Journal of = SEPM
Journal of Sedimentary Research, 2018, v. 88, 1205-1237 x

Sedlmentary Research Article O@

DOI: http://dx.doi.org/10.2110/jsr.2018.56 Sedimentary Gaslogy

Research

DETRITAL CLAY COATS, CLAY MINERALS, AND PYRITE: A MODERN SHALLOW-CORE ANALOGUE
FOR ANCIENT AND DEEPLY BURIED ESTUARINE SANDSTONES

JOSHUA GRIFFITHS,"? RICHARD H. WORDEN,' LUKE J. WOOLDRIDGE, > JAMES E. P. UTLEY,! axp ROBERT A. DULLER!
' Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool U.K.
’BP Exploration, Chertsey Road, Sunbury-on-Thames, Middlesex, TW16 7LN, U.K.
3BP Upstream Technology, Chertsey Road, Sunbury-on-Thames, Middlesex, TW16 7LN, U.K.
e-mail: joshua.griffiths@BP.com

AssTtrRACT: The spatial distribution of clay minerals and authigenic-clay-coated sand grains in ancient and deeply
buried petroleum reservoirs, which can enhance or degrade reservoir quality, is poorly understood. Authigenic clay
coats are reported to originate from the thermally driven recrystallization of detrital clay coats or through in situ
growth from the authigenic alteration of precursor and early-diagenetic minerals during burial diagenesis. To help
predict the spatial distribution of authigenic clay coats and clay minerals in estuarine sandstones, this study provides
the first modern-analogue study, using the Ravenglass Estuary, UK, which integrates the distribution patterns of
lithofacies, Fe-sulfide, and precursor detrital-clay-coats and clay-minerals. X-ray-diffraction-determined mineralogy
and the extent of detrital clay-coat coverage of sediment in twenty-three one-meter cores was established, at an
unprecedented high resolution. The output from this study shows that detrital clay mineral distribution patterns are
controlled principally by the physical sorting of clay minerals by grain size. Chlorite is most abundant in coarser-
grained sediment (e.g., low-amplitude dunes), whereas illite is most abundant in finer-grained sub-environments (e.g.,
mud flats). Kaolinite abundance is relatively homogeneous, whereas smectite abundance is negligible in the Ravenglass
Estuary. This study has shown that distribution patterns of detrital-clay-coats and clay-minerals are controlled by
processes active during deposition and bio-sediment interaction in the top few millimeters in the primary deposition
environment. In the Ravenglass Estuary, distribution patterns of detrital-clay-coats and clay-minerals have not been
overprinted by the postdepositional processes of sediment bioturbation or mechanical infiltration. Optimum detrital-
clay-coat coverage and clay mineralogy, which might serve as a precursor to porosity-preserving authigenic clay coats
in deeply buried sandstone reservoirs, is likely to occur in low-amplitude dunes in the inner estuary and central basin.
Furthermore, bioturbation in low-amplitude dunes has reduced Fe-sulfide growth due to oxidization, meaning that
iron remains available for the formation of authigenic Fe-bearing clay minerals, such as chlorite, that can lead to
enhanced reservoir quality in deeply buried sandstones.

INTRODUCTION Ajdukiewicz and Larese 2012). The availability of iron is essential to the
creation of porosity-preserving Fe-bearing authigenic chlorite during burial
diagenesis. In sediment, if iron is preferentially locked up as either pyrite
or siderite, then it will be unavailable to create Fe-silicate minerals such as
chlorite during subsequent diagenesis. Pyrite and siderite grow much more
quickly than the Fe-silicate clay minerals (such as chlorite), so that, if there
is competition at any one time, then pyrite or siderite will preferentially
grow at the expense of authigenic chlorite (Worden and Morad 2003).

Clay minerals can significantly impact the petrophysical properties (e.g.,
porosity, permeability, and water saturation) of sandstone reservoirs. For
example, pore-filling quartz cement in deeply buried sandstones (> 80 to
100 °C), can be inhibited by authigenic chlorite clay coats (Ehrenberg
1993; Stricker et al. 2016; Skarpeid et al. 2017), while some clay minerals
(e.g., illite) can plug pore throats and promote chemical compaction and
subsequent quartz cementation (Oelkers et al. 1996; Worden and Morad . . . . . .
2003; Worden et al. 2018). Authigenic clay coats in sandstones have been Clay minerals in sandstones (1.ncludmg the n'ﬂmelrals in clay coats) are
reported to originate from (i) the thermally driven recrystallization of low- probably not a result of the mass influx of materials into sandstones during
temperature, precursor (before burial) detrital clay coats, and (ii) through in burial diagenesis, since many of the main components of clay minerals (for
situ growth from the authigenic alteration of precursor and early-diagenetic chlorite: Fe, Mg, Al, and Si oxides) are effectively water-insoluble, even
minerals, which interact with pore fluids during burial (Hillier 1994; during the long time scale over which burial diagenesis occurs (Worden
Aagaard et al. 2000; Worden and Morad 2003; Ajdukiewicz and Larese ~ and Morad 2003). As a result, it has been concluded that the clay minerals
2012). The clay-coat coverage (i.e., the fraction of the sand-grain surface  present in sandstones (both pore-filling and grain-coating) are controlled
covered by clay minerals), as well as the mineralogy of the clay coat, have by the primary depositional composition, i.e., the mineralogy of precursor
been reported to be the dominant controls on the ability of authigenic clay ~ components in the initial sediment (Worden and Morad 2003). As a result,
coats to inhibit quartz cementation (Billault et al. 2003; Lander et al. 2008;  the study of distribution patterns of detrital minerals (clay and framework
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grains) in modern sedimentary settings will facilitate prediction of the
spatial distribution of authigenic clay minerals in ancient and deeply buried
sandstones, such as chlorite.

The fundamental motivation for this study was to establish how detrital
clay coats and clay minerals (chlorite, illite, kaolinite, and smectite) are
distributed in the near-surface (one meter cores; n = 23) of a modern
estuarine setting (Ravenglass Estuary, UK; Fig. 1), on a scale similar to
many oil and gas fields. This study provides the first integrated near-
surface study, which compares the relationship between lithofacies, Fe-
sulfides, and detrital clay minerals and clay coats in estuarine sediments,
and can be used, by analogy, to better predict petroleum reservoir quality.

It has been reported that distribution patterns of detrital clay coats in
surface sediment (here defined as sediment from < 2 cm depth) of the
Ravenglass Estuary are controlled by the physical attachment of clay-size
material to sand-grain surfaces by adhesive extracellular polymeric substances
(biofilms) secreted by diatoms during locomotion (Jones 2017; Wooldridge et
al. 2017a; Wooldridge et al. 2018). Experiments showed that detrital clay
coats can develop through the direct ingestion and excretion of sediment by
Arenicola marina (lugworms), by creating a sticky mucus membrane that
adheres fine-grained sediment to the surface of sand grains (Needham et al.
2005; Worden et al. 2006). In contrast, Wooldridge et al. (2017b) showed that
in surface sediment (< 2 cm) in the Ravenglass Estuary, there is no spatial
correlation between the population density of Arenicola marina and the
extent of detrital-clay-coat coverage. However, as acknowledged by
Wooldridge et al. (2017b), it remains unknown whether sediment bioturbation
by Arenicola marina, or other estuarine macro fauna, might form clay coats at
sediment depths greater than 2 cm. Furthermore, clay coats have been
suggested to originate from the postdepositional mechanical infiltration of
clay-laden waters through the pore spaces of sediments in modern sediments
and in ancient sandstones (Matlack et al. 1989; Moraes and De Ros 1990;
Wilson 1992; Buurman et al. 1998). A primary aim of this study was
therefore to establish whether surface (< 2 cm) distribution patterns of
detrital-clay coats in the Ravenglass Estuary (Wooldridge et al. 2017a;
Wooldridge et al. 2017b) are transferred to the immediate near-surface (here
defined as depths < 1 m), or whether they are overprinted by postdepositional
processes (e.g., bioturbation or mechanical infiltration).

A combination of climate (i.e., intensity of chemical and mechanical
weathering), relief (i.e., topographic elevation), and provenance (i.e.,
sediment supplied) has been proposed to control the type and abundance of
clay minerals (clay-mineral assemblage) found in modern oceanic and
marginal-marine settings (Eberl et al. 1984; Chamley 1989; McKinley et
al. 2003; Rateev et al. 2008). It has been suggested that clay-mineral
distribution patterns in marginal-marine sedimentary systems might be
controlled by: the landward displacement of marine sediment (Postma
1967; Meade 1969; Hathaway 1972; Chamley 1989), differential settling
due to salinity or clay-mineral stability (Whitehouse et al. 1960; Edzwald
and O’Mella 1975), the physical sorting of clay minerals by size (Gibbs
1977), local hydrodynamics (Feuillet and Fleischer 1980), provenance
(Biddle and Miles 1972; Hathaway 1972; Feuillet and Fleischer 1980;
Rudert and Miiller 1981), mechanical infiltration (Matlack et al. 1989), and
both early physicochemical (Grim and Johns 1954; Griffin and Ingram
1955; Powers 1957; Nelson 1960) and biologically mediated diagenesis via
sediment bioturbation (Mcllroy et al. 2003; Needham et al. 2004; Needham
et al. 2005; Needham et al. 2006; Worden et al. 2006).

In summary, a detailed shallow-core study of the Ravenglass Estuary,
UK has been designed to address the following specific research questions,
in order to provide a modern analogue for the prediction of distribution
patterns of clay minerals, clay coats, and Fe-sulfides in marginal-marine
sandstone reservoirs.

* How are detrital clay coats distributed in near-surface (< 1 m) estuarine
sediment? How do near-surface detrital-clay-coat distribution patterns
compare to surface (< 2 cm) detrital-clay-coat distribution patterns
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reported by Wooldridge et al. (2017b)? What are the fundamental
controls on detrital-clay-coat distribution patterns in near-surface
sediment?

* Which clay minerals are found in near-surface sediment of the
Ravenglass Estuary? How are clay minerals distributed? What controls
clay-mineral distribution patterns?

® Which Fe-sulfides are found in near-surface sediment of the Ravenglass
Estuary? How are Fe-sulfides distributed? What controls clay Fe-sulfide
distribution patterns?

* Can distribution patterns of precursor detrital clay coats, clay minerals
and/or Fe-sulfides be predicted as a function of lithofacies in the
Ravenglass Estuary? In ancient and deeply buried estuarine sandstones,
based on results of this study, which depositional environments are likely
to have the best reservoir quality?

