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DETOUR INDEX OF A CLASS OF UNICYCLIC GRAPHS

Xuli Qi and Bo Zhou∗

Abstract

The detour index of a connected graph is defined as the sum of detour
distances between all unordered pairs of vertices. We determine the n-vertex
unicyclic graphs whose vertices on its unique cycle all have degree at least
three with the first, the second and the third smallest and largest detour
indices respectively for n ≥ 7.

1 Introduction

Let G be a simple connected graph with vertex set V (G). For u, v ∈ V (G), the
distance d(u, v) or dG(u, v) between u and v in G is the length of a shortest path
connecting them [1], and the detour distance l(u, v) or lG(u, v) between u and v in G
is the length of a longest path connecting them [2, 3]. Note that d(u, u) = l(u, u) = 0
for any u ∈ V (G).

The Wiener index of the graph G is defined as [4, 5]

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

As one of the oldest topological indices, the Wiener index has found various applica-
tions in chemical research [6] and has also been studied extensively in mathematics
[7–10].

The detour index of the graph G is defined as [11–13]

ω(G) =
∑

{u,v}⊆V (G)

l(u, v).

This graph invariant has found applications in QSPR and QSAR studies, see the
work of Lukovits [13], Trinajstić et al. [14], Rücker and Rücker [15], and Nikolić et
al. [16]. For the computation aspect of the detour index, see the work of Lukovits
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and Razinger [17], Trinajstić et al. [16], and Rücker and Rücker [15]. Related work
may be found in [19, 20].

In [21], Zhou and Cai established some basic properties of the detour index,
especially, they gave bounds for the detour index, determined the n-vertex unicyclic
graphs with the first, the second and the third smallest and largest detour indices
respectively for n ≥ 5, and determined the n-vertex unicyclic graphs of cycle length
r with minimum and maximum detour indices respectively where 3 ≤ r ≤ n− 2.

A unicyclic graph is fully loaded if vertices on its unique cycle all have degree at
least three. In the present paper, in continuation of the study on the detour index,
we determine the n-vertex fully loaded unicyclic graphs with the first, the second
and the third smallest and largest detour indices respectively for n ≥ 7.

2 Preliminaries

For a connected graph G with u ∈ V (G), let Wu(G) =
∑

v∈V (G)

d(u, v) and ωu(G) =
∑

v∈V (G)

l(u, v). Let Sn and Pn be the n-vertex star and path, respectively.

Lemma 1. [7] Let T be an n-vertex tree different from Sn and Pn. Then

(n− 1)2 = W (Sn) < W (T ) < W (Pn) =
n3 − n

6
.

We will also use the following lemmas.

Lemma 2. [21] Let T be an n-vertex tree with u ∈ V (T ), where u is not the center
if T = Sn and u is not a terminal vertex if T = Pn. Let x and y be the center of
the star Sn and a terminal vertex of the path Pn, respectively. Then

n− 1 = Wx(Sn) < Wu(T ) < Wy(Pn) =
n(n− 1)

2
.

An n-vertex tree of diameter 3 is of the form Tn;a,b formed by attaching a and
b pendent vertices to the two vertices of P2, respectively, where a + b = n− 2 and
a, b ≥ 1. Let S′n = Tn;n−3,1 for n ≥ 4 and let S′′n = Tn;n−4,2 for n ≥ 6.

Lemma 3. [21] Among the n-vertex trees with n ≥ 6, S′n and S′′n are respectively
the unique graphs with the second and the third smallest Wiener indices, which are
equal to n2 − n− 2 and n2 − 7, respectively.

Lemma 4. [21] Let T be an n-vertex tree with n ≥ 6, u ∈ V (T ), T 6= Sn, where u
is not a vertex of maximal degree if T = S′n or T = S′′n. Let x and y be the vertices
of maximal degrees in S′n and S′′n, respectively. Then n = Wx(S′n) < Wy(S′′n) =
n + 1 ≤ Wu(T ).

Let Cn be the n-vertex cycle with n ≥ 3.
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Lemma 5. [21] Let u be a vertex on the cycle Cr with r ≥ 3. Then ωu(Cr) =
1
4 (3r2− 4r + εr) and ω(Cr) = 1

8r(3r2− 4r + εr) where εr = 1 if r is odd and εr = 0
if r is even.

