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Abstract

We consider the numerical computation of one-dimensional detonation waves. Detonation

waves are travelling wave solutions of the reactive Euler equations. An essential difficulty

in the numerical computation of detonation waves is the occurrence of nonphysical solu

tions. In order to study this problem we consider a 2 x 2 model problem. For this model

problem it is illustrated that nonphysical solutions are weak detonation waves. This is used

to obtain a simple criterion which ensures that, also for relatively large mesh sizes, the nu

merical solution approximates the physically correct weak solution. Finally, we extend

this criterion to the reactive Euler equations. Numerical results support the use of this cri

terion to exclude nonphysical weak detonation waves.
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1 Introduction

In simulations of the flow of a reacting gas mixture, chemical reactions between the constituent

gases need to be modelled together with the fluid dynamics. Problems of this form arise, for

example, in combustion [5, 10]. The conservation laws for reacting gas flow and the theory of

chemical kinetics form the basis of combustion theory. These equations represent the conserva

tion of mass, momentum and energy of the total mixture and the change of composition of the

gas mixture due to reaction.

A considerable simplification of these equations is possible if we restrict ourselves to one

dimensional detonations. Detonation waves are propagating so fast that molecular diffusion,

thermal conductivity and viscosity are usually unimportant, and therefore they are ignored. If

effects ofwalls, heat sources and external forces are also ignored, we essentially obtain the Euler

equations of gas dynamics, completed with the continuity equations for the various species (see

(3.1) below). These latter equations include source terms describing the chemical reactions.

The complete system of equations is often referred to as the reactive Euler equations. In many

model computations, the chemical reactions are described by the ignition model or the law of

mass action and Arrhenius' law [10]. In this paper the ignition model is used. In this model there

exists an ignition temperature Tign such that the reaction rate is very large when the temperature

is above the ignition temperature and zero otherwise.

In this paper we considerdetonation waves described by the ZND model (a model developed

by Zel'dovich, von Neumann and Doring) [5, 10]. The ZND model assumes that a detonation

wave consists of an ordinary nonreacting shock wave followed by a reaction zone. Hence, due

to a strong leading shock front the temperature jumps to a value higher than some ignition tem

perature and a reaction is started.

The reactive Euler equations are a system of first order hyperbolic conservation laws. Since

detonation waves have a discontinuous structure, including a strong leading shock front, we con

sider weak solutions ofhyperbolic differential equations. A difficulty is that weak solutions tum

out to be nonunique and we have to characterise the unique "physically relevant" weak solution.

In case of the ZND model for detonation waves, this unique weak solution is characterised by

Jouguet's rule, which says that the flow in a front attached frame of reference is supersonic in

the unburnt gases ahead of the wave and subsonic or sonic in the burnt gases behind the wave.

In the former case, one speaks of a strong or overdriven detonation wave, while a wave with

sonic outflow is called a Chapman-Jouguet detonation wave [4].

When attempting to solve the reactive Euler equations numerically, we encounter problems

that are absent in nonreacting flows. Apart from an increase in the number of equations, the

main difficulty is the fact that, in general, the time scales of the chemical reactions are very

small compared to the time scale of the fluid dynamics. For fast reactions it is possible to ob

tain stable numerical solutions that look reasonable and yet are completely wrong, because the

discontinuities have the wrong locations. Thus, the numerical reaction waves are propagating at

nonphysical wave speeds. This phenomenon has been observed by several other authors [3, 8].

In this paper it is shown that these "wrong solutions" tum out to be approximations of nonphys

ical weak solutions (Le. weak detonation waves).

In general the nonphysical weak detonation waves are only observed if the ignition temper

ature is close to the temperature of the unburnt gas. In this case, due to numerical diffusion,

the temperature is raised above the ignition value and the reaction is started artificially. If the

reaction is fast enough, then the gas is completely burnt in the next time step and the discontinu

ity is shifted to a cell boundary. Therefore, it is not surprising that nonphysical wave speeds of

one cell per time step can be observed for fast reactions. For these relatively low values of the
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ignition temperature, numerical experiments show that only on very fine meshes the numerical

solution will approximate the correct weak solution. In most practical cases we cannot afford

such fine meshes and therefore, we want a criterion that excludes the nonphysical weak deto

nation waves also on relatively coarse meshes.

It is important to remark that in practical applications the ignition temperature is much higher

than the temperature of the unburnt gas and our numerical results illustrate that for these ignition

temperatures, the nonphysical weak solutions will not occur.

We observe the same essential numerical difficulty of approximating incorrect weak solu

tions for low ignition values in the simplified detonation model studied by Majda in [9]. This

model is a 2 x 2 system ofequations which bears the analogous relationship to the reactive Euler

equations as Burgers' equation does to the ordinary Euler equations. Also for this model prob

lem the correct solution is obtained here as the ignition temperature increases to more realistic

values.

In this paper we present theoretical insights in order to explain the strong influence of the

ignition temperature on the numerical solution for the simplified detonation model. The incor

rect weak solution appears to be a weak detonation wave followed by an ordinary shock wave,

while the physically correct solution is a strong detonation wave propagating with speed s > O.

It is shown that nonphysical solutions are excluded, if the temperature in the burnt gas directly

behind the detonation wave is larger than the final state of a weak detonation wave propagating

with speed s. Subsequently, this is used to obtain a simple criterion, which ensures that also for

relatively coarse meshes, the numerical solution approximates the physically correct detonation

wave speed. Furthermore, we extend this criterion to the reactive Euler equations.

The criterion simply states that the ignition temperature should exceed a certain thresh

old value that is determined by the thermodynamical features of the mixture. Our numerical

computations illustrate convincingly that the correct detonation speed is obtained, even if the

Damkohler number is large enough to enforce the thickness iT of the associated ZND detona

tion to occupy merely a tiny fraction of a numerical mesh width f).x.

In fact, we consider cases, where iT ~ 10-5
f).x. Certainly, in this situation any information

about the detailed structure of the wave is lost. Moreover, any dynamics or stability behaviour

of the detonations is not represented, since that is inherently due to effects of the inner structure

of the detonations. However, the major flaw of the generation of nonphysical weak detonations

is overcome.

We emphasise that such a choice is in fact more realistic than an ignition temperature that is

very close to the unburnt gas temperature; reactive gases typically require considerable heating

before the chemical reactions become self-sustained. From a mathematical point of view, this

is a consequence of a characteristic exponential (Arrhenius-type) behaviour of the reaction rate

laws, which guarantees the rates to be exponentially small even for temperatures relatively close

to the burnt gas temperature. On the other hand, from a chemical point of view, this freezing of

the chemistry up to considerable temperatures can be due to a chemical kinetic competition for

radical species, which for low temperatures is completely on the side of the radical consuming

reactions. In fact, recent studies of hydrogen as well as hydrocarbon combustion systems show

that there typically exists a kinetically determined temperature threshold of about 1100 K [6].

If highly precompressed gas mixtures are considered with temperatures that are in fact close

to this kinetic threshold, one has to take the standard considerations that exclude weak detona

tions with a heavy grain of salt. Due to processes of sequential auto-ignition, weak detonation

fronts can in fact occur and a numerical scheme that automatically suppresses them, suppresses

an important piece ofthe physics. However, to our knowledge, the numerical simulation ofcom

bustion processes in this transition regime, with sufficient focus on the problem of physical and
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nonphysical detonations structures, is an open problem yet. We do not intend to suggest a so

lution here.

