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Abstract

This work integrates two important cellular responses to low doses, detrimental bystander effects

and apoptosis-mediated protective bystander effects, into a multistage model for chromosome

aberrations and in vitro neoplastic transformation: the State-Vector Model. The new models were

tested on representative data sets that show supralinear or U-shaped dose responses. The original

model without the new low-dose features was also tested for consistency with LNT-shaped dose

responses. Reductions of in vitro neoplastic transformation frequencies below the spontaneous

level have been reported after exposure of cells to low doses of low-LET radiation. In the current

study, this protective effect is explained with by-stander-induced apoptosis. An important data set

that shows a low-dose detrimental bystander effect for chromosome aberrations was successfully

fitted by additional terms within the cell initiation stage. It was found that this approach is

equivalent to bystander-induced clonal expansion of initiated cells. This study is an important step

toward a comprehensive model that contains all essential biological mechanisms that can

influence dose–response curves at low doses.

INTRODUCTION

While earlier efforts to investigate the biological effects of ionizing radiation focused on

high doses, low-dose effects have become the focal point in recent years (1). This research

has led to the discovery of several effects that show nonlinear dose responses at low doses,

putting the validity of the linear, no threshold (LNT) model into question. These low-dose

phenomena include detrimental by-stander effects (2–5), protective bystander effects (6–8),

genomic instability (4, 5, 9), low-dose hyper-radiosensitivity (HRS) and induced

radioresistance (IRR) (10), and adaptive responses (11–17).

The underlying biological mechanisms of these low-dose effects have been identified in

part. Detrimental bystander effects are associated with damage induction in non-hit

neighboring cells through gap junction-mediated intercellular communication (18) or by
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molecules secreted into medium (19). The selective removal of non-hit damaged cells

through apoptosis (20–23) and terminal differentiation together with apoptosis (7) are

examples of non-genotoxic bystander-induced radioprotective mechanisms. It has also been

shown that a bystander-induced increase in the radioresistance of non-hit cells is caused by

an increase in DNA repair (i.e., the DNA base excision repair enzyme AP endonuclease) and

cell growth/cell cycle regulation (6). IRR has been related to induced DNA repair, and the

absence of such repair would be characteristic of HRS (10). The biological mechanisms

mediating the adaptive response could involve DNA repair processes as well as radical

scavenger induction, apoptosis and cell cycle arrest (11, 24–26) and have also been shown to

be a bystander-mediated response (13). The original adaptive response experiments applied

a challenge dose to visualize the protective effect of the adaptive dose. The protective effects

found in a series of novel experiments that started with Azzam et al. (12) show the

protective effect of the low dose alone through a reduction of the in vitro neoplastic

transformation frequency below the spontaneous level (14–16).

The first biophysical model for detrimental bystander effects was the BaD model of Brenner

et al. (32). Others have presented models for bystander effects for in vitro neoplastic

transformation and cancer (33–35). Models for IRR (36) and adaptive response (28, 30, 31,

36–38) have been developed. The phenomenon of HRS and IRR is reflected in the Induced

Repair model (39).

The aim of the current study was to implement detrimental and apoptosis-mediated

protective bystander effects into a State-Vector Model (SVM) for in vitro neoplastic

transformation (40) and to test the model on several representative data sets that show

supralinear2 effects at low doses, U-shaped dose responses or LNT-shaped curves. The

terms “detrimental” and “protective” as used in the current study refer to the end points

analyzed here and not necessarily to carcinogenesis in humans.

MATERIALS AND METHODS

The Model

The SVM is depicted in Fig. 1. The model equations are given in Eqs. (1)–(6). Here Ni(t) is

the number of cells in state i at time t. The rate constants kij (unit of time−1) denote

transitions from state i to state j (Table 1). A state vector denotes the fraction of cells in each

of the states at time t:

Here NT(t) = N0(t) + N1s(t) + N1ns(t) + N2(t) + N3(t) + N4(t).

The model describes a very important process in the formation of in vitro neoplastic

transformation and cancer: chromosome aberrations, specifically, translocations and

inversions (41, 42). The model comprises different stages of genomic damage. State 0 cells

are normal cells and divide with mitotic rate constant km (cell divisions per time unit).3

2Here supralinear means having positive but decreasing slope at small doses, corresponding to a positive first derivative and negative
second derivative near the origin for the dose–response curve; such behavior typically means that the actual dose–response curve at
low doses lies above a linear extrapolation from a higher dose to the origin.
3The mitotic rate constant km is associated with the mean cell cycle duration: a cell cycle duration of 20 h, for example, corresponds
to a mitotic rate constant km of 1/20 h−1 or 24/20 day−1. For some cell lines cell doubling times are reported below. While in general
the doubling time may either be greater than (if some cells die or stop dividing) or equal to the cell cycle duration, for the current
study it is assumed that as a first approximation the doubling time equals the cell cycle duration.
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Cells in State 1s contain a DSB in transcriptionally active DNA, while cells in State 1ns

received a DSB in inactive DNA. Cells in State 2 contain both types of DSBs. The two

pieces of DNA created by the DSBs have a certain probability to undergo a transposition,

the movement of a piece of DNA to another place on the same or another chromosome

(from one gene to another part of the genome) or to be misrepaired (State 3 cells). This

interaction is governed by rate constant k23 (Table 1). Cells in State 4 are initiated and are

not considered to be repairable. They contain all forms of chromosomal aberrations (such as

intrachromosomal paracentric inversions, interstitial deletions, pericentric inversions and

interchromosomal translocations) that can be caused by two DSBs. Here, the term initiation

refers to the first of two main steps toward malignant transformation of cells in vitro (42).

The model equations are linear ordinary differential equations:

(1)

(2)

(3)

(4)

(5)

(6)

The DSB repair pathways include a cell cycle-independent contribution and a cell cycle-

associated contribution. DSBs in States 1s and 1ns can be repaired with rate constants krs

and krns (Table 1). These repair opportunities can be triggered by DSBs themselves and are

assumed to occur at constant levels irrespective of the stage in the cell cycle that the cell is

in. Experimental evidence supports the use of a larger rate constant for the repair in

transcriptionally active DNA (krs) compared to the repair in inactive DNA [krns (43, 44)]. At

several points in the cell cycle, however, the cell enters stages in which repair is particularly

important and effective. For example, repair is triggered by preparation for mitosis; this is

the reason for the G2 arrest. The fraction of time a cell spends in these repair-enhanced

stages depends on whether the cell is quiescent or moving through the cycle. The extent to

which a population of cells is moving through the cycle therefore depends on the mitotic rate

constant. When the mitotic rate is high, more of the cells would be in the pre-mitotic stages

in which postreplication repair occurs. This does not mean that the rate of repair during one

of these repair-enhanced stages changes with mitotic rate but rather that the probability of a

given cell being in such a stage increases as the mitotic rate increases. In the SVM, DSB

repair governed by the mitotic rate constant km is allowed for cells in States 1s, 1ns and 2. It

is emphasized that despite its relationship to km, this repair does not happen during mitosis.

