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Abstract We have investigated the interaction of a deto-

nation with an interface separating a combustible from an

oxidizing mixture. The ethylene-oxygen combustible mix-

ture had a fuel-rich composition to promote secondary com-

bustion with the oxidizer in the turbulent mixing zone that

resulted from the interaction. Diffuse interfaces were cre-

ated by the formation of a gravity current using a sliding

valve that initially separated the test gas and combustible

mixture. Opening the valve allowed a gravity current to de-

velop before the detonation was initiated. By varying the de-

lay between opening the valve and initiating the detonation
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it was possible to achieve a wide range of interface condi-

tions. The interface orientation and thickness with respect to

the detonation wave have a profound effect on the outcome

of the interaction. Diffuse interfaces result in curved detona-

tion waves with a transmitted shock and following turbulent

mixing zone. The impulse was measured to quantify the de-

gree of secondary combustion, which accounted for 1-5%

of the total impulse. A model was developed that estimated

the volume expansion of a fluid element due to combustion

in the turbulent mixing zone and predicted the resulting im-

pulse increment.

Keywords Detonation · diffuse interface · secondary

combustion

1 Introduction

When a detonationwave propagating in a gaseous combustible

mixture reaches a concentration boundary, a complex inter-

action results between the detonation and interface between

the two gases. The details of this interaction are dependent
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on the mixture compositions, the relative geometry of the

detonation and interface, and the characteristic thickness of

the interface.

In the present study, the interface is a composition gra-

dient between the combustible and non-combustible mix-

tures. The thickness of the interface is determined by mixing

caused by fluid mechanical stirring and diffusion. We clas-

sified the extent of the mixing at the interface by comparing

the cell size of the detonation with the interface thickness. A

sharp interface occurs when the detonation cell size is much

greater than the interface thickness.1 A diffuse interface, the

case of the present study, occurs when the detonation cell

width in the combustible gas is much less than the interface

thickness.

The geometry of a detonation propagating in a composi-

tion gradient can be divided into two main categories. The

first is when the detonation velocity is parallel to the direc-

tion of the gradient, and the second is when it is perpen-

dicular. In general, the composition gradient vector and the

detonation velocity vector are not parallel or perpendicular

but at some intermediate angle. The first case has been stud-

ied by numerous researchers investigating the transmission

and successful re-initiation of a detonation across a gap of

non-combustible gas ([3], [8], [15], [16]). Other work [7] has

examined detonation transmission to an inert gas or other

combustible mixture and subsequent reflection off of a rigid

1 We have studied this case and the results will be presented in a

companion paper.

end-wall. The current study will focus to a large extent on

the perpendicular or nearly-perpendicular case.

When the detonation propagation direction is perpendic-

ular to the mixture gradient, a curved detonation wave results

that ultimately decouples into a shock wave and turbulent

mixing zone (TMZ), shown in Fig. 1b. This is due in part to

the dependence of the detonation velocity on the equivalence

ratio. For a detonation modeled as an ideal one-dimensional

discontinuity with no affect of curvature on reaction zone

structure, the normal component of the curved wave will cor-

respond to the local Chapman-Jouguet detonation velocity.

There has been little work done on detonation propagation

perpendicular to a continuous composition gradient. Exper-

iments [10] were carried out that measured concentration

gradients made by diffusion and used soot foils to charac-

terize the detonation propagation. Other work [4] examined

concentration gradients in a numerical study to investigate

the possibility of a flame occurring in the incomplete com-

bustion products. Oblique detonations were observed [5] in

sharp interface experiments where various combustible mix-

tures were separated in parallel channels. It is possible for

combustion to occur in the turbulent mixing zone (TMZ) by

choosing a combustible mixture such that the combustion

products are incompletely oxidized. This allows further re-

actions to take place if the mixture downstream of the inter-

face contains an oxidizer [14]. The aim of the following dis-

cussion is to address the key physical issues that arise when

a detonation propagates in the direction normal to a concen-

tration gradient. Some of the main issues to be discussed are
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Fig. 1 The interaction of a detonation with a diffuse interface is illustrated with supporting observations from experimental images. A detonation

wave (a) interacts with the diffuse interface and forms a curved wave (b). Upon exiting the combustible mixture, the detonation decouples

completely resulting in a transmitted shock and TMZ (c) and (d). When the shock reaches the endwall it reflects (e) and interacts for a second

time with the interface.