This paper is organised as follows. In the next section one-dimensional hyperbolic conser

vation laws with source terms, and their weak solutions are introduced. In Section 3 the reactive

Euler equations are presented. The Chapman-Jouguet model and the ZND model are briefly de

scribed. A simplified detonation model is presented in Section 4. Furthermore, we describe the

analogues of the Chapman-Jouguet model and the ZND model for this 2 x 2 model problem. In

Section 5 we restrict ourselves to the simplified detonation model. We present the well-known

first order splitting method, where, for the sake of simplicity, we only describe a combination

of Roe's method and the backward Euler method. In this section we show that nonphysical

solutions are always weak detonation waves. The latter property is used to obtain the desired

criterion that excludes the nonphysical weak solutions. In Section 6 we present some numeri

cal results for the simplified detonation model that illustrate the preceding analysis. Finally, in

Section 7 we extend the previously derived criterion to the reactive Euler equations and present

some numerical results for the reactive Euler equations that support this criterion.

2 Hyperbolic Conservation Laws with Source Terms

In the following we consider one-dimensional conservation laws with source terms. It is as

sumed that the source terms are only dependent on the solution u. The general form of such

conservation laws is

XR

:t f u(x, t)dx =
XL

XR

f(U(XL, t)) - f(U(XR, t)) +f q(u(x, t))dx.

XL

(2.1)

Conservation laws of this form occur, among others, in the theory of reacting gas flow [5, 10].

Assume that the solution U : /R x [0, 00) ~ /Rm and the flux function f : /Rm ~ /Rm are

continuously differentiable and let the source term q : /Rm ~ /Rm be continuous. Then, since

(2.1) should hold for arbitrary XL and x R, it is clear that U satisfies

a a
at U(x, t) + ax f(u(x, t)) = q(u(x, t)). (2.2a)

This is the differential form of the conservation law. In order to obtain an initial value problem

we add initial data to (2.2a), i.e.

u(x,O) = uo(x), "Ix E /R. (2.2b)

The assumption of the solution of (2.1) to be continuously differentiable is too strong, since

in practice discontinuous solutions u of (2.1) occur [5, 7, 10]. This is the reason why weak

solutions of the initial value problem (2.2) are interesting. These weak solutions are obtained

from multiplying (2.2a) with an arbitrary test function q> E CJ (/R X [0,00)) (i.e. q> vanishes

for Ix I+ t large) and, subsequently, partially integrating this equation in space and time. This

leads to the following definition.
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Definition 2.1 A bounded measurablefunction u is called a weak solution ofthe conservation

law (2.2a) with bounded initial data (2.2b) if
00 00

JJ{u(X, t):tqJ(X,t) +f(U(X,t»aaXqJ(X,t)}dxdt 

° -00
00 00 00

-JuO(x)qJ(x,O)dx - JJq(u(x, t»qJ(x, t)dxdt

-00 ° -00

(2.3)

for all functions qJ E CJ (lR x [0, 00».

From now on by a solution of (2.2) a weak solution of (2.2) in the sense of Definition 2.1 is

meant. It can be shown that a solution of (2.1) is always a weak solution of (2.2).

A difficulty is that the weak solutions of (2.2) tum out to be nonunique for a given set of

initial data, and it remains to characterise the "physically relevant" weak solution. The usual

criterion is to impose an extra condition upon the solution, the so-called entropy condition, such

that a physically relevant solution is obtained [7].

The system (2.2a) is assumed to be hyperbolic, i.e. the Jacobian matrix of f(u), defined

by A(u) = a~ f(u), has real eigenvalues and m linearly independent eigenvectors. A very im

portant example of a system of hyperbolic conservation laws with source terms are the reactive

Euler equations [3, 4, 10], which are described in the next section. In Section 4 we describe a

simplified detonation model which serves as a second example.

3 The Reactive Euler Equations

3.1 Introduction

Consider a tube filled with a gas mixture that is uniformly distributed across the tube, so there

is variation in only one direction and we can restrict ourselves to one space dimension. For

the sake of simplicity we assume that the gas is a binary mixture in which only one chemical

reaction takes place. Thus consider the one-step reaction "unbumt gas ~ burnt gas". Further

assume that a detonation wave is propagating in the positive x -direction. All quantities ahead of

the detonation wave will be identified by the subscript u (the unbumt gas), while the quantities

behind the wave are denoted by the subscript b (the burnt gas).

For detonation waves the general combustion equations simplify to the reactive Euler equa

tions. These equations represent the conservation of mass, momentum and energy of the total

mixture and the balance of mass for the unbumt gas. The latter equation includes a source term

describing the one-step chemical reaction. With mass density p, mass weighted average veloc

ity u, pressure p, specific total energy E, mass fraction of the unbumt gas Y and reaction rate

W, the one-dimensional reactive Euler equations are

a a
a/p ) + ax (pu) - 0, (3.1a)

a a
at (pu) + ax (pu

2 + p) - 0, (3.1b)

a a
at (pE) + ax (puE + pu) - 0, (3.1c)

a aa/pY) + ax (puY) - w. (3.1d)
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(3.2)

All variables have been made dimensionless by normalising them with respect to some reference

state. To complete the system (3.1), the pressure p and the reaction rate w have to be related to

the independent variables p, u, E and Y. If we assume that both gases behave like an ideal gas

with the same specific heat ratio y, then the thermodynamic identity is given by

1 2
P = (y - l)p(E - 2U - Qy),

where Q > 0 is the specific heat release of the chemical reaction. In general the reaction rate w

depends on the temperature T via some Arrhenius relation [3,5, 10]. lYpically the reaction rate

is very large when the temperature is sufficiently high but negligible for small T. For simplicity

we can approximate this by an 'ignition temperature' kinetics model, in which the Arrhenius

behaviour is idealised to [3]

{
0,

w-
- -DapY,

T < Tign,

T ~ Tign,
(3.3)

where Tign is the ignition temperature and Da is referred to as the Damkohler number. The igni

tion temperature satisfies Tu < Tign ::: TvN, where TVN is the von Neumann temperature, which

is discussed in Section 3.3. The Damkohler number is defined as the ratio of the convection

time scale and the reaction time scale [10]. Obviously, if Da is small the reaction occurs slowly

relative to the specified time scale and if Da is large, the reaction zone is thin and the reaction

occurs quickly relative to the specified time scale. Equation (3.3) defines w as a function of p,

u, E and Y through the thermodynamic identity (3.2) and the equation of state

p = pT. (3.4)

The system ofequations (3.1), (3.2), (3.3) and (3.4) consists of seven equations for the variables

p, u, E, Y, p, T and w.

In this paper a short description is given of two well-known models for detonation waves,

namely the Chapman-Jouguet model and the ZND model.

3.2 The Chapman-Jouguet Model

If the Damkohler number Da is very large, then the reaction length is very small relative to

the convection length. We start with considering the limit Da -+ 00, in which case the gas is

burnt instantaneously. We then expect that across a combustion wave the state variables will be

discontinuous. The temperature will jump to a higher value and Y will jump from 1 to O. From

conservation of mass, momentum and energy a set of allowable jumps and associated shock

speeds can be determined analogously to the derivation of the Rankine-Hugoniot conditions for

ordinary shock waves. The corresponding equations are called the reactive Rankine-Hugoniot

equations.

For details concerning these equations the reader is referred to e.g. [4,5, 10]. In this paper

we just summarise some results obtained from the reactive Rankine-Hugoniot equations. If a

detonation wave passes the unburnt gas, the pressure and the density jump to higher values, i.e.