Let Cr(T1, T2, . . . , Tr) be the graph constructed as follows. Let the vertices of
the cycle Cr be labeled consecutively by v1, v2, . . . , vr. Let T1, T2, . . . , Tr be vertex–
disjoint trees such that Ti and the cycle Cr share exactly one common vertex vi for
i = 1, 2, . . . , r. Then any n-vertex unicyclic graph G with a cycle on r vertices is of

the form Cr(T1, T2, . . . , Tr), where
r∑

i=1

|Ti| = n, and |H| = |V (H)| for a graph H.

Lemma 6. [21] Let G = Cr(T1, T2, . . . , Tr). Suppose that trees Ti and Tj are
nontrivial stars. Let x ∈ V (Ti), y ∈ V (Tj) with x 6= vi and y 6= vj. If ωx(G) ≤
ωy(G), then ω(G− vjy + viy) < ω(G).

Lemma 7. [21] Let G = Cr(T1, T2, . . . , Tr). Then

ω(G) =
r∑

i=1

W (Ti)+
∑

1≤i<j≤r

[|Ti| ·Wvj (Tj) + |Tj | ·Wvi(Ti) + |Ti| · |Tj | · lCr (vi, vj)
]
.

For n ≥ 6, let Un be the set of n-vertex fully loaded unicyclic graphs. For
3 ≤ r ≤ bn

2 c, let Un,r be the set of graphs in Un with cycle length r.

3 Fully loaded unicyclic graphs with small detour
indices

For 3 ≤ r ≤ bn
2 c, let Sn,r = Cr(T1, T2, . . . , Tr) with T1 = · · · = Tr−1 = P2 and

Tr = Sn−2(r−1) with center vr.

Lemma 8. For 3 ≤ r ≤ bn
2 c,

ω(Sn,r) =

{
n2 + 3r2−6r−1

2 n + −3r3+4r2+r
2 if r is odd,

n2 + 3r2−6r−2
2 n + −3r3+4r2+2r

2 if r is even.

Proof. Let ui 6= vi be the pendent vertex of Ti = P2 for i = 1, 2, . . . , r − 1, and
let uj 6= vr, j = r, r + 1, . . . , n − r, be the pendent vertices of Tr = Sn−2(r−1). To
compute ω(Sn,r), consider the contributions of the pairs of vertices in the cycle, the
pairs of pendent vertices, and the pairs with one vertex in the cycle and the other
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a pendent vertex. It is easily seen that

ω(Sn,r) =
∑

1≤i<j≤r

l(vi, vj) +
∑

1≤i<j≤n−r

l(ui, uj) +
r∑

i=1

n−r∑

j=1

l(vi, uj)

= ω(Cr) +
∑

1≤i<j≤r

l(ui, uj) + 2
(

n− 2r

2

)
+ (n− 2r)

[
2 +

r−1∑

i=1

l(ur, ui)

]

+
r∑

i=1

r∑

j=1

l(vi, uj) +
r∑

i=1

n−r∑

j=r+1

l(vi, uj)

= ω(Cr) +
∑

1≤i<j≤r

[l(vi, vj) + 2] + 2
(

n− 2r

2

)

+(n− 2r)

[
2 +

r−1∑

i=1

(l(vr, vi) + 2)

]

+
r∑

i=1

r∑

j=1

[l(vi, vj) + 1] +
r∑

i=1

n−r∑

j=r+1

[l(vi, vr) + 1]

= ω(Cr) + ω(Cr) + 2
(

r

2

)
+ 2

(
n− 2r

2

)

+(n− 2r) [2 + ωvr (Cr) + 2(r − 1)]
+2ω(Cr) + r2 + (n− 2r)(ωvr (Cr) + r)

= 4ω(Cr) + 2(n− 2r)ωvr (Cr) + (n− 1)(n− r).

Now the result follows from Lemma 5.

Proposition 1. Let G ∈ Un,r with 3 ≤ r ≤ bn
2 c. Then ω(G) ≥ ω(Sn,r) with

equality if and only if G = Sn,r.

Proof. Let G = Cr(T1, T2, . . . , Tr) be a graph with the smallest detour index among
graphs in Un,r. We need only to show that G = Sn,r.

