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ABSTRACT

We use new U-Pb detrital zircon (DZ) geochronology from the Pleistocene Amazon sub-

marine fan (n = 1352 grains), integrated with onshore DZ age data, to propose a sedimentary 

model for sea level–modulated and hydroclimate-modulated sediment transfer in Earth’s 

largest source-to-sink system. DZ ages from the modern Amazon River sediment display a 

progressive downstream dilution by older cratonic zircons, leading to the expectation of a 

submarine fan with high proportions of craton-derived sediment. Our new DZ age data from 

the submarine fan and mixture modeling suggest that higher proportions of sediment were 

supplied from the distant central Andes to the Amazon fan during the last two glacioeustatic 

lowstands, and thus the observed DZ age spectra of the modern lower Amazon River indicate 

a relative increase in craton-derived sediment during the Holocene. We interpret that dur-

ing interglacials, when sea level was high and the submarine fan inactive, the lower Amazon 

River did not ef�ciently transfer sand-sized sediment to the margin and thus became enriched 

in craton-derived sediment. During sea-level lowstands, increased gradients and incision in 

the lower Amazon River due to base-level lowering resulted in enhanced connectivity and 

transfer of Andes-sourced zircons to the deep sea. These results are also consistent with in-

terpreted patterns of Andean-Amazon hydroclimate anti-phasing (enhanced precipitation 

in the central Andes and increased aridity in the northern Amazon Basin) during the Last 

Glacial Maximum. Our results suggest that sand-sized sediment in the Amazon submarine 

fan records multi-millennial patterns of sea level and South American hydroclimate.

INTRODUCTION

The dynamics of �uvial to deep-sea sediment 

transfer in response to climate and sea-level 

�uctuations over multi-millennial time scales 

is complex and nonlinear (Blum and Törnqvist, 

2000; Clift, 2006; Blum and Hattier-Womack, 

2009). Early research on major �uvial systems 

focused on the role of base level (Vail et al., 

1977) in the context of climate change (Fisk, 

1944), while subsequent research modi�ed 

conceptual models in recognition of the in�u-

ence of upstream climate-modulated sediment 

supply and hydrology (Saucier, 1996). Other 

studies have considered the controls on the 

timing of submarine fan activity (Covault and 

Graham, 2010; Maslin, 2009), sediment cali-

ber and volumes delivered to submarine fans 

(Sweet and Blum, 2016), as well as sediment 

exhumation and transit rates and the role of river 

avulsions in sediment transfer to the deep sea 

(Blum et al., 2018). Provenance techniques ap-

plied to major river–to–submarine fan systems 

are a valuable tool to improve models for the 

controls on source-to-sink sediment routing sys-

tem  behavior over multi-millennial time scales 

(Fildani et al., 2018).

The Amazon River and deep-sea fan rep-

resent a globally important end-member sys-

tem for understanding land-to-sea sediment 

 dynamics. Submarine fans have been shown to 

archive histories of output �uxes and onshore 

environmental change (Normark and Reid, 

2003; Fildani et al., 2016; Hessler et al., 2018), 

and have been used to invert up-system climate 

forcings in glaciated continent-scale rivers (Clift 

et al., 2008; Fildani et al., 2016, 2018; Mason 

et al., 2017; Li et al., 2019). The Amazon catch-

ment straddles equatorial latitudes and has dis-

tinct sediment and detrital zircon (DZ) source 

terranes and physiography (Fig. 1), and the mod-

ern �uvial system is characterized by published 

DZ U-Pb data (Fig. 1B) (Campbell and Allen, 

2008; Mapes, 2009; Pepper et al., 2016).

We present 1352 new U-Pb DZ ages from 10 

samples from cores recovered in the deep-sea 

Amazon Fan (Sites 936, 945, 946) during Ocean 

Drilling Program (ODP) Leg 155 (Flood et al., 

1995). We integrate our data and results with 

published U-Pb DZ data from the modern on-

shore Amazon �uvial system and perform mix-

ture modeling of DZ age spectra to elucidate ef-

fects of changing sea level and hydroclimate on 

temporal patterns of sediment provenance over 

multi-millennial time scales (marine isotope 

stages 6–2; MIS 6–MIS 2) within Earth’s larg-

est �uvial to deep-sea sediment routing system.