Pb > Pu and Pb > Pu. Detonation waves can be distinguished in three different types, namely

strong, Chapman-Jouguet and weak detonation waves. We present, without proof, some charac

teristic properties by which we can distinguish the various detonation waves. These properties

are referred to as Jouguet's rule [4].
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Jouguet's Rule:

The gas flow relative to the reaction front is

supersonic ahead of a detonation front (Le. s - Uu > cu ),

subsonic behind a strong detonation front (Le. 0 < s - Ub < Cb),

sonic behind a Chapman-Jouguet detonation front (Le. s - Ub = Cb),

supersonic behind a weak detonation front (Le. s - Ub > Cb),

where C = Jyp / P is the speed ofsound and s is the speed ofthe detonation wave. The Chapman

Jouguet (CJ) detonation wave is of particular importance since this wave travels with the min

imal speed of all the possible detonation waves. Note that practically all detonation waves ob

served in nature travel at approximately the CJ velocity. Finally, it can be shown that weak det

onations are only possible under extreme and rare circumstances [4].

3.3 The ZND Model

The previous considerations give no insight into the internal structure ofdetonation waves, since

Da was assumed to be infinitely large. For finite Damkohler numbers we expect some region of

finite width across which the reaction takes place. Independently from each other, Zel'dovich,

von Neumann and Doring developed a model that explains the internal structure of detonation

waves, the so-called ZND model [4, 5, 10]. The ZND model assumes the following.

A detonation wave travelling with constant speed s has the internal structureofan ordi

nary (nonreacting) precursorfluid dynamical shock wave followed by a reaction zone.

Hence, due to a strong leading shock wave the temperature of the unburnt gas Tujumps to a value

larger than Tign and a reaction is started. The values immediately behind the nonreacting shock

wave are called the von Neumann values and are the final values if no chemical reaction takes

place. For instance, the temperature behind the ordinary shock wave is called the von Neumann

temperature TvN • As the reaction proceeds (through the reaction zone) Y decreases from 1 to 0

and the pressure and density decrease to their final values Pb and Pb, respectively. Suppose all

states ahead of the detonation wave are known. For given Q, y, Da and s we can compute the

exact ZND solution of (3.1). An example of a ZND profile is given in Figure 1. In this figure the

ordinary shock wave is located at x = O. Finally, it is convenient to introduce the half reaction

length LI/2. The half reaction length is the distance for half completion of the reaction starting

from the front of the detonation wave [2]. Often LI/2 is given and (3.3) is used to compute the

corresponding Damkohler number Da.

Example 3.1 As an example of the preceding theory we describe the ZND solution of a strong

detonation. All quantities are nondimensionalised with respect to the unburnt gas. Hence, the

dimensionless preshock state is given by

Pu = 1, Pu = 1, Uu - o.

Furthermore, we have the following parameter values:

Q = 10, y = 1.4,

6
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which implies that Ll/2 = 0.1. We choose a relatively small Da, since otherwise the reaction

is very fast and the plot of the ZND profile is not very clarifying. The final state for the strong

detonation is given by

Pb = 14.489, Pb = 2.1718, Ub = 2.6977,

where the strong detonation is propagating with a speed s = 5. In Figure 1 the steady ZND

solution is drawn. The pressure reaches its maximum value right behind the precursor shock.

The pressure in this point is called the von Neumann pressure, which in this particular case sat

isfies PvN = 20.667. For this particular example the von Neumann temperature is given by

TVN = 4.4089.

Pressure
8

Temperature

20

P ) T
6

t
15

t
10

4

5 2

0 ~3·3 ·2 ·1 0 ·2 ·1 0 1

-x -x

Reaction Rate Mass Fraction

w 30 Y

t
t 0.8

20
0.6

10 0.4

0.2

0
0

·3 ·2 ·1 0 1 ·3 ·2 ·1 0 1

-x -x

Figure 1: Strong detonation as described by the ZND model, with Q = 10, Y = 1.4 and

Da = 6.7486.

4 A Simplified Detonation Model

4.1 Introduction

Even in one space variable the reactive Euler equations (3.1) are complicated, so it is not sur

prising that simpler qualitative models for the equations (3.1) have been developed. Although

physically not very realistic, these model problems are interesting for testing and analysing nu

merical methods. Clearly, simplified models are inadequate as full test problems for any numer

ical method. However, a study of these problems suffices to analyse some of the difficulties that

may arise in the more complicated systems.
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The model of interest bears the analogous relationship to the reactive Euler equations as

Burgers' equation does to the ordinary Euler equations. This model is the 2 x 2 system of equa

tions

a a I 2
at U + ax (2U ) - -Qw(u, Y),

a
-Y - w(u, Y).
at

(4.1a)

(4.1b)

In the above model Y plays a similar role as the mass fraction of the unburnt gas and Q > 0 can

be interpreted as the heat release of the chemical reaction. Analogously to (3.3), the reaction

rate w is given by

w(U, Y) = { ~Da Y,
U < Uign,

U ~ Uign,
(4.2)

where Uign is the ignition value of the chemical reaction and Va is referred to as the Damkohler

number. Analogously to (3.3) we refer to Uign as the ignition temperature, although it represents

not a specific temperature. The above model problem (4.1) is called the simplified detonation

model. We emphasise that (4.1) is only used as a numerical test problem and has no real phys

ical meaning. A physically more realistic test problem is obtained when aYfat is replaced by

aYfax [3]. However, we have experienced that for testing and analysing numerical methods

the numerical behaviour of (4.1) is more similar to that of the reactive Euler equations.

Note that if u, feu) and q(u) are defined by, respectively,

q(u) = (-Qw, w)T, (4.3)

(4.4a)

then the simplified detonation model (4.1) can be written in the general form (2.2a). For a de

tailed description of this model problem, see [9]. For (4.1) we can develop a theory which has

similar features as the theory presented in Section 3.2 and 3.3. We start with the analogue of

the Chapman-Jouguet model.

4.2 The Analogue of the Chapman-louguet Model

Again we start with considering the limit Va --+ 00, Le. the gas is burnt instantaneously. We

assume that a travelling wave is propagating with a constant velocity s > 0 in the positive x

direction. Analogously to reacting gas dynamics we call this wave a detonation wave. Further

more, it is assumed that the flow is steady with respect to a coordinate system moving with the

detonation wave. All quantities ahead of the detonation wave will again be identified by the

subscript U (the unburnt gas), while the quantities behind the wave are denoted by the subscript

b (the burnt gas). The variable ~ is introduced as ~(x, t) = x - st and subsequently, (4.1) can

be rewritten as a system of ordinary differential equations, i.e.

d d I 2
-s d ~ U + d~ (2U ) - -Qw(u, Y),

d
-s-Y - w(u, Y).

d ~

We assume that U and Y satisfy

lim ( u ( ~ ) . yen) - (uu , 1),
S ~ O O

lim (u(n, Y ( ~ » - (Ub,O),
s~-oo

8
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where U u + Q < Ub and 0 ~ U u < Uign ~ Ub. After integrating (4.4a) from ~ = -00 to

~ = +00 and using (4.5) we deduce

( Q)
1 2 1 2

S Ub - U u - = '2 Ub - '2Uu' (4.6)

Consistently to the reactive Euler equations the above equation is called the reactive Rankine

Hugoniot equation. For details the reader is referred to e.g. [9].

Analogously to Section 3.2 we can distinguish three different types of detonation waves,

namely strong, Chapman-Jouguet and weak detonation waves. We replace Ub by Usto UCJ or

U we in case of a strong, Chapman-Jouguet or weak detonation, respectively. It can be shown,

using (4.6), that SCJ > 0 is given by

(4.7)

For all S < SCJ there will be no detonation. If S = SCJt then there will be a CJ detonation with

UCJ = SCJ = U u + Q + J Q2 + 2uu Q.