By Lemmas 1, 2 and 7, Ti is a star with center vi for i = 1, 2, . . . , r. Suppose that
|Ti|, |Tj | ≥ 3 with i 6= j. Let x ∈ V (Ti), y ∈ V (Tj) with x 6= vi, y 6= vj . Suppose
without loss of generality that ωx(G) ≤ ωy(G). By Lemma 6, ω(G − vjy + viy) <
ω(G), a contradiction. Thus there can not be two trees of T1, T2, . . . , Tr with at
least three vertices in G, i.e., G = Sn,r.

Let Γn be the set of graphs C3(T1, T2, T3) in Un with |T1| = |T2| = 2. Let Ψn be
the set of graphs C3(T1, T2, T3) in Un with |T3| ≥ |T2| ≥ max{|T1|, 3}. Let Φn be
the set of graphs in Un with cycle length at least four. Then Un = Γn ∪Ψn ∪ Φn.

For n ≥ 7, let B′
n be the graph in Γn formed by attaching a path P2 and n− 7

pendent vertices to the vertex of degree two in C3(P2, P2, P1), and for n ≥ 8, let B′′
n

be the graph in Γn formed by attaching a star S3 at its center and n − 8 pendent
vertices to the vertex of degree two in C3(P2, P2, P1).
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Lemma 9. Among the graphs in Γn, B′
n for n ≥ 7 and B′′

n for n ≥ 8 are the unique
graphs respectively with the second and the third smallest detour indices, which are
equal to n2 + 5n− 24 and n2 + 6n− 29, respectively.

Proof. The case n = 7 is trivial. Let G = C3(T1, T2, T3) ∈ Γn with n ≥ 8. Note
that |T1| = |T2| = 2. By Lemma 7, we have

ω(G) = 1 + 1 + W (T3) + 2 + 2 + 8 + 2 [2Wv3(T3) + n− 4 + 4(n− 4)]
= 10n− 26 + W (T3) + 4Wv3(T3),

which, together with Lemmas 3 and 4, implies that B′
n and B′′

n are the unique
graphs in Γn with the second and the third smallest detour indices, which are equal
to n2 + 5n− 24 and n2 + 6n− 29, respectively.

Let Sn(a, b, c) = C3(T1, T2, T3) with |T1| = a, |T2| = b, |T3| = c, a + b + c = n,
and a, b, c ≥ 2, where T1 (T2, T3, respectively) is a star with center v1 (v2, v3,
respectively).

Lemma 10. Among the graphs in Ψn, Sn(2, 3, n− 5) for n ≥ 8 is the unique graph
with the smallest detour index, which is equal to n2 + 6n − 35, and C3(P2, P3, S3)
with v2 being a terminal vertex of P3 and v3 being the center of S3 for n = 8,
S9(3, 3, 3) for n = 9, and Sn(2, 4, n − 6) for n = 10, 11 are the unique graphs with
the second smallest detour index, which is equal to 82 for n = 8, 102 for n = 9, and
n2 + 8n− 53 for n = 10, 11.

Proof. For n ≥ 8, let G = C3(T1, T2, T3) ∈ Ψn with c ≥ b ≥ max{a, 3}, where
|T1| = a, |T2| = b, |T3| = c, and a + b + c = n.

Suppose first that G = Sn(a, b, c) and G 6= Sn(2, 3, n − 5). It is easily seen
that ωx(G) ≤ ωy(G) for pendent vertices x ∈ V (T3) and y ∈ V (T1) ∪ V (T2). By
Lemma 6, we have

ω(Sn(a, b, c)) ≥ ω(Sn(2, b, a + c− 2)) ≥ ω(Sn(2, 3, n− 5)),

and at least one of the two inequalities is strict. If G 6= Sn(a, b, c), then by Lem-
mas 1, 2 and 7, we have ω(G) > ω(Sn(a, b, c)) ≥ ω(Sn(2, 3, n− 5)) = n2 + 6n− 35.
Thus Sn(2, 3, n − 5) for n ≥ 8 is the unique graph in Ψn with the smallest detour
index, which is equal to n2 + 6n− 35.

