only finitely many closed terms and responses.

A configuration γ = [q, /w., l] induces a closed term q → S̄, for some
S ⊆ Q, if there exists a computation tree of M on /w. such that

• the root is labelled with the configuration γ;

• all the leaf nodes are labelled with a configuration [p, /w., l + 1], for
some p ∈ S;

• for every p ∈ S, there exists a leaf node labelled with a configuration
[p, /w., l + 1];

• every interior node is labelled with a configuration [s, /w., j], for some
0 ≤ j ≤ l and s ∈ Q.

We define a response R(/w., l) as the set of closed terms induced by the
configurations [q, /w., l]. In other words, a closed term p → S̄ ∈ R(/w., l),
where S ⊆ Q, if and only if there exists a configuration [p, /w., l] that induces
p → S̄.

Now the main point in the proof in [5] is that given a response R(/w., l),
we can construct the response R(/w., l +1) without simulating the automa-
ton M on /w.. This is done by defining a proof system S(R(/w., l), σl),
where the closed terms inR(/w., l) and the transitions (p, σl) → (q, act) ∈ ∆
are the axioms. Now, the response R(/w., l+1) is precisely the set of closed
terms provable in S(R(/w., l), σl) [5, Claim in pp. 149]. In [5] such set of
closed terms is denoted by CTH(R(/w., l), σl).

The construction of one-way deterministic automaton M′ that accepts
the same language as M is as follows. The states of M′ are exactly the
responses. The transitions of M′ are of the form

(R, σl) → (CTH(R, σl), right),

where R is a response. This is the essence of the proof in [5] that we are
going to use in this paper.

3 Definition

We will use the following notation. We always denote by Σ a finite al-
phabet of labels and by D an infinite set of data values. A Σ-data word
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w =
(

σ1

a1

)(
σ2

a2

) · · · (σn

an

)
is a finite sequence over Σ × D, where σi ∈ Σ and

ai ∈ D. A Σ-data language is a set of Σ-data words. The idea is that
the alphabet Σ is accessed directly, while data values can only be tested for
equality.

We assume that neither of Σ and D contain the left-end marker / or the
right-end marker .. The input word to the automaton is of the form /w.,
where / and . mark the left-end and the right-end of the input word.

Finally, the symbol σ, possibly indexed, denotes labels in Σ and the
symbol a, possibly indexed, denote data values in D. We will use the symbols
ρ, π to denote the nodes in a computation tree of (alternating) PA on an input
word /w..

3.1 Alternating k-PA

Definition 1 (See [6, Definition 2.3]) A two-way alternating k-pebble au-
tomaton or, in short, k-PA, over Σ is a system A = 〈Q, q0, F, µ, U,N, D〉
whose components are defined as follows.

• Q, q0 and F are the set of states, the initial state and the set of final
states, respectively;

• µ ⊆ C ×D is the transition relation, where

– C is a set whose elements are of the form (i, σ, P, V, q) where 1 ≤
i ≤ k, σ ∈ Σ, P, V ⊆ {i + 1, . . . , k} and q ∈ Q; and

– D is a set whose elements are of the form (q, act), where q ∈ Q
and act ∈ {stay, left, right, place-pebble, lift-pebble}.

Elements of µ will be written as (i, σ, P, V, q) → (p, act).

• Q is partitioned into U ∪N ∪D, where

– U ⊆ Q− F is the set of universal states;

– N ⊆ Q− F is the set of nondeterministic states; and

– D is the set of deterministic states.

Given a word w =
(

σ1

a1

) · · · (σn

an

) ∈ (Σ × D)∗, a configuration of A on /w.
is a triple [i, q, θ], where i ∈ {1, . . . , k}, q ∈ Q, and θ : {i, i + 1, . . . , k} →
{0, 1, . . . , n, n + 1}, where 0 and n + 1 are the positions of the end markers
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/ and ., respectively. The function θ defines the position of the pebbles and
is called the pebble assignment.

The initial configuration is [k, q0, θ0] where θ0(k) = n + 1. That is, in
the start of the computation pebble k is positioned in the right-end marker
.. This is in contrast with the definition in [6], where pebble k is placed in
the left-end marker / at the beginning of the computation. Obviously such
difference does not change the expressive power.

A transition (i, σ, P, V, p) → β applies to a configuration [j, q, θ], if

(1) i = j and p = q,

(2) P = {l > i : θ(l) = θ(i)},
(3) V = {l > i : aθ(l) = aθ(i)}, and

(4) σθ(i) = σ.

Note that in a configuration [i, q, θ], pebble i is in control, serving as the head
pebble.

Next, we define the transition relation `A as follows: [i, q, θ] `A [i′, q′, θ′],
if there is a transition α → (p, act) ∈ µ that applies to [i, q, θ] such that
q′ = p, θ′(j) = θ(j), for all j > i, and

- if act = stay, then i′ = i and θ′(i) = θ(i);

- if act = left, then i′ = i and θ′(i) = θ(i)− 1;

- if act = right, then i′ = i and θ′(i) = θ(i) + 1;

- if act = lift-pebble, then i′ = i + 1;

- if act = place-pebble, then i′ = i−1, θ′(i−1) = n+1 and θ′(i) = θ(i).

As usual, we denote the reflexive transitive closure of `A by `∗A. When the
automaton A is clear from the context, we will omit the subscript A. For a
subset µ′ ⊆ µ, we will also denote by γ1 `µ′ γ2, when the relation γ1 ` γ2

is obtained by a transition in µ′. For a configuration [i, q, θ], where q ∈ D,
there exists exactly one transition that applies to it.