All three repair opportunities (krs and krns and the cell cycle-associated postreplication
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repair) represent HR and non-homologous end joining (NHEJ). Cells in all stages can

undergo cell killing with rate constant kd. It is kd = kdb + kdr × DR, where kdb is the

background rate constant of cell killing, kdr is the radiation-dependent rate constant of cell

killing, and DR is the dose rate. Figure 1 also shows a bystander-induced pathway to

apoptosis for State 4 cells with rate constant kap as described below.

A fraction, F, of the initiated cells has a growth advantage and divides with an enhanced

mitotic rate constant kmp = kmmult × km, where kmmult > 1 (L. Fleishman et al., unpublished

results). In this subpopulation, intercellular communication has been disrupted, resulting in a

loss of contact inhibition. The other fraction, (1 − F), of initiated cells divide at rate constant

km. For the fit of one of the data sets (45), the fraction F is calculated with a binomial

distribution as the probability that an initiated cell is surrounded by four, five or six

inactivated cells out of six surrounding cells4 (40). In the SVM, promotion is described as

the above-mentioned growth advantage resulting from the loss of contact inhibition of a

fraction of the initiated cells. When the model was fitted to the data on chromosome

aberrations, F = 0 was applied, because the formation of chromosome aberrations does not

involve promotion. In the experiments of Miller et al. (45), who used C3H 10T½ cells,

contact inhibition is restored when the culture is confluent. This is simulated in the model as

described below.

The Data

Redpath et al. (15)—Cells of the non-tumorigenic HeLa × skin fibroblast human hybrid

cell line CGL1 were irradiated with γ rays with doses ranging from 1 mGy to 1 Gy at the

following dose rates: 3.3 mGy/min (for doses ≤100 mGy), 41.3 mGy/min (30 and 50 cGy)

and 1.61 Gy/min at 1 Gy. The pooled low-dose data show a highly significant reduction in

the transformation frequency per surviving cell compared to the zero dose for the delayed

plating protocol (15). The data of Redpath et al. (15) were chosen because they are the most

comprehensive data set to date for in vitro neoplastic transformation after γ irradiation that

shows protective effects at low doses.

Nagasawa and Little (48)—The data show a detrimental bystander effect for total

chromosome aberrations in wild-type Chinese hamster ovary (CHO) and xrs-5 cells for

chromosome aberrations after irradiation with 3.7 MeV α particles at a dose rate of 9.9 cGy/

min and 112 keV/μm (48).

Miller et al. (45)—The neoplastic transformation frequency per surviving cell is given for

acute irradiation of C3H 10T½ cells with α particles. These data (45) were chosen because

they are the most comprehensive set of data for in vitro neoplastic transformation for broad-

beam irradiations. Here the data for 150 keV/μm α particles are used as a representative set

of data for α particles among the larger data set (45). The dose rates at 150 keV/μm are 0.24

Gy/s and 0.26 Gy/s for the first and second subset, respectively (Steve Marino, personal

communication).

Numerical Techniques, Likelihoods and Optimization Procedures

The model equations were solved numerically for each dose and dose rate for the different

periods of the various experiments using a stiff solver (“ode15s”) for ordinary differential

4When co-cultured at a ratio of 1:1, non-transformed WB-neo cells could not inhibit the growth of neoplastically transformed WB-ras
and WB-neu cells. However, when seeded at a 4:1 ratio (80,000 WB-neo cells/20,000 WB-ras cells or 80,000 WB-neo cells/20,000
WB-neu cells), significant inhibition of tumor cell growth was evident (46). The growth of initiated cells can also be suppressed by
surrounding normal cells (47). The fact that in the SVM at least four out of six surrounding cells must be dead to interrupt GJIC is
consistent with the threshold-like behavior reported in ref. (46).
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equations of the Matlab© software package. This yields the numerical values for Ni(t). The

data used to test the model show either the number of chromosome aberrations per surviving

cell or the transformation frequency per surviving cell, i.e. the number of neoplastic foci

(transformants per surviving cell). To fit these data, we calculate for each dose

(7)

where tend is the time at the end of the experiment. For the data on chromosome aberrations,

this expression needs to be multiplied by a suitable proportionality constant to reflect the

fact that only a fraction of the measured chromosome aberrations will initiate a cell (36). To

test the influence of the type of numerical solver on the outcome of the model fits, other

available solvers of this software package that solved for non-stiff differential equations

were also applied. Solutions of stiff equations can change on a time scale that is very short

compared to the interval of integration, but the solution of interest changes on a much longer

time scale.

A grid search optimization procedure implemented in Matlab© was applied that allows

searching the parameter space at a global level. For n free parameters, the summed relative

errors were calculated for an n-dimensional space of parameter combinations, and a

minimum value was found in an n-dimensional matrix of relative errors. The parameter

value combination that corresponded to this minimum summed relative error value was

chosen as the optimal unknown parameter combination. For some model fits, however, the

least-squares-based error led to better fits. Fine tuning was performed with the Nelder-Mead

Simplex algorithm (49).

Low-Dose Features Implemented in the Model

Of the data sets used, four show nonlinearities at lower doses. To fit these data, biological

mechanisms that may lead to these nonlinearities were included in the model.

Apoptosis-mediated protective bystander effects—Experimental evidence

indicates that protective apoptosis-mediated [termed PAM by Scott et al. (30)] effects can be

induced by low-dose radiation in non-hit by-stander cells, whereby neoplastically

transformed mammalian cells are eliminated by their non-transformed neighboring cells

through intercellular, TGF-β-mediated, induction of apoptosis (23). For brevity, the term

“PAM process” is referred to here as PAM. Two main pathways for the intercellular

signaling between non-transformed and transformed fibroblasts have been identified: the

hypochlorous acid/hydroxyl radical pathway and the NO/peroxynitrite pathway (20, 21, 50).

These mechanisms represent protective bystander effects, which were modeled in a

simplified biophysical way in the current study. An additional pathway was added that

accounts for bystander-induced apoptosis that allows for the removal of initiated cells (Fig.

1). The parameter kap governs the rate of commitment of initiated cells in State 4 to

bystander-induced apoptosis. The unit for kap is time−1. Induction of bystander-induced

apoptosis in cells with severe and persistent damage is biologically feasible (20, 21). The

following assumptions are made with respect to the occurrence of this by-stander effect.

1. PAM is effective at low doses only—no effect at doses >200 mGy.

2. PAM can eliminate cells in State 4 (initiated).

3. kap = 0 at D = 0.

4. PAM is activated by 1 mGy low-LET radiation (12, 15, 16) but becomes effective

only after exposure (23, 31).
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5. PAM is activated for various times after irradiation.

Detrimental bystander effects—Based on experimental studies, there are different

possibilities regarding how radiation can damage non-hit neighboring cells (9). In the SVM,

a dose- and dose-rate-dependent term, k 01r_by × DR × exp(−λ2by × D), was added to rate

constant k01ns [but not to k01s, because in the SVM k01sr = 0 (40)]. Here D is the dose. This

reflects the possibility that for long exposure times radiation may initiate cells during

exposure by non-targeted effects. Detrimental bystander effects may also occur after

exposure, which can lead to initiation of non-hit cells. This was accounted for by including

k01b_by × exp(−λ1by × D) with the rate constants k01s and k01ns. Another possibility to

account for by-stander effects is to multiply the mitotic rate constants km by [1 + km_by ×

exp(−λ3by × D)]. This accounts for the findings that tissue responses may promote pre-

existing initiated cells (9). In the present study, these approaches were tried out one at a time

so that two free parameters were always estimated by fitting the whole data set for either

CHO or xrs-5 cells (48).