Now we determine the graphs with the second smallest detour index in Ψn for
8 ≤ n ≤ 11. It is trivial if n = 8. Suppose that n = 9, 10, 11. Let G ∈ Ψn

with G 6= Sn(2, 3, n − 5). Let G1 be the graph obtained from Sn(2, 3, n − 5) by
moving a pendent vertex at v2 to the other pendent vertex, and G2 the graph
obtained from Sn(2, 3, n−5) by moving a pendent vertex at v3 to one other pendent
vertex. If in G, T1 = P2 and T2 = S3 with v2 its center, then by Lemma 7,
ω(G) = 13n−41+W (T3)+5Wv3(T3), which, by Lemmas 1, 2, 3 and 4, is minimum
when T3 is not the star with center v3 if and only if T3 = S′n−5 with v3 its vertex of
maximal degree, i.e., G = G2. If (a, b) = (2, 3), then by Lemmas 1, 2 and 7, ω(G) ≥
min{ω(G1), ω(G2)} = n2 + 7n − 38, and thus ω(G) ≥ 106 > 102 = ω(S9(3, 3, 3))
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if n = 9, and ω(G) > n2 + 8n − 53 = ω(Sn(2, 4, n − 6)) if n = 10, 11. Suppose
that (a, b) 6= (2, 3). By Lemmas 1, 2 and 7, ω(G) ≥ ω(Sn(a, b, c)) with equality
if and only if G = Sn(a, b, c). If n = 9, then (a, b, c) = (3, 3, 3). If n = 10, then
(a, b, c) = (2, 4, 4), (3, 3, 4). If n = 11, then (a, b, c) = (2, 4, 5), (3, 3, 5), (3, 4, 4).

Note that ω(S10(3, 3, 4)) = 129 > 127 = ω(S10(2, 4, 4)) and ω(S11(3, 4, 4)) =
160 > ω(S11(3, 3, 5)) = 158 > ω(S11(2, 4, 5)) = 156. The result follows easily.

Proposition 2. Among the graphs in Un,

(i) Sn,3 for n ≥ 6 is the unique graph with the smallest detour index, which is
equal to n2 + 4n− 21;

(ii) B′
7 for n = 7, Sn(2, 3, n− 5) for 8 ≤ n ≤ 10, S11(2, 3, 6) and B′

11 for n = 11,
and B′

n for n ≥ 12 are the unique graphs with the second smallest detour
index, which is equal to 60 for n = 7, n2 + 6n − 35 for 8 ≤ n ≤ 10, 152 for
n = 11, and n2 + 5n− 24 for n ≥ 12;

(iii) B′
8 for n = 8, B′

9 and S9(3, 3, 3) for n = 9, B′
10 for n = 10, S11(2, 4, 5) for

n = 11, and Sn(2, 3, n − 5) for n ≥ 12 are the unique graphs with the third
smallest detour index, which is equal to 80 for n = 8, 102 for n = 9, 126 for
n = 10, 156 for n = 11, and n2 + 6n− 35 for n ≥ 12.

Proof. If r is odd with 3 ≤ r ≤ bn
2 c − 1, then by Lemma 8,

ω(Sn,r+1)− ω(Sn,r) = −1
2
(9r2 − 6nr + 4n− 3) = −9

2
(r − r1)(r − r2),

where r1 = n−
√

(n−3)(n−1)

3 < n−(n−3)
3 = 1 < 3, r2 = n+

√
(n−3)(n−1)

3 > n+n−3
3 =

2
3n− 1 >

⌊
n
2

⌋− 1, and thus r1 < r < r2, implying that ω(Sn,r+1) > ω(Sn,r). If r is
even with 4 ≤ r ≤ bn

2 c − 1, then by Lemma 8,

ω(Sn,r+1)− ω(Sn,r) = −1
2
(9r2 + 2r − 6nr + 2n− 2) = −9

2
(r − r3)(r − r4),

where r3 = 3n−1−
√

(3n−4)2+3

9 < 3n−1−(3n−4)
9 = 1

3 < 4, r4 = 3n−1+
√

(3n−4)2+3

9 >
3n−1+3n−4

9 = 2
3n− 5

9 >
⌊

n
2

⌋− 1, and thus r3 < r < r4, implying that ω(Sn,r+1) >

ω(Sn,r). It follows that ω(Sn,r) is increasing with respect to r ∈ {
3, 4, . . . , bn

2 c
}
.

By Proposition 1 and Lemma 8, Sn,3 for n ≥ 6 is the unique graph in Un with the
smallest detour index, which is equal to n2 + 4n − 21, proving (i). Moreover, Sn,4

for n ≥ 8 is the unique graph in Φn with the smallest detour index, which is equal
to n2 + 11n− 60.