Similar to the finite state automata, the acceptance criteria is based on
the notion of leads to acceptance below. For every configuration γ = [i, q, θ],

• if q ∈ F , then γ leads to acceptance;
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• if q ∈ U , then γ leads to acceptance if and only if for all configurations
γ′ such that γ ` γ′, γ′ leads to acceptance;

• if q /∈ F ∪ U , then γ leads to acceptance if and only if there is at least
one configuration γ′ such that γ ` γ′, and γ′ leads to acceptance.

A Σ-data word w ∈ (Σ×D)∗ is accepted by A, if the initial configuration γ0

leads to acceptance. The language L(A) consists of all data words accepted
by A.

As usual, the computation of A on w can be viewed as a computation
tree, where

• if a node π is labelled with a configuration [i, q, θ], where q ∈ D ∪ N ,
then π has only one child labelled with a configuration γ′, where γ ` γ′;

• if a node π is labelled with a configuration [i, q, θ], where q ∈ U , then
for all configuration γ′ such that γ ` γ′, there exists a child of π labelled
with γ′.

4 The Equivalence between Alternating and

Deterministic k-PA

In this section we will prove that for all k ≥ 1, two-way alternating k-
PA and one-way deterministic k-PA have the same recognition power. As
mentioned earlier, the proof is a direct generalization of the same proof for
the equivalence between two-way alternating and one-way deterministic finite
state automata in [5].

Let A = 〈Σ, Q, q0, F, µ, U,N, D〉 be a two-way alternating k-PA. We show
how to simulate A with a one-way deterministic k-PA A′. We start by
normalizing the behavior of A as follows.

1. On input word /w., A starts the computation with pebble k on the
right-end marker ..

2. The state Q is partitioned into Q1 ∪ · · · ∪ Qk, where Qi is the set of
states when pebble i is the head pebble.
Similarly, we denote by Ui, Ni and Di the set of universal, nondetermin-
istic and deterministic states, respectively and µi the set of transitions
when pebble i is the head pebble.
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3. Each Qi is further partitioned into Qi,stay∪Qi,right∪Qi,left∪Qi,place∪
Qi,lift, where

• if (i, σ, P, V, q) → (p, stay), then q ∈ Qi,stay;

• if (i, σ, P, V, q) → (p, right), then q ∈ Qi,right;

• if (i, σ, P, V, q) → (p, left), then q ∈ Qi,left;

• if (i, σ, P, V, q) → (p, place-pebble), then q ∈ Qi,place; and

• if (i, σ, P, V, q) → (p, lift-pebble), then q ∈ Qi,lift.

4. The automaton can only do universal and existential branching while
the head pebble is stationery.
That is, (i, σ, P, V, q) → (p, act) and q ∈ U ∪N , then act = stay.

5. The automaton places the new pebble on the right-end marker ..

6. The automaton lifts the pebble only when it is on the right-end marker
..

7. When the head pebble is reading the left-end and the right-end markers
/ and ., the automaton does not place new pebble.

8. Only pebble k can enter the final states and it does so only after it
reads the right-end marker ..

We will need the following notions. A pebble-i assignment θ is a pebble
assignment when the pebbles i, i + 1, . . . , k are on the input word. That is,
the domain of θ is {i, i + 1, . . . , k}.

Let θ be a pebble-i assignment on an input word w =
(

σ1

a1

) · · · (σn

an

)
. We

define Succ(θ) = θ′ as follows.

• If θ(i) ≤ n, then θ′ is a pebble-i assignment, where for each j = i, i +
1, . . . , k,

θ′(j) =

{
θ(j), if j = i + 1, . . . , k,
θ(j) + 1, if j = i.

• If θ(i) = n + 1, then θ′ is pebble-(i + 1) assignment such that for each
j = i + 1, . . . , k, θ′(j) = θ(j).

Similarly, for a pebble-i assignment θ, we can define Pred(θ) as follows.
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• If 1 ≤ θ(i), then θ′ is a pebble-i assignment, where for each j = i, i +
1, . . . , k,

θ′(j) =

{
θ(j), if j = i + 1, . . . , k,
θ(j)− 1, if j = i.

• If θ(i) = 0, then θ′ is pebble-(i + 1) assignment such that for each
j = i + 1, . . . , k, θ′(j) = θ(j).

In the following subsections we present the determinization of A, starting
from pebble 1 and finishing with pebble k, in the following subsections. We
will denote by A(i) the equivalent automaton of A, where the behavior of
pebbles 1, . . . , i are one-way and deterministic. By this notation, A(k) is the
equivalent one-way, deterministic version of A.

4.1 Determinizing pebble 1

The determinization follows closely the one described in [5, Section 4]. For
completeness, we present it here. The end result of the determinization is
such that pebble 1 is placed in the left-end marker / and lifted when it reaches
the right-end marker ..

We need a few notations. Some of them are repetitions of those that have
been introduced in Section 2. For each q ∈ Q, we define a new symbol q̄. We
denote by Q̄ = {q̄ : q ∈ Q}. If A ⊆ Q, then Ā = {p̄ : p ∈ A}. We define
a term to be an object of the form q → A where q ∈ Q and A ⊆ Q ∪ Q̄. A
term q → A is closed, if A ⊆ Q̄. A partial response is a set of terms, while a
response is a set of closed terms.

Let w =
(

σ1

a1

) · · · (σn

an

)
be a data word and θ be a pebble-1 assignment. The

determinization of pebble 1 depends on the following three concepts: response
R(w, θ), partial response PR(w, θ) and the proof system S(R, σ, P, V ). We
will define these concepts one by one starting with the response R(w, θ).

The response R(w, θ) is defined as follows. For a set S ⊆ Q, a closed
term q → S̄ belongs to R(w, θ) if there exists a computation tree T of A on
w whose root is labelled with [1, q, θ] such that

• if θ(1) ≤ n, then each leaf is labelled with [1, p, Succ(θ)] for some p ∈ S;

• if θ(1) = n + 1, then each leaf is labelled with [2, p, Succ(θ)] for some
p ∈ S;
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• each internal node in the computation tree T is labelled with [1, q′, θ′],
where q′ ∈ Q and 0 ≤ θ′(1) ≤ θ(1); and

• for each p ∈ S, there exists a leaf labelled with [1, p, Succ(θ)].