If S > SCJt then there will be a detonation with

U.ft = S + J(s - uu )2 - 2sQ,

in case of a strong detonation or

U we = S - J(s - uu )2 - 2sQ,

(4.8)

(4.9)

(4.10)

in case of a weak detonation. Finally, detonation waves can be distinguished by the following

characteristic properties.

For detonation waves S > uu ,

For strong detonations S < U.ft = Ub,

For Chapman-Jouguet detonations S = SCJ = Ub,

For weak detonations S > U we = Ub.

The above properties are the analogue for Jouguet's rule. Again the only relevant detonations

are Chapman-Jouguet and strong detonations.

4.3 The Analogue of the ZND Model

Next we briefly develop the analogue for the ZND theory, as described in Section 3.3. Again

we assume that a detonation wave travelling with constant speed S has the internal structure of

an ordinary (nonreacting) precursor shock wave followed by a reaction zone. Hence the front

of a detonation wave is a shock wave that initiates a chemical reaction behind it.

Firstly, due to a shock wave the variable U jumps to a higher value, called, analogously to

reactive gas dynamics, the von Neumann spike (vN-spike). It is straightforward that UuN =
2s - uu, and subsequently,

The von Neumann spike is the state immediately behind the shock wave and is the final state if

no reaction takes place. It is clear that U vN > Ub ::: Uign' As the reaction proceeds Y decreases

from 1 to 0 and the U decreases to the final value Ub.
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It can be shown that for the ZND model the final state is a strong or CJ detonation. The

minimum speed for a detonation wave is the speed SCI of a CJ detonation. It will be useful to

define a quantity which measures the overdrive of a strong detonation. Therefore, let the degree

of overdrive f be defined by [2]

(4.11)

from which it directly follows that f ~ 1. Suppose that all states ahead of the detonation wave

are known, i.e. Uu is given and Yu = 1. Furthermore the parameters Uign, Da, f and Q are

known. Firstly we compute the speed SCI of a CJ detonation using (4.7). Using the degree of

overdrive f we can compute the detonation speed as S = SCI../l. Using (4.8), (4.9) or (4.10)

we can compute the final state of the detonation wave. An example of a ZND profile is given in

Figure 2. Finally, the half reaction length L 1/2 is introduced as the distance for half completion

of the reaction starting from the front of the detonation wave. It this case LI/2 is given by

S

LI/2 = Da In(2).

Often LI/2 is given and the previous relation is used to compute the corresponding Damkohler

number Da.

Example 4.1 As an example ofthe preceding theory we describe the ZND solution of the strong

detonation with

U u = 0, Q = 2, f = 1.265625, Da = 31.192.

The half reaction length is given by LI/2 = 0.1. The final state for the strong detonation is given

by Ub = 6, where the detonation is propagating with a speed S = 4.5. In Figure 2 the steady

ZND solution is drawn. The variable U reaches its maximum value right behind the precursor

shock. As mentioned before this value is called the von Neumann spike, which in this particular

case satisfies UvN = 9.

The Variable U
1 O.--~---'-.....-:c=,:,,;,,;;,,-'-'--~-...,

Mass Fraction

-x
1o·1·2

-x

Y

1
0.8

0.6

0.4

0.2

Of------

·3o·1·2

t :1----)
4

2

o
L...-._~_~_~ ...J

·3

Figure 2: ZND solution of (4.1) with Q = 2, f = 1.265625 and Da = 31.192.
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5 The Numerical Computation of Strong or CJ Detonation Waves

for the Simplified Detonation Model

In this section we want to compute strong or CJ detonation waves propagating with a constant

wave speed s > 0, as described in Section 4. For the sake of simplicity we assume that the

initial data uO are given by

x < 0,

x > o.
(5.1)

Hence, at time t = 0 only burnt gas is present at the left-hand side of x = 0 and only unburnt

gas is present at the right-hand side of x = 0 (see (4.5» ..

In the remainder it is assumed that Ub is the final state ofa strong or CJ detonation wave

propagating with a constant wave speed s > O.

A variety of numerical methods can be developed for conservation laws with source terms.

A very natural way to solve (4.1) is a first order splitting method. In the splitting method the

numerical solution at each time level is derived by a two-step procedure. In the first step we

assume that no reaction occurs (i.e. w = 0 in (4.1» and approximate the solution of the remain

ing homogeneous equation, i.e. Burgers' equation. In the second step we assume no convection

(i.e. au2lax = 0 in (4.1» and solve the corresponding ordinary differential equations numer

ically. There are several reasons for studying first order splitting methods. Firstly the splitting

method is interesting since good numerical methods exist for both subproblems. Furthermore,

this method lends itself for thorough analysis. Finally second order accuracy can be achieved

using the Strang splitting [3].

For a given time step I1t the discrete time levels tn are defined by

tn = ntit, n=0,1,2, ....

For a given mesh width tix the spatial mesh points Xi are defined by

Xi = itix, i = ... , -2, -1,0, 1,2, ....

It will also be useful to define intermediate points

Xj+l/2 = (i + !)l1x.

The finite difference method we shall consider, produces approximations Ui E IR2 to the true

solution u(Xj, t n
). The average of u(', t n

) over the cell [Xj-l/2, Xj+l/2) is defined by

Xi+1/2

iii = _1_ f u(x, tn)dx.
I1x

Xi-1/2

(5.2)

For conservation laws it is often convenient to consider Ui as an approximation to this average,

since the integral form (2.1) of the conservation law describes the evolution in time of integrals

as (5.2). In the following it is assumed that, for a given constant 'l' > 0, the mesh width I1x and

time step I1t satisfy
tit
- = 'l'.
I1x

For the sake of convenience, we construct a piecewise constant function U III (', t n
) from the

discrete values Ui by

(5.3)

11



In the first step we have to approximate the solution of Burgers' equation (the mass fraction

y remains constant during the first step). We use Roe's conservative three-point method. For

later purposes it will be useful to denote the result by Ci, so

Ci = Vi - r{Ft'-H/2 - Ft'-1/2}'

where the numerical flux function F is given by

(5.4)

{

!(V" )2
n n" 2 ;+1 '

F+1/2 = F(V. ,V·+1) =
1 1 1 !(Vn2,

Vi + Vr+l < 0,

Vr + V~l > 0.
(5.5)

If the second step (the reactive step) is solved by the backward Euler method, then the total finite

difference scheme reads

V;,,+l _ Vi' - r{Ft'+1/2 - Fi'-1/2} - .6.tQw(V;,,+l, y;"+l),

y ~ + l _ y!l + .6.tw(V~+l y~+l)
1 1 1 'I •

(5.6a)

(5.6b)

As usual, the time step .6.t is restricted by the CFL stability condition, i.e. r max; IVr I ::: 1.

When attempting to solve (4.1) numerically, it is possible to obtain stable numerical solu

tions that seem reasonable and yet are completely wrong, since the numerical solution approx

imates a nonphysical weak solution. In order to study this problem we define two quantities S ~

and Si at time ttl by

00

Sln.6.t(ub - uu) = .6.x L (Vi - VP),
;=-00

00

-Sin.6.t = .6.x L (Yt' - YP)·
;=-00

(5.7a)

(5.7b)

Since uO is constant outside some finite interval (see (5.1)) so is Vi, because method (5.6) has

a finite domain of dependence. Hence, the right-hand side of (5.7) is finite and S ~ and Si are

well defined. The quantity Si can be interpreted as the average speed of the numerical deto

nation wave. Normally the numerical wave speed for a finite difference method is given by an

expression ofthe form m.6.x1(I.6.t), where I and m are relatively prime numbers. In other words,

the numerical solution propagates m spatial grid points for every I time steps. However, in gen

eral m and I are hard to compute from the numerical results. On the other hand, S ~ and Si can

be computed easily by (5.7).