Now we prove (ii). The case n = 7 is trivial. For n ≥ 8, the graphs in Un with
the second smallest detour index are just the graphs in Un \{Sn,3} = (Γn \{Sn,3})∪
Ψn ∪ Φn with the smallest detour index, which, by Lemmas 9 and 10, is equal to
min{ω(B′

n), ω(Sn(2, 3, n−5)), ω(Sn,4)} = min{n2 +5n−24, n2 +6n−35, n2 +11n−
60}, i.e., n2 +6n−35 for 8 ≤ n ≤ 10, n2 +5n−24 = n2 +6n−35 = 152 for n = 11,
and n2 + 5n− 24 for n ≥ 12. Then (ii) follows.

From (i) and (ii) and by Lemmas 9 and 10, we find that the graphs in Un for n ≥
8 with the third smallest detour index are just the graphs in Un \{Sn,3, Sn(2, 3, n−
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5)} = (Γn \ {Sn,3}) ∪ (Ψn \ {Sn(2, 3, n− 5)} ∪Φn for 8 ≤ n ≤ 10, U11 \ {S11,3, B
′
11,

S11(2, 3, 6)} = (Γ11 \ {S11,3, B
′
11}) ∪ (Ψ11 \ {S11(2, 3, 6)} ∪ Φ11 for n = 11 and

Un \ {Sn,3, B
′
n} = (Γn \ {Sn,3, B

′
n}) ∪Ψn ∪ Φn for n ≥ 12 with the smallest detour

index, which is equal to

min{ω(B′
8), ω(C3(P2, P3, S3)), ω(S8,4)} = min{80, 82, 92} = 80 for n = 8,

min{ω(B′
9), ω(S9(3, 3, 3)), ω(S9,4)} = min{102, 102, 120} = 102 for n = 9,

min{ω(B′
10), ω(S10(2, 4, 4)), ω(S10,4)} = min{126, 127, 150} = 126 for n = 10,

min{ω(B′′
11), ω(S11(2, 4, 5)), ω(S11,4)} = min{158, 156, 182} = 156 for n = 11,

and

min{ω(B′′
n), ω(Sn(2, 3, n− 5)), ω(Sn,4)}

= min{n2 + 6n− 29, n2 + 6n− 35, n2 + 11n− 60}
= n2 + 6n− 35

for n ≥ 12. Now (iii) follows easily.

4 Fully loaded unicyclic graphs with large detour
indices

For 3 ≤ r ≤ bn
2 c, let Pn,r = Cr(T1, T2, . . . , Tr) with T1 = · · · = Tr−1 = P2 and

Tr = Pn−2(r−1) with a terminal vertex vr.

Lemma 11. For 3 ≤ r ≤ bn
2 c,

ω(Pn,r) =

{
1
6 [n3 + (−3r2 + 12r − 10)n + 7r3 − 24r2 + 17r] if r is odd,
1
6 [n3 + (−3r2 + 12r − 13)n + 7r3 − 24r2 + 20r] if r is even.

Proof. To compute ω(Pn,r), consider the contributions of the pairs of vertices in
its subgraph G1 = Cr(P2, P2, . . . , P2), the pairs of vertices in the subgraph Pn−2r

(obtained from Pn,r by deleting vertices of G1), and the pairs with one vertex in
G1 and the other vertex in Pn−2r. It is easily seen that

ω(Pn,r) = ω(G1) + W (Pn−2r)

+
n−2r∑

j=1

[
j + j + 1 +

r−1∑

i=1

(j + 1 + l(vr, vi) + j + 1 + l(vr, vi) + 1)

]

= 4ω(Cr) + 2r2 − r + W (Pn−2r)
+2(n− 2r)ωvr (Cr) + rn2 + (−4r2 + 4r − 2)n + 4r3 − 8r2 + 4r

= 4ω(Cr) + W (Pn−2r) + 2(n− 2r)ωvr (Cr)
+rn2 + (−4r2 + 4r − 2)n + 4r3 − 6r2 + 3r.

Now the result follows from Lemmas 1 and 5.
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Proposition 3. Let G ∈ Un,r with 3 ≤ r ≤ bn
2 c. Then ω(G) ≤ ω(Pn,r) with

equality if and only if G = Pn,r.

Proof. Let G = Cr(T1, T2, . . . , Tr) be a graph with the largest detour index among
graphs in Un,r. We need only to show that G = Pn,r.