Remark 2 Let w1, w2 be data words. Let θ1 and θ2 be pebble-1 assignments
on /w1. and /w2., respectively, such that θ1(1) = θ2(1) = 0. That is, on both
assignments pebble 1 is reading the left-end marker /. Then, R(w1, θ1) =
R(w2, θ2).

Now we define the partial response PR(w, θ) as follows. For a set S ⊆
Q∪ Q̄, a term q → S belongs to PR(w, θ) if there exists a computation tree
T of A on w whose root is labelled with [1, q, θ] such that

• if θ(1) ≤ n, then each leaf is labelled with either [1, p, Succ(θ)] for some
p̄ ∈ S or [1, p, θ] for some p ∈ S;

• if θ(1) = n + 1, each leaf is labelled with either [2, p, Succ(θ)] for some
p̄ ∈ S or [1, p, θ] for some p ∈ S;

• each internal node in the computation tree T is labelled with [1, q′, θ′],
where q′ ∈ Q1 and 0 ≤ θ′(1) ≤ θ(1);

• if θ(1) ≤ n, for each p̄ ∈ S, there exists a leaf labelled with [1, p, Succ(θ)];

• if θ(1) = n + 1, for each p̄ ∈ S, there exists a leaf labelled with
[2, p, Succ(θ)]; and

• for each p ∈ S, there exists a leaf labelled with [1, p, θ].

We call the tree T a witness for q → S ∈ PR(w, θ).
We define a proof system for S(R, σ, P, V ), where σ ∈ Σ, P, V ⊆ {2, . . . , k}

and a response R, as follows.

1.
q → {q}

2.
q → B ∪ {p}, p → C

q → B ∪ C

3.
(1, σ, P, V, q) → (pi, stay) ∈ µ1 for each i = 1, . . . , m and q ∈ U

q → {p1, . . . , pm}
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4.
(1, σ, P, V, q) → (p, stay) ∈ µ1 and p /∈ U

q → {p}

5.
(1, σ, P, V, q) → (p, right) ∈ µ1

q → {p̄}

6.
(1, σ, P, V, q) → (p, left) ∈ µ1 and p → S̄ ∈ R and S ⊆ Q1

q → S

7.
(1, σ, P, V, q) → (p, lift-pebble) if σ = . and P, V = ∅

q → {p̄}
We denote by TH(R, σ, P, V ) be the set of terms “provable” using the proof
system S(R, σ, P, V ).

The following claim is the pebble 1 counter part of a similar claim in [5,
pp. 149].

Claim 1 For every word w =
(

σ1

a1

) · · · (σn

an

)
and pebble-1 assignment θ on

/w.,
PR(w, θ) = TH(R(w, Pred(θ)), σ, P, V ),

where

• 1 ≤ θ(1) ≤ n + 1;

• P = {l : θ(l) = θ(1)};
• V = {l : aθ(l) = aθ(1)};
• σ = σθ(1).

Proof. The proof follows closely the similar proof in [5]. First, we show that
PR(w, θ) ⊆ TH(R(w, Pred(θ)), σ, P, V ) inductively on the size of witnesses
for terms in PR(w, θ). Let q → S ∈ PR(w, θ). The basis is when the witness
for q → S ∈ PR(w, θ) consists of a single node with the label [1, q, θ]. Then,
S = {q} and q → {q} is provable using rule 1.

For the induction step, suppose q → S ∈ PR(w, θ) is witnessed by a tree
T with more than one node. There are five cases to consider:
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1. The state q is a universal state, that is, q ∈ U1. Let

(1, σ, P, V, q) → (p1, stay) ∈ µ1;
...

(1, σ, P, V, q) → (pm, stay) ∈ µ1;

In this case, the root of T is labelled with [1, q, θ] and its immediate chil-
dren π1, . . . , πm are labelled with [1, p1, θ], . . . , [1, pm, θ], respectively.
The complete subtree rooted at πi witnesses pi → Si ∈ PR(w, θ),
where Si is the set of states in the labels of the leafs in the sub-
tree. Furthermore, S1 ∪ · · · ∪ Sm = S. By the induction hypothesis,
pi → Si ∈ TH(R(w, Pred(θ)), σ, P, V ). Combining rules 2 and 3, we
obtain q → S ∈ TH(R(w, Pred(θ)), σ, P, V ).

2. The state q is a nondeterministic state, that is, q ∈ N1. Let

(1, σ, P, V, q) → (p1, stay) ∈ µ1;
...

(1, σ, P, V, q) → (pm, stay) ∈ µ1;

Or, if q is a deterministic state, i.e. q ∈ D1, then m = 1. This case is
just like case 1 above, except that we use rules 4 and 2.

3. (1, σ, P, V, q) → (p, right) ∈ µ1. In this case, S = {p̄}. By rule 5, we
have q → {p̄} ∈ TH(R(w, Pred(θ)), σ, P, V ).

4. (1, σ, P, V, q) → (p, lift-pebble) ∈ µ1, where σ = ., P, V = ∅. In this
case, S = {p̄}. By rule 7, we have q → {p̄} ∈ TH(R(w, Pred(θ)), σ, P, V ).

5. (1, σ, P, V, q) → (p, left) ∈ µ1. The child π of the root of T has the
label [1, p, Pred(θ)]. Every path from π to a leaf of T must pass through
a node with label of the form [1, r, θ]. That is, pebble 1 must return to
the position θ(1) again.

Let Λ = {ρ1, . . . , ρl} be the descendants of π with the properties

(a) each ρi is labelled with [1, ri, θ],

(b) no node between π and ρi has a label with the third coordinate θ,

(c) every path from π to a leaf passes through a node in Λ.