RESULTS

For those data sets that show nonlinear effects at low doses, the following procedure was

applied. At first, those free parameters not associated with the low-dose nonlinearities were

estimated by fitting the model, without the low-dose features, to the control and high-dose

data points. The model with low-dose features was then fitted to the whole data set, with the

other parameter values as fixed input. Results of model fits performed with numerical

solvers other than “ode15s” were very close to those presented below.

Fit of the Data of Redpath et al

CGL1 cells were irradiated when they were subconfluent. In one set of experiments,

Redpath et al. (15) applied a 1-day holding period after which the cells were plated at low

cell density. In the other set of experiments, the cells were plated immediately after

irradiation. During irradiation, the mean doubling time was approximately 20 h [(51); km =

1.2/day]. For the 1-day postirradiation holding period, it can be assumed that the mitotic rate

constant would be about the same as during irradiation because the induced G2 delay would

be minimal after the low radiation doses up to 1 Gy applied in the experiments. After the

holding period, the cells were seeded at low cell density, and after an initial delay of a few

hours (which is not simulated here due to lack of precise information), the cells divided

approximately every 20 h (km = 1.2/day). After approximately 10 days, the cultures became

confluent (51). During confluence, the net clonal expansion rate, km − kdb, was calculated to

be approximately 0.026/day. This value is based on an analysis of the growth curve given in

Fig. 1 of Mendonca et al. (51), who used cells of the same cell line. Because obtaining

independent values for km and kd is not possible, km − kdb = 0.026/day is used during

plateau phase, with kdb = 0. Survival data revealed that up to 1 Gy, no significant cell killing

occurred. Therefore, kdr = 0. CGL1 cells do not respond to contact inhibition signals and

continue to divide (52). Therefore, F, the fraction of initiated cells that are not contact

inhibited, was set to 1 for the whole experiment. Other cell lines, including C3H 10T½ cells,

show contact inhibition when they enter plateau phase. Because no fraction of the CGL1

cells cycles at an elevated mitotic rate, kmmult was set to 1.

The model was fitted to the data in two steps. First, the model with kap = 0 was fitted to a set

of 2 × 4 data points (0, 0.3, 0.5 and 1 Gy) for immediate and delayed plating simultaneously

[fit1; the fit itself is shown in ref. (53)]. At higher doses, more lesions are produced that are

difficult to repair. Since these persist for relatively long times, this allows the possibility of

their interaction to form a new lesion that may be even more difficult (slower) to repair (54).
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Therefore, an exponential damping factor (e−λdecrD) was applied to krs, krns and the cell

cycle-associated repair. A good fit of the data was achieved when it was assumed that prior

to irradiation a fraction f4(0) [refer to Eq. (7)] is already initiated by endogenous influences.

With this background transformation frequency, the initial state vector applied in the model

fits becomes [1 − f4(0), 0, 0, 0, 0, f4(0)]. The values allowed for f4(0) ranged from 10−5 to

10−4. The best estimates for the five free parameters are given in Table 2 (fit1).

With the best estimated values from fit1 as fixed input, a forward simulation with kap = 0 of

the whole data set for immediate plating was performed (Fig. 2A, “direct contribution”).

Here tcon = ET + 10 days and tend = ET + 25 days, where ET is the exposure time for each

dose. In addition, fit2 was performed with kap as free parameter to investigate the protective

effects in this data set compared to the data for delayed plating (Fig. 2A, “total

contribution”). In fit3, tap_off, the time after the start of irradiation when PAM is switched

off was also treated as a free parameter. The model was then fitted to the whole data set for

delayed plating (with tcon = ET + 11 days, tend = ET + 26 days) using one (kap, fit4, Fig. 2B)

or two free parameters (kap, tap_off, fit5). In fit2 and fit4, PAM was switched off when the

cells reached plateau phase. In all these fits, the best estimated values from fit1 were used as

fixed input.

Fit of the Data of Nagasawa and Little

The surviving fractions of CHO cells after α-particle irradiation (2) were used to estimate

kdr (2.11/Gy). This value was also applied in the fit of the data for xrs-5 cells. The mean

doubling times for CHO and xrs-5 cells are 12 (km = 2/day) and 13 h (km = 1.85/day),

respectively (48). Chromosome aberrations were analyzed 19 h after the irradiation (48), i.e.

tend = 19 h. For the fit of the data for CHO cells, the SVM without bystander features was

first fitted to the control and high-dose data points at 1 and 2 Gy (fit6). Here k01b_by = 0 was

applied. This yields the model-predicted chromosomal aberration frequency from direct

effects (Fig. 3A). The initial state vector applied was [1, 0, 0, 0, 0, 0]. The full data set was

then fitted with the best estimates from fit6 as fixed inputs (fit7, Table 3). In fit7, the model

adapted with bystander features was applied. This yields the model-predicted total

chromosomal aberration frequency (Fig. 3A). The data for xrs-5 cells were fitted

analogously (fit8 and fit9, Table 3, Fig. 3B). The fact that xrs-5 cells are deficient in NHEJ

was accounted for by applying a reduction factor, λred, to krs, krns and the cell cycle-

associated repair. In all these fits, F = 0.

Fit of the Data of Miller et al

The data show essentially a linear dose–response relationship (Fig. 4). Therefore, the SVM

without any special low-dose features was fitted to these data. The mean cell cycle duration

of the C3H 10T½ cells used by this group of researchers is approximately 20 h (55).

Therefore, km = 1.2/day. The surviving fractions [Table II in ref. (45)] were fitted with the

term e−kdrD to yield kdr = 2.13/Gy (fit not shown). For the data of Miller et al., a radiation-

induced loss of contact inhibition of initiated cells is simulated. C3H 10T½ cells

surrounding an initiated cell get hit by α particles and die. Consequently, the initiated cell

receives fewer growth-inhibitory signals and starts to divide more rapidly. When the dead

cells are replaced by viable cells (either by division of surrounding viable cells or by

division of the initiated cells themselves), contact inhibition can be restored. This situation

usually occurs when the plate is full, i.e. when the cells enter plateau phase (become

confluent). This is modeled by a linear decrease in the initial fraction of dead cells (L.