STUDY AREA: RAVENGLASS ESTUARY
Geomorphology and Estuarine Hydrodynamics

The Ravenglass Estuary is located in northwest England on the west
coast of Cumbria, and encompasses the tidal reaches of the westward-
flowing Rivers Irt, Mite, and Esk (Fig. 1A-D). The inner estuary and
central basin are sheltered from wave action by two coastal spits (Drigg and
Eskmeals), but are subject to strong tidal currents owing to a macrotidal
regime (> 7 m tidal range). The Ravenglass Estuary is here classified as a
“dual-funneled” and mixed-energy system. The Ravenglass Estuary is
shallow (Fig. 1B), and occupies an area of 5.6 km? of which approximately
86% is intertidal (Bousher 1999; Lloyd et al. 2013; Wooldridge et al.
2017b). The shallow bathymetry causes frictional effects that promote
strong tidal asymmetry, resulting in prolonged outward ebb tidal flow in
comparison to the inward tidal flow (Kelly et al. 1991). The rivers flowing
into the estuary have average flow rates of 0.4 m®s™" for the Mite, 3.4 m’s ™'
for the Irt, and 4.2 m®>s™" for the Esk (Bousher 1999). The short length of
the estuary (due to geologically mediated topographic constraints) has been
reported to cause quick ebb drainage, meaning that the maximum
discharge measured for the lower-Esk arm of the estuary during the ebb
tidal flow (4.99 m® s™') is only slightly lower than flood tidal flow (5.41 m’
s (Kelly et al. 1991). Anthropogenic impact on the estuary is here
considered to be minor, with exception of sheltering of the inner Mite and
increased salt-marsh development as a consequence of the railway viaduct
construction (Fig. 1A) (Carr and Blackley 1986).

Geological Setting, Hinterland Bedrock, and Quaternary Drift

The Ravenglass Estuary is fed by two river catchments, the northern
River Irt and River Mite, and the southern River Esk. The River Irt and
River Mite predominantly drain Ordovician Borrowdale Volcanic Group
andesites and Triassic Sherwood Sandstone Group sedimentary rocks (Fig.
1C). The River Esk drains an area dominated by the Devonian Eskdale
Granite. The weakly metamorphosed, fine-grained sedimentary rocks of
the Skiddaw Group (Merritt and Auton 2000) has marginal exposure at
Muncaster Fell (Fig. 1C). The Borrowdale Volcanic Group is dominated by
subduction-related, K-rich, calc-alkaline andesite, and was subject to
regional, sub-greenschist-facies metamorphism at about 395 Ma during the
Caledonian Orogeny (Quirke et al. 2015). Chlorite is abundant in the
Borrowdale Volcanic Group and has been reported to occur as
pseudomorphs after pyroxene (Quirke et al. 2015). The Lower Triassic
Sherwood Sandstone Group (locally known as the St Bees Sandstone) is
composed predominantly of fluviatile sandstones (Quirke et al. 2015). The
northern part of the Eskdale Granite is a coarse-grained granite, and the
southern part is granodioritic (Young et al. 1986). Chloritization of mafic
silicates and plagioclase alteration are widespread in both Eskdale granite
types (Moseley 1978; Young et al. 1986; Quirke et al. 2015).
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Fic. 1.—Study location, Ravenglass Estuary, UK. A) Aerial image of the Ravenglass Estuary, UK. B) Estuarine bathymetry and hinterland elevation (m OD) derived from
Lidar Imagery collected by the UK Environmental Agency (UK Environmental Agency 2015). The position of nine core regions highlight the location of core samples (n =
23). Shades of blue highlight intertidal regions, red-colored areas highlight the extent of salt-marsh and backshore deposits, and yellow-colored areas highlight the extent of

fluvial floodplains. C) Bedrock geology and D) Quaternary drift deposits.
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TaBLE |.—Bioturbation-index classification scheme, after Taylor and
Goldring (1993).

BI Classification of Bioturbation Index (BI).

No bioturbation

1 Sparse bioturbation, bedding distinct, few discrete traces and/or escape
structures

2 Low bioturbation, bedding distinct, low trace density, escape structures
often common

3 Moderate bioturbation, bedding boundaries sharp, traces discrete, overlap
rare

4 High bioturbation, bedding boundaries indistinct, high trace density with
overlap common

5 Intense bioturbation, bedding completely disturbed (just visible), limited
reworking, later burrows discrete

6 Complete bioturbation, sediment reworking due to repeated overprinting.

The northern part of the UK (including Cumbria) is presently
undergoing limited isostatic recovery following the last glacial maximum
(Bousher 1999) which occurred in the late Devensian at about 28 to 13 ka
(Moseley 1978; McDougall 2001). Glacioisostatic rebound following
deglaciation, together with glacioeustatic sea-level change, led to
fluctuations in relative sea level during the Holocene, which resulted in
the deposition of a suite of tills and glaciofluvial and glaciolacustrine
deposits (Fig. 1D). Much of the glacial deposit has been removed from the
land surface following the last glaciations (Merritt and Auton 2000). Drift
deposits are locally known as the Seascale Glacigenic Formation (the
Ravenglass Till member being the dominant unit in the Ravenglass area)
and the overlying Gosforth Glacigenic Formation (Merritt and Auton 2000;
Lloyd et al. 2013). Estuarine sediments are therefore underlain by glacial
till which is exposed as knolls throughout the estuary. The postglacial
estuarine sediments, the subject of this study, have a maximum thickness of
~ 10 to 15 meters in this area (Bousher 1999). Quaternary sediments
contain distinctive clasts of the underlying bedrock, which allows detailed
lithostratigraphical division as well as revealing complex ice-movement
patterns (Merritt and Auton 2000).

SAMPLES AND METHODS
Field Mapping and Core Collection

Detailed ground surveys, aided by aerial imagery (Fig. 1A) and LIDAR
survey (Fig. 1B) (UK Environmental Agency 2015) were used to define a
suite of estuarine environments. Tidal flats were differentiated based on
sand abundance, following the tidal-flat classification scheme proposed by
Brockamp and Zuther (2004) whereby a sand flat is > 90% sandgrade
material, a mixed flat has 50 to 90% sand grade material, and a mud flat
has 15 to 50% sand grade material. Sand abundance was determined for
sediment samples using a Beckman Coulter Laser Particle Size Analysis
(LPSA) in unison with GRADISTAT (Blott and Pye 2001).

Twenty-three cores, covering nine regions (labeled 1 to 9 in Fig. 1B),
were collected, along predefined transects, in order to capture surface-
sediment heterogeneity. Cores were collected with negligible sample
disturbance using a jackhammer-driven window sampler following the
method detailed by Dowey et al. (2017). Each core was retrieved in a
polythene liner to avoid oxidation and sample degradation, and protected
in a rigid plastic tube.

Core Preparation and Description

Sediment cores were dissected and photographed, wet and dry, to
capture redox boundaries, ichnofabrics (bioturbation traces), and key
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sedimentary structures in the laboratory. Core samples collected for X-ray
diffraction analysis were extracted and placed in an air-tight, screw-top
plastic jar, stored in the dark, and refrigerated (at ~ 2 °C) to avoid
degradation before analysis. Sediment samples, used to determine detrital-
clay-coat coverage, were collected following the same procedure outlined
by Wooldridge et al. (2017b).

Sediment grainsize was measured in the laboratory using a hand lens
and grain-size card every 5 cm in relatively homogeneous facies, and at a
sub-centimeter scale where necessary, e.g., in very thin-bedded sediment
(< 3 cm). In this study, the Campbell (1967) classification to assign bed
thickness was used. Wavy flaser bedding and wavy-bedded heterolithics
have been defined following Reineck and Wunderlich (1968). Bioturbation
Index (BI) was recorded using the classification scheme proposed by
Taylor and Goldring (1993) (Table 1) to test the strength of the relationship
between bioturbation intensity, mineralogy, and extent of detrital-clay-coat
coverage.

Qualitative Analysis of Clay-Coat Coverage

To achieve a direct comparison between detrital clay-coat-coverage in
surface sediment (< 2 c¢cm) and near-surface (< 1 m) sediment, detrital
clay-coat-coverage was determined qualitatively following the methodol-
ogy and classification scheme proposed by Wooldridge et al. (2017b) (Fig.
2). A qualitative estimation of clay-coat coverage on individual sand grains
(five principal classes; Fig. 2) was achieved by analyzing 200 sand grains
(per grain-mount sample), imaged using scanning electron microscopy
(SEM). The following bin classes, defined by Wooldridge et al. (2017b),
were used: (Class 1) complete absence of clay coats; (Class 2) less than
half of the grains have a small (~ 1 to 5%) surface area of attached clay
coats; (Class 3) every grain exhibits at least ~ 5 to 15% clay-coat coverage;
(Class 4) extensive (~ 15 to 30%) clay-coat coverage on the majority of
grains; (Class 5) greater than 30% surface area covered by clay coats on
every grain (Fig. 2). Environmental SEM analysis was undertaken to image
hydrated sediment samples for the presence of diatoms in life position (not
dried out). The QEMSCAN® system, consisting of a scanning electron
microscope (SEM) coupled with energy-dispersive spectrometers (EDS),
was used to establish the major mineralogical components of detrital clay
coats. Data were collected with a step size of 2 um to ensure both the fine
fraction (< 2 pum) and silt and sand fraction (> 2 pm) was analyzed.

Clay-Mineral Separation, Identification, and Quantification

The clay fraction (< 2 pum) of dried and weighed representative core
sub-samples and Quaternary glaciogenic drift deposits (sourced from cliff
sections in the inner Esk) were physically separated (isolated from the silt
and sand fraction) before XRD analysis. This was performed using an
ultrasonic bath to disaggregate sediment, followed by gravity settling to
separate out the sand and silt size fractions, and then centrifuge settling at
5,000 rpm for 10 minutes to collect the clay size fraction. The separated
clay fraction was then dried at 60 °C for 24 hours and weighed to calculate
the percentage of clay-size material. The mineralogy of the clay fraction
was determined using a PANalytical X’Pert Pro MPD X-ray Diffractometer
(Fig. 3). Samples were glycolated for 24 hours and re-scanned over a range
0f 3.9 to 13.0° 20 to test for the presence of expandable clay minerals (i.c.,
smectite) following the methodology outlined by Moore and Reynolds
(1997). It was decided to perform XRD analyses on randomly oriented
powders, as opposed to oriented mounts, because the precise (repeatable)
quantification of all minerals, not just clay minerals, was the most
important goal of this study. The mineralogy of the clay fraction was
determined by comparing acquired diffractograms with those in the
International Centre for Diffraction Data Powder Diffraction File-2008,
and supplementary information from Moore and Reynolds (1997). The
minerals were then quantified using the relative intensity ratio (RIR)
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method proposed by (Chung 1974a) and (Chung 1974b) using Panalytical
HighScore Plus software. Although the reliability of the RIR method can
be affected by the crystallinity and chemistry of a given mineral, the results
from this quantification method have been reported to be highly accurate
(Hillier 2000, 2003). Significant emphasis was here placed on consistent
and precise XRD preparation, analysis, and quantification methods,
employed by a single operator, at all stages of sample preparation and
analysis, to ensure the highest possible degree of inter-sample compara-
bility.

The term illite in this paper refers to the clay-size mica-like minerals (10
A non-expandable clay) typically found in argillaceous rocks (Grim et al.
1937), also termed illitic material (Moore and Reynolds 1997).
Furthermore, in an attempt to differentiate illite types in the Ravenglass
estuarine sediment, based on composition and crystallinity, we have
calculated the Esquevin Index and illite crystallinity for each sample (Fig.
3).

The Esquevin Index has been calculated to differentiate Al-rich from Fe-
Mg-rich illite. The Esquevin Index is calculated by analyzing the ratio
between the (002) and (001) peak heights (Esquevin 1969), on X-ray
diffractograms, i.e., the ratio between the intensity of the 5 A and 10 A
peaks (Fig. 3). The following classification boundaries are used in this
study, after Esquevin (1969): biotite, < 0.15; biotite + muscovite, 0.15 to
0.3; phengite, 0.3 to 0.4; muscovite, > 0.4. Thus, high Esquevin Indices
indicate Al-rich illite, whereas low Esquevin Index values represent
relatively Fe-Mg-rich illite. Low Esquevin Indices are characteristic of
physically eroded, unweathered rocks (Chamley 1989). High Esquevin
Indices correspond to chemically weathered rocks that have lost divalent
cations (Fe and Mg) from the octahedral sites (Chamley 1989).