13
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Let T ′ be the unique subtree of T whose root is π and whose set of
leaves is Λ. Then, T ′ is a witness of p → {r̄1, . . . , r̄l} ∈ PR(w, Pred(θ)).
Since this is a closed term, then p → {r̄1, . . . , r̄l} ∈ R(w, Pred(θ)). By
rule 6, q → {r1, . . . , rl} ∈ TH(R(w, Pred(θ)), σ, P, V ). The complete
subtree of T rooted at ρi witnesses ri → Si ∈ PR(w, θ), where Si

is the set of states in the labels of the leafs in the subtree. By the
induction hypothesis, ri → Si ∈ TH(R(w, Pred(θ)), σ, P, V ). Applying
rule 2, we obtain q → ⋃

1≤i≤l Si ∈ TH(R(w, Pred(θ)), σ, P, V ). Since⋃
1≤i≤l Si = S, this case follows.

Now we prove that TH(R(w, Pred(θ)), σ, P, V ) ⊆ PR(w, θ) by induction
on the proof length. Suppose q → S ∈ TH(R(w, Pred(θ)), σ, P, V ) has a
proof length ≥ 1.

• If the last step of the proof (from which q → S is concluded) is an
application of rules 1, 3, 4, 5, or 7, then it is immediate that there is a
computation tree that witnesses q → S ∈ PR(w, θ).

• If the last step of the proof is an application of rule 2, then suppose
q → A ∪ {p} and p → B are the antecedents from which q → A ∪ B
is concluded (S = A ∪ B). By the induction hypothesis, there are
computation trees T and T ′ which witness q → A ∪ {p} and p → B,
respectively. If each leaf of T labelled with [1, p, θ] is replaced with the
tree T ′ (whose root is labelled with [1, p, θ]), then the resulting tree
witnesses q → A ∪B ∈ PR(w, θ).

• If the last step of the proof is an application of rule 6, then suppose
that q → A is concluded from

(1, σ, P, V, q) → (p, left) and p → S̄ ∈ R(w, Pred(θ)) and S ⊆ Q1.

Since p → S̄ ∈ R(w, Pred(θ)), then there exists a computation tree T ′

such that

– the root of T ′ is labelled with [1, p, Pred(θ)];

– the leaf of T ′ is labelled with [1, r, θ] for some r ∈ S;

– for each r ∈ S, there is a leaf of T ′ labelled with [1, r, θ].

Now we can construct a tree T such that

14
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– the root of T is labelled with [1, q, θ];

– the root has only one immediate child π labelled with [1, p, Pred(θ)];

– the subtree rooted at π is the tree T ′.

The tree T is a witness of the term q → S ∈ PR(w, θ).

This completes the proof of the claim. 2

We denote by CTH(R, σ, P, V ) the set of closed terms in TH(R, σ, P, V ).
Since, by Claim 1, TH(R(w, Pred(θ)), σ, P, V ) = PR(w, θ), thus,

CTH(R(w, Pred(θ)), σ, P, V ) = R(w, θ).

The determinization of µ1 is done precisely by means of this equation. Loosely
speaking, the set of “states” of the deterministic version of µ1 are roughly
the set of responses R(w, θ). There are only finitely many such responses.
From the “state” R(w, Pred(θ)), if pebble 1 reads the “input” σ, P, V , then
it deterministically moves right and enters the state (R, θ).

In the following paragraphs we will describe this idea more precisely. But
before we do that, we need to make a bit of modification on the behavior of
pebble 2.

Let Q̃2, µ̃2, Ũ2, Ñ2, D̃2 be the modification of Q2, µ2, U2, N2 ,D2, re-
spectively, as follows. For a set B, we write 2B to denote the power set of
B.

• Q̃2 = Q2 ∪ 2Q2 ∪ 22Q2 ;

• Ũ2 = U2 ∪ (2Q2 − {∅});
• Ñ2 = N2 ∪ 22Q2 ;

• D̃2 = D2.

The set of transitions µ̃2 is the set µ2 plus the following transitions.

1. For every σ ∈ Σ, P, V ⊆ {3, . . . , k}, S1, . . . , Sm ⊆ Q2,

(2, σ, P, V, {S1, . . . , Sm}) → (Si, stay) ∈ µ̃2, for each i = 1, 2, . . . , m.

That is, from the state {S1, . . . , Sm} ∈ Q̃2 pebble 2 performs existential
branching.
Recall that the state {S1, . . . , Sm} ∈ Q̃2 is a nondeterministic state.
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2. For every σ ∈ Σ, P, V ⊆ {3, . . . , k}, S ⊆ Q2, we have the following
transition in µ̃2.

(2, σ, P, V, S) → (q, stay) ∈ µ̃2, for each q ∈ S.

That is, from the state S ⊆ Q2 pebble 2 performs universal branching.
Recall that the state S ∈ Q̃2 is a universal state.

3. We replace each transition (2, σ, P, V, q) → (p, place-pebble) ∈ µ2

with the following transition

(2, σ, P, V, q) → ((p, ∅), place-pebble) ∈ µ̃2.

In other words, µ̃2 no longer contains the transition (2, σ, P, V, q) →
(p, place-pebble). Rather, it contains the transition (2, σ, P, V, q) →
((p, ∅), place-pebble).

All other transitions in µ2 remain in µ̃2.
Now we define the sets of states Q′

1 and the set of transitions µ′1 for
deterministic pebble 1. We use the “prime” sign, as in µ′1, to indicate that
the behavior of pebble 1 (as described by µ′1) is deterministic. On the other
hand, the “tilde” sign, as in µ̃2, is used to indicate that the behavior of
pebble 2 (as described by µ̃2) is still alternating.