the general shape of the detonation wave, and the decou-

pling of the shock wave and reaction zone. The presence of

secondary combustion between the partially oxidized deto-

nation products and oxidizer in the TMZ is also examined.

2 Experimental setup

The experiments were carried out using the GALCIT Deto-

nation Tube (GDT) [1,2], which is 7.3 m long with an inside

diameter of 0.280 m. It is connected to a 0.762 m long square

test section with inside dimensions of 0.15 m by 0.15 m. A

wave cutting device extends 1 m into the end of the GDT to

cut out a square section of the circular detonation front be-

fore entering the test section. A sliding valve assembly sep-

arates the ethylene-oxygen combustible mixture in the GDT

from the oxidizer or inert diluent in the test section during

the experimental preparation.

Figure 2 is a view of the test section illustrating the loca-

tion of the end flange of the GDT, the sliding valve assem-

bly, and the test section. Visualization for the experiments,

using a schlieren system [1], was made through an optical

viewport (BK7 or quartz windows) that could be arranged

in two separate positions. The first position is located 0.275

m downstream of the sliding valve and is referred to as port

1. The second viewport position is located 0.56 m down-

stream of the sliding valve (see Fig. 2) and is referred to as
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port 2. The locations of the pressure transducers and a quartz

window on the end wall used for fluorescence imaging are

also shown. Fuel rich ethylene-oxygen mixtures occupied

the GDT, and either oxygen, nitrogen, or nitrous oxide occu-

pied the test section. The ethylene-oxygen equivalence ratio

Φ = 2,2.5,3. The initial pressure and temperature for all ex-

periments were 15 kPa and 298 K, respectively. Detonations

 













     

Fig. 2 A schematic of the test section with the sliding valve assembly

and the end flange of the GDT.

were initiated in the GDT by discharging a 2 µF bank of

capacitors charged to 9 kV through a 0.16 mm copper wire.

Detonation velocities were measured to within 5% of the

Chapman-Jouguet speed. The cell sizes of the detonations

were measured using the soot foil technique [19] and were

in all cases below 5 mm.

The diffuse interface was made with a gravity current

(GC). The formation and propagation of the gravity current

was examined in the test section using acetone planar laser

induced fluorescence (PLIF) [12,17], and in a half-scale wa-

ter channel [20] to understand the early time development of

the GC, see Fig 3. The thickness of the diffuse interface, δc,

was estimated from the thickness of the region of vorticity

obtained from digital particle image velocimetry (DPIV) [9,

20] measurements from the water channel experiments and

then re-scaled for the gas phase experiments. In the PLIF ex-

periments, the combustible mixture in the GDT was replaced

with an acetone-helium mixture of matched density.

The sliding valve, actuated by a falling mass, was de-

signed to completely isolate both the combustible mixture

and test gas, as well as to open sufficiently fast to control

the formation of the gravity current. The sliding valve was

measured to open in 170 ms with an uncertainty of 10 ms.

The mass needed to achieve this opening time was 55 kg.

3 Results and discussion

The general description of this problem, shown as a schematic

in Fig. 1, is of a detonation wave propagating through a dif-

fuse interface. The diffuse interface is composed of ethylene-

oxygen with Φ = 2.5 above a layer of pure oxygen. The

two layer situation was created by allowing a long time to

elapse between the creation of the gravity current and det-

onation initiation (see discussion below). The sequence be-

gins with a detonation wave (a) prior to encountering the

diffuse interface. A curved detonation wave (b) results dur-

ing the interaction leading to a decoupled transmitted shock

and TMZ. As the detonation exits the gravity current, what

remains is a transmitted shock followed by the TMZ (c). The
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Fig. 3 Time sequence illustrating the development of a gravity current

using dye visualization. The gravity current head in the dense fluid (at

bottom of image) is propagating from right to left. The dark colored

fluid is the salt water solution and the clear fluid is de-ionized water.