By Lemmas 1, 2 and 7, Ti is a path with vi as one of its terminal vertices for
each i = 1, 2, . . . , r. Suppose that |Ti|, |Tj | ≥ 3 with i 6= j. Let x 6= vi and y 6= vj be
terminal vertices of Ti and Tj , respectively. Suppose without loss of generality that
ωx(G) ≥ ωy(G). Let z be the neighbor of y in G. Then for G′ = G−zy+xy ∈ Un,r,
we have

ω(G′)− ω(G) = ωy(G′)− ωy(G)
= ωx(G′) + n− 2− ωy(G)
= ωx(G) + 1− lG(x, y) + n− 2− ωy(G)
= ωx(G)− ωy(G) + n− 1− lG(x, y) > 0,

and thus ω(G′) > ω(G), a contradiction. Thus there can not be two trees of
T1, T2, . . . , Tr with at least three vertices in G, i.e., G = Pn,r.

For even n, let S′
n, n−2

2
= Cn−2

2

(
T1, T2, . . . , Tn−2

2

)
, where T1 = P4 with a center

v1, and Ti = P2 for i 6= 1, and let S′′
n, n−2

2
= Cn−2

2

(
T1, T2, . . . , Tn−2

2

)
, where T1 = S4

with a pendent vertex v1, and Ti = P2 for i 6= 1. For even n and integer i with
i = 2, 3, . . . , bn+2

4 c, let Qn, n−2
2

(1, i) = Cn−2
2

(
T1, T2, . . . , Tn−2

2

)
, where T1 = P3 with

a terminal vertex v1, Ti = P3 with a terminal vertex vi, and Tj = P2 for j 6= 1, i.

Lemma 12. Among the graphs in Un, n−2
2

with even n ≥ 8, Qn, n−2
2

(1, 2) is the
unique graph with the second largest detour index, which is equal to 1

16 (3n3− 6n2 +
40n− 80) for n ≡ 0 (mod 4), and 1

16 (3n3 − 6n2 + 36n− 88) for n ≡ 2 (mod 4).

Proof. For any graph Cn−2
2

(
T1, T2, . . . , Tn−2

2

)
∈ Un, n−2

2
, there are at most two

trees Ti and Tj with three vertices. By Proposition 3, the graphs in Un, n−2
2

with the
second largest detour index are just the graphs in Un, n−2

2
\{Pn, n−2

2
} with the largest

detour index. Except Pn, n−2
2

, there are three graphs Sn, n−2
2

, S′
n, n−2

2
and S′′

n, n−2
2

in

Un, n−2
2

with exactly one tree (T1) with four vertices. Similarly to the proof of

Lemma 9, we have ω
(
S′′

n, n−2
2

)
> ω

(
S′

n, n−2
2

)
> ω

(
Sn, n−2

2

)
, where ω

(
S′′

n, n−2
2

)
is

equal to 1
16 (3n3− 6n2 + 32n− 80) for n ≡ 0 (mod 4) and 1

16 (3n3− 6n2 + 28n− 88)

for n ≡ 2 (mod 4). Let G = Cn−2
2

(
T1, T2, . . . , Tn−2

2

)
be a graph in Un, n−2

2
with

exactly two trees of at least three vertices. Suppose without loss of generality that
|T1| = |Ti| = 3 for 2 ≤ i ≤ bn+2

4 c. Then T1 and Ti are both paths on three vertices.
For fixed i, by Lemmas 1, 2 and 7, ω(G) is maximum if and only if v1 is a terminal
vertex of T1 and vi is a terminal vertex of Ti, i.e., if and only if G = Qn, n−2

2
(1, i).
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It is easily seen that

ω
(
Qn, n−2

2
(1, i)

)
= ω

(
Cn−2

2
(P2, P2, . . . , P2)

)
+ 4 +

n− 2
2

− (i− 1)

+2


1 + 2 +

r∑

j=2

(5 + 2l(v1, vj))




= ω
(
Cn−2

2
(P2, P2, . . . , P2)

)
+ 4ωv1

(
Cn−2

2

)
+

11n− 20
2

− i,

which is decreasing with respect to i ∈ {
2, 3, . . . , bn+2

4 c}. Thus Qn, n−2
2

(1, 2) is the
unique graph with the largest detour index among the graphs in Un, n−2

2
with exactly

two trees of at least three vertices, which is equal to 1
16 (3n3−6n2+40n−80) for n ≡ 0

(mod 4), and 1
16 (3n3−6n2+36n−88) for n ≡ 2 (mod 4). Since ω

(
Qn, n−2

2
(1, 2)

)
>

ω
(
S′′

n, n−2
2

)
, the result follows easily.