• Q′
1 consists of elements of the form (q,R), where q ∈ Q1 and R is a

response;

• µ′1 consists of the following transitions. For each q ∈ Q1,

1. (1, /, ∅, ∅, (q, ∅)) → ((q,R), right) ∈ µ′1, where R = R(w, θ), for
some w and θ such that θ(1) = 0.
By Remark 2, such R(w, θ) is well defined.

2. For every response R, label σ ∈ Σ and P, V ⊆ {2, . . . , k},
(1, σ, P, V, (q,R)) → ((q, CTH(R, σ, P, V )), right) ∈ µ′1.

3. (1, ., ∅, ∅, (q,R)) → ({S1, . . . , Sm}, lift-pebble), where for each
j = 1, . . . , m,

– q → S̄j ∈ CTH(R, ., ∅, ∅);
– Sj ⊆ Q2.
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Intuitively transitions in item 3 of µ′1 mean the following. Let R =
R(w, θ) and θ is pebble-1 assignment, where θ(1) = n+1 and n is the length
of w. Let θ′ is pebble-2 assignment such that for i = 2, . . . , k, θ(i) = θ′(i).

That the closed term q → S̄j belongs to CTH(R, ., ∅, ∅) means that there
exists a computation tree T such that

• the root is labelled with the configuration [1, q, θ];

• all the non leaf nodes are labelled with 1-configurations, that is, con-
figurations where the head pebble is pebble 1;

• all the leaf is labelled with the configuration [1, p, θ′], for some p ∈ Sj;

• for each p ∈ Sj, there exists a leaf with the configuration [2, p, θ′].

Since CTH(R, ., ∅, ∅) contains the closed terms q → S̄1, . . . , q → S̄m, it
means that there are only m possible “choices” of sets of states once pebble 1
is lifted, that is, S1, . . . , Sm. See picture below.

[1, q, θ]ppppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p/

ppppppppppppppppppppppppppp w
[2, p1, θ

′] · · · · · · · · · [2, pl, θ
′]︸ ︷︷ ︸

S1={p1,...,pl}

· · · · · ·

[1, q, θ]ppppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p/

ppppppppppppppppppppppppppp w
[2, t1, θ

′] · · · · · · · · · [2, ts, θ′]︸ ︷︷ ︸
Sm={t1,...,ts}

So, once we have deterministically simulated pebble 1, we have to indi-
cate to the automaton that there are m possible “choices” of sets of states for
pebble 2, hence, the state {S1, . . . , Sm} ∈ 22Q2 . From this state the automa-
ton nondeterministically chooses which set of states pebble 2 enters. Suppose
it chooses the set Sj. Then, from Sj the automaton branches conjunctively
into each state in Sj. See picture below.
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[1, (q, ∅), θ0]

?

[2, {S1, . . . , Sm}, θ′]

?

[2, S1, θ
′]

S
S

S
Sw

[2, p1, θ
′]

¶
¶

¶
¶/

[2, pl, θ
′]· · ·︸ ︷︷ ︸

S1={p1,...,pl}

· · · · · ·

[1, (q, ∅), θ0]

?

[2, {S1, . . . , Sm}, θ′]

?

[2, Sm, θ′]
S

S
S

Sw
[2, t1, θ

′]

¶
¶

¶
¶/

[2, ts, θ
′]· · ·︸ ︷︷ ︸

Sm={t1,...,ts}

We now show that µ1∪µ2 and µ′1∪ µ̃2 are “equivalent.” Recall that for a
subset X ⊆ µ, recall that γ `X γ′ denotes that the relation γ ` γ′ is obtained
by means of a transition in X.

Let w =
(

σ1

a1

) · · · (σn

an

)
be a data word and θ be a pebble-2 assignment on

/w.. For each i = 0, . . . , n + 1, we also denote by θi a pebble-1 assignment
such that

θi(j) =

{
θ(j), if j = 2, . . . , k,
i, if j = 1.

First, we show that transitions in µ1 and µ2 can be “correctly” simulated
by transitions in µ′1 and µ̃2. Suppose

[2, p1, θ] `µ2 [1, p2, θn+1] `∗µ1
[1, p3, θn+1] `µ1 [2, p4, θ].

Thus, this means that there exists a closed term p2 → S̄ ∈ R(w, θn+1) such
that S ⊆ Q2 and p4 ∈ S.

Now we are going to show that there exists a “deterministic” run by
means of the transitions in µ′1 and µ̃2 from the configuration [2, p1, θ] to the
configuration [2, p4, θ].

By the construction of µ̃2, we have

[2, p1, θ] `µ̃2 [1, (p2, ∅), θ0]. (1)
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Then, by the construction of µ′1,

[1, (p2, ∅), θ0] `µ′1 [1, (p2,R(/w., θ0)), θ1]; (2)

Furthermore, applying Claim 1 repeatedly, we obtain

[1, (p2,R(/w., θ0)), θ1] `µ′1 [1, (p2,R(/w., θ1)), θ2]

[1, (p2,R(/w., θ1)), θ2] `µ′1 [1, (p2,R(/w., θ2)), θ3]

...

[1, (p2,R(/w., θn−1)), θn] `µ′1 [1, (p2,R(/w., θn)), θn+1]

Thus, we obtain

[1, (p2,R(/w., θ0)), θ1] `∗µ′1 [1, (p2,R(/w., θn)), θn+1] (3)

Again, by the construction of µ′1, we have

[1, (p2,R(/w., θn)), θn+1] `µ′1 [2, {S1, . . . , Sm}, θ], (4)

where for each j = 1, . . . , m, p2 → Sj ∈ CTH(/w., θn+1).
Suppose that S1 = S. Again, by the construction of µ̃2, we have

[2, {S1, . . . , Sm}, θ] `µ̃2 [2, S1, θ]. (5)

and since p4 ∈ S,
[2, S1, θ] `µ̃2 [2, p4, θ]. (6)

Now, combining Equations (1)–(6), we obtain the run

1. [2, p1, θ] `µ̃2 [1, (p2, ∅), θ0];

2. [1, (p2, ∅), θ0] `∗µ′1 [1, (p2,R(/w., θn)), θn+1];

3. [1, (p2,R(/w., θn)), θn+1] `µ′1 [2, {S1, . . . , Sm}, θ];
4. [2, {S1, . . . , Sm}, θ] `µ̃2 [2, S1, θ];

5. [2, S1, θ] `µ̃2 [2, p4, θ].