Fleishman et al., unpublished results). The fraction will be 0 when exponential growth

ceases and plateau phase starts. A standard tissue culture flask holds approximately 106 cells

when it is full. The time when cells reach confluence (i.e. end of exponential growth), tcon,

can then be calculated using the number of viable cells per dish (45) and km = 1.2/day. We
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get tcon = 6.75 days. The model equations were solved from t = 0 until the end of the

experiment at t = tend = 42 days. In the fit of these data, it was assumed that prior to

irradiation all cells were undamaged (i.e. in state 0), so the initial state vector applied was [1,

0, 0, 0, 0, 0]. Figure 4 shows the model fit to the data. The two subsets of data for 150 keV/

μm α-particle exposure have been fitted jointly. Initial fits revealed that the best estimated

value for kmmult was very close to 1. Therefore, kmmult = 1 was used as a fixed input in the

model fit. The best estimates for the three free parameters are given in Table 3 (fit10). Here

the approximation k01sr = 0 was applied.5

DISCUSSION

In the current study, a biologically based multistage model for chromosome aberrations and

in vitro neoplastic transformation has been tested on various data sets from cell culture

studies. While the limitations of cell culture studies have been stated (56), one advantage is

that they allow investigations of biological mechanisms that are relevant for human

exposure at low doses. The current work focuses on two important low-dose effects that

have been discovered in recent years: detrimental bystander effects (2–5) and protective

apoptosis-mediated bystander effects (7, 20–23, 50). Biological mechanisms that had earlier

been associated with these effects were implemented into the model.

The SVM is biologically motivated. Within the initiation submodel, it describes an

important process in the formation of in vitro neoplastic transformation and cancer:

chromosome aberrations, specifically, translocations and inversions (41). The repair

pathways represent DSB repair in quiescent cells (krs and krns, Table 1). Despite its

relationship to km, cell cycle-associated repair does not happen during mitosis but represents

a postreplication repair pathway. The concept of unrepairable initiated cells is firmly

established (57). For the simulation of in vitro neoplastic transformation, the SVM then

describes the clonal expansion of a fraction F of the initiated cells that have a decreased

GJIC (58). Mutagenic genotoxic carcinogens such as ionizing radiation do not inhibit GJIC

or induce cell proliferation (58). In the SVM, the disruption of GJIC stems from dead cells

surrounding initiated cells (40). For the fit of the data of Miller et al. (45), the fraction of

initiated cells with increased mitotic rate is calculated as explained above. Contact inhibition

can be restored when the plate is full and the cells become confluent. This re-establishment

of contact inhibition is included in the model for the fit of the Miller data: F = 0 at the end of

exponential growth. It is also plausible to use F = 0 for chromosome aberrations because the

formation of chromosome aberrations does not involve promotion. For the fit of the data of

Redpath et al. (15), F = 1 is used because the CGL1 cells show a lack of density-dependent

inhibition of division (52).

Data of Redpath et al

At doses <300 mGy, the data sets of Redpath et al. (15) show a reduced transformation

frequency compared to the zero dose (Fig. 2). The reduction was greater for delayed plating.

This groundbreaking observation of the anti-transformation effect of low doses is a

relatively recent discovery (12). In the current study, the data of Redpath et al. (15) were

successfully fitted with a model that allows for bystander-induced apoptosis at low doses.

Earlier, the data of Azzam et al. (12) were fitted applying the concept of induced HR as

5Estimations for k01sr based on biophysical considerations have been provided for an earlier version of the SVM, and a value of 1.4 ×
10−4/Gy was reported for α particles (40). Here, a model fit of the data of Miller et al. (45) has been performed analogous to fit10 but
with k01sr as free parameter in the local fit applying k01sr = 0 as starting value. The latter is consistent with the use of k01sr = 0 in the
global fit. This led to the following best estimated values: k01sb = 12,860.53/day, k01sr = 1.54 × 10−6/Gy, k01nsb = 149.95/day,
k01nsr = 4941.97/Gy with least-squares-based error = 1.198 × 10−7. Because this fit is not significantly better than fit10 and the value
of k01sr is very small, it is justified to use the approximation k01sr = 0.
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proposed by Azzam et al. (11, 12) and an up-regulation of the radical scavenging capacity

(28). Pant et al. (27) showed that up-regulation of GSH levels is not involved in the reported

suppression of transformation frequency in the currently used data of Redpath et al. (15).

They also showed that up-regulation of DNA repair may be involved at 5 cGy but not at 0.5

cGy. Pant et al. (27) also point out that at doses of 0.1 cGy and less, where a significant

number of cells will not even experience an ionizing event, there is still suppression of the

transformation frequency (12, 15, 16) and that under such circumstances bystander effects

may become more important. Redpath et al. (29) showed that the killing of the

transformation-sensitive G2/M-phase subpopulation could account at least in part for the

observed reduction of the transformation frequency at low doses to levels below that of the

spontaneous frequency. However, since the C3H 10T½ cells used by Azzam et al. (12) were

confluent during irradiation (i.e. remaining in G0/G1), any selective G2/M-phase killing

effect would not apply to these data. It has recently been proposed that the protective effects

seen in the data of Redpath et al. (15) might be due to bystander-induced apoptosis (23).

In the current study, PAM is allowed to eliminate initiated cells (Fig. 1) already present

before the exposure and newly induced initiated cells that are produced during exposure and

the growth period (30, 31). In the model fits, PAM is active only at doses ≤200 mGy. This is

based on the data for delayed plating (15), which show that the transition between protective

and detrimental effects occurs between 100 and 300 mGy (Fig. 4B). The model also

correctly describes the observation that even at 1 mGy the full protective effect occurs (Fig.

2 insets). The rate constant associated with PAM, kap, is currently assumed to not be

dependent on dose rate, in accordance with the findings of Vral et al. (59) and Fujikawa et

al. (60). Dose-rate dependence for induction of apoptosis has been found, however, at 0.15

cGy/min but not at 0.29 cGy/min (61). Redpath et al. (15) used 0.33 cGy/min. Therefore, the

data of Boreham et al. (61) confirm that the model approach is correct for the data of

Redpath et al. (15).

The fact that five free parameters were necessary for fit1 can be considered as a weakness of

the SVM approach. It is emphasized, however, that instead of making f4(0) a free parameter,

a suitable value for it could also be taken from the data themselves (the mean of the two

control values) as fixed input for the initial state vector. That would reduce the number of

free parameters by one. All other fits had fewer free parameters (refer to Tables 2 and 3).

When fitting the data with PAM, two different approaches were applied. At first, kap was the

only free parameter with tap_off ≡ 11 days + ET. This yielded kap = 0.024/day and kap =

0.054/day in fit2 and fit4, respectively. When both kap and tap_off were treated as free

parameters, smaller values for kap were found but with longer times of PAM induction

(Table 2), while the quality of the fits was slightly improved. This shows that kap and tap_off

are inversely related to each other, which is biologically feasible. A longer period of PAM

induction compensates for a smaller rate of induction and vice versa. The best estimated

value for kap in fit4 is approximately twice as large as kap in fit2. An analogous result is

found in fit5 compared to fit3 with similar values for tap_off. The initial drop in

transformation frequency as the dose increased from 0 to 1 mGy in fit4 is also

approximately twice as large as in fit2 (see insets in Fig. 2A and B). All of this reflects the

fact that the data for delayed plating show a stronger protective effect compared to the data

for immediate plating.