The full width at half-maximum (FWHM) of the 10 A (001) illite peak
was measured on X-ray diffractograms in order to establish illite
crystallinity index (2° 0), also known as the Kiibler Index (Kiibler
1964). Poorly crystalline illite is reflected by broad basal reflections (high
FWHM values), associated with highly degraded, low-growth-temperature,
low-structural-order illite (Kiibler 1964; Chamley 1989). Highly crystalline
illite is reflected by narrow basal reflections (low FWHM values),
associated with relatively unaltered, high-growth-temperature, high-
structural-order illite (Kiibler 1964; Chamley 1989). The following
boundaries are used, after Kiibler (1964): epizone (highest temperature):
< 0.25; anchizone: 0.25 to 0.42; diagenesis (lowest temperature): > 0.42.
To assess relative clay-mineral abundance, clay-mineral indices were
derived as follows: relative abundances of chlorite: (chlorite/(chlorite +
illite + kaolinite 4+ smectite)), kaolinite: (kaolinite/(chlorite + illite +
kaolinite + smectite)), illite: (illite /(chlorite + illite 4+ kaolinite + smectite))
and smectite (smectite/(chlorite + illite 4+ kaolinite 4 smectite)).

The mineralogy of discrete grain-size fractions from a single
disaggregated sample from the Saltcoats mudflat in the central zone of
the Ravenglass Estuary was achieved using a combination of sieving and
gravity settling (as above) followed by X-ray diffraction analysis of each
grain-size fraction. Grain-size classes included: < 0.2 um (fine clay); 0.2
pm to 2 pm (coarse clay); 2 um to 32 pm (fine silt); 32 pm to 62 pum
(coarse silt); 62 pm to 125 pm (very fine sand); and 125 pm to 250 pm
(fine sand).

p

Fi. 2.—Secondary electron (SE) images categorizing the extent of detrital-clay-
coat coverage observed in near-surface (< 1 m) sediment samples in the Ravenglass
Estuary, UK. The detrital-clay-coat classification approach has been adopted from
Wooldridge et al. (2017b). (Class 1) Complete absence of clay coats. (Class 2) Less
than half of the grains have a small (~ 1-5%) surface area of attached clay coats.
(Class 3) Every grain exhibits at least ~ 5-15% clay-coat coverage. (Class 4)
Extensive (~ 15-30%) clay-coat coverage on the majority of grains. (Class 5)
Greater than 30% surface area covered by clay coats on every grain.
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Statistical Analysis

Statistical analysis was performed to test whether lithofacies, sediment
depth (proxy for mechanical infiltration), and bioturbation index (intensity)
might explain distribution patterns of clay minerals, pyrite, and/or detrital
clay coats in the Ravenglass Estuary. All statistical analyses were
performed in R statistical software (R Core Team 2016), using the
following symbols to highlight statistical significance: marginally
significant (+) when p < 0.1; significant (*) when p < 0.05; very
significant (**) when p < 0.01; and extremely significant (***) when p <
0.001. Outliers (open circles) in box and whisker plots are defined as an
observation that is numerically distant from the rest of the data (i.e., a value
that is 1.5 times the interquartile range below the lower quartile and above
the upper quartile). Note that statistical analyses were not performed on any
lithofacies which had a sample number less than 3.

Clay Coats: Lithofacies, Bioturbation Intensity, and Core Depth

A Kruskal-Wallis H test was used to test whether there is a statistically
significant difference in detrital-clay-coat coverage as a function of estuarine
lithofacies. Following the Kruskal-Wallis H test, a post-hoc Dunn test was
employed to highlight where the identified significant differences occurred
in detrital-clay-coat coverage between individual facies. The Benjamini-
Hochberg method (False Discovery Rate) (Benjamini and Hochberg 1995)
was applied to correct the p-values after performing multiple comparisons.

Pearson’s correlation coefficients were calculated to describe the
strength of the relationship between clay-fraction abundance and core
depth, to assess whether there is any evidence for a postdepositional
increase in clay content, which might be due to mechanical infiltration. In
order to determine whether mechanical infiltration might have led to the
post-depositional formation of clay coats, Spearman’s correlation coeffi-
cients were calculated to describe the strength of the relationship between
clay-coat coverage and core depth. To assess whether the act of sediment
bioturbation might form clay coats, Spearman’s correlation coefficients
were calculated to test the strength of the relationship between Bioturbation
Index (BI) and extent of clay coat coverage.

Mineralogy: Lithofacies, Bioturbation Intensity, and Core Depth

An Analysis of Variance (ANOVA) test was used to test whether there is
a statistically significant difference in clay-mineral indices (chlorite, illite,
kaolinite, and smectite) and pyrite abundance, as a function of estuarine
lithofacies. Following ANOVA, a post-hoc Tukey’s honestly significant
difference (HSD) test was employed to highlight where the identified

™40 12 14 16 18 20 22 24 26 28 30

peaks (highlighted by a green line). Illite crystal-
linity is measured on the 10 A illite peak, using
the full width at half maximum (FWHM).

significant differences in relative abundance of clay minerals and/or pyrite
between individual facies could be found.

The strength of the relationship between depth and clay-mineral indices
was calculated using Pearson’s correlation coefficients to test whether
vertical mechanical infiltration might have led to the stratification of clay
minerals. Pearson’s correlation coefficients were calculated to test the
strength of the relationship between depth and pyrite abundance in order to
determine whether pyrite formation is controlled principally by sediment
depth (i.e., increasing anoxic conditions with an increase in sediment depth).
It is acknowledged that redox-boundary depth is also dependent on other
variables, such as sediment properties (e.g., grain size and sorting) and
bioturbation type and intensity. To establish whether bioturbation might have
led to the early-diagenetic alteration and/or formation of new clay minerals,
Spearman’s correlation coefficients were used to test the strength of the
relationship between Bioturbation Index (BI) and clay-mineral indices.

RESULTS

The surface characterization of the Ravenglass Estuary, as well as
sedimentary logs, a detailed facies scheme, mineralogical analyses (clay
mineral indices, pyrite abundance, Esquevin index, and illite crystallinity),
and data on clay-coat distribution from twenty-three one-meter cores is
here presented.

Surface Depositional Environments and Facies Associations

The eleven discrete depositional environments in the Ravenglass
Estuary are presented in Figure 4. The eight depositional environments
that were cored (Figs. 5-11) are characterized by eight sedimentary facies
associations (FAs; Table 2) in the near-surface, namely: floodplain (FA 1),
salt marsh (FA 2), mud flat (FA 3), mixed-flat and thin-bedded sediments
(FA 4), low-amplitude dunes and tidal bars (FA 5), glacial armored surface
(FA 6), tidal inlet and foreshore (FA 7), and coastal spits (FA 8; Fig. 4). The
descriptive characteristics (texture, sedimentary structures, and ichnofa-
brics) for each lithofacies, which can be used to characterize specific
depositional environments, are summarized in Table 2. The abundance (%)
of each facies in each core is summarized in Figure 12.

Detrital-Clay-Coat Coverage: Lithofacies, Bioturbation Intensity, and
Core Depth

Detrital-clay-coat coverage, measured for each core, is presented next to
individual schematic sedimentary logs in Figures 5 to 11. Micron-scale (2
um) SEM and SEM-EDS (QEMSCAN®) analysis reveal that the chief
component of detrital clay coats in the Ravenglass Estuary are clay minerals
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(Fig. 13A) and, if present, pyrite (Fig. 13B). The abundance (average and
standard deviation) of clay fraction (< 2 um) in each lithofacies is
summarized in Table 3. There is a strong, positive correlation between clay-
fraction abundance and detrital-clay-coat coverage (r = 0.92, p < 0.001).
Average clay fraction for each lithofacies ranges from 0.1% to 22.6%, with a
weighted estuarine clay fraction average of 5.9% (Table 3). The range, upper
and lower quartile, and median of clay-fraction abundance (%) for each
lithofacies, and for each core, are presented in Figure 14.

The variability of clay-coat coverage (relative abundance of classes 1 to
S) for each lithofacies is summarized in Figure 15. Kruskal-Wallis H test
results show there is a statistical difference (p < 0.05) in the extent of
detrital-clay-coat coverage between lithofacies. Post-hoc Dunn test results

(Table 4) reveal between which lithofacies there are statistical differences
in detrital-clay-coat coverage.

There is a strong, positive correlation between detrital-clay-coat
coverage and bioturbation index (r = 0.84, p < 0.001). Environmental
scanning electron microscopy (ESEM) of hydrated near-surface sediments
show an abundance of epipelic diatoms, which appear to have secreted
extracellular polymeric substances (EPS) and attaching clay particles to the
surface of sand grains (Fig. 13C). Secondary Electron microscopy (SE) of
dried sediment reveals an abundance of epipelic diatoms, typically
imbedded in clay coats (Fig. 13D).

Pearson’s correlation coefficient test results reveal that there is no
consistent relationship between depth below the sediment surface and the
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Fig. 5.—Core locations and schematic sedimentary logs of River Esk floodplain deposits (FA 1; cores 1A and 1B). A) Map of site for cores 1A and 1B (see Fig. 1B for
location). B) Photograph of core site 1A (yellow “V” symbols represent the location of where individual cores were collected). C) Photograph of core site 1B. D) Log for core
1A with detrital clay coat coverage (red circles) and bioturbation index (BI) (grayed area) presented next to each schematic sedimentary log. E) Log for core 1B including
detrital-clay-coat coverage and bioturbation index. Refer to Table 2 for explanation of facies codes and Table 2 for the classification of clay-coat coverage.

abundance of clay fraction (Table 5). Spearman’s correlation coefficient
test results also reveal that there is no consistent relationship between depth
below the sediment surface and the extent of detrital-clay-coat coverage
(Table 5).

Mineralogy: Lithofacies, Bioturbation Intensity, and Core Depth

The relative abundance of the three dominant clay minerals (illite,
chlorite, and kaolinite) as a function of facies association (FAs; Table 2) is
shown in Figure 16. All FAs are dominated by illite (> 50%). Illite is most
abundant in FAs 2 to 4 (> 60%). FAs 1, 7, and 8 are relatively enriched in
chlorite (> 20%). Kaolinite is relatively ubiquitous and is typically present
in abundances ~ 20 to 25% (Fig. 16).

The relative abundance of chlorite, kaolinite, illite, and smectite, as well
as Esquevin Indices, illite crystallinity, and the abundance of pyrite in each
lithofacies are summarized in Table 3. The range, upper and lower quartile,
and median for each specific clay-mineral index as a function of lithofacies
are presented in Figure 17. The range, upper and lower quartile, and
median for Esquevin index, illite crystallinity, and quantity of pyrite as a
function of lithofacies are presented in Figure 18.

Analysis of Variance (ANOVA) test results reveal chlorite, illite,
kaolinite, and smectite abundance is significantly different (p < 0.001)

between lithofacies. The multi-comparison, post-hoc Tukey HSD test
results reveal between which individual lithofacies there are statistical
differences (Table 6).