Vice versa, now we show that transitions in µ′1 and µ̃2 can be “correctly”
simulated by transitions in µ1 and µ2. Suppose we have the following rela-
tions:
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1. [2, q, θ] `µ̃2 [1, (p, ∅), θ0];

2. [1, (p, ∅), θ0] `µ′1 [1, (p,R(/w., θ0)), θ1];

3. [1, (p,R(/w., θ0)), θ1] `µ′1 · · · `µ′1 [1, (p,R(/w., θn)), θn+1];

4. [1, (p,R(/w., θn)), θn+1] `µ′1 [2, {S1, . . . , Sm}, θ];
5. [2, {S1, . . . , Sm}, θ] `µ̃2 [2, Si, θ];

6. [2, Si, θ] `µ̃2 [2, s, θ], for each s ∈ Si.

Now, from the construction of µ̃2, Relation (1) implies that the relation below
holds.

[2, q, θ] `µ2 [1, p, θn+1].

From the construction of µ′1 and Claim 1, Relations (2)–(4) implies that

p → S̄i ∈ R(/w., θn+1), where Si ⊆ Q2.

This means that for each s ∈ Si,

[1, p, θn+1] `∗µ1
[2, s, θ], where s ∈ Si.

This completes the proof that µ1 ∪ µ2 are “equivalent” to µ′1 ∪ µ̃2.

4.2 Determinizing pebble i

Now, assuming that the behavior of pebbles 1, . . . , i − 1 are one-way and
deterministic, we will determinize pebble i. The end result of the deter-
minization is such that pebble i is placed in the left-end marker / and lifted
when it reaches the right-end marker ..

The idea is very similar to the one in Subsection 4.1, with the exception
that now during the computation pebble i can place pebble (i − 1). The
effect of such placement is the state of pebble i changes. Figure 1 below is
an example of a sequence of moves of pebble 2 of a two pebble automaton
A on

(
σ1

a1

)(
σ2

a2

)(
σ3

a3

)(
σ4

a4

)
. Recall by our normalization of A in Section 4, the

computation starts with pebble 2 above the right-end marker .. We assume
that the behavior of pebble 1 is already determinized in the manner explained
in the previous subsection.

For example, the pair (q2, q
′
2) in the run of pebble 1 indicates that pebble 2

first arrives at the symbol
(

σ3

a3

)
when pebble 2 is in the state q2, upon which
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/
(

σ1

a1

) (
σ2

a2

) (
σ3

a3

) (
σ4

a4

)
.

pebble 2 q5 ← q4 ← q3 ← (q2, q
′
2) ← q1 ← q0

↪→ → q6 → q7 → q8 → q9 → q10 → qf

pebble 1
(q2, q

′
2)

q11 → q12 → q13 → q14 → q15 → q16

Figure 1: A sequence of moves of A on
(

σ1

a1

)(
σ2

a2

)(
σ3

a3

)(
σ4

a4

)
.

pebble 1 is placed. When pebble 1 has finally finished its computation, that
is, when it is lifted after reading the right-end marker ., A enters the state
q′2 from which pebble 2 continues the computation. This pair (q2, q

′
2) can

be viewed as a term q2 → {q′2} and has to be included as an “axiom” in
the proof system TH(R, σ, ∅, ∅). This will be made more precise in the next
paragraphs.

Let Q1, . . . , Qi−1 be the set of states of pebbles 1, . . . , (i−1), respectively,
and µ1, . . . , µi−1 be the set of transitions of pebbles 1, . . . , (i−1), respectively.
We assume that the behavior of pebbles 1, . . . , i−1, according to µ1, . . . , µi−1,
is deterministic.

Let w =
(

σ1

a1

) · · · (σn

an

)
and θ be a pebble-i assignment on w. We define a set

of terms ℘(µi, w, θ) as follows. For p, q ∈ Qi, the term p → {q} ∈ ℘(µi, w, θ)
if and only if there exists s1, s2 ∈ Qi−1 such that

1. (i, σθ(i), P, V, p) → (s1, place-pebble) ∈ µi, where

• P = {l > i : θ(l) = θ(i)};
• V = {l > i : aθ(l) = aθ(i)}.

2. [i − 1, s1, θ0] `∗ [i − 1, s2, θn+1] is an (i − 1)-run, where θ0(i − 1) = 0,
θn+1(i− 1) = n + 1 and θ0(j) = θn+1(j) = θ(j), for all j = i, . . . , k.

3. (i, ., ∅, ∅, s2) → (q, lift-pebble) ∈ µi−1.

Since pebbles 1, . . . , (i− 1) all behave deterministically, for each p ∈ Qi,place,
there exists exactly one q ∈ Qi such that the term p → {q} ∈ ℘(Ai, w, θ).

For a pebble-i assignment θ, we define the response R(w, θ) as follows.
For a set S ⊆ Q, a closed term q → S̄ belongs to R(w, θ) if there exists a
computation tree T of A on w whose root is labelled with [i, q, θ] such that

21

Technion - Computer Science Department - Technical Report  CS-2009-10 - 2009



• if θ(i) ≤ n, then each leaf is labelled with [i, p, Succ(θ)] for some p ∈ S;

• if θ(i) = n+1, then each leaf is labelled with [i+1, p, Succ(θ)] for some
p ∈ S;

• each internal node in T is labelled with [j, q′, θ′], where

1. j ≤ i; and

2. if j = i, then 0 ≤ θ′(i) ≤ θ(i).