The plate is completely withdrawn at 0.16 s.

shock wave and TMZ occupy a smaller axial distance than

the curved detonation wave with the distance between the

shock and TMZ (d) increasing with time. When the shock

reaches the endwall it reflects (e) and interacts with the inter-

face a second time. The reflected-shock-interface interaction

is not visible as it occurs in the space between the window

and the endwall. The complex interaction of the shock wave

with the lower experimental boundary Fig. 1b,c produces a

Mach reflection.

Gravity currents of various sizes were formed by vary-

ing the delay time, defined from the time the sliding valve

reaches the open position to the time when a detonation is

initiated in the GDT. The range of behavior is shown in

Fig. 4 where four separate experiments are shown at dif-

ferent stages of the gravity current development. In these

experiments the φ = 2.5 ethylene-oxygen combustible mix-

ture is colored yellow for visibility and flows below the less

dense nitrogen gas. Figure 4a is an image of a shock wave

followed by a TMZ. The delay time was 0 s, corresponding

to a planar interface, and consequently explains why there

is no gravity current visible on the overlay. This translates

to a leading shock wave that is for the most part perpen-

dicular to the top and bottom surface along with a reflected

trailing shock that is possibly due to slight imperfections in

the interface shape. As the gravity current grows, the wave

structure becomes more curved. Figure 4b shows the trans-

mitted shock, TMZ, and the location of the gravity current

before the combustible mixture was detonated with a delay

time of 1 s. The leading shock wave is curved with a Mach

stem at the top wall. Figure 4c shows the location of the

gravity current after a 2 s delay time and the presence of a

detonation propagating within 10% of the CJ velocity and

transverse waves visible just behind the detonation front at

the bottom of the figure. At a 3 s delay time, the curved det-

onation (Fig. 4d) looks similar to the detonation in Fig. 4c

except that the gravity current occupies half the height of the

test section thus changing the curvature of the leading wave.



6 D.H. Lieberman, J.E. Shepherd

(a) (b)

(c) (d)

Fig. 4 Four schlieren images from four separate experiments overlaid

with the location of the gravity current at the instant of detonation initi-

ation. Ethylene-oxygen (Φ=2.5) is the combustible mixture with pure

nitrogen as the test gas. The delay times are 0 s (a), 1 s (b), 2 s (c),

and 3 s (d). The vertical height yo is used to estimate the composition

profile.

3.1 Composition gradient

An analysis of the curved detonation wave is made in the

special case when the gravity current has a predominantly

horizontal orientation as shown in Fig. 4d. In this configura-

tion, experiments indicate the gravity current heads are out

of the field of view and the unsteady motion is minimized.

The composition gradient is largely responsible for the

curvature and decoupling of the detonation wave due to the

Arrhenius dependence of the reaction rates on post-shock

temperature and the variation of CJ wave speed with com-

position. The composition gradient is estimated from the

gravity current measurements [12,20] which were carried

out specifically to determine the role that the composition

profile plays. This analysis considers a horizontal interface

as shown in Fig. 4d.