To investigate whether the model with two free parameters is superior to the model with

only one free parameter, an F test was applied to the variances σ2 of fit4 to fit5 (Table 2). It

is
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Here TFSC(i) is the ith measured transformation frequency per surviving cell in the data of

Redpath et al. (15) and f4(tend, i) is the ratio from Eq. (7) for the ith dose. One then

calculates , where  is the variance of the ith model fit. The calculated F value is

then compared to the corresponding entry on a table of F-test critical values at a significance

level of α= 0.05 for m and n degrees of freedom (df ) and df = number of data points −

number of free parameters − 1. For fit4, m = 7 and σ2 = 0.074. For fit5, n = 6 and σ2 = 0.072

(Table 2). One gets F = 1.06, which is smaller than the tabulated value of 4.21 at α= 0.05 for

m = 7 and n = 6. Therefore, it can be said that with a probability of 0.95 the two variances

are not significantly different. Fit5 is not better than fit4 at the 5% significance level. An

analogous result was found for fit3 with respect to fit2. This means that the data at hand

cannot be used to prove that the model with two free parameters is better than the model

with one free parameter. More data points would be necessary to lead to smaller tabulated F-

test values. That would better enable to distinguish different model fits statistically.

The relatively long time of approximately 24 days for PAM induction (fit5) is reflected in

the scientific literature. Jamali and Trott (62) reported a 2-week induction of apoptosis after

a 1-Gy × irradiation at 0.5 Gy/min. A sensitivity analysis was performed with respect to

parameter tap_off. It was found that the model predictions are quite sensitive to the value of

this free parameter. This was investigated with the data for delayed plating at a dose of 0.01

Gy and with kap ≡ 0.025/day (fit5). The difference between the model-predicted values for

transformation frequency at control and 0.01 Gy was assigned a Δ value of 100%. The

earlier PAM was switched off, the smaller the Δ values, which means less protection and

therefore a shallower U shape. At tap_off = 5, 10 and 15 days, the Δ values were 25.2%,

47.9% and 69.8%, respectively.

The values for kap can be analyzed further in terms of the number of State 4 cells eliminated.

A forward simulation has been performed for D = 0.1 Gy with the best estimate from fit4.

The simulation yields N4(t = 26 + ET days) = 13.6; i.e., the simulation predicts that after an

exposure to 0.1 Gy, there are approximately 14 initiated cells at the end of the growth

period. When kap = 0 is used in the same forward simulation, we get N4(t = 26 + ET days) =

23.9. PAM therefore eliminates about 10 initiated cells, a rather small number. The

protective effect from 0.1 Gy γ radiation at low dose rate can therefore be explained by

killing only 10 initiated cells that are destined to become neoplastically transformed. Similar

figures hold for the other doses ≤0.1 Gy. Scott et al. (30) stated that since the observed

spontaneous transformation frequency, T0, is of the order of 10−4 to 10−5 for most in vitro

studies of neoplastic transformation, selectively killing all T0 cells would still lead to a cell

surviving fraction >0.999. This is in full accordance to the findings reported here. It is

emphasized that the small number of 10 cells reflects the fact that in this computer

simulation the initial state vector was not multiplied by the mean number of viable cells that

were seeded into a flask after irradiation. For delayed plating and 0.1 Gy, that number is

3640 [derived from Table 1B in Redpath et al. (15)]. When the initial state vector is

multiplied by this number, the difference in N4(26 + ET) with and without PAM becomes

accordingly larger but is still orders of magnitudes smaller than N0(tend) + N1s(tend) + … +

N4(tend) with tend = 26 + ET days. A multiplication of the initial state vector with the dose-

dependent mean number of viable cells seeded is not necessary because this constant cancels

out upon calculation of f4(26 + ET) [refer to Eq. (7)].
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In the current study, we have not tried to estimate the onset of PAM after the end of

exposure. This has been addressed recently (53). While cell cycle effects currently are not

included in the SVM, the selective bystander-induced elimination of initiated cells through

the PAM mechanism bears similarities to the proposed killing of the transformation-

sensitive G2/M-phase subpopulation that could explain some of the protective effects (29).

Like G2/M cells, initiated cells represent a hypersensitive subfraction that is prone to

neoplastic transformation.

While adaptive responses are always consequences of a single adapting dose, the new data

sets of Azzam et al. (12), Redpath and Antoniono (14), Redpath et al. (15, 16), and Ko et al.

(17) represent a novel approach to visualize the protective effect of low doses compared to

the original experimental approach for demonstrating an adaptive response. The latter

applied a second dose to show the protective effect of the adapting dose.

PAM should not be confused with apoptosis induced in hit cells. The latter is currently not

explicitly included in the SVM. It can, however, be assigned to the background rate constant

of cell killing, kdb. PAM operates at low doses of low-LET radiation, while apoptosis in hit

cells may occur at both low and high doses as well as after exposure to high-LET radiation

(31). We speculate that PAM may be the process induced in an adaptive response

experiment by Cregan et al. (24), where an adapting dose induced increased apoptosis after a

larger dose in nondividing lymphocytes. This would be consistent with the idea that

protection is greater when PAM continues for many days, a situation more likely in

nondividing cells and not seen in lymphocytes stimulated to divide.

Data of Nagasawa and Little

The model with detrimental bystander effects was fitted successfully to the chromosomal

aberration data of Nagasawa and Little (48). It was found that only a limited number of

studies dealt with this end point with respect to an adverse bystander effect (63). In the study

of Ponnaiya et al. (63), for example, the authors applied only three different doses, while

Nagasawa and Little (48) used 14 doses in addition to the control. More recent data from the

same group are available (64, 65), but they provide fewer data points than the 2002 data set.

The sub-models describing bystander-induced initiation that occurs after exposure [i.e.

k01_by × exp(−λ1by × D)] and bystander-induced promotion of initiated cells can fit the data

equally well. The dose-rate-dependent bystander model [k01r_by × DR × exp(−λ2by × D)]

did not lead to a satisfactory description of the supralinearities visible in the data for CHO

and xrs-5 cells. This reflects the fact that this term is unequal to zero only during irradiation.

At the low doses where the bystander effects occur, irradiation times are typically less than 1

s. Therefore, even very high values for k01r_by cannot produce a significant deviation from

the model without bystander effects (not shown). Our model analyses indicate that the

bystander effects associated with the data of Nagasawa and Little (48) seem to be induced

predominantly postirradiation. This can be expected based on the fact that for this data set

the exposure times are too short for bystander effects to cause initiation during exposure.

The fact that xrs-5 cells are deficient in NHEJ was accounted for by applying a reduction

factor to krs, krns and the cell cycle-associated repair because it can be assumed that all three

repair possibilities contain contributions from NHEJ (fit8, Table 3). A twofold reduction

was found in fit8. A sixfold repair deficiency of xrs-5 cells compared with CH-K1 cells was

measured (66). Figure 2B shows the best fit of the full data set for xrs-5 cells (fit9).

Here a model for detrimental bystander effects for broad-beam irradiation has been

presented. It is useful to compare this approach to the BaD model for broad-beam α-particle

radiation (32). According to the BaD model, the predicted frequency of transformants per
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surviving cell is νq N  + σ[1 − e−k N ]e−q N , where ν is the slope of the linear dose–

response relationship, q is the probability of surviving a single α-particle traversal, N  is

the mean number of Poisson-distributed α-particle nuclear traversals, and σ is the fraction of

cells that are hypersensitive to transformation by the bystander signal. The number of

unirradiated neighbor cells that receive a bystander signal from hit cells is denoted as k (32).