The range, upper and lower quartile, and median of clay-mineral and
Esquevin indices, as well as illite crystallinity and pyrite abundance as a
function of core position, are represented in Figures 19 and 20. Pearson’s
test results show that there is no consistent relationship between core depth
and the relative abundance of chlorite, illite, and kaolinite (Table 5). Pyrite
abundance typically increases with depth in central-basin estuarine cores
(cores 6A, 6B, and 6C; Fig. 1B); Pearson’s correlation coefficients range
from 0.74 to 0.91 (p < 0.001) (Table 5).

The relationship between bioturbation index and the relative abundance
of chlorite, illite, and kaolinite is presented in Figure 21. Chlorite typically
decreases with an increase in bioturbation intensity (r=-0.62, p < 0.001),
illite abundance broadly increases with an increase in bioturbation intensity
(r=0.49, p < 0.001), and kaolinite abundance shows little relationship
with bioturbation intensity (r =-0.18, p < 0.05).

Clay-Mineral Abundance as a Function of Grain-Size Fraction

The relative abundance of clay minerals (chlorite, illite, kaolinite, and
smectite) for each grain-size separate from a single disaggregated sediment
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Fig. 8.—Core locations and schematic sedimentary logs of low-amplitude dunes (FA 5) that fine upward into bioturbated (primarily Arenicola marina; lugworms) mixed-
flat mud-draped current ripples (Facies 4.2) (River Esk cores 2A and 2B; central-basin cores 5SA and 5B). A) Map of site for cores 2A and 2B (see Fig. 1B for location). B)
Photograph of core site 2A. C) Photograph of core site 2B. D) Map of site for cores SA and 5B (see Fig. 1B for location). E) Photograph of core site 5A. F) Photograph of
core site 5B. G) Log for core 2A, with detrital-clay-coat coverage (red circles) and bioturbation index (BI) (grayed area) presented next to each schematic sedimentary log. H)
Log for core 2B, including detrital-clay-coat coverage and bioturbation index. I) Log of core 5A, including detrital-clay-coat coverage and bioturbation index. J) Log of core
5B, including detrital-clay-coat coverage and bioturbation index. Note, that low-amplitude dunes and mixed-flat sediments overlay pyritized mud-flat sediments in the central
basin. Refer to Table 2 for explanation of facies codes and Figure 2 for the classification of clay-coat coverage.
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sample is shown in Figure 22. Chlorite abundance increases with an Mineralogy of Quaternary Drift Deposits

increase in grain size (Fig. 22). Illite and kaolinite abundances decrease X-tay diffraction analysis was performed on drift deposits exposed in

with an increase in grain size (Fig. 22). Smectite is typically restricted t0  the cliff sections in the inner Esk (Gosforth Glaciogenic Formation and
sediment fractions < 15 pm (Fig. 22). Seascale Glaciogenic Formation), and from Ravenglass Till (part of the

p

FiG. 11.—Core locations and schematic sedimentary logs of foreshore (FA 7) and coastal-spit deposits (FA 8). Structureless upper-foreshore deposits (cores 8A and 8B) are
separated by an approximately 1 m reduction in surface elevation (break in slope; see Fig. 1B) from swash-zone deposits with abundant granules and pebbles (core 8C) and
wave-formed ripples draped by disarticulated shell-fragments (core 8D). Coastal spits consist of well-vegetated acolian dunes (core 9; FA 8). A) Map of site for cores 8A and
8D (see Fig. 1B for location). B) Photograph of core site 8A. C) Photograph of core site 8B. D) Photograph of core site 8C. E) Photograph of core site 8D. F) Map of site for
core 9 (see Fig. 1B for location). G) Log for core 8A, with detrital-clay-coat coverage (red circles) and bioturbation index (BI) (grayed area) presented next to each schematic
sedimentary log. H) Log for core 8B, including detrital-clay-coat coverage and bioturbation index. I) Log of core 8C, including detrital-clay-coat coverage and bioturbation
index. J) Log of core 8D, including detrital-clay-coat coverage and bioturbation index. K) Photograph of core site 9. L) Log of core 9, including detrital-clay-coat and
bioturbation index. Refer to Table 2 for explanation of facies codes and Figure 2 for the classification of clay-coat coverage.
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TaBLE 2.—Diagnostic features (dominant texture, sedimentary structures, and ichnofabrics) of facies associations (FA) and lithofacies (LF; facies
differentiated by diagnostic lithological features, such as texture and sedimentary structures) encountered in a wide range of depositional environments
in the Ravenglass Estuary. See Figure 4 to view the surface expression and distribution for each FA.

Facies Surface Description Diagnostic Near-Surface Characteristics
Depositional Sedimentary Characteristics and Dominant Texture and
Environment FA Lf Fig. N° Depositional Process Sedimentary Structures Dominant Ichnofabrics

Fluvial floodplain 11 Fig. 5 Alluvium aggradation. Deposition of ~ Vegetated, mottled silt to very Common rootlets and
clay, silt, and sand during periods of  fine-grained sand with Lumbricidae (earthworm)
overbank flooding (periods of high sporadic (obscured) very
fluvial discharge and/or spring tide). fine-grained sand laminae.

Salt marsh 2 2 Fig. 6 Marine alluvium aggradation. Vegetated and bioturbated silt- Common rootlets and
Deposition of clay, silt, and sand grade sediment with cyclic Corophium volutator (sand
during high tide. (cm-scale) very fine-grained shrimp)

lamina.

Mud flat 33 Fig. 7 Deposition of clay and silt sediment Mottled, clay and silt size Common Corophium volutator
through suspension settling during sediment with very fine and pioneer salt marsh
periods of low energy (e.g., slack sand filled burrows, and
water). Fine-grained laminae are obscured very fine sand
deposit during periods of increased laminae.
energy (e.g., spring tide, storm
events), and are typically mottled by
intense bioturbation.

Mixed-flat and thin bedded 4 4.1 Fig. 7 Wavy bedding occurs when the mud ~ Very-fine grained wavy flaser =~ Common Corophium volutator

sediments (TBS) Tidal creek layers typically fill the ripple bedding and wavy-bedded Rare Arenicola marina
point bar troughs, and overlie the ripples heterolithics, with variable
crest. In contrast, wavy flaser bioturbation intensity.
bedding fail to form continuous
layers, and occur when the mud
flasers fill only the ripple troughs or
only overlie the ripple crest.
Deposition of wavy flaser-bedded or
wavy-bedded heterolithics is
dependent on tidal conditions and
the relative amount of suspended
load during deposition.
4.2 Fig. 7 Migration of tidal-current-generated Mud-rich, very fine-grained Common Corophium volutator
Mixed flat ripples, draped with mud during sand (~ 4% clay size and Arenicola marina
periods of slack water (during low fraction), with current-
tide). Intense bioturbation ripples draped in mud.
(Corophium volutator and Arenicola
marina) often leads to sediment
homogenization (mottled texture).
4.3 Fig. 7 Minor incursions (erosional base) are ~ Very-fine- to fine-grained thin- Common Corophium volutator
TBS likely to occur during periods of bedded deposits (typically, and Arenicola marina

< 10 cm; ~ 3% clay
fraction). The lower contacts
of the incursions are
typically bioturbated or
erosive.

high energy within the inner estuary
and central basin (e.g. storm events)
and due to the progradation and
retrogradation of mixed flats and
mud flats.

Figs. 8 and 9 Migration of low-amplitude tidal dunes Very fine- to medium-grained,

Low-amplitude dunes and 5 5.1 Common Arenicola marina

tidal bars Low amp. and current ripples, proximal to the cross-bedded and current-
dunes ebb channel. Mud drapes are rippled sand with an
deposited during low tide. erosional base (< 1% clay
size fraction). Mud drapes
are common.
52 Fig. 9 Migration of planar dunes, with the Fine- to medium-grained and  Very rare Arenicola marina
Tidal bar deposition of granules and shell sands with an erosional

fragments within the toesets and
bottom-sets of planar dunes.

base, consisting of
disarticulated shell
fragments and granules.

(toesets and
bottom sets)

53 Fig. 9 Deposition of fine-to medium-grained Very fine- to fine-grained sand Very rare Arenicola marina
Tidal bar sand at the crests of migratory tidal with no discernible bedding
(dune crest) dunes. structures
5.4 Fig. 9 Deposition of pebble-size material in ~ Matrix-supported conglomerate Absent
Trough lag the troughs of migratory tidal dunes.  (up to pebble size).
deposit
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TaBLE 2.—Continued.

Facies Surface Description Diagnostic Near-Surface Characteristics
Depositional Sedimentary Characteristics and Dominant Texture and
Environment FA Lf Fig. N° Depositional Process Sedimentary Structures Dominant Ichnofabrics
Glacial armored surface 6 6 Fig. 6 Glacial outwash of sand and gravels at Fe-stained clast-supported Absent
the end of the last glacial period. (pebble-size), conglomerate
capped by a Fe-cemented
layer (1 cm thick).
Tidal inlet and foreshore 7 7.1 Figs. 10 and 11 Sediment is deposited by wave- and ~ Massive, fine to medium Absent
Tidal inlet, tidal-currents and typically reworked  grained, lithic-rich sand.
upper- by wind action. Surface sedimentary ~ Pebbles are common. Note,
foreshore structures vary from upper-phase some sedimentary structures
plane beds, 3D dunes, wave-ripples, = may not be discernible due
and wind-blown surfaces. to the friable nature of sand-
rich modern sedimentary
cores.
7.2 Figs. 10 and 11 Granule-rich sediment is primarily Medium-grained sand, with Absent
Tidal inlet, deposited during swash- and granules deposited as
lower- backwash. Shell-lag deposits are lamina-sets, with frequent
foreshore deposited in the trough of migratory ~ pebble and shell lag-
3D dunes. deposits.
7.3 Figs. 10 and 11 Wave action, which generated wave-  Massive, carbonate-rich fine-  Absent
Lower- formed ripples, draped in grained sand.
foreshore disarticulated shell-fragments
(mean low (proximal to the mean low-water
water line) line).
Coastal spits 8 8 Fig. 11 Aeolian dune migration (partly- Very-fine- to fine-grained, Absent

stabilised by dune-vegetation).

massive, well-sorted sands
(partly vegetated).

Seascale Glaciogenic Formation) exposed as knolls throughout the estuary.
XRD analyses show the fine fraction (< 2 um) of the Ravenglass Till (part
of the Seascale Glaciogenic Formation) is dominated by well-crystalline,
Fe-Mg-enriched illite (illite index, 0.62; Esquevin index 0.28; illite
crystallinity, 0.24), and has a low to moderate abundance of kaolinite
(kaolinite index, 0.21) and chlorite (chlorite index, 0.17). XRD-analyses
show the fine fraction (< 2 um) of the Fishgarth Wood Till Member (part
of the Gosforth Glaciogenic Formation) is dominated by Al-enriched illite
(illite index, 0.61; Esquevin index 0.43; illite crystallinity, 0.21), relatively
enriched in kaolinite (kaolinite index, 0.31), and depleted in chlorite
(chlorite index, 0.08).