The following theorem gives a relation between Sl and Si, which is the numerical ana10gon

of the reactive Rankine-Hugoniot relation (4.6).

Theorem 5.1 Suppose that the finite difference method (5.6) is used to approximate the sim

plified detonation model (4.1) with initial data that satisfy (5.1). Let Vi = (Vi, ynT be a

solution of(5.6) with given initial values V? = ii?, as defined in (5.2). Then Sl and Si satisfy

the relation

(5.8)

Proof Since the first step of the splitting method is explicit, it follows from (5.1) that

. lim F ' ~ 1 / 2 - !u
2

1-+-00 - 2 b
and

12
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for all n ~ O. We start with replacing n+1 by j in (5.6). After multiplying the resulting scheme

by 6.x, summing over i and using the above limits we obtain

00

- 6.t B u ~ - !u~} - 6.t 6.x Q L w(U!, r/>,
;=-00

00 00

6.x L (r! - r!-l) = 6.t 6.x L w(U!, r!).
;=-00 ;=-00

Summing the above equations over all j with 1 :::: j :::: n, we see that

00

6.x L (Ur - UP)
;=-00

n 00

= n6.t U u ~ - tu~} - 6.t6.x Q L L w(U!, r/),
j=l ;=-00

00

6.x L (rr - riO) -
;=-00

n 00

6.t 6.x L L w(U!, r/>.
j=l ;=-00

After substituting the second equation into the first and, subsequently, replacing the summations

using (5.7), it follows that

Sfn6.t(ub - uu) = n6.t H u ~ - !u~} + S2n6.tQ.

After dividing the latter equation by n6.t the result (5.8) follows immediately. This completes

the proof. 0

(5.11)sntn < x < S2tn,

x > S2tn.

ii'(x, ") = {

Remember that the correct solution of (4.1 )-(5.1) is assumed to be a strong or CJ detonation

wave propagating with constant speed s > O. As noted before, for large Da it is possible to

obtain numerical solutions that approximate a nonphysical weak solution of (4.1). This wrong

solution appears to be a weak detonation wave followed by an ordinary shock wave (see Figure

6). In order to approximate the correct weak solution, the final state of the burnt gas directly

behind the numerical detonation wave should be equal to Ub as n ..-.+ 00. Let vb > 0 be given

such that

S2(vb - Uu - Q) = !(vb)2 - !u~, (5.9)

where it is assumed that S2 ~ SCI> since otherwise vb will not exist (see Section 4). Furthermore,

it follows from vb > 0, S2 > 0 and (5.9) that vb > Uu + Q. The constant Vb is the final state

of a detonation wave propagating with speed S2' If S2 > SCI> there are two possible values for

vb such that (5.9) is satisfied, namely: vb > S2 in case of a strong detonation and vb < S2 in

case ofa weak detonation. The wrong weak solutions mentioned above, consists ofa detonation

wave linking the state (uu, 1)T to (vb' 0) T, followed by an ordinary shock wave linking the states

(vb' O)T and (Ub, O)T. Let sn denotes the speed of this shock wave, i.e.

Sn = !(vb + Ub). (5.10)

The existence of numerical solutions that approximate this nonphysical weak solution is illus

trated by the following theorem.

Theorem 5.2 Suppose thatall the assumptionsofTheorem 5.1 holdandletUM = (Ul1t, rl1t)T

be given by (5.3). Furthermore, let n > 0 and assume that S2 ~ SCI> i.e. there exists a vb such

that (5.9) holds. Finally, the function fin (-, tn) is defined by

(Ub,O)T, X < sntn,

(vb,O)T,

(uu, l)T,
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Then
00

J(UM(X, tn) - un(X, tn»dx = O.

-00

(5.12)

Furthermore,for given Si and v: such that (5.9) holds, un (', tn) is the only piecewise constant

function consisting ofmaximal three constant states (CI, O)T, (c2,Ol and (C3, l)T, such that

(5.12) holds.

Hence, we have discrete conservation with respect to the solution un given in (5.11). Sup

pose that the numerical solution consists of three constant states (CI, O)T, (C2, O)T and (C3, l)T,

then Theorem 5.2 implies that any shocks we compute at time t n must, in a sense, have the same

location as the shocks in un. Note that (5.11) consists of a detonation wave followed by an or

dinary shock wave. Thus, un is the nonphysical weak solution that is observed in our numerical

experiments. Furthermore, we remark that if v: = Ub, then Si =sand (5.11) is the physically

correct weak solution.

Proof Since uO is piecewise constant and explicit methods have finite domain of dependence,

U M is constant outside some finite interval. Furthermore, since (5.6) is three-point method,

initial data (5.1) are used, sn > 0 and Si < ~x/ ~t,

00 (n+I/2)6x

J(UM(X, tn) - un(x, tn» dx = J (U6t(X, tn) - un(x, tn» dx.

-00 -(n+I/2)6x

(5.13)

Note that (5.12) consists of two equations, one equation for U and one equation for Y. Firstly

we proof the second equality in (5.12). After replacing the summation in (5.7b) by an integral,

using (5.3), and subsequently applying (5.13), we arrive at

(n+I/2)6x

J Y6t (x, tn)dx = (n + !)~x - Sit
n

.

-(n+I/2)6x

(5.14)

Now the second equation in (5.12) follows directly from (5.11), (5.13) and (5.14). Analogously,

we replace the summation in (5.7a) by an integral and obtain, using (5.1) and (5.13),

(n+I/2)6x

J U6t (x,t
n
)dx - (n+!)~xub + S~tn(Ub-Uu) + (n+!)~xuu.

-(n+I/2)6x

Using (4.6), (5.8), (5.9) and (5.10), we obtain

S'ltn(Ub - uu) - stn(Ub - Uu - Q) + SitnQ

_ tn(!u~ - !(v:)2) + tn(!(v:)2 - !u;) + SitnQ

- sntn(Ub - v:) + Sitn(v: - uu).

14

(5.15)



Using this together with (5.11) and (5.15) gives

(n+l/2)6.x

J U6.t(x, tn)dx -
-(n+I/2)6.x

(n + !)AXUb + sntnub + (Si - sn)tnvb

+ «n + !)AX - Sitn)uu

(n+l/2)6.x

f un(x, tn) dx.

-(n+l/2)6.x

(5.16)

This completes the proof of (5.12). It remains to proof that fin(-, tn) is the only piecewise con

stant function consistingofmaximal three constant states, such that (5.12) holds. It follows from

(5.1) thattwo constant states are given by (u u , l)T and (Ub, O)T. Denote the third constant state

by (c, O)T and let the function w n(., tn) = (w~(., t n), w ~ ( . , tn))T be given by

{

(Ub,O)T, X < a,

wn(x, tn) = (w~(x, tn), w ~ ( x , tn))T = (c,O)T, a < x < b,

(u u, l)T, X > b,

where 0 < a::: b. We have to show that a = sntn,b = Sitn andc = vb (see (5.11)). It follows

from (5.14) and (5.16) that b = Sitn. Since w n satisfies (5.12) and (5.13) holds, it follows from

(5.15) and a = !(Ub + c)tn that

(n+I/2)6.x

f (U6.t(x, tn) - wz(x, tn)) dx - Sftn(Ub - Uu) + a(c - Ub) + Sitn(uu - c)

-(n+l/2)6.x

= SitnQ + tn(!u~ - !u~) + t
n
(!c

2
- !u~)

+Sitn(uu - c)

= Sitn(-c + Uu + Q) + t
n
(!c

2
- !u~)

- O.