A simple error function profile of the form

Xi = C1

[

1+ erf

(

y− y◦

δc

)]

+C3 (1)

is assumed for the species mole fraction Xi as a function of

the vertical distance y. The constants C1, C3, δc, and y◦ are

specific to each experiment and delay time. The error func-

tion profile is motivated by appealing to the solution of the

diffusion equation as well as knowing the boundary condi-

tions at both limits of the vertical coordinate y. The esti-

mated profiles are only expected to be qualitative since the

composition is not known precisely. Turbulent flow struc-

tures such as those observed at the interface in Fig. 3 can

enhance mixing and result in more complex mixture gradi-

ents. Two composition profiles are investigated in this sec-
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Fig. 5 Estimated mole fraction plotted as a function of vertical dis-

tance y in the test section. Two profiles are shown based on Equation

(1) for the oxygen dilution case (O2) and the nitrogen dilution case

(N2).
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tion. The first is for a Φ = 2.5 ethylene-oxygen mixture di-

luted with nitrogen, and the second is for aΦ = 2.5 ethylene-

oxygen mixture diluted with oxygen. Diluting with oxygen

decreases the equivalence ratio whereas diluting with nitro-

gen does not alter the equivalence ratio but decreases the

volume fraction of combustible mixture. The combustible

mixture is located below the nitrogen in the nitrogen dilu-

tion case and above the oxygen in the oxygen dilution case

since the ethylene-oxygen mixture has a molecular weight

of 30 g/mol, which is between that of oxygen and nitrogen.

The estimated mole fraction profiles are shown in Fig. 5 as

a function of vertical distance in the test section. For oxygen

dilution, the mole fraction of oxygen is equal to one at y= 0

cm and increases to 0.55 at y= 15 cm. For nitrogen dilution

the mole fraction of nitrogen is equal to zero at y= 0 cm and

one at y = 15 cm. The constants C1 and C3 are determined

using the bounding mole fraction values. The constant δc is

a measure of the diffuse interface thickness and is obtained

by measuring the average vorticity thickness in the water

channel experiments, shown in Fig. 6 using an edge detec-

tion program. It is evident that the vorticity thickness of the

interface is not uniform and exhibits a sinuous shape as a

result of the turbulent flow structure present at the interface.

The average value used in this study is a simplificationmade

for the diffusion based composition gradient model. A com-

plete description of the composition gradient at the interface

would need to incorporate these features. The water channel

experiments were carried out at half scale using a water and

saline solution with matched density differences [12]. The

Table 1 Table of constants used in Equation (1) to specify the compo-

sition profile.

composition y◦ δc C1 C3

[cm] [cm]

O2 9 3 0.23 0.55

N2 6 3 0.5 0

values of the constants are listed in Table 1. No effort was

made to adjust the constant to fit the wave shape. The ZND

(a)

(b)

Fig. 6 Velocity (a) and vorticity (b) profiles of a gravity current formed

between a saline solution and water with the head propagating to the

left. The interface thickness δc can be estimated since the density ra-

tio of the liquid phase experiment was chosen to match the gas phase

experiments in the GDT.

induction time is plotted as a function of the vertical dis-

tance y in Fig. 7. The induction time spans over four orders

of magnitude, from microseconds in the undiluted sections

of both oxygen and nitrogen profiles, and rapidly rises to

milliseconds as the dilution increases. The dramatic increase

in induction time has been observed [11] to result in decou-

pling of the reaction zone from the detonation in the case
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of detonation propagation parallel to the gradient direction.

The points of decoupling, based on experimental observa-

tions are shown. The detonation velocity, determined using
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Fig. 7 ZND induction time plotted as a function of vertical distance y

in the test section. The profiles are shown for the oxygen dilution case

(O2) and the nitrogen dilution case (N2).

the composition gradient and the analysis of the detonation

shape are compared, and plotted as a function of vertical dis-

tance y in Fig. 8. Dilution with nitrogen, at a distance of 0 cm

indicates that the detonation velocity equals 2620 m/s, cor-

responding to the undiluted limit. As the vertical distance

increases, the nitrogen dilution increases, resulting in lower

detonation velocities. The same is true when diluting with

oxygen; however, the decrease in detonation velocity results

when decreasing the equivalence ratio. In this case, it turns

out that the maximum detonation velocity is at an equiva-

lence ratio of 2.5. In general, instead of the curve decreasing

monotonically, there would be a peak at the equivalence ra-

tio corresponding to the maximum detonation velocity.