DISCUSSION
Estuarine Facies: Nature and Organization

It is challenging to discriminate between tide-dominated and wave-
dominated estuaries based on outcrop and subsurface data, due to the
typical paucity of data (i.e., limited spatial resolution) (Davis and
Dalrymple 2011). As a result, many reconstructions are likely to adhere
too strictly to either wave- or tide-dominated models (Davis and Dalrymple
2011). Consequently, mixed-energy estuarine systems such as Ravenglass
(this study) and Gironde (Allen and Posamentier 1994) are likely to be
underreported in the stratigraphic record.

The dominant controls on the distribution of lithofacies in the
Ravenglass Estuary (Figs. 4 to 11; Table 2) are in broad agreement with
those reported in wave- and tide-dominated end-member estuarine models
detailed by Dalrymple et al. (1992). The Drigg and Eskmeals coastal spits,
diagnostic of wave-dominated estuaries (Dalrymple et al. 1992), provide
shelter to the inner estuary and central basin from wave action. As a result
the spits have led to a relatively quiescent central basin and the deposition
of mud flats (Fig. 4; FA 3; Table 2), mixed flats and thin-bedded
heterolithic deposits (Fig. 4; FA 4; Table 2). Strong tidal currents,

diagnostic of tide-dominated estuaries (Dalrymple et al. 1992), pass
beyond the low-energy central basin into the upper estuary, leading to the
deposition of low-amplitude dunes and tidal bars (Fig. 4; FA 5; Table 2).
Tidal currents and wave action have led to the deposition of a suite
lithofacies that are diagnostic of tidal inlet and outer-estuarine sub-
environments (Fig. 4; FAs 7 and 8; Table 2). The lithofacies scheme (Table
2) presented in this study can be used, by analogy, in mixed-energy
estuaries. However, as with previously published facies models, local
variability might cause departure from the generalized descriptions.

Detrital Clay Coats: Origin and Distribution

Clay-coat distribution patterns in near-surface sediment (this study; < 1
m) are consistent with those reported in surface sediment (< 2 cm) in the
Ravenglass Estuary (Wooldridge et al. 2017a; Wooldridge et al. 2017b).
The extent of detrital-clay-coat coverage in the near-surface sediment of the
Ravenglass Estuary is directly related to the abundance of clay fraction in
the sediment (r = 0.92, p < 0.001), which is at least partly controlled by
estuarine hydrodynamics and thus predictable as a function of lithofacies
(Table 4; Fig. 15). In agreement with Matlack et al. (1989), detrital-clay-
coat coverage is absent or negligible in high-energy, coarser-grained, outer-
estuarine depositional environments (e.g., foreshore, tidal inlet, and
backshore) due to paucity of clay-size material (minimum suspended
load). In contrast, detrital-clay-coat coverage is most extensive in low-
energy, finer-grained, inner-estuary and central-basin depositional envi-
ronments (e.g., mud flats and mixed flats), due to an abundance of clay-size
material that was deposited during slack-water conditions (Fig. 15).
Furthermore, diatoms are most abundant in the inner estuary and central
basin (Wooldridge et al. 2017a); diatoms have been reported to physically
attach clay-size material to sand grain surfaces by adhesive extracellular
polymeric substances (biofilms) in the top few millimeters of the sediment
surface (Wooldridge et al. 2017a; Wooldridge et al. 2018). Both
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Fi6. 13.—Clay-coat composition and pyrite and diatom presence in mixed-flat near-surface sediment. A) SEM-EDS (QEMSCAN®) analysis (micron-scale; 2 um) revealing
that clay minerals are the primary constituent in detrital grain coats and that most clay in the Ravenglass Estuary is present as clay coats. Note that SEM-EDS analysis revealed
that chlorite is Fe-rich (chamosite). B) Backscattered electron (BSEM) analysis showing the presence and type of pyrite (highlighted by black arrows) typically hosted in
detrital clay coats. C) Environmental scanning electron microscope (ESEM) image of hydrated near-surface sediment possibly being bound by extracellular polymeric
substances secreted during diatom locomotion (possible mechanism for clay-coat development). D) Secondary electron (SE) image of dried sediment containing a diatom

(highlighted by white arrows).

environmental scanning electron microscopy (ESEM) of hydrated
sediment (Fig. 13C) and secondary electron microscopy (SE) of dried
sediment (Fig. 13D) confirmed that diatoms are present in near-surface
sediment in the Ravenglass Estuary. However, chemical evidence, such as
Raman Spectroscopy (Wooldridge et al. 2017a), would be necessary to
confirm the presence of biofilm. As a result, based on visual evidence of
diatoms alone, this study cannot confirm whether or not clay coats have
been mediated due to biofilms (extracellular polymeric substances exuded
by diatoms) in near-surface sediment in the Ravenglass Estuary.

Clay coats have previously been reported to originate from the
mechanical infiltration, or illuviation, of clay-laden waters in sediment
(Matlack et al. 1989; Moraes and De Ros 1990; Pittman et al. 1992;
Wilson 1992; Buurman et al. 1998). It has been proposed that infiltration

can occur on a centimeter to meter scale in marginal marine depositional
environments (Santos et al. 2012), and therefore might lead to the
overprinting of surface (< 2 cm) clay-coat distribution patterns in the near
surface (< 1 m). However, the absence of a systematic increase or decrease
in clay content with depth (Table 5) suggests that mechanical infiltration
has not occurred. It is acknowledged that, in landscapes with a strong
lateral groundwater movement, transport of clay can be oblique (Buurman
et al. 1998), and might crosscut depositional facies (Morad et al. 2010).
However, in the Ravenglass Estuary, depositional environments that are
relatively clay-depleted at the surface (< 1 %), and have the same
lithofacies association down to 1 m, remain depleted in clay content
throughout (Fig. 14). The absence of a systematic increase or decrease in
clay content with depth (Table 5) suggests that mechanical infiltration of
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TaBLE 3.—Average clay fraction, clay mineral, Esquevin index, illite crystallinity and pyrite abundance in each lithofacies (standard deviation shown in
brackets), as well as the weighted average (W.av) for clay fraction, clay mineral, Esquevin index, illite crystallinity, and pyrite abundance of the entire
dataset. Refer to Table 2 for explanation of lithofacies codes.

Lithofacies Code 1 2 3 4.1 4.2 43 5.1 5.2
Number of Samples (n) 18 10 24 11 25 12 13 3
Clay fraction (%) (mean (sd)) 13.7 (4.84) 22.6 (3.87) 12 (3.84) 4.6 (3.38) 4.3 (2.56) 2.7 (1.55) 0.6 (0.47) 0.6 (0.04)
Chlorite index (mean (sd)) 0.19 (0.19) 0.18 (0.004) 0.18 (0.010) 0.17 (0.008) 0.18 (0.013) 0.18 (0.022) 0.20 (0.19) 0.18 (0.017)
Kaolinite index (mean (sd)) 0.21 (0.020) 0.21 (0.012) 0.21 (0.012) 0.21 (0.011) 0.21 (0.010) 0.22 (0.014) 0.23 (0.009) 0.22 (0.015)
Illite index (mean (sd)) 0.56 (0.017) 0.62 (0.014) 0.61 (0.016) 0.61 (0.011) 0.60 (0.020) 0.59 (0.037) 0.58 (0.023) 0.59 (0.032)
Smectite index (mean (sd)) 0.04 (0.036) 0.00 0.01 (0.015) 0.00 0.00 0.01 (0.033) 0.00 0.00
Esquevin index (mean (sd)) 0.29 (0.026) 0.30 (0.022) 0.29 (0.021) 0.31 (0.050) 0.30 (0.024) 0.31 (0.044) 0.33 (0.057) 0.32 (0.039)
Tllite crystallinity (mean (sd)) 0.23 (0.016) 0.24 (0.018) 0.25 (0.019) 0.25 (0.017) 0.25 (0.023) 0.25 (0.031) 0.27 (0.031) 0.27 (0.021)
Pyrite (%) (mean (sd)) 0.00 0.00 0.55 (0.637) 0.28 (0.462) 0.76 (1.227) 0.17 (0.389) 0.71 (1.369) 0.00
Weighted
Lithofacies Code 5.3 5.4 6 7.1 7.2 7.3 8 Average
Number of Samples (n) 3 1 1 11 21 6 5
Clay fraction (%) (mean (sd)) 0.3 (0.016) 0.5 (n/a) 0.5 (n/a) 0.1 (0.07) 0.1 (0.04) 0.1 (0.02) 0.1 (0.04) 5.9
Chlorite index (mean (sd)) 0.19 (0.007) 0.21 (n/a) 0.21 (n/a) 0.24 (0.016) 0.24 (0.022) 0.21 (0.018) 0.24 (0.011) 0.20
Kaolinite index (mean (sd)) 0.22 (0.017) 0.23 (n/a) 0.19 (n/a) 0.23 (0.020) 0.21 (0.016) 0.22 (0.013) 0.21 (0.019) 0.21
Illite index (mean (sd)) 0.59 (0.022) 0.55 (n/a) 0.60 (n/a) 0.53 (0.028) 0.55 (0.028) 0.58 (0.021) 0.55 (0.025) 0.58
Smectite index (mean (sd)) 0.00 0.23 (n/a) 0.00 0.00 0.00 0.00 0.00 0.01
Esquevin index (mean (sd)) 0.29 (0.014) 0.31 (n/a) 0.23 (n/a) 0.31 (0.033) 0.31 (0.047) 0.33 (0.051) 0.29 (0.046) 0.30
Tllite crystallinity (mean (sd)) 0.31 (0.006) 0.29 (n/a) 0.26 (n/a) 0.25 (0.040) 0.25 (0.026) 0.26 (0.010) 0.29 (0.021) 0.25
Pyrite (%) (mean (sd)) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29

clay has not occurred in significant quantities to overprint surface detrital-
clay-coat distribution patterns reported by Wooldridge et al. (2017a).
Furthermore, in an experimental study by Matlack et al. (1989), which
showed clay coats can develop through mechanical infiltration, relatively
high percolation speeds were achieved for the suspended clays (through the

minerals flocculating, subsequently deposited as mud drapes, which are
seen to clog the upper pore throats of the sediment and inhibit the
infiltration of clay-laden water further into the sediment subsurface (e.g.,

Fig. 8; cores 2A-B and 5A-B). It is noteworthy that clay flocculation is

sand-pack columns due to free gravity-induced flow) which is unrepre-
sentative of estuarine depositional environments (Buurman et al. 1998).
For example, under natural conditions, reduced flow velocities will lead to
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especially common in marginal-marine systems, due to increased salinity
at the fluvial-marine interface (Chamley 1989). Furthermore, clay-rich

layers create impermeable barriers in tidal flats, which form a baffle to
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lithofacies codes.
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FiG. 15.—Clay-coat class (1-5) abundance in each lithofacies. Clay-coat classes
are defined as follows, after Wooldridge et al. (2017b): (Class 1) Complete absence
of clay coats. (Class 2) Less than half of the grains have a small (~ 1-5 %) surface
area of attached clay coats. (Class 3) Every grain exhibits at least ~ 5—15 % clay-coat
coverage (Class 4) Extensive (~ 15-30 %) clay-coat coverage on the majority of
grains. (Class 5) Greater than 30% surface area covered by clay coats on every grain.
Refer to Table 2 for explanation of lithofacies codes.

mechanical infiltration, often resulting in the formation of fluidized mud
layers at the surface.