The probability that at least one of the k cells is hit is [1 − exp(−k × N )]. The direct term

in the BaD model, νq N , is equivalent to αD (32). We therefore get a transformation

frequency per surviving cell of αD + σ[1 − e−δD]e−βD. Here β≡α/ν, N =γD, and δ ≡ kγ
(67). While the SVM does not contain an explicit signaling term, the bystander term applied

in the model fit of the data of Nagasawa and Little (48), k01b_by × exp(−λ1by × D),

decreases exponentially with increasing dose. This is analogous to the BaD model.

Data of Miller et al

The SVM without nonlinear low-dose features was fitted successfully to the in vitro data of

Miller et al. (45). Relatively large values were obtained for the free parameters in fit10

(Table 3) when compared to the best estimates from the other fits. This has to do with the

different irradiation procedures used in the experiments of Miller et al., where the narrow

radiation beam was moved over the dishes and each single cell was irradiated for only a

short time [at 0.1 Gy, for example, ET = 0.4 s for the data of Miller et al. (45) while ET =

30.30 min for the data of Redpath et al. (15)]. This leads to high dose rates (refer to the

Materials and Methods section) that cannot, however, fully compensate for the very short

exposure times within the model fits. In the optimization process, the short exposure times

are compensated for by larger best estimated values to achieve the best possible fits. In the

experiments performed by Nagasawa and Little (48) and Redpath et al. (15), all the cells

were irradiated simultaneously and the exposure times were accordingly longer.

Similar to the SVM, the NEOTRANS model (30, 31, 68) consists of a system of coupled

ordinary differential equations that describe the formation of in vitro neoplastic

transformation. It contains different stages of genomic instability, repair and misrepair and

treats hypersensitive and resistant cells separately. The NEOTRANS model has been applied

to data for neoplastic transformation (30, 31, 68–70) and mutations (70) using the closed-

form solutions for hypersensitive cells (69) or approximate closed-form solutions for low

doses (30, 31, 70) and high dose rates (68). In the current study the numerical solution of the

full model [Eqs. (1) to (6)] is applied.

Mill et al. (56) performed a collaborative study among six European laboratories using C3H

10T½ cells that were irradiated with X rays from 0.25 Gy to 5 Gy at 2 Gy/min. They

concluded that the results clearly support a linear dose–response relationship for cell

transformation in vitro with no evidence for a threshold dose (56). It is emphasized that the

findings of Mill et al. (56) are not in contradiction to the data of Redpath et al. (15), Azzam

et al. (12) and other studies from Dr. Redpath’s laboratory that show protective effects at

low doses. The reasons for this are as follows: Mill et al. (56) used a high dose rate, while

the protective effects observed by Azzam et al. (12) and Redpath et al. (15) were seen with

low dose rates of a few mGy/min. In addition, the data of Redpath et al. (15) show the

transition from protection and detriment between 100 and 300 mGy. The lowest dose

applied by Mill et al. (56) was 250 mGy. It is even more interesting to compare the findings

of Mill et al. (56) to those of Redpath et al. (16) and Ko et al. (17), who also used X rays

delivered at high dose rates. Redpath et al. (16) found the transition from protection to

detriment between 40 and 180 mGy, and Ko et al. (17) found this transition between 10.8

mGy and 108 mGy. All of these doses are much smaller than the lowest dose applied by
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Mill et al. (56). It is therefore obvious that no protective effects can be expected in the study

of Mill et al. (56).

In an earlier study (28), it was explained in more detail that the data of Azzam et al. (12) do

not contradict the results of many other cell culture studies that did not show any thresholds

or protective effects at low doses. This is because of differences in dose rates, in the level of

the spontaneous transformation frequencies, and in the experimental protocols, such as

delayed plating (28). Besides the current study, the SVM has been used before to

successfully explain other low-dose data (28, 36).

Protective and detrimental bystander effects and genomic instability have predominantly

been examined in vitro. Several researchers have speculated about the importance of these

effects for low-dose exposure of humans. We emphasize that the use of reconstructed,

normal human three-dimensional tissue systems (71) and explant techniques that allow

irradiation of explant outgrowth under in vivo-like conditions (7) are leading the way to

future experimental low-dose risk analyses. Biomathematical models should be tested on

such data.

CONCLUSIONS

1. Two new models for detrimental and protective bystander effects were presented

and successfully fitted to representative data sets.

2. A protective apoptosis-mediated bystander effect could be responsible at least in

part for protective effects of low doses of γ radiation.

3. It was found that the magnitude of the protective effect is strongly dependent on the

duration of PAM.

4. New experiments are needed that investigate the potential of low doses (<200

mGy) of low-LET radiation to induce apoptosis. The requested studies should

investigate the time dependence of induction of apoptosis for at least 3 to 4 weeks

after exposure.

5. The importance of adaptive responses with respect to a reduction of the neoplastic

transformation frequency below the spontaneous level at low doses is emphasized.

6. The approach chosen to fit the data of Nagasawa and Little (48) is equivalent to

bystander-induced promotion of initiated cells.

7. The work presented here is an important step toward a comprehensive model that

contains all essential biological mechanisms that can influence dose-responses at

low doses of ionizing radiation.
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FIG. 1.
Pictorial representation of the State-Vector Model. State 4 cells can be eliminated by a dose-

rate-independent protective apoptosis-mediated bystander effect (kap, dashed arrow) in

addition to the dose-rate-dependent pathway for cell killing by necrosis (kd). Rate constant

kap is applied only in the fit of the data of Redpath et al. (15) for immediate and delayed

plating.
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FIG. 2.
Transformation frequency for CGL1 cells irradiated with γ radiation (15). Error bars

represent 95% confidence intervals. Panel A: Data for immediate plating and SVM fit

showing the three different contributions [(– – –) direct, (· · · · · ·) bystander, (——) total

(fit2)]. The direct contribution stems from a forward simulation of the model without PAM

with parameter values from fit1. The contribution of the bystanders was calculated as the

difference between the forward simulation and fit2. Panel B: data for delayed plating and

SVM fit showing the three different contributions [(– – –) direct, (· · · · · ·) bystander, (——)

total (fit4)]. Insets show the low-dose range with the x-axis units in Gy.

Schöllnberger et al. Page 19

Radiat Res. Author manuscript; available in PMC 2011 May 05.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



FIG. 3.
Chromosomal aberrations as a function of mean dose of α-particle radiation (48). Panel A:

Data for wild-type CHO cells and SVM fits showing the three different contributions [– – –

direct (fit6), (· · · · · ·) bystander, (——) total (fit7)]. The contribution of the bystanders was

calculated as the difference between fit7 and fit6. Panel B: Data for xrs-5 cells and SVM fits

showing the three different contributions [(– – –) direct (fit8), (· · · · · ·) bystander, (——)

total (fit9)]. The data points represent mean values ± standard deviations (48).
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FIG. 4.
Transformation frequency after exposure of C3H 10T½ cells to 150 keV/μm α particles

(45). (●) First subset, (■) second subset. Error bars represent 95% confidence intervals.