Proposition 4. (1) If n is odd with n ≥ 7, then among the graphs in Un,

(1.1) Pn, n−1
2

is the unique graph with the largest detour index, which is equal to
1
16 (3n3 − 3n2 + 13n− 45) for n ≥ 7 and n ≡ 1 (mod 4), and 1

16 (3n3 − 3n2 +
17n− 41) for n ≥ 7 and n ≡ 3 (mod 4);

(1.2) P9,3 for n = 9, and Sn, n−1
2

for n = 7 and n ≥ 11 are the unique graphs with
the second largest detour index, which is equal to 56 for n = 7, 124 for n = 9,
1
16 (3n3−3n2−3n+3) for n ≥ 11 and n ≡ 1 (mod 4), and 1

16 (3n3−3n2+n+7)
for n ≥ 11 and n ≡ 3 (mod 4);

(1.3) C3(P2, P3, P4) with v2 a terminal vertex of P3 and v3 a terminal vertex of P4

for n = 9, and Pn, n−3
2

for n ≥ 11 are the unique graphs with the third largest
detour index, which is equal to 122 for n = 9, 1

16 (3n3 − 9n2 + 89n− 275) for
n ≥ 11 and n ≡ 1 (mod 4), and 1

16 (3n3 − 9n2 + 85n − 287) for n ≥ 11 and
n ≡ 3 (mod 4).

(2) If n is even with n ≥ 6, then among the graphs in Un,

(2.1) Pn, n
2

is the unique graph with the largest detour index, which is equal to
1
16 (3n3 − 8n) for n ≥ 6 and n ≡ 0 (mod 4), and 1

16 (3n3 − 4n) for n ≥ 6
and n ≡ 2 (mod 4);

(2.2) Pn, n−2
2

is the unique graph with the second largest detour index, which is
equal to 1

16 (3n3 − 6n2 + 48n − 128) for n ≥ 8 and n ≡ 0 (mod 4), and
1
16 (3n3 − 6n2 + 44n− 136) for n ≥ 8 and n ≡ 2 (mod 4);

(2.3) Q8,3(1, 2) for n = 8, P10,3 for n = 10, and Qn, n−2
2

(1, 2) for n ≥ 12 are the
unique graphs with the third largest detour index, which is equal to 87 for
n = 8, 169 for n = 10, 1

16 (3n3 − 6n2 + 40n − 80) for n ≥ 12 and n ≡ 0
(mod 4), and 1

16 (3n3 − 6n2 + 36n− 88) for n ≥ 12 and n ≡ 2 (mod 4).
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Proof. If r is odd with 3 ≤ r ≤ bn
2 c − 1, then by Lemma 11,

2[ω(Pn,r+1)− ω(Pn,r)] = (2− 2r)n + 7r2 − 8r + 1
≥ (2− 2r) · 2(r + 1) + 7r2 − 8r + 1
= 3r2 − 8r + 5 > 0,

and thus ω(Pn,r+1) > ω(Pn,r). If r is even with 4 ≤ r ≤ bn
2 c−1, then by Lemma 11,

2[ω(Pn,r+1)− ω(Pn,r)] = (4− 2r)n + 7r2 − 10r

≥ (4− 2r) · 2(r + 1) + 7r2 − 10r

= 3r2 − 6r + 8 > 0,

and thus ω(Pn,r+1) > ω(Pn,r). It follows that ω(Pn,r) is increasing with respect to
r ∈ {

3, 4, . . . , bn
2 c

}
.

Suppose that n is odd. By the above property of ω(Pn,r), Proposition 3 and
Lemma 11, Pn, n−1

2
is the unique graph in Un with the largest detour index, which

is equal to 1
16 (3n3 − 3n2 + 13n − 45) for n ≥ 7 and n ≡ 1 (mod 4), and 1

16 (3n3 −
3n2 + 17n− 41) for n ≥ 7 and n ≡ 3 (mod 4). Then (1.1) follows.

Since U7 = {P7,3, S7,3}, we have from (1.1) the result in (1.2) for n = 7. Suppose

that n ≥ 9. Note that Un, n−1
2
\

{
Pn, n−1

2

}
=

{
Sn, n−1

2

}
. By the above discussion,

Pn, n−3
2

is the unique graph in Un whose cycle length is at most n−3
2 with the largest

detour index, and then the graphs in Un with the second largest detour index are
just the graphs Sn, n−1

2
and Pn, n−3

2
with larger detour index.