Experimental studies have shown that detrital clay coats can develop
through the direct ingestion and excretion of sediment by Arenicola
marina (lugworms) (Needham et al. 2005; Worden et al. 2006). However,
Arenicola marina are restricted to a limited environmental grain-size niche
in the Ravenglass Estuary, typically 88 to 177 pm (Wooldridge et al.
2017b), and are not present in mud flats, where clay coats are most
abundant (Fig. 15). Therefore, in agreement with distribution patterns
presented by Wooldridge et al. (2017b), clay-coat distribution patterns in
near-surface sediment also do not appear to be determined exclusively by
the bioturbation of Arenicola marina. However, in contrast to Wooldridge
et al. (2017b), in this study we have measured the bioturbation signal of all

J. GRIFFITHS ET AL.

fauna, and not just the castings developed by Arenicola marina; there is a
strong correlation between bioturbation index (signal from all microfauna
and macrofauna) and clay-coat coverage (r=0.84, p < 0.001). As reported
by Wooldridge et al. (2017b), it might be possible that other estuarine
macro- or micro-organisms provide a mechanism of clay coat formation.
Corophium volutator (which create densely spaced U-shaped burrows up
to 5 cm deep) are confined to mud flats and mixed flats in the Ravenglass
Estuary (Kelly et al. 1991), and thus correspond to high degrees of detrital-
clay-coat coverage. Previous studies have also reported that Corophium
volutator can occur in abundance up to 140,000 m * in estuarine mudflats
and salt marsh (Gerdol and Hughes 1994). However, despite the striking
similarity between bioturbation intensity (primarily through Corophium
volutator activity in mud flats and mixed flats) and detrital-clay-coat
coverage, Corophium volutator are unlikely to have formed clay coats.
First, Corophium volutator are reported to increase the water content of
sediment and thus decrease shear strength and promote erosion and
winnowing of sediment (Gerdol and Hughes 1994), which are all likely to
remove clay coats. Second, Corophium volutator are reported to consume
diatoms in marginal-marine sediments (Underwood and Paterson 1993;
Gerdol and Hughes 1994), which are known to adhere clay-size material to
sand grain surfaces via biofilms (Jones 2017; Wooldridge et al. 2017a). As
a result, despite there being a strong correlation between macrofaunal
bioturbation intensity (primarily by Corophium volutator in clay-rich
depositional environments with the most extensive detrital clay coat
coverage) and detrital-clay-coat coverage, Corophium volutator might in
fact inhibit detrital clay coat development through the reduction of diatom
populations. Instead, the strong correlation between bioturbation index and
the extent of detrital-clay-coat coverage is more likely driven by: (i) the
absence of both clay coats and bioturbation in outer-estuarine sediment, (ii)
a high abundance of burrowing Corophium volutator and clay-grade
material in mud flats.

In summary, detrital-clay-coat distribution patterns in estuarine near-
surface (< 1 m) sediment are likely controlled by processes active during
deposition and in the top few centimeters of the primary deposition
environment; the physical sorting of sediment by grain size via estuarine
hydrodynamics, and the adhesion of clay to sand grain surfaces by biofilms
secreted by diatoms (Wooldridge et al. 2017a). Thus, detrital-clay-coat
distribution patterns in surface sediment (< 2 cm) in the Ravenglass
Estuary have not been overprinted by postdepositional processes.

Clay Mineralogy: Origin and Controls on Distribution

To better predict the distributions of authigenic and detrital clay minerals
in sandstones reservoirs, it is necessary to understand the fundamental
controls on the type and occurrence of detrital clay minerals in the primary
depositional environment. Chlorite, illite, kaolinite, and smectite are not
homogeneously distributed in the Ravenglass Estuary (Figs. 16-21). In this
section, the principal controls on the clay-mineral assemblage and clay-
mineral distribution patterns in the Ravenglass Estuary are discussed.

Origin of Clay Minerals in the Ravenglass Estuary

Matching global oceanic clay-mineral trends (Rateev et al. 2008), the
proportions of illite, chlorite, and kaolinite in the Ravenglass Estuary are
approximately 3:1:1 with a trace quantity of smectite (average smectite
index of 0.009; maximum smectite index of 0.09) (Table 3). Illite, the
dominant clay mineral in the Ravenglass Estuary, has an average Esquevin
index of 0.30 and illite crystallinity of 0.25, representing relatively well-
crystalline and Fe-Mg-rich illite (Kiibler 1964; Esquevin 1969).

Potential sources of clay minerals in the Ravenglass Estuary include: (i)
fluvial drainage of Paleozoic and Triassic bedrock and Quaternary drift, (ii)
the landward displacement of littoral-zone sediment, (iii) internal erosion
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TaBLE 4.—Post-hoc Dunn test results (following a Kruskal-Wallis H test) reveal between which lithofacies there is a statistical difference in detrital-clay-
coat coverage. Paired lithofacies which have a statistically significant difference in detrital-clay-coat coverage have significant values (z values)
highlighted in bold. In contrast, pale numbers represent insignificant differences in clay-coat coverage between compared lithofacies. Levels of statistical
significant are coded as follows; marginally significant (+) when p < 0.1, significant (*) when p < 0.05, very significant (**) when p < 0.01, extremely
significant (***) when p < 0.001. Gray values represent no significant difference when p > 0.1. Refer to Table 2 for explanation of lithofacies codes.

Detrital-Clay-Coat Coverage

1 2 3 4.1 4.2 4.3 5.1 5.2 53 7.1 7.2 7.3
2 0 X
3 0.47 0.39 X
4.1 2.23+ 1.96 1.95 X
4.2 2.23+ 1.84 1.9 -0.46 X
4.3 2.54% 221+ 227+ 0.22 0.74 X
5.1 4.74% %% 4,175 4.58% % 212+ 3.03%* 1.94 X
5.2 2.7% 2.56* 2.51% 1.28 1.63 1.14 -0.06 X
53 3.49%* 3.31%* 3.32%%* 2.03 2.44% 1.91 0.71 0.6 X
7.1 5.99%** 5.24%%* 5.89%%* 3.37%%* 4.43%%* 3.22%%* 1.38 0.93 0.17 X
7.2 T 5.85% % 7.04%%* 3.75% % 5.27%%* 3.6%* 1.49 0.91 0.11 -0.11 X
7.3 5.14%%* 4.7 4.99%%* 3.09%** 3.82%* 2.95% 1.42 1.04 0.35 0.27 0.38 X
8 4.8%%% 4.43% %% 4.63%%* 2.91%%% 3.54%% 2.77% 1.33 1.01 0.34 0.25 0.35 0

of Ravenglass Till that is exposed as knolls throughout the estuary and in

proximal cliff sections.

The principal source of chlorite is probably the Eskdale Granite and

Borrowdale Volcanic Group, because intense chloritization of mafic
silicates has been reported in the Eskdale Granite (Moseley 1978; Young et
al. 1986; Quirke et al. 2015) and widespread chloritization of pyroxene has
been reported in the Borrowdale Volcanic Group (Quirke et al. 2015).

The provenance of illite in the Ravenglass Estuary has been established
using Esquevin Indices. Illite in this estuary is relatively well-crystalline
and Fe-Mg-rich (Figs. 18A, B, 20A, B); this is typical of cold-climate
conditions that favor mechanical weathering allowing the primary white
mica to retain its Fe-Mg-rich composition and original high degree of
crystallinity (Chamley 1989). The chemical composition of illite in
estuarine sediment (average Esquevin index of 0.30) compare closely with
values calculated for the Ravenglass Till (average Esquevin index of 0.28).

TaBLE 5.—Correlation (Spearman’s and Pearson’s correlation coefficients) between clay-mineral indices, pyrite abundance, clay-content and clay-coat
coverage as a function of depth (per core). Bold numbers represent significant correlation coefficients, whereas pale numbers represent insignificant
differences, in clay-mineral attributes (and pyrite) with depth. “x” represents values that were either absent or uniform with depth. Levels of statistical
significant are coded as follows; marginally significant (+) when p < 0.1, significant (*) when p < 0.05, very-significant (**) when p < 0.01, extremely
significant (***) when p < 0.001. Gray values represent no significant difference when p > 0.1.

Pearson’s Spearman’s
Core Chlorite Index Illite Index Kaolinite Index Pyrite Clay Fraction Clay Coat
1a —0.72* 0.20 —0.86** X 0.14 X
1b —0.95%** -0.17 —0.99%** X 0.83%* X
2a 0.63 -0.70 0.75 0.66 -0.55 -0.05
2b 0.62 -0.49 0.25 0.69 —0.91%* —0.93%*
3a -0.12 -0.11 0.17 X -0.17 X
3b -0.11 —0.64+ -0.76 X —0.63+ —0.52
3c 0.69 0.21 -0.76 X -0.88 -0.77
4 0.10 -0.23 0.38 X 0.71+ 0.36
5a -0.59 0.73* —0.84%* -0.92 0.76* 0.32
5b -0.36 0.57 —0.74* -0.38 0.92%** 0.86%*
6a 0.31 0.14 0.10 0.81%* -0.52 -0.34
6b 0.88%* 0.13 —-0.54 0.91%* 0.87** 0.11
6¢ 0.22 0.21 —0.68* X —0.76* —0.87%*
6d -0.27 —0.57+ 0.79%* 0.74%* -0.45 —0.68*
6e 0.42 -0.44 0.43 X —-0.04 0
Ta 0.55 -0.59 0.58 X 0.80 -0.35
7b 0.08 0.38 —-0.65 X 0.44 X
Te 0.74+ —0.84* —0.84* X 0.85* 0.43
8a -0.28 0.44 -0.46 X 0.89* 0.35
8b 0.94+ 0.06 —0.67 X 0.83 0.77
8c 0.07 -0.13 0.11 X 0.47 X
8d 0.29 -0.26 0.13 X 0.50 X
9 -0.33 0.23 —-0.11 X -0.66 X
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_ Kaolinite
Facies Association

0 FA1 A FA3 X FAS V
FA2 + FA4 <> FA6 X

The evidence therefore suggests that the dominant source of illite in the
Ravenglass Estuary is the Ravenglass Till, which is relatively well exposed
throughout the estuary and in the drainage basin. Al-rich illite, which is
found primarily in outer-estuarine sediment, is characteristic of chemically
weathered rocks that have lost Fe and Mg (Chamley 1989). Al-rich illite
might reflect the widespread alteration of feldspars to fine-grained
aluminous clay minerals (i.e., illite and kaolinite), which has been reported
in the Eskdale Granite (Simpson 1934; Young et al. 1986; Quirke et al.
2015) and the Borrowdale Volcanic Group (Quirke et al. 2015).

Kaolinite might have been derived from the chemical weathering of any
silicate minerals in the hinterland or in the Ravenglass Estuary basin.
However, it is noteworthy that the glaciofluvial and glaciolacustrine
sediments of the Fishgarth Wood Till Member (Fig. 1D) are relatively
enriched in kaolinite (kaolinite index, 0.31) and so might provide a
dominant source of kaolinite in the estuarine sediment.