The last equality and (5.9) imply that c = vb and, subsequently a = Sntn. This completes the

proof. 0

The main goal of this section is to derive a criterion that excludes nonphysical weak solu

tions. In other words, we want to exclude numerical approximations of (5.11), except for the

case vb = Ub and Si = s. First of all, we remark that numerical experiments show that the

sequence Si always converges as n ~ 00. Therefore, we assume that there exists a positive

constant S2 such that limn-+oo Si = S2. It follows from (5.9) that limn-+oo vb = Vb for some Vb

and subsequently, S2 and Vb are related by

S2(Vb - Uu - Q) = !vE - !u~. (5.17)

An important question is whether the piecewise constant solution (5.11) is stable as time evolves.

Here by stability is meant that fin remains (as n increases) a piecewise constant function consist

ing of the three constant states (uu, l)T, (vb' O)T and (Ub, O)T such that liffin-+oo vb = Vb. This

is important since an apparently wrong solution fin might converge to the correct weak solution

as n ~ 00. For convenience sake, we replace vb' Si and sn in (5.11) by the corresponding

limit values, Vb, S2 and S= !(Vb + Ub).
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(5.18)

Theorem 5.3 Let uu, sand S2 be given and assume that Ub is the final state ofa strong or CJ

detonation wave propagating with speed s and Vb is the final state ofa detonation wave prop

agating with speed S2, i.e. (4.6) and (5.17) hold. Suppose that the initial data uo are given by

(see (5.11»)

{

(Ub,O)T, X < a,

(uo(x), yO(x»T = (Vb,O)T, a < x < b,

(uu,1)T, X > b,

where a < b are given constants. Let u = (u, Y)T be a weak solution of(4.1) with initial data

(5.18) and suppose that u consists ofat most three constantstatesfor all t. Then for t sufficiently

large,

(i) ifVb > Uwe, then the weak solution u consist oftwo constant states separated by a strong

or CJ detonation wave, Le. Vb = "b, propagating with a speed S2 = s, i.e.

or,

T {(Ub' O)T,
u(x, t) = (u(x, t), y(x, t» = T

(uu , 1) ,

for some constant d > a;

x < d+st,

x > d+st,
(5.19)

(ii) if Vb ::: u we, then the weak solution u consist ofa weak detonation wave propagating

with speed S2 2: s, followed by an ordinary shock wave propagating with speed S =

(Ub + vb)/2 < s, i.e.

x < a+St,

a + St < x < b + S2t, (5.20)

b + S2t < x.

Here Uwe denotes the final state ofthe weak detonation propagating with speed s (see (4.10»).

Note that if Vb = Ub and b = 0, then (5.18) reduces to (5.1) and the physically correct weak.

solution is given by (5.19) with d = O. If Vb > U we , then (5.18) converges to the correct weak.

solution as t -+ 00. This property is used to derive a criterion that excludes the weak. solutions

described by (ii). In Theorem 5.3 we assume that the solution consists of at most three con

stant states for all t, in other words, there are no "new" constant states created as time evolves.

This assumption is not very restrictive, since in numerical experiments we never observed these

"new" constant states. Moreover, we believe that Theorem 5.3 also holds without this assump

tion, since "new" constant states, not equal to U u , Vb or Ub, will probably not remain constant

as time evolves.

Proof As noted before, the minimum speed for a detonation wave is the speed SCI of a CJ det

onation. It will be useful to consider U.fI and U we as a function of the wave speed s. Therefore

we define two functions gst : [SCIl (0) -+ IR and gwe : [SCIl (0) -+ IR as (see (4.9) and (4.10»

gst(s) := s+J(s-uu)2-2sQ,

gwe(s) := s - J(s - uu)2 - 2sQ.
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Note that SCJ = UCJ = gst(SCJ) = gwe(scJ)' From S - Uu - Q > J(s - u u )2 - 2sQ it follows

that g ~ e ( s ) < 0 for all S > SCJ and, subsequently, gwe(s) ~ gwe(scJ) = UCJ' Using this together

with gst(s) ~ S ~ SCJ = UCJ we derive

(5.22)

It is clear that (4.6), (5.17) and Vb = Ub imply S2 = s, i.e. (i) holds and u is given by (5.19)

with d = b. The remainder of the proof (Vb # Ub) is given in two steps. In step 1 it is shown

that if Vb > Ub, then for t sufficiently large the weak solution of (4.1)-(5.18) is given by (5.19)

with d > b. In step 2 it is shown that for Vb < Ub, we must distinguish two cases. If S2 < S,

then the weak solution of (4.1)-(5.18) is given by (5.19) with a < d < b. On the other hand, if

S2 ~ s, then (5.20) describes the weak solution of (4.1)-(5.18) (i.e. (ii) holds).

Step 1. In this step it is assumed that Vb > Ub. It follows from this, Ub ~ S ~ SCJ = UCJ and

(5.22) that Vb is the final state of a strong detonation and therefore, Vb > S2. Furthermore, Vb >

Ub implies that the detonation wave, which connects the state (u u , I)T with (Vb, O)T, is followed

by a rarefaction wave consisting of a smooth transition from (Vb, o)T to (Ub, O)T. However, this

solution is unstable, since the head of the rarefaction wave is propagating with a speed Vb > S2.

Hence, as t increases the rarefaction wave will overtake the detonation wave and slows it down

until the propagation speed is equal to S and the state behind the detonation wave becomes Ub

(see left figure in Figure 3). Hence, the weak solution of (4.1)-(5.18) is given by (5.19) with

d > b for t sufficiently large.

Step 2: Vb < Ub and S2 < S

t

t

Step 1: Vb > Ub

t

t

a b

Figure 3: Characteristics corresponding to the formation of the solution (5.19) as described in

the proof of Theorem 5.3.

Step 2. Suppose that Vb < Ub and S2 < s. In this case the detonation wave is followed by a

shoe.!' wave, which connects (Vb, O)T with (Ub, O)T. Let Sdenote the speed of this shock wave,

i.e. S = (Ub + vb)/2. Using this together with (4.6) and (5.17), we obtain

S- ( ) I 2 1 2 I 2 I 2 S ( Q)
ub - Vb - "iUb - "iVb = "iUb - "iUu - 2 Vb - Uu -

- S(Ub - Uu - Q) - S2(Vb - Uu - Q)

> S2(Ub - Uu - Q) - S2(Vb - Uu - Q) = S2(Ub - Vb).

Hence S > S2 and therefore this solution is also unstable, since the shock wave will overtake

the detonation wave and accelerates it until the detonation is propagating with speed S and the

state behind the detonation wave is equal to Ub (see right figure in Figure 3). Therefore, for t

sufficiently large the weak solution of (4.1)-(5.18) is given by (5.19) with a < d < b.
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Step 2: Vb < Ub and S2 ::: s

t

t

Figure 4: Characteristics corresponding to the solution (5.20) as described in the proof of The

orem 5.3.

Finally we consider the case Vb < UbandS2::: s. Suppose that Vb ::: S2. Using this together

with the fact that 8st is increasing and S2 ::: S, we deduce Vb = 8st(S2) ::: 8st(S) = Ub. This

is in contradiction with Vb < Ub, so Vb < S2 and thus the detonation wave is a weak detona

tion wave (see Section 4.2). The detonation wave is followed by a shock wave, which connects

(Vb, O)T to (Ub, O)T. Again we denote the speed of the shock wave by S, Le. S = (Ub + vb)/2.

Similarly to the previous case (S2 ~ s) we can prove that S ~ S2 and the shock will not overtake

the detonation wave as time evolves (see Figure 4). This is the stable solution described by (ii).