(——) fit10. Bystander effects were not included in the model.

Schöllnberger et al. Page 21

Radiat Res. Author manuscript; available in PMC 2011 May 05.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

Schöllnberger et al. Page 22

T
A

B
L

E
 1

M
o
d
el

 P
ar

am
et

er
s

M
od

el
 p

ar
am

et
er

s
D

es
cr

ip
ti

on

k
0
1
s 

=
 k

0
1
sb

 +
 k

0
1
sr

 ×
 D

R
R

at
e 

co
n
st

an
t 

o
f 

in
d
u
ct

io
n
 o

f 
D

S
B

s 
in

 t
ra

n
sc

ri
p
ti

o
n
al

ly
 a

ct
iv

e 
D

N
A

; 
th

e 
ap

p
ro

x
im

at
io

n
 k

0
1
sr

 =
 0

 i
s

u
se

d
 (

4
0
);

 D
R

 d
en

o
te

s 
th

e 
d
o
se

 r
at

e;
 k

0
1
sb

: 
fr

ee
 p

ar
am

et
er

.

k
0
1
n
s 

=
 k

0
1
n
sb

 +
 k

0
1
n
sr

 ×
 D

R
R

at
e 

co
n
st

an
t 

o
f 

in
d
u
ct

io
n
 o

f 
a 

n
o
n
-s

p
ec

if
ic

 D
S

B
 i

n
 i

n
ac

ti
v
e 

D
N

A
; 

k
0
1
n
sb

, 
k

0
1
n
sr

: 
fr

ee
 p

ar
am

et
er

s.

k
2
3
 =

 k
2
3
r 
×

 (
D

R
b
 +

 D
R

)
R

at
e 

co
n
st

an
t 

o
f 

in
te

ra
ct

io
n
 b

et
w

ee
n
 t

h
e 

tw
o
 p

ie
ce

s 
o
f 

D
N

A
; 

D
R

b
: 

b
ac

k
g
ro

u
n
d
 d

o
se

 r
at

e 
(1

 m
G

y
/

 
y
ea

r)
. 
B

as
ed

 o
n
 (

4
0
),

 k
2
3
r 
=

 1
/G

y
 f

o
r 

lo
w

-L
E

T
 r

ad
ia

ti
o
n
 o

r 
a 

fa
ct

o
r 

o
f 

ab
o
u
t 

1
,0

0
0
/G

y
 f

o
r

 
h
ig

h
-L

E
T

 r
ad

ia
ti

o
n
.

k
3
4
 =

 P
4
 ×

 k
m

R
at

e 
co

n
st

an
t 

o
f 

d
am

ag
e 

fi
x
at

io
n
; 

P
4
 =

 5
 ×

 l
0

−
4
 i

s 
th

e 
p
ro

b
ab

il
it

y
 o

f 
d
am

ag
e 

fi
x
at

io
n
 p

er
 c

el
l 

d
iv

is
io

n
.

k
m

3
 =

 (
1
 −

 P
4
) 

×
 k

m
M

it
o
ti

c 
ra

te
 c

o
n
st

an
t 

o
f 

st
at

e 
3
 c

el
ls

.

k
m

M
it

o
ti

c 
ra

te
 c

o
n
st

an
t 

o
f 

ce
ll

s 
in

 s
ta

te
s 

0
 a

n
d
 4

; 
k

m
 =

 1
.2

/d
ay

 f
o
r 

C
3
H

 1
0
T

½
 a

n
d
 C

G
L

1
 c

el
ls

 i
n

 
ex

p
o
n
en

ti
al

 g
ro

w
th

 (
se

e 
th

e 
R

es
u
lt

s 
se

ct
io

n
).

k
m

p
 =

 k
m

m
u
lt
 ×

 k
m

E
le

v
at

ed
 m

it
o
ti

c 
ra

te
 c

o
n
st

an
t 

o
f 

a 
fr

ac
ti

o
n
, 

F
, 
o
f 

th
e 

in
it

ia
te

d
 c

el
ls

 t
h
at

 h
av

e 
lo

st
 c

o
n
ta

ct
 i

n
h
ib

i-
 

ti
o
n
. 
k

m
m

u
lt
: 

fr
ee

 p
ar

am
et

er
 r

es
p
ec

ti
v
el

y
 s

et
 t

o
 1

 a
s 

d
es

cr
ib

ed
 i

n
 t

h
e 

te
x
t.

 F
o
r 

m
o
d
el

 f
it

s 
o
f 

th
e

 
d
at

a 
o
f 

R
ed

p
at

h
 e

t 
al

. 
(1

5
):

 F
 =

 1
; 

fo
r 

m
o
d
el

 f
it

s 
o
f 

d
at

a 
o
n
 c

h
ro

m
o
so

m
e 

ab
er

ra
ti

o
n
s:

 F
 =

 0
.

k
d
 =

 k
d
b
 +

 k
d
r 
×

 D
R

R
at

e 
co

n
st

an
t 

o
f 

b
ac

k
g
ro

u
n
d
 a

n
d
 r

ad
ia

ti
o
n
-i

n
d
u
ce

d
 c

el
l 

k
il

li
n
g
; 

k
d
b
 =

 0
.0

1
/d

ay
 (

3
6
);

 k
d
r 
es

ti
m

at
ed

 
b
y
 f

it
ti

n
g
 s

u
rv

iv
al

 f
ra

ct
io

n
s.

 F
o
r 

fi
ts

 o
f 

th
e 

d
at

a 
o
f 

R
ed

p
at

h
 e

t 
al

. 
(1

5
):

 k
d
r 
=

 k
d
b
 =

 0
.

k
rs

R
ep

ai
r 

ra
te

 c
o
n
st

an
t 

o
f 

D
S

B
 i

n
 t

ra
n
sc

ri
p
ti

o
n
al

ly
 a

ct
iv

e 
D

N
A

: 
8
0
/d

ay
 (

2
8
).

k
rn

s
R

ep
ai

r 
ra

te
 c

o
n
st

an
t 

o
f 

a 
n
o
n
-s

p
ec

if
ic

 D
S

B
 i

n
 i

n
ac

ti
v
e 

D
N

A
: 

3
.1

2
/d

ay
 (

4
0
).

N
o
te

. 
R

at
e 

co
n
st

an
ts

 a
n
d
 v

al
u
es

 o
f 

th
ei

r 
co

m
p
o
n
en

ts
 o

r 
in

d
ic

at
io

n
 i

f 
th

ey
 a

re
 t

re
at

ed
 a

s 
fr

ee
 p

ar
am

et
er

s.

Radiat Res. Author manuscript; available in PMC 2011 May 05.