The detonation shape velocities are obtained from the

images using

VCJ = VCJmax cos(β) (2)

and considering the detonation to have zero thickness. The

wave angle β (see Fig. 1) is determined numerically from the

wave shape. The maximum detonation velocity is VCJmax =

2620 m/s for an ethylene-oxygen combustible mixture with

Φ = 2.5. There is modest agreement between both meth-

ods when the vertical distance is small, y< 2 cm (or y> 13

cm for oxygen mixture compositions). This corresponds to

the portion of the curved detonation close to the top wall

(Exp. #1878) and bottom wall (Exp. #1884). The spatial pro-
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Fig. 8 Detonation velocity plotted as a function of vertical distance (y)

in the test section. The profiles are shown for the oxygen dilution case

(O2) and the nitrogen dilution case (N2).

files of the curved detonation waves from the schlieren im-

ages and based on composition profiles based on Equation 1

are determined and compared in Fig. 9. The vertical and ax-

ial distances are plotted on the same scale. For both oxygen

and nitrogen composition gradients, a good agreement is ob-
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served with the experiments below a vertical distance y= 5

cm (or y= 10 cm for oxygen mixture compositions). The ap-

proximate locations of decoupling shown in Fig. 9 are also

labeled on the induction time plot (Fig. 7) to give an indica-

tion of the mixture sensitivity. The decoupling locations are

based on the experimental observations and determined from

visual inspection of the images. For both oxygen and nitro-

gen cases, the decoupling is identified as occurring when the

induction time begins to dramatically increase with increas-

ing dilution. It must be emphasized that the results presented

in Figures 5 through 9 apply to the limiting case of a long

delay time in which case the interface is horizontal.
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Fig. 9 Estimated wave shape y(x) for the oxygen dilution and the ni-

trogen dilution cases compared with the experimental results.

3.2 Experimental impulse: the role of secondary

combustion

The impulse is calculated from experimental pressure traces

to quantify the amount of secondary burning that occurs in

the TMZ. This is accomplished by integrating the pressure

time histories of the four pressure transducers located in the

test section as shown in Fig. 10. The integration is carried

out using the two-point Newton-Cotes method and the re-

sults reported inMPa· s. The integration of the pressure trace

starts at the arrival of the incident shock wave and terminates

upon the arrival of pressure disturbances from the GDT ap-

proximately 5 ms later. The impulse has an abrupt change

in slope at the arrival of the incident and reflected shocks. It

was found that with all factors being equal, the impulse was

1-5% higher with oxygen versus nitrogen as the test gas.



Fig. 10 An overlay of pressure and impulse vs. time at pressure trans-

ducer P5. The mixture is composed of 2.5C2H4 + 3O2 with O2 as the

test gas.

3.2.1 Time scale of combustion

This section addresses the chemical reaction time scale of

the partially oxidized combustion products (CO and H2) and

the test gas. The goal is to determine the time-scales required

for the reaction to take place and estimate the volume expan-
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sion and temperature rise that result. The analysis is carried

out by first mixing the detonation products with the shocked

test section gas (test gas) keeping the composition frozen

and then allowing the reaction to take place at constant pres-

sure and enthalpy [12]. The initial temperature before the

reaction takes place is a weighted average of the detonation

products and shocked test gas temperatures and determined

during the frozen composition mixing.