Smectite, which is of minor abundance in the Ravenglass Estuary
(average smectite index of 0.009), is typical of the initial stages of chemical
weathering (Salem et al. 2000). In addition, weathering will only result in
smectite, rather than other clay minerals, if the excess metal cations and
silica cannot be flushed from the aqueous geochemical system, for
example, in low-lying topography with poor drainage and stagnant
groundwater conditions (McKinley et al. 2003). In contrast, in flowing
and active groundwater systems, loss of metal cations is easily achieved,
resulting in the possibility of more advanced chemical weathering and
reduced preservation potential of smectite minerals (McKinley et al. 2003).
As a result, smectite is most abundant, but still of relatively minor
significance (smectite index of 0.09), in floodplain sediments of the River
Esk (Fig. 19), analogous to the formation of dioctahedral smectite

FA7
FA8

Fic. 16.—Relative clay-mineral abundance
(illite, chlorite, kaolinite) as a function of facies
association (FA). FAs are labelled accordingly:
FA1, floodplain; FA2, salt marsh; FA3, mud flat;
FA4, mixed-flat and thin-bedded deposits; FAS,
low-amplitude tidal dunes and tidal bars 5; FA6,
glacial outwash; FA7, tidal inlet and foreshore;
and FA8, coastal spit.

downslope of weathered granitic rocks of the French Armorican Massif
(Aoudjit et al. 1995).

Clay-Mineral Distribution: Estuarine Hydrodynamics

Similar to estuaries worldwide (Dalrymple et al. 1992), estuarine
hydrodynamics has a profound influence on the nature and organization of
lithofacies in the Ravenglass Estuary. Clay minerals can be physically
sorted, due to grain-size variation, in marine environments during
transport, as reported in Atlantic Ocean sediment influenced by the
Amazon River (Gibbs 1977). This study has shown that hydrodynamic
processes appear to have exerted a strong control on the distribution of
lithofacies and specific clay minerals in the Ravenglass Estuary (Figs. 17,
18; Table 6).

Chlorite abundance typically increases with an increase in sediment
grain size (Fig. 22). As a result, chlorite is relatively most abundant in
high-energy and coarser-grained depositional environments, i.e., outer-
estuarine sediment (lithofacies 7.1, 7.2, and 8; Fig. 17A) and in some
inner-estuarine and central-basin low-amplitude-dune sediments (lithofa-
cies 5.1; Fig. 17A). It is noteworthy that chlorite abundance appears to
decrease toward the mean-low-water line in foreshore sediment (in
lithofacies 7.3; Fig. 17A). Floodplain sediments are some of the finest-
grained sediments in the estuary basin and could be expected to be
chlorite-depleted (Fig. 22). However, floodplain sediments are relatively
enriched in chlorite (chlorite index up to 0.25; Fig. 17A); this might reflect
the fluvial deposition of chlorite-enriched River Esk sediment which drains
the chloritized Eskdale Granite.
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FiG. 17.—Relative clay-mineral abundance as a
function of lithofacies. A) Chlorite index, B)
kaolinite index, C) illite index, and D) smectite
index. Refer to Table 2 for explanation of
lithofacies codes.



1228 J. GRIFFITHS ET AL.
& 5
s A T
83 . T T
g® o o
Eo] - 7 0
20 : ga S
R QE E*— -
w i
VRS ﬁ E} E
: E 10lUs
N S
o o — o
| T T I I T T T | T T I I I T
1 2 3 414243 51525354 6 717273 8
Lithofacies code
B el
o T —= .
@ :
2o v
= -
Bal - Q —HAs -
5] DE 5
o '
Q
- N -
N N ' 2,
o : o
| | | | | T I | | | I ! | | |
1 2 3 414243 51525354 6 717273 8
Lithofacies code
o — C o
< - o
=
:é' - & o
‘E‘ [QVE —_ —_ 0
o ! :
Q D |:| Fi6. 18.—Variation in illite chemistry, illite
o — — —_— =l — —— — — — — — — crystallinity, and pyrite abundance as a function of

1 2 3 41424351525354 6
Lithofacies code

In the Ravenglass Estuary, illite is most abundant in finer-grained
sediment (Fig. 22), and therefore illite enrichment occurs in sediment that
is deposited under relatively quiescent conditions at the margin of the inner
estuary and the central basin (Fig. 17C). However, estuarine hydrodynam-
ics not only appear to control illite abundance, but also segregate illite by
chemical composition and crystallinity (Fig. 18A, B). Well-crystalline Fe-
Mg-rich illite is most abundant in finer-grained sediment, at the margin of
the inner estuary and the central basin. In contrast, poorly crystalline Al-
rich illite is most abundant in relatively high-energy inner-estuarine and
central-basin lithofacies, such as low-amplitude dunes, as well as in outer-
estuarine sediment. Fe-Mg-rich illite might be finer-grained than Al-rich
illite due to Fe-Mg-rich illite being derived from sediment which has
undergone extensive subglacial comminution (Ravenglass Till). Therefore,
it is here speculated that the transport history of illite (intensity of abrasion
and thus grain size) and estuarine hydrodynamics might also govern the
distribution of illite types in the Ravenglass Estuary.

lithofacies. A) Esquevin index, B) illite crystal-
linity, and C) pyrite abundance. Refer to Table 2
for explanation of lithofacies codes.

717273 8

Kaolinite has been reported to flocculate at lower salinity than other clay
minerals, and therefore is suggested to increase in abundance relative to
other clay minerals at the fluvial-marine interface (Whitehouse et al.
1960). Kaolinite is reported to be deposited upstream relative to illite due
to a faster aggregation rate (Edzwald and O’Mella 1975). However, in the
Ravenglass Estuary there is no evidence for enrichment of kaolinite at the
head of the estuary (Figs. 17B, 19B). Instead, kaolinite abundance is
relatively homogeneous throughout the Ravenglass Estuary. Differential
settling therefore does not appear to have exerted a strong control on
kaolinite distribution in the Ravenglass Estuary. The effect of differential
settling might be damped by strong tidal currents, wind, and a short-
estuarine length promoting intense estuarine mixing resulting in a less
well-defined fluvial-marine interface.

Smectite is present in the hinterland and in cores in the River Esk
floodplain; however smectite is present in negligible abundance in
Ravenglass estuarine sediments. There are two possible scenarios which
might explain the paucity of smectite in estuarine sediments. First, smectite

Downloaded from http://pubs.geoscienceworld.org/sepm/jsedres/article-pdf/88/10/1205/4592903/i1527-1404-88-10-1205.pdf



CLAY COATS, CLAY MINERALS, AND PYRITE: ESTUARINE SANDSTONE RESERVOIR QUALITY

1229

TaBLE 6.—Post-hoc Tukey HSD test results (following an ANOVA test) revealing between which lithofacies there is a statistical difference in chlorite,
illite, kaolinite, and smectite abundance. Significant values (z values) are highlighted in bold. Bold numbers represent significant differences, pale
numbers represent insignificant differences, in clay-mineral indices between compared depositional environments. Levels of statistical significant are
coded as follows; marginally significant (+) when p < 0.1, significant (*) when p < 0.05, very significant (**) when p < 0.01, extremely significant

(**%) when p < 0.001. Gray values represent no significant difference when p > 0.1. Refer to Table 2 for explanation of lithofacies codes.
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FiG. 19.—Relative clay-mineral abundance as a
function of geographic core position (core ID). A)
Chlorite index, B) kaolinite index, C) illite index,
and D) smectite index.
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is typically present in the finest of all sediment fractions (Fig. 22), and is
therefore likely to remain in suspension during transport, and so pass
through the Ravenglass Estuary and be deposited offshore (Edzwald and
O’Mella 1975; McKinley et al. 2003; Worden and Burley 2003). Second,
ground-water flushing (adjustment to the local geochemical environment)
has previously been reported to minimize the development and
accumulation of smectite (McKinley et al. 2003). It is here speculated
that the Ravenglass Estuary might not be a preferential site for smectite
accumulation, since metal cations (essential for smectite) might have been
flushed from estuarine sediment by twice-daily tides and meteoric
groundwater flow through estuarine sediment. However, note that in other
estuaries, such as the Gironde estuary, smectite has been deposited on the
estuarine floor in clastic sediments (Jouanneau and Latouche 1981).

Clay-Mineral Distribution: Early Mineral Alteration (Eodiagenesis)

Both physicochemical processes (Grim and Johns 1954; Griffin and
Ingram 1955; Powers 1957; Nelson 1960) and biologically mediated early
diagenesis (Mcllroy et al. 2003; Needham et al. 2004; Needham et al.

geographic core position (core ID). A) Esquevin
index, B) illite crystallinity, and C) pyrite
abundance.

2005; Needham et al. 2006; Worden et al. 2006) have been suggested as
potential controls on clay-mineral distribution patterns in sedimentary
environments.

The direct ingestion and excretion of sediment by Arenicola marina has
been shown to lead to clay-mineral alteration and formation under
laboratory conditions, due to the chemical conditions in their guts (Mcllroy
et al. 2003; Needham et al. 2004; Worden et al. 2006). This study has
specifically focused on whether bioturbation might have affected clay-
mineral distribution patterns in the Ravenglass Estuary. Bioturbation
intensity recorded in this study primarily reflects sediment modification by
(i) Arenicola marina, largely restricted to inner-estuary and central-basin
mixed tidal flats (Wooldridge et al. 2017b), that ingest particles < 2 mm in
diameter (Riisgard and Banta 1998) and (ii) Corophium volutator,
confined to mud flats and mixed flats in the Ravenglass Estuary (Kelly
et al. 1991), that ingest particles < 62 um in diameter (Fenchel et al. 1975).

In the Ravenglass Estuary, there is a negative correlation between
chlorite abundance and bioturbation intensity, and a weak positive
correlation between illite abundance and bioturbation intensity (Fig. 21).
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FiG. 21.—Relationship between bioturbation
index, after Taylor and Goldring (1993), and
relative clay-mineral abundance. A) Chlorite
index, B) kaolinite index, and C) illite index.
Spearman’s correlation coefficients (r) between
bioturbation index and clay mineral indices are
presented, including the level of significance (p).
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FiG. 22.—Relative abundance of chlorite, illite, kaolinite, and smectite for specific
grain-size separate, derived from a single, disaggregated whole sediment sample
from the surface of the central basin (Saltcoats). Note that only illite (occurring as
flakes) and chlorite (occurring as Fe-rich chlorite lithic grains) are present in grain-
size separates greater than 90 pm.

There is little relationship between kaolinite abundance and bioturbation
intensity (Fig. 21). The relationships between chlorite and illite abundance
and bioturbation intensity is probably an artifact of grain size (Fig. 21), and
not early-mineral alteration or formation, since chlorite is most abundant in
relatively high-energy, coarser-grained depositional environments barren of
bioturbation. In contrast, illite is most abundant in low-energy, finer-
grained depositional environments, which are intensely bioturbated by
Corophium volutator and/or Arenicola marina.

Daneshvar and Worden (2018) suggested that plagioclase grains are
preferentially rimmed by neoformed kaolinite, and detrital K-feldspar
grains are preferentially rimmed by neoformed illite in Ravenglass Estuary
sediment, possibly as a result of continued mineral alteration (early
diagenesis). While early mineral alteration remains possible, it is reported
that clay-minerals also formed due to intense alteration of feldspars in the
hinterland (Moseley 1978; Young et al. 1986; Quirke et al. 2015). As a
consequence, the relationship between feldspars and clay-minerals in the
Ravenglass Estuary plausibly might be an inherited feature from the
hinterland, and not due to early diagenesis in the estuary.