Since ω
(
Sn, n−1

2

)
− ω

(
Pn, n−3

2

)
is negative for n = 9 and positive for n ≥ 11,

Pn,3 for n = 9 and Sn, n−1
2

for n ≥ 11 are the unique graphs in Un with the second
largest detour index, which is equal to 124 for n = 9, 1

16 (3n3 − 3n2 − 3n + 3) for
n ≥ 11 and n ≡ 1 (mod 4), and 1

16 (3n3 − 3n2 + n + 7) for n ≥ 11 and n ≡ 3
(mod 4). It also follows that Pn, n−3

2
for n ≥ 11 is the unique graph in Un with the

third largest detour index, which is equal to 1
16 (3n3 − 9n2 + 89n − 275) for n ≡ 1

(mod 4), and 1
16 (3n3 − 9n2 + 85n − 287) for n ≡ 3 (mod 4). We are left with the

case n = 9. Note that the third largest detour index of graphs in U9 is equal to
the largest detour index of graphs in (Γ9 \ {P9,3}) ∪ Ψ9 ∪ (Φ9 \ {P9,4}). By direct
checking, the largest detour index of graphs in Γ9 \ {P9,3} is 118, in Φ9 \ {P9,4} is
120, and in Ψ9 is 122, which is achieved uniquely by the graph C3(P2, P3, P4) with
v2 a terminal vertex of P3 and v3 a terminal vertex of P4, and thus this graph is
the unique graph in U9 with the third largest detour index, which is equal to 122.
Then (1.2) and (1.3) follow.

Now suppose that n is even. By the above property of ω(Pn,r), Proposition 3
and Lemma 11, Pn, n

2
is the unique graph in Un with the largest detour index, which

is equal to 1
16 (3n3 − 8n) for n ≥ 6 and n ≡ 0 (mod 4), and 1

16 (3n3 − 4n) for n ≥ 6
and n ≡ 2 (mod 4), while Pn, n−2

2
is the unique graph with the second largest detour

index, which is equal to 1
16 (3n3 − 6n2 + 48n − 128) for n ≥ 8 and n ≡ 0 (mod 4),
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and 1
16 (3n3 − 6n2 + 44n− 136) for n ≥ 8 and n ≡ 2 (mod 4). Then (2.1) and (2.2)

follow.
Now we prove (2.3). From (2.1) and (2.2) and by Lemma 12 and the property

of ω(Pn,r), we find that the graphs in Un with the third largest detour index are

just the graphs in Un \
{

Pn, n
2
, Pn, n−2

2

}
with the largest detour index, which is equal

to ω(Q8,3(1, 2)) = 87 for n = 8 and max
{

ω
(
Qn, n−2

2
(1, 2)

)
, ω

(
Pn, n−4

2

)}
for even

n ≥ 10. By Lemma 11, we have

ω(Pn, n−4
2

) =

{
1
16 (3n3 − 12n2 + 136n− 512) if n ≡ 0 (mod 4),
1
16 (3n3 − 12n2 + 140n− 496) if n ≡ 2 (mod 4).

Since ω(Q10,4(1, 2)) < ω(P10,3) for n = 10 and ω
(
Qn, n−2

2
(1, 2)

)
> ω

(
Pn, n−4

2

)
for

even n ≥ 12, (2.3) follows easily.

Acknowledgement: This work was supported by the Guangdong Provincial Nat-
ural Science Foundation of China (no. 8151063101000026).

References

[1] F. Buckley, F. Harary, Distance in Graphs, Addison–Wesley, Reading, MA,
1990.

[2] S. F. Kapoor, H. V. Kronk, D. R. Lick, On detours in graphs, Canad. Math.
Bull. 11 (1968), 195–201.

[3] G. Chartrand, H. Escuadro, P. Zhang, Detour distance in graphs, J. Combin.
Math. Combin. Comput. 53 (2005), 75–94.

[4] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem.
Soc. 69 (1947), 17–20.

[5] H. Hosoya, Topological index. A newly proposed quantity characterizing the
topological nature of structural isomers of saturated hydrocarbons, Bull. Chem.
Soc. Japan 44 (1971), 2332–2339.
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