The results of this model are shown in Fig. 11. The mix-

ture induction time is plotted against the oxygen mass frac-

tion, fO2 , of the composite mixture defined as

fO2 =
mO2

mO2 +mCJ
(3)

where mO2 and mCJ are the masses of oxygen and partially

oxidized detonation products, respectively. The induction time

in this plot was obtained by finding the time when the tem-

perature time derivative reached 90% of its peak value. The

stoichiometric point for this mixture corresponds to fO2=

0.615. The main result of Fig. 11 is that the induction times

for the majority of the oxygen mass fraction range are on

the order of a few microseconds. The large induction time

values occur in the limit as fO2 → 0 where the partially ox-

idized detonation products are already in equilibrium and

as fO2 →1 where the temperature of the frozen mixture de-

creases toward the post-shock temperature of oxygen (≈1600

K). Both the change in temperature and specific volume nor-

malized by the frozen composition state are shown. Both

curves peak between fO2 = 0.8 and 0.9 because of the de-

crease of the initial temperature and specific volume as the

oxygen mass fraction increases. The values of ∆T and ∆v
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Fig. 11 Induction time vs. oxygen mass fraction computed using a

homogeneous mixing ignition time calculation (HMIT) on the left axis.

Temperature and specific volume ratio vs. oxygen mass fraction on the

right axis

are obtained by taking the difference of the peak value ob-

tained during the reaction and the frozen composition value.

3.3 Secondary impulse model

A simple model is developed to predict the increase in im-

pulse observed in experiments where oxygen is used as a test

gas compared to nitrogen. The model estimates the growth

of a reacting fluid element in the TMZ given the appropriate

time scales, length scales, and degree of mixing. The ex-

pansion of the reacted fluid elements produce compression

waves that increase the pressure in the flow behind the shock

wave and therefore increase the impulse. The secondary im-

pulse model does not account for many of the complex de-

tails associated with turbulent shear layers and detonation-

composition-gradient interactions that are important in this

problem. The goal is to simply verify that the magnitude of
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the impulse increment, observed in the experimental pres-

sure histories, is correct.

3.3.1 Model outline

Consider a fluid element, moving in a flow with a convective

velocity up. The growth of a fluid element resulting from

chemical reactions is depicted in Fig. 12. The velocity of

the left (δu−p ) and right (δu
+
p ) edges of the fluid element are

combined to obtain an expression for the growth rate of the

fluid element

 



 



 

Fig. 12 A sketch of a fluid element expanding during chemical reac-

tion at constant pressure and enthalpy.

dx∗

dt
= δu+p −δu−p . (4)

The increase in pressure is related to the velocity increase

using the acoustic equation [13]

δP = ±ρcδup (5)

where ρ and c are the local density and sound speed. The

use of Equation 5 is motivated by the small increase in pres-

sure observed in experiments with secondary combustion.

Substituting Equation 5 into Equation 4 using the plus and

minus sign for δu+p and δu−p respectively, then isolating for

δP results in

δP =
ρc

2

dx∗

dt
. (6)

With the average acoustic impedance ρc defined as

ρc = 2

(

1

(ρc)+
+

1

(ρc)−

)

−1

, (7)

where (ρc)− and (ρc)+ represents fluid to the left and right

of the TMZ, namely the combustion products and the test

gas, respectively. It is assumed that the thermodynamic states

of the test gas and combustion products do not change mea-

surably as a result of chemical reactions in the TMZ. The

acoustic analogy is based on the assumption that the chemi-

cal reactions occur at constant pressure and enthalpy, appro-

priate for diffusively controlled combustion within the shear

layer.

The impulse I is defined as

I =

∫
Pdt (8)

where P is the local pressure. The impulse can be decom-

posed into two parts that represent the bulk flow impulse I◦

and the increment due to secondary chemical reactions I ′.

Similarly the pressure is decomposed in the same manner

resulting in

I = I◦ + I′ =
∫
Pdt =

∫
(P+δP)dt. (9)

Isolating the contributions of impulse due to chemical reac-

tions in Equation 9 and substituting Equation 6 for the pres-

sure increment yields after integration

I′ =

∫
δPdt =

ρc

2
∆x∗. (10)
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∆x∗ refers to the total growth of the fluid element due to

chemical reactions and is related to the volume expansion

∆v via the expression

∆x∗

x∗
=

∆v

v◦
. (11)

Substituting Equation 11 into Equation 10 results in

I′ = C x∗
ρc

2

∆v

v◦
. (12)

An estimate of I′ is obtained by substituting the local un-

reacted density and sound speed, the experimentally mea-

sured value of x∗, and the quantity ∆v/v◦, obtained from

Sec. 3.2.1. The present computation is clearly only an order

of magnitude argument and a constant of proportionality C

has been introduced in Equation 12. The value of C has to

be determined by comparison with the experimental data.