• for each p ∈ S, there exists a leaf labelled with [1, p, Succ(θ)].

Similarly, we define the partial response PR(w, θ) as follows. For a set
S ⊆ Q∪ Q̄, a term q → S belongs to PR(w, θ) if there exists a computation
tree T of A on w whose root is labelled with [i, q, θ] such that

• if θ(i) ≤ n, then each leaf is labelled with either [i, p, Succ(θ)] for some
p̄ ∈ S or [i, p, θ] for some p ∈ S;

• if θ(i) = n + 1, each leaf is labelled with either [i + 1, p, Succ(θ)] for
some p̄ ∈ S or [i, p, θ] for some p ∈ S;

• each internal node in T is labelled with [j, q′, θ′], where

1. j ≤ i; and

2. if j = i, then 0 ≤ θ′(i) ≤ θ(i);

• if θ(i) ≤ n, for each p̄ ∈ S, there exists a leaf labelled with [i, p, Succ(θ)];

• if θ(i) = n + 1, for each p̄ ∈ S, there exists a leaf labelled with [i +
1, p, Succ(θ)]; and

• for each p ∈ S, there exists a leaf labelled with [i, p, θ].

The following claim is the generalization of Claim 1 and the proof is
similar, thus, omitted.

Claim 2 For every word w =
(

σ1

a1

) · · · (σn

an

)
and pebble-i assignment θ on /w.,

PR(w, θ) = TH(P , σ, P, V ),

where
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• P = R(w, Pred(θ)) ∪ ℘(µi, w, θ);

• 1 ≤ θ(i) ≤ n + 1;

• P = {l > i : θ(l) = θ(i)};
• V = {l > i : aθ(l) = aθ(i)};
• σ = σθ(i).

We will describe intuitively how to simulate pebble i deterministically in
the following paragraph. The “main” states of pebble i will still be of the
form (q,R), where q ∈ Qi and R is a response.

Let w =
(

σ1

a1

) · · · (σn

an

)
be an input word and θ be a pebble-i assignment

such that 1 ≤ θ(i) ≤ n. Let R be a response. From the configuration
[i, (q,R), θ], pebble i performs the following.

1. Places pebble (i−1) and simulates it starting from each possible state,
in order to obtain the set of terms ℘(µi, w, θ).

2. Let P = R∪ ℘(µi, w, θ).
Then, pebble i enters the state (q, CTH(P , σ, P, V )) and moves right,
where

• σ = σθ(i);

• P = {l > i : θ(l) = θ(i)};
• V = {l > i : aθ(l) = aθ(i)}.

The formal description is given below. Let Q1, . . . , Qi be the sets of
states of pebbles 1, . . . , i, respectively, and µ1, . . . , µi be the sets of transi-
tions of pebbles 1, . . . , i, respectively. Recall that the behavior of the peb-
bles 1, . . . , (i− 1), according to µ1, . . . , µi−1, is deterministic.

Similar to the case of pebble 1, we need to make a bit of modification
on the behavior of pebble (i + 1). Let Q̃i+1, µ̃i+1, Ũi+1, Ñi+1, D̃i+1 be the
modification of Qi+1, µi+1, Ui+1, Ni+1 ,Di+1, respectively, as follows.

• Q̃i+1 = Qi+1 ∪ 2Qi+1 ∪ 22Qi+1
;

• Ũi+1 = Ui+1 ∪ 2Qi+1 − {∅};

• Ñi+1 = Ni+1 ∪ 22Qi+1
;
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• D̃i+1 = Di+1.

The set of transitions µ̃i+1 is the set µi+1 plus the following transitions:

1. For every label σ ∈ Σ, sets P, V ⊆ {i+2, . . . , k}, and sets S1, . . . , Sm ⊆
Qi+1,

(i+1, σ, P, V, {S1, . . . , Sm}) → (Sj, stay) ∈ µ̃i+1, for each j = 1, . . . , m.

That is, from the state {S1, . . . , Sm} ∈ Q̃i+1 pebble (i + 1) performs
existential branching.
Recall that the state {S1, . . . , Sm} ∈ Q̃i+1 is a nondeterministic state.

2. For every σ, P , V , S ⊆ Qi+1, we have the following transition in µ̃i+1.

(i + 1, σ, P, V, S) → (q, stay) ∈ µ̃i+1, for each q ∈ S.

That is, from the state S ∈ Q̃i+1 pebble (i + 1) performs universal
branching.
Recall that the state S ∈ Q̃i+1 is a universal state.

3. We replace each transition (i + 1, σ, P, V, q) → (p, place-pebble) ∈
µi+1 with the following transition in µ̃i+1

(i + 1, σ, P, V, q) → ((p, ∅), place-pebble) ∈ µ̃i+1.

That is, µ̃i+1 no longer contains (i+1, σ, P, V, q) → (p, place-pebble),
rather it contains (i + 1, σ, P, V, q) → ((p, ∅), place-pebble).

All other transitions in µi+1 remain in µ̃i+1.
Now, we define the sets of states Q′

1, . . . , Q
′
i and the sets of transitions

µ′1, . . . , µ
′
i such that the behavior of pebbles 1, . . . , i, according to µ′1, . . . , µ

′
i,

is deterministic. We start with defining the sets of states Q′
1, . . . , Q

′
i.

1. Q′
i consists of elements of the forms

• (q,PR) where q ∈ Qi and PR is a partial response;

• (q, X,PR) where q ∈ Qi, X ⊆ Qi,place and PR is a partial re-
sponse.
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The intuitive meaning of the state (q,PR) is like in the previous sub-
section. The purpose of the state (q,X,PR) is for simulating peb-
ble (i − 1) in order to compute the set ℘. The set X is supposed to
contain the states of pebble i from which the automaton has yet to
simulate pebble (i− 1).