It is clear that in this case the weak solution u is given by (5.20). It follows directly from the

fact that 811Je is decreasing and S2 ::: S that Vb = 8UJe(S2) ~ 8UJe(s) = UUJe' This completes the

proof. 0

Hence, weak detonation waves will not occur or disappear as time evolves, if Vb > Uwe'

Remember that due to a shock wave propagating into the unburnt gas, U increases above the

ignition temperature and a reaction is started. Therefore, it seems reasonable to assume that no

chemical reaction occurs in the cell [Xi-l/2, XHI/2) during the (n + l)sttime step, if Ci < Uign

(see (4.2), (5.4». After substituting (5.6a) in (5.6b), using (4.2) and (5.4), we can rewrite (5.6)

as

n+1 n !:It Da n n
Vi = Ci + 1 +!:ItDa QH (Ci - Uign)Yi ' (5.23a)

(5.23b)y ~ + l =
1

1 n
n Yi '1+ !:ltDaH(Ci - Uign)

where H is the Heavyside function defined by H (x) = 1 if x ::: 0 and H (x) = 0 if x < O.

Now suppose that in some cell [Xio-l/2, Xio+l/2) the gas is burnt during the (n + l)st time step,

Le. C~ ::: Uign and Y i ~ = 1. Then (5.23a) implies that

V ~ + l
10

!:ltDa
::: Uign + 1 + !:It Da Q. (5.24)

Note that V i ~ + l is the state immediately behind the detonation wave and therefore can be inter

preted as the quantity v: as defined in (5.9). Using Theorem 5.2 and Theorem 5.3 we should

require that v: > UUJe in order to exclude nonphysical weak detonations. Hence, using V ~ + l ~
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(5.25)

Vb > Uwe and (5.24) it seems useful to require that the following inequality holds

6.tDa
Ujgn + 1 + 6.tDa Q > Uwe •

It is expected that if (5.25) is satisfied, then vb > U we and subsequently Si ~ SCI' In general

6.tDa will be very large and (5.25) reduces to Ujgn + Q > U we ' It seems that the nonphysical

weak detonation waves are only observed if Ujgn is close to Uu ' Since Uu + Q < Uwe (see (4.6)

and S > 0), inequality (5.25) is not satisfied and due to numerical diffusion, U is raised above

the ignition temperature and an artificial reaction is started. If Da is large enough, then the gas

is completely burnt in the next time step At and the discontinuity is shifted to a cell boundary.

Therefore, it is not surprising that nonphysical wave speeds of one cell per time step can be

observed for large Da [3, 8].

However, numerical experiments in the next section illustrate that for physically more real

istic values of Ujgn, (5.25) is satisfied and, subsequently, Vb = Ub.

6 Numerical Results for the Simplified Detonation Model

In this section numerical results are presented for the method (5.23). In the first example it is

shown that for small mesh sizes, the numerical solution is a physically correct strong detona

tion wave. However, if the mesh width is increased to more practical values, then the solution

becomes a nonphysical weak detonation wave. In all the examples the sequence Si converges.

The further examples clearly illustrate that criterion (5.25) is a useful criterion to exclude non

physical solutions.

10
The Variable U Mass Fraction

U 8
I

Y

1
I 10.8

6
0.6

4
0.4

2 0.2

0 0

0 20 40 0 20 40

-x --"x

Figure 5: Exact solution (dashed line) and numerical solution (solid line) at t = 4 of a strong

detonation with Q = 2, f = 1.265625, Da = 31.192 (l ptJLI/2), Ujgn = 0.1, At = 0.01 and

6.x = 0.1.

Example 6.1 In this example we consider the same strong detonation as in Example 4.1. If the

method (5.23) is used with initial data (5.1), then after some period a ZND profile is formed.

The numerical solution is then propagating with a constant numerical wave speed S. However,

in this example we want to study the behaviour of the numerical detonation wave as time evolves

and not the formation ofa ZND profile. Therefore, we use initial data corresponding to the exact

ZND solution of the strong detonation (see Figure 2). Moreover, with these initial data we can

compute the exact solution of (4.1) easily, namely u(x, t) = uo(x - st), where s = 4.5 is the

19



exact wave speed ofthe detonation wave. This implies that we are able to compare the numerical

results with the exact solution.

In Figure 5 the numerical results are compared with the exact solution. The mesh width

t1x = 0.1 and the time step t1t = 0.01. The numerical ZND profile is essentially correct

and the numerical wave speed is equal to the exact wave speed. However, the mesh width is

relatively small and in most practical cases we cannot afford such fine meshes.
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Figure 6: Exact solution (dashed line) and numerical solution (solid line) at t = 4 of a strong

detonation with Q = 2, f = 1.265625, Da = 31.192 (0.125 ptS/LI/2), Uign = 0.1, t1t = 0.08

and t1x = 0.8.

Therefore, we increase t1x and t1t and keep t' = t1t j t1x fixed. The exact ZND solution

should still propagate with a wave speed s = 4.5. However, Figure 6 clearly illustrates that the

numerical solution is completely wrong. As predicted by Theorem 5.2, there is a weak detona

tion wave propagating with a numerical wave speed 52 > s. In this weak detonation wave all

heat is released and the gas is completely burnt. In this case 52 = 10 and Vb = 2.2540 < Uwe =

3 (note that (5.17) is satisfied). Inequality (5.25) is not satisfied since Uign + t1tDaQj(l +
t1t Da) = 1.5278 < U llIe •

The Variable U
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Figure 7: Exact solution (dashed line) and numerical solution (solid line) at t = 4 of a strong

detonation with Q = 2, f = 1.265625, Da = 31.192 (0.125 pts/L1/2), Uign = 1.6, t1t = 0.08

and t1x = 0.8.

Next the numerical solution is computed with Uign = 1.6. In this case (5.25) is fulfilled,

since Uign + t1t DaQj{l + t1tDa) = 3.0278 > uwe • In Figure 7 the solution is drawn. The nu

merical detonation wave solution is the correct strong detonation wave. The peak in the variable
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U is completely disappeared. This is caused by the combination of a large mesh size and a thin

reaction zone. The reaction is so fast that even in the initial data U? = ii? no peak is noticeable.

Comparing the results in Figure 7 to the results in Figure 6, the improvement is convincing.

In Figures 5 and 6 the ignition temperature U;gn is close to uu • However, in practice the

ignition temperature is much higher than Uu' Therefore, we expect that in most realistic cases

(5.25) is satisfied. In the following example it is illustrated that (5.25) is a useful criterion. We

restrict ourselves to very fast reactions (or large mesh sizes), since in these cases the wrong

solutions occur.

Example 6.2 In this example we consider again the strong detonation described in Example

4.1. In order to investigate the practical use of (5.25), we choose initial data corresponding to

a nonphysical solution as described by Theorem 5.2. Subsequently, we examine whether this

solution has a temporally constant profile or transforms into the physically correct detonation

wave as time evolves. Let the initial data be given by (see (5.18»

x < -30,

-30 < x < 0,

x > 0,

(6.1)

where Ust = 6, U we = 3 and Uu = O. Analogously to Theorem 5.3, Vb denotes the value

of U behind the numerical detonation wave, so initially Vb = U we ' Furthermore, I:::.t = 0.125,

Da = 3.1192· 105 and Q = 2,so(5.25) is rewritten as U;gn +2 > Uwe = 3. It is straightforward

that Ll/2 = 10-5
•

The results in Table 8 clearly show that if (5.25) is satisfied, the weak detonation wave is

unstable and after some period (5.23) will approximate the correct strong detonation wave.