Clay-Mineral Distribution: Mechanical Infiltration

The stratification of specific clay minerals has been reported to result
from the mechanical infiltration of clay-laden waters through filtering sand
packages in experiments undertaken by Matlack et al. (1989). Experiments
undertaken by Matlack et al. (1989) showed that illite and smectite pass
through the sediment but chlorite is preferentially trapped as clay coats.
However, the present results from the Ravenglass Estuary show that,
despite mechanical infiltration being likely to occur at a centimeter to
meter scale in marginal-marine depositional environments (Santos et al.
2012), there is no systematic increase or decrease in specific clay minerals
with depth (Table 5).

The lack of clay-mineral stratification in near-surface Ravenglass
Estuary sediment brings into question the relevance of experiments
undertaken by Matlack et al. (1989) to natural estuarine depositional
environments. As reported by Buurman et al. (1998), the infiltration
experiments undertaken by Matlack et al. (1989) used peptized clay
minerals, i.e., clay minerals converted into a colloidal suspension, meaning
that the clay minerals had a minimum tendency to flocculate. As a result,
intermediate- to high-surface-charge clay minerals, e.g., illite and smectite,

are less likely to form floccules and are instead more likely to pass through
the filtering sand packages (Buurman et al. 1998). In contrast, chlorite (a
low-surface-charge clay mineral) is more likely to be trapped in the
sediment (Buurman et al. 1998). Second, similarly to the prevention of
clay-coat formation via mechanical infiltration (as discussed previously),
the formation of clay drapes during flow deceleration and the presence of
clay-rich impermeable layers in tidal flats are likely to clog pore throats and
baffle mechanical infiltration.

Early-Diagenetic Pyrite: Origin and Distribution

Fe-sulfides (e.g., pyrite), are common early-diagenetic minerals in
marginal-marine sediments due to bacterial sulfate reduction that occurs
when aqueous sulfate (derived from marine inundation) is reduced by
organic matter (Berner 1980). In the Ravenglass Estuary, pyrite is most
abundant in finer-grained, low-energy, cohesive and anoxic, central-basin
tidal flats (Fig. 20C; lithofacies 3, 4.1, and 4.2), typically embedded in
detrital-clay coats (Fig. 13B). Pyrite abundance typically increases with
depth in tidal-flat cores (cores 6A, 6B, 6D) due to increasing anoxic
conditions and the development of a distinct redox boundary, defined by
color of sediment at depth typically between 6 to 50 cm (Table 5; Fig. 7).
Pyrite is absent throughout the near surface in relatively high-energy and
coarser-grained outer-estuary sediment and inner-estuary and central-basin
low-amplitude tidal dunes.

The relationship between pyrite abundance and depth is complicated in
mixed-flat and low-amplitude-dune depositional environments by sediment
bioturbation (Table 5). Arenicola marina, which live in J-shaped burrows
between 10 to 40 cm deep, develop a tail-to-head-directed ventilatory water
flow system causing an upward flow of oxygenated water in the sediment
in front of the head (Riisgard and Banta 1998). As a result, the irrigation
and oxidation of the burrow by Arenicola marina exert a localized but
strong effect on the geochemical environment in the near subsurface, in
this case, inhibiting the growth of pyrite due to oxidation. In contrast,
Corophium volutator which live in relatively shallow (< 5 cm deep) U-
shaped burrows do not influence pyrite growth, since typically they do not
penetrate the redox boundary. It is noteworthy that thin-bedded sediments
(lithofacies 4.3), which primarily occur as minor incursions in tidal flats,
lead to irrigation and oxidation underlying and overlying sediments, and
thus, can also inhibit the growth of pyrite.

SIGNIFICANCE: IMPLICATIONS FOR ESTUARINE SANDSTONE RESERVOIR
QUALITY

Hydrocarbon exploration, in ancient and deeply buried sandstone
reservoirs, typically involves avoiding the cleanest and most clay-free
lithofacies. However, note that the cleanest and most clay-free lithofacies
tend to become increasingly quartz cemented at burial temperatures > 80
to 100 °C (Worden and Burley 2003). Authigenic clay coats on sand grains
can preserve anomalously high porosity by inhibiting quartz cement in
deeply buried reservoirs (Ehrenberg 1993). Examples of porosity-
preserving authigenic clay coats, in deeply buried marginal-marine
sandstone reservoirs, include the Knarr field, northern Norwegian North
Sea (Skarpeid et al. 2017) and the Upper Cape Hay Formation, Australia
(Saiag et al. 2016). In many reservoir examples, authigenic grain coats
have mixed mineralogy, typically containing illite and chlorite (analogous
to the Ravenglass Estuary), such as the Egret field (Stricker et al. 2016),
the Lower Cretaceous Missinssauga Formation (Gould et al. 2010), and the
Jurassic Garn Formation (Storvoll et al. 2002).

Authigenic clay coats are reported to form, in sandstones and under
laboratory conditions, through the in situ growth from the authigenic
alteration of precursor and early-diagenetic minerals during burial
diagenesis, as well as the thermally driven recrystallization of detrital clay
coats (Hillier 1994; Aagaard et al. 2000; Worden and Morad 2003;
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Ajdukiewicz and Larese 2012). As a result, the spatial distribution of
precursor clay minerals, early-diagenetic Fe-sulfide, as well as the extent of
detrital-clay-coat coverage in the Ravenglass Estuary, can be used, by
analogy, to better predict the distribution of porosity-preserving clay coats
in marginal-marine sandstones. The completeness and mineralogy of
authigenic clay coats have been reported to be the dominant controls on the
ability of grain coats to inhibit quartz cementation (Billault et al. 2003;
Lander et al. 2008; Ajdukiewicz and Larese 2012). The optimum grain-
coat coverage to preserve porosity varies as a function of grain size, since
coarser-grained sandstones have a smaller surface area relative to bulk
volume and thus require less clay to achieve full surface coverage (Bloch et
al. 2002). For example, Pittman et al. (1992) suggested an optimum range
of 4-7% sediment volume as clays for the Berea Sandstone and 5-12% in
the Tuscaloosa Formation. In contrast, Bloch et al. (2002) reported that a
relatively minor amount of clay (as little as 1-2% of the rock volume) can
form extensive coats on individual sand grains.

In the Ravenglass Estuary, detrital clay coats are most extensive at the
margins of the inner estuary and the central basin in mud flats (Figs. 15,
23; Table 2); however, the abundance of clay and the fine grain size of the
sediment will likely result in detrital and authigenic clay minerals blocking
pore throats and drastically reducing permeability. Furthermore, mud flats
also contain the highest abundance of pyrite (Fig. 18C), which sequesters
iron, and therefore might inhibit the growth of burial-diagenetic authigenic
Fe-chlorite, since iron is preferentially locked up as a sulfide mineral.
Relatively clean, clay-free, outer-estuarine sediments (Fig. 14) are unlikely
to host sufficient quantities of clay-size material to form extensive
authigenic clay coats, and would therefore be expected to be heavily quartz
cemented during burial diagenesis (at temperatures > 80 to 100 °C). In
contrast, low-amplitude tidal dunes, in the inner estuary and the central
basin, contain optimum detrital-clay-coat coverage and are relatively
enriched in detrital chlorite (Figs. 17A, 19A). Mixed flats in the Ravenglass
Estuary contain extensive detrital-clay-coats; however, the sediments are
typically depleted in chlorite. Intense bioturbation of low-amplitude-dune
and mixed-flat depositional environments (FA 4 and lithofacies 5.1; Table
2), leading to oxidation of near-surface sediment and inhibition of pyrite
growth (increasing iron availability), is likely to favor the formation of
burial-diagenetic Fe-bearing clay minerals such as chlorite.

CONCLUSIONS

This study has revealed the dominant controls on distribution patterns of
detrital-clay coats and clay minerals, as well as the preferred environments
for the growth of Fe-sulfides, in a modern marginal-marine setting. The
results of this study can be used, by analogy, to aid prediction of reservoir
quality in deeply buried sandstone reservoirs. The main conclusions, which
answer the research question stated in the introduction, are summarized
below.

In Ravenglass surface (< 2 cm) and near-surface (< 1 m) estuarine
sediments, detrital-clay coats are most extensive in mud flats and mixed
flats and are almost entirely absent in outer estuarine sediments.
Distribution patterns of detrital-clay coats in near-surface (< 1 m)
sediment are governed by estuarine hydrodynamics (supply of clay-size
material) and attachment of clay minerals to biofilm-coated sand grain
surfaces; biofilms are secreted by epipelic diatoms during locomotion in
the top few millimeters in the primary depositional environment.
Distribution patterns of surface (< 2 cm) detrital-clay coats in the
Ravenglass Estuary have not been overprinted by postdepositional
processes (e.g., mechanical infiltration or sediment bioturbation) in the
nearsurface (< 1 m).

The fine fraction (< 2 pm) of Ravenglass Estuary sediment is
dominated by Fe-Mg-rich illite, with subordinate amounts of chlorite and
kaolinite, with only a trace quantity of smectite. The near-surface clay-
mineral assemblage is primarily controlled by provenance and possibly by

the geochemical environment at the site of deposition. Chlorite is most
abundant in high-energy, coarser-grained depositional environments, such
as outer estuarine sediments and inner-estuary low-amplitude dunes.
Kaolinite abundance is relatively homogeneous throughout the Ravenglass
Estuary. Illite is typically Fe-Mg-rich and most abundant in mud-flat and
mixed-flat inner-estuary and central-basin lithofacies. Relatively high-
energy lithofacies in the outer, inner, and central-basin sediments typically
host a mixture of both Fe-Mg-rich illite and Al-rich-illite. Smectite is most
abundant, but still a minor component in floodplain sediments, and is
typically absent in estuarine sediments. Clay-mineral distribution patterns
are controlled by estuarine hydrodynamics, due to the physical sorting of
clay minerals by grain size. Postdepositional processes, e.g., mechanical
infiltration and early-diagenetic mineral alteration via continued weather-
ing of silicate minerals and biodegradation, do not appear to influence clay-
mineral distribution patterns in near-surface sediment. However, it might
be possible that ground-water flushing in estuarine sediments minimizes
the development of smectite accumulation.

Pyrite is the dominant Fe-sulfide in the Ravenglass Estuary. Pyrite
growth is largely restricted to mud flats and mixed flats in the central basin,
and typically increases in abundance with depth due to increasingly anoxic
conditions. Intense bioturbation in mixed flats and low-amplitude dunes by
Arenicola marina can, however, inhibit pyrite growth (reducing Fe
sequestration in the sediment), which might favor the formation of
burial-diagenetic chlorite. Distribution patterns of precursor clay coats,
clay minerals and Fe-sulfide (pyrite) can be predicted as a function of
lithofacies, with knowledge of sediment provenance, estuarine type
(resulting hydrodynamics), and the distribution of macrofauna and
microfauna.

This modern analogue can be employed to help facilitate reservoir-
quality prediction since authigenic clay coats and clay minerals in
sandstone reservoirs originate from the thermally driven recrystallization of
detrital clay coats or through in sifu growth from the authigenic alteration
of detrital and early-diagenetic minerals during burial diagenesis. Low-
amplitude tidal dunes in the inner estuary and the central basin are likely to
host the best sandstone reservoir quality due to an optimum detrital-clay-
coat coverage, relative chlorite enrichment, and a reduction in Fe-sulfide
formation due to intense bioturbation.
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