 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

Schöllnberger et al. Page 23

T
A

B
L

E
 2

B
es

t 
E

st
im

at
es

, 
R

el
at

iv
e 

E
rr

o
rs

 a
n
d
 V

ar
ia

n
ce

s 
fo

r 
M

o
d
el

 F
it

s 
o
f 

th
e 

D
at

a 
o
f 

R
ed

p
at

h
 e

t 
al

. 
(1

5
)

Im
m

ed
ia

te
 p

la
ti

ng
D

el
ay

ed
 p

la
ti

ng

F
it

1
F

it
2

F
it

3
F

it
4

F
it

5

k
0
1
sb

 =
 0

.5
5
3
/d

ay
k

ap
 =

 0
.0

2
4
/d

ay
k

ap
 =

 0
.0

1
1
/d

ay
k

ap
 =

 0
.0

5
4
/d

ay
k

ap
 =

 0
.0

2
5
/d

ay

k
0
1
n
sb

 =
 1

0
.2

2
/d

ay
t a

p
_
o
ff
 =

 2
3
.0

5
 d

ay
s

t a
p
_
o
ff
 =

 2
3
.6

7
 d

ay
s

k
0
1
n
sr

 =
 1

5
1
.4

2
/G

y

f 4
(0

) 
=

 2
.6

3
 ×

 1
0

−
5

λ
d
ec

r 
=

 0
.0

7
8
/G

y

R
el

at
iv

e 
er

ro
r 

=
 0

.5
5
0

R
el

at
iv

e 
er

ro
r 

=
 0

.6
3

2
R

el
at

iv
e 

er
ro

r 
=

 0
.6

0
9

R
el

at
iv

e 
er

ro
r 

=
 0

.6
4
2

R
el

at
iv

e 
er

ro
r 

=
 0

.6
2
7

σ2
 =

 0
.1

0
0

σ2
 =

 0
.0

9
8

σ2
 =

 0
.0

7
4

σ2
 =

 0
.0

7
2

N
o
te

s.
 I

n
 f

it
1
 t

h
e 

co
n
tr

o
l 

an
d
 h

ig
h
-d

o
se

 d
at

a 
p
o
in

ts
 a

t 
0
.3

, 
0
.5

 a
n
d
 1

 G
y
 f

o
r 

im
m

ed
ia

te
 a

n
d
 d

el
ay

ed
 p

la
ti

n
g
 w

er
e 

fi
tt

ed
 j

o
in

tl
y
 u

si
n
g
 k

ap
 =

 0
. 
T

h
e 

b
es

t 
es

ti
m

at
ed

 v
al

u
es

 f
ro

m
 f

it
1
 w

er
e 

u
se

d
 a

s 
fi

x
ed

 i
n
p
u
ts

 f
o
r

fi
t2

 t
o
 f

it
5
. 
In

 t
h
es

e 
fo

u
r 

fi
ts

 P
A

M
 w

as
 s

w
it

ch
ed

 o
n
 w

h
en

 t
h
e 

ex
p
o
su

re
 e

n
d
ed

. 
In

 f
it

2
 a

n
d
 f

it
4
, 
P

A
M

 w
as

 s
w

it
ch

ed
 o

ff
 w

h
en

 t
h
e 

ce
ll

s 
re

ac
h
ed

 p
la

te
au

 p
h
as

e.
 I

n
 a

ll
 f

it
s 

k
m

m
u
lt

 =
 1

.

Radiat Res. Author manuscript; available in PMC 2011 May 05.



 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

Schöllnberger et al. Page 24

T
A

B
L

E
 3

B
es

t 
E

st
im

at
es

 a
n
d
 L

ea
st

-S
q
u
ar

es
-B

as
ed

 E
rr

o
rs

 o
r 

R
el

at
iv

e 
E

rr
o
rs

 o
f 

th
e 

D
at

a 
o
f 

M
il

le
r 

et
 a

l.
 (

4
5
) 

fo
r 

1
5
0
 k

eV
/μ

m
 α

 P
ar

ti
cl

es
 a

n
d
 t

h
e 

D
at

a 
o
f 

N
ag

as
aw

a

an
d
 L

it
tl

e 
(4

8
)

C
H

O
 c

el
ls

xr
s-

5 
ce

lls

F
it

6
F

it
7

F
it

8
F

it
9

F
it

10

k
0
1
sb

 =
 1

.8
7
/d

ay
k

0
1
b
_
b
y
 =

 6
.1

0
/d

ay
λ

re
d
 =

 2
.2

6
k

0
1
b
_
b
y
 =

 1
5
.1

7
/d

ay
k

0
1
sb

 =
 1

2
,8

6
0
.0

/d
ay

k
0
1
n
sb

 =
 6

0
9
.5

6
/d

ay
λ

1
b
y
 =

 3
.7

7
/G

y
λ

1
b
y
 =

 1
0
.4

6
/G

y
k

0
1
n
sb

 =
 1

5
0
.0

/d
ay

k
0
1
n
sr

 =
 2

4
.6

0
/G

y
k

0
1
n
sr

 =
 4

,9
4
0
.0

/G
y

L
ea

st
-s

q
u
ar

es
-b

as
ed

L
ea

st
-s

q
u
ar

es
-b

as
ed

L
ea

st
-s

q
u
ar

es
-b

as
ed

L
ea

st
-s

q
u
ar

es
-b

as
ed

L
ea

st
-s

q
u
ar

es
-b

as
ed

 
er

ro
r 

=
 6

.7
9
 ×

 1
0

−
1
3

 
er

ro
r 

=
 8

.1
4
 ×

 1
0

−
1
2

 
er

ro
r 

=
 5

.2
0
 ×

 1
2

−
1
2

 
er

ro
r 

=
 3

.5
0
 ×

 1
0

−
1
1

 
er

ro
r 

=
 1

.2
0
 ×

 1
0

−
7

N
o
te

s.
 I

n
 f

it
6
 a

n
d
 f

it
8
 t

h
e 

co
n
tr

o
l 

an
d
 h

ig
h
-d

o
se

 d
at

a 
p
o
in

ts
 a

t 
1
 a

n
d
 2

 G
y
 w

er
e 

fi
tt

ed
 w

it
h
 k

0
1
b
_
b
y

 ≡
 0

. 
T

h
e 

b
es

t 
es

ti
m

at
es

 f
ro

m
 f

it
6
 w

er
e 

u
se

d
 a

s 
fi

x
ed

 i
n
p
u
t 

in
 f

it
8
. 
T

h
e 

b
es

t 
es

ti
m

at
es

 f
ro

m
 f

it
6
 a

n
d
 f

it
8

w
er

e 
u
se

d
 a

s 
fi

x
ed

 i
n
p
u
t 

in
 f

it
7
 a

n
d
 f

it
9
, 
re

sp
ec

ti
v
el

y
, 
w

h
er

e 
th

e 
m

o
d
el

 w
it

h
 d

et
ri

m
en

ta
l 

b
y
st

an
d
er

 f
ea

tu
re

s 
w

as
 f

it
te

d
 t

o
 t

h
e 

fu
ll

 d
at

a 
se

ts
. 
F

it
1
0
 r

ef
er

s 
to

 t
h
e 

d
at

a 
fo

r 
1
5
0
 k

eV
/μ

m
 α

 p
ar

ti
cl

es
. 
In

 f
it

1
0

k
m

m
u
lt

 ≡
 1

.

Radiat Res. Author manuscript; available in PMC 2011 May 05.