U;gn S2 Vb (5.25) satisfied

0.2 9.000 2.2917 no

0.4 5.580 2.6017 no

0.8 4.500 3.0000 no

1.0 4.500 3.0000 no

1.1 4.500 6 . ס ס O O yes

1.2 4.500 6.0000 yes

Table 8: Numerical results with Q - 2, f - 1.265625, Da

«8/9) . 10-5 pts/Ll/2), I:::.x = 1.125, I:::.t = 0.125 and initial data (6.1).

7 Numerical Results for the Reactive Euler Equations

3.1192 . 105

In this section we consider the reactive Euler equations (3.1), as described in Section 3. We

assume that the initial data correspond to the exact ZND solution of a CJ or strong detonation.

Analogously to Section 5, we solve (3.1) with a first order splitting method. The first step of

the method consists ofRoe's first order method for gas dynamics with an extra advected quantity

Y. Let gj denote the result in the ith cell after the first step, for all variables g. In the second step
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the backward Euler method is used to solve the corresponding ordinary differential equation.

The final solution at time tn+1 is given by

p;+1 -n u ~ + l -n- Pi' /
- Ui '

{
Yr, T!' < Tign, (7.1)

E!,+1 Ei, y!,+1 /

- - 1 y!' T!'/ / > Tign.
1 + iltDa /' /

Analogously, to (5.7b) we define a quantity S" at time tn as

00

-Snnilt = ilx L (yr - yiO) ,
i=-oo

(7.2)

(7.3)

where Y is the mass fraction of the unburnt gas. Again, S" can be interpreted as the average

speed of the numerical detonation wave at time level t" .

Now suppose that in the cell [Xjo-l/2, Xio+l/2) the gas is burnt during the (n + l)st time

step, i.e. Ti~ 2: Tig" and Yi: > O. Contrary to (5.24), for the reactive Euler equations Yi: :j:

1 in general. In the first step of the splitting method Y is simply advected along the contact

discontinuity and therefore in some "unburnt cells" Y will decrease beneath 1. Hence, we only

know that 0 ::::: Yi: ::::: 1. It follows from (3.2) and (3.4) that

Ti: = (y - I)(E4)- t(ii~)2 - QY;:).

Using this together with (7.1), it is easy to see that (see (5.24»

r."+1 _ j." + (y _ 1) Q (Y!' _ y!,+l)
/0 /0 /0 /0

iltDa -"
> T;gn + (y - 1) Q Y;o'

1+ iltDa

Analogously to (5.25) we require that the following inequality holds

iltDa -"
T;gn + 1 + iltDa (y - 1) Q Y;o > TUle ,

where Twe is the final temperature of the corresponding weak detonation wave propagating with

speed s. The quantity Twe is given by a complicated algebraic expression, see [11]. In general

iltDa will be very large and (7.3) reduces to T;gn + (y - I)QYi: > Twe .

As noted before, for fast reactions it is possible to obtain stable numerical solutions of the

reactive Euler equations that look reasonable and yet are completely wrong, because the dis

continuities have the wrong locations. Thus, the numerical reaction waves are propagating at

nonphysical wave speeds [3]. These "wrong solutions" turn out to be nonphysical weak detona

tion waves. Analogously to the simplified detonation model, the nonphysical weak detonation

waves are only observed when the ignition temperature is close to the temperature of the un

burnt gas. However, in practical applications the ignition temperature is much higher. Hence,

for higher ignition temperatures we expect that (7.3) will be satisfied and, subsequently, that

the nonphysical weak detonations will not occur. We now present some numerical results that

support this statement.

In all examples we consider the ZND solution of the strong detonation described in Ex

ample 3.1. However, we increase the Damkohler number to Da = 0.6.7486· 105
, since for

fast reactions the nonphysical weak detonations occur. The half reaction length Ll/2 becomes

Ll/2 = 10-6
.
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Figure 9: Exact solution (dashed line) and numerical solution (solid line) at t = 10 of a stong

detonation with Q = 10, y = 1.4, Tign = 1.01, Da = 6.7486.105 (10-6 ptsILl/2), I:1t = 0.1

and I:1x = 1.

Example 7.1 In this first example we choose a low ignition temperature, namely: Tign = 1.01

(note that Tw = 1). The results in Figure 9 clearly illustrates that the numerical solution is com

pletely wrong. Analogously to the results of Figure 6, there is a weak detonation wave propa

gating with a numerical wave speed sn = 10 > s = 5. In this weak detonation wave all energy

is released and the gas is completely burnt. With the parameters from Figure 9, (7.3) becomes

Tign + 4Yi~ > T we• However, since Tign = 1.01 and Yj7. ::: 1, we have Tign + 4Yi~ ::: 5.01 <

Twe = 5.4042. So, (7.3) is not fulfilled as we expected.
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Figure 10: Exact solution (dashed line) and numerical solution (solid line) at 1 = 10 of a stong

detonation with Q = 10, y = 1.4, Tign = 3.0, Va = 6.7486.105 (10-6 ptsILl/2), 1:11 = 0.1

and I:1x = 1.

Example 7.2 In this example we choose the ignition temperature significantly larger that Tw,

namely Tjgn = 3.0. In Figure 10 the numerical results are compared to the exact solution. Al

though there is some noise in the pressure behind the shock wave, we see a large improvement of

the results compared to Figure 9 (where Tjgn = 1.01). The disturbances behind the shock wave

are caused by the splitting method. These oscillations will occur for all Godunov-type methods

in combination with a splitting method. Now, (7.3) becomes 3 + 4Yj~ > Twe = 5.4042, which

is satisfied as Y i ~ > 0.60105. As noted before, in the first step of the splitting method in some
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"unburnt cells" Y will decrease beneath 1. However, long before Y reaches 0.60105, the tem

perature increases above T;gn and the gas is burnt. So, (7.3) is satisfied in general, as is clearly

illustrated by the numerical results in Figure 10.

Next we consider the numerical wave speed for increasing T;gn and study whether (7.3) is

satisfied or not. Note that in this case the von Neumann temperature is given by TUN = 4.4089

(see Example 3.1), so 1 < T;gn < 4.4089.

In Table 11 the results are shown with T;gn = 1, 2, 3, 4. If T;gn ::: 3, then the numerical

wave speed sn approximates the exact wave speed s = 5 very well. If T;gn ::s 1.4042, then

(7.3) cannot be satisfied and a weak detonation is formed. In all our examples we observe a

switch on phenomenon in which a "numerical detonation wave" is formed. In this initial period

the numerical wave speed is a poor approximation of the exact wave speed. Due to ourdefinition

of sn, for reasonable n this is still noticeable in the results in Table 11. In order to overcome

this problem we define a quantity sn,m at time tn for all n > m as (see (7.2)

00

_Sn,m(n - m).1.t = .1.x L (yr - yr)·
;=-00

(7.4)

Hence, we assume that after m time steps the switch on phenomenon is finished and sn,m mea

sures the numerical wave speed after the first m time steps. The results in Table 11 show that

sn,m is a accurate approximation of the exact wave speed as T;gn ::: 3. Other authors have used

a shock tracking method to enforce the correct wave speed [2], Numerical computations show

that these shock tracking methods produce similar wave speeds as the results in Table 11.

sn,m - s
T;gn sn Sn,m I I

s

1.0 10.000 10.000 0.1000.10+1

2.0 5.1001 5.0572 0.1144. 10-1

3.0 5.0125 5.0000 0.3053. 10-7

4.0 5.0010 5.0000 0.1417· 10-7

Table 11: Numerical results at t = 100 with Q = 10, y - 1.4, Da - 6.7486· 105

(10-6 pts/L1/2), n = 1000, m = 500, .1.t = 0.1 and.1.x = 1.
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