The value x∗ in Equation 12 reflects the size of the TMZ

visible in port 2 andmonotonically increaseswith delay time.

x∗ can be increased to account for additional combustion in

the TMZ after the shock wave reflects off the end-wall. It has

been shown [18] that TMZ growth can increase by a factor

of six after the re-shock event. However, in the following

calculations all the factors that can amount to an increase in

impulse are lumped into the constant C .

The visible growth rate of the shear layer does not in-

crease with the addition of heat release, in fact the growth

was shown to decrease [6]. However, the shear layer dis-

placement thickness changes from being negative to positive

causing the surrounding fluid to be displaced and generating

compression waves.

3.4 Model predictions

Values for the variables on the right hand side of Equation 12

are estimated based on the previous discussion. The thermo-

dynamic variables are specified for fO2= 0.615 correspond-

ing to a stoichiometric mixture composition. The constant

of proportionality C is varied from a value of 1 to 10 to

account for interface growth after the shock reflection off

the end-wall. A reference impulse of 1000 kg·m−1
·s−1 ob-

tained from impulse measurements at pressure transducer P4

is used to calculate the increment.

The model prediction and experimental results for im-

pulse increment are plotted in Fig. 13 as a function of delay

time. The experimental impulse increment increases with

delay time for pressure transducers P4, P5, and P6 and is

bounded between about 1-5%. The model prediction also

increases with delay, largely a result of the TMZ thickness

dependence on delay time. When the constant C = 1, the

model predicts lower impulses than the experiments. Increas-

ing the constant C to 5 or 10 yields better quantitative agree-

ment. This could be attributed to the importance of further

reaction and growth in x∗ during the re-shock phase.

Given the simplicity of the model, only order of magni-

tude agreement can be expected at best. The fact that theory

estimates impulses on the same order as the experimental

findings indicates that secondary combustion in the TMZ is

a plausible explanation for the impulse increment.
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Fig. 13 Impulse increment (%) for oxygen compared to nitrogen ver-

sus delay time. The impulse model prediction is plotted for a range of

proportionality factors.

4 Conclusion

We have experimentally studied detonation propagation along

diffuse interfaces. We have observed the refraction of the

detonation wave through the interface and subsequent cre-

ation of a turbulent mixing zone from the remains of the in-

terfacial region. By using a fuel-rich ethylene-oxygen com-

bustible mixture and an oxidizing test gas, we were able to

observe and quantify the effects of combustion inside the

turbulent mixing zone.

The main consequence of the mixture composition gra-

dient through the diffuse interface was to cause the detona-

tion wave to curve: eventually the reaction zone decouples

from the leading shock wave when the combustible mixture

becomes sufficiently dilute. We attribute the wave curvature

to the decrease in lead shock velocity with increasing dilu-

tion. The reaction zone behind the curved shock lengthens

as the post-shock induction time increases with decreasing

shock velocity. The rapid increase in induction time with

decrease in shock velocity results in the decoupling of the

reaction zone from the shock and the formation of a gap be-

tween the transmitted shock and the turbulent mixing zone.

Secondary combustion in the turbulent shear layer was

investigated. The measured impulse over a fixed time inter-

val was used as a figure of merit to quantify the degree to

which chemical reactions took place. Comparison was made

between otherwise identical experiments with the sole dif-

ference being the choice of test gas. The impulse difference

was between 1-5% in reasonable agreement with the sim-

ple impulse model based on the volume expansion of a fluid

element in the TMZ.
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