2. For each j = 1, . . . , i− 1, the states in Q′
j are of the form

((q, X,PR, s), p)

where q ∈ Qi, X ⊆ Qi,place, PR is a partial response, s ∈ Qi,place and
p ∈ Qj.
The intuitive meaning of these states is as follows.

• The triple (q,X,PR) is to remember the state of pebble i while
simulating pebble (i− 1).

• The component s ∈ Qi,place is to remember the starting state of
the simulation of pebble (i− 1).

• The last component p ∈ Qj is the current state of the simulation.

The sets of transitions µ′1, . . . , µ
′
i are defined as follows.

1. The sets µ′1, . . . , µ
′
i−1, are defined as follows.

(a) For each j = 1, . . . , i− 2, for each transition

(j, σ, P, V, p) → (t, act) ∈ µj,

we have the transition

(j, σ, P, V, ((q,X,PR, s), p)) → (((q, X,PR, s), t), act) ∈ µ′j.

(b) For each transition

(i− 1, σ, P, V, p) → (t, act) ∈ µi−1,

where act 6= lift-pebble, we have the transition

(i−1, σ, P, V, ((q, X,PR, s), p)) → (((q, X,PR, s), t), act) ∈ µ′i−1.
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(c) For each transition

(i− 1, ., ∅, ∅, p) → (t, lift-pebble) ∈ µi−1

we have the transition

(i−1, ., ∅, ∅, ((q, X,PR, s), p)) →
((q, X,PR ∪ {s → {t}}), lift-pebble) ∈ µ′i−1.

2. µ′i consists of the following transitions.

(a) For each q ∈ Qi, (i, /, ∅, ∅, (q, ∅)) → ((q,R), right) ∈ µ′i, where
R = R(w, θ), for some w and θ such that θ(i) = 0.
By Remark 2, such R(w, θ) is well defined.

(b) For state q ∈ Qi, every response R, label σ ∈ Σ and P, V ⊆
{i + 1, . . . , k},

(i, σ, P, V, (q,R)) → ((q,Qi,place,R), stay) ∈ µ′i.

The purpose of this transition is to start computing the set of
terms ℘.

(c) For every state q ∈ Qi, every partial response PR, every nonempty
set X ⊆ Qi,place, every label σ ∈ Σ and every sets P, V ⊆ {i +
1, . . . , k},

(i, σ, P, V, (q, X,PR)) →
(((q,X − {s},PR, s), t), place-pebble) ∈ µ′i,

where X 6= ∅, s ∈ X and (i, σ, P, V, s) → (t, place-pebble).
The purpose of these transitions is to simulate pebble (i−1) from
the state s, where s is the state of pebble i before pebble (i − 1)
is placed for the simulation.
Note that this is a place-pebble transition, so the state ((q,X −
{s},PR, s), t) ∈ Q′

i−1.

(d) For every state q ∈ Qi, every partial response PR, every label
σ ∈ Σ and every sets P, V ⊆ {i + 1, . . . , k},

(i, σ, P, V, (q, ∅,PR)) → ((q, CTH(PR, σ, P, V )), right) ∈ µ′i.
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The purpose of these transitions is as follows. Now that the au-
tomaton has finished simulating pebble (i − 1) from all possi-
ble states, as indicated by the fact that X = ∅, pebble i com-
putes CTH(PR, σ, P, V ), enters the state (q, CTH(PR, σ, P, V ))
and moves right.

(e) (i, ., ∅, ∅, (q,R)) → ({S1, . . . , Sm}, lift-pebble), where for each
j = 1, . . . , m,

• q → S̄j ∈ CTH(R, ., ∅, ∅);
• Sj ⊆ Qi+1.

The purpose of these transitions is the same as their pebble 1
counterpart. Recall also that no new pebble is placed when the
head pebble is reading the right-end marker ., thus, it is not
necessary to compute the set of terms ℘.

The proof that µ1 ∪ · · · ∪ µi ∪ µi+1 and µ′1 ∪ · · · ∪ µ′i ∪ µ̃i+1 are equivalent
is similar to the corresponding proof for the case of pebble 1, thus, omitted.

4.3 Determinizing A
For the final step, we define the deterministic k-PA A′ = 〈Q′, q′0, µ

′, F ′〉 that
accepts the same language as A = 〈Q, q0, µ, F 〉. By the induction step ex-
plained in the previous subsection, we assume that the behavior of peb-
bles 1, . . . , k − 1 is deterministic.

• Q′ = Q′
1 ∪ · · · ∪ Q′

k−1 ∪ Q′
k ∪ {qacc, qrej}, where each Q′

1, . . . , Q
′
k−1, Q

′
k

are the modification of the set of states Q1, . . . , Qk−1, Qk like in the
previous subsection;

• q′0 = (q0, ∅);
• F ′ = {qacc};
• µ′ = µ′1∪· · ·∪µ′k−1∪µ′k, where each µ′1, . . . , µ

′
k−1, µ

′
k are the modification

of the set of transitions µ1, . . . , µk−1, µk like in the previous subsection,
plus the following transitions.
The transition

(k, ., ∅, ∅, (q0,R)) → (qacc, right) ∈ µ′k,
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if there exists a set S ⊆ F such that q0 → S̄ ∈ CTH(R, ., ∅, ∅), and
the transition

(k, ., ∅, ∅, (q0,R)) → (qrej, right) ∈ µ′k,

if there does not exists a set S ⊆ F such that q0 → S̄ ∈ CTH(R, ., ∅, ∅).
The proof that A and A′ are equivalent is similar to the corresponding proof
for the case of pebble 1, thus, omitted.
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