THE AMAZON SOURCE-

TO-SINK SYSTEM

The Amazon River represents Earth’s largest 

freshwater discharge to the ocean (15%–20% 

of global total) and largest total sediment load 

(~1200 Mt/yr), and is the largest �uvial system 

in terms of drainage basin area (~7 × 106 km2) 

(Milliman and Farnsworth, 2011). Amazon Ba-

sin hydroclimate controls water and sediment 

discharge to the sea and is in�uenced by the 

South American monsoon system and the lo-

cations of the Intertropical Convergence Zone 

and South Atlantic Convergence Zone (No-

vello et al., 2017). Hydroclimate in the central 

and northern Amazon Basin was overall more 

arid during the Last Glacial Maximum (LGM) 

(Häggi et al., 2017), while precipitation in-

creased for the central Andes and the southeast-

ern Amazon craton (Cheng et al., 2013; Baker 

and Fritz, 2015). Amazon �oodplain incision 

during the LGM signi�cantly altered the ele-
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vation and slope of the river bed in the lower 

Amazon River (i.e., from ~0.7 to ~7 cm/km) 

(Mertes and Dunne, 2007). The degree of up-

stream propagation of incision is uncertain, but 

may have in�uenced bed elevations as far as 

1700 km from the modern coast (Mertes and 

Dunne, 2007).

The Amazon submarine fan is a late Miocene 

through Pleistocene accumulation of mainly 

terrigenous siliciclastic sediment as much as 

4–5 km thick (Figueiredo et al., 2009). During 

highstands, coarse-grained sediment is depos-

ited and stored in �oodplains in the lower Ama-

zon River valley and on the shallow continental 

shelf. When sea levels fall by >40 m relative to 

Holocene sea level, river water and sediment 

is transferred across the continental shelf and 

through the Amazon canyon to the submarine 

fan (Damuth et al., 1995).

The modern onshore Amazon system is par-

tially constrained by existing detrital geochro-

nology (Figs. 1A and 1B) (Campbell and Allen, 

2008; Mapes, 2009; Pepper et al., 2016). DZ 

age data from the Solimões (upper Amazon) 

and lower Amazon Rivers (Fig. 1A) display a 

progressive dilution of young zircon age modes 

(<1.3 Ga) by older craton age modes (Fig. 1B). 

Given the observed pattern of downstream di-

lution by cratonic zircon sources, we might ex-

pect a submarine fan enriched in a cratonic DZ 

signature.

METHODS AND RESULTS

We collected 10 samples of �ne- to medium-

grained sand from turbidite beds in cores recov-

ered during ODP Leg 155 (Flood et al., 1995), 

Sites 936, 945, and 946, in the lower Amazon 

Fan (Fig. 1A for locations; Data File DR1 in the 

GSA Data Repository1). All sample preparation, 

analyses, and data reduction were conducted at 

the UTChron facility at the University of Texas 

at Austin (USA), where we used standard tech-

niques of mineral separation, and applied  laser 

ablation–inductively coupled plasma–mass 

spectrometry U-Pb dating of zircon grains 

(methods of Thomson et al. [2017] and refer-

ences therein).

Resultant DZ ages are presented within their 

composite stratigraphic context (Fig. 2A) as 

 kernel density estimates (KDEs; Figs. 2B and 

2C) and plotted using a multidimensional scal-

ing (MDS) map (Fig. 2D). Full isotopic mea-

surements are reported in Data File DR2.

The MDS map (Fig. 2D) indicates that the 

Amazon Fan is a mixture of Andean and cra-

tonic sources, and is most closely related to the 

central Andes, lower Amazon, and craton sources 

in MDS space. Sample KDEs from the Amazon 

Fan (Fig. 2B) show little evidence for systematic 

stratigraphic trends, but display variable propor-

tions of Phanerozoic and Pan-African–Brasiliano 

age modes (Fig. 2B). KDE cross-correlation co-

ef�cients for all Amazon Fan samples (see Table 

DR2 in the Data Repository) have a mean and 

standard deviation (1σ) of 0.45 ± 0.08, which is 

similar to or slightly less than coef�cients for 

synthetic subsamples drawn from the same par-

ent sample (Saylor and Sundell, 2016).

Collectively, Amazon Fan DZ samples (Fig. 

2C) have age modes nearly identical to those 

of published samples from the Amazon River 

(Mapes, 2009; Campbell and Allen, 2008) (Fig. 

2C). However, (1) fan samples are qualitatively 

more homogenous than modern samples from 

the length of Amazon River, and (2) Amazon 

Fan DZ age spectra contain higher proportions 

of Phanerozoic through Sunsás orogeny–aged 

zircons (76% U-Pb ages <1.3 Ga) than samples 

from the lower Amazon (64% <1.3 Ga) (Figs. 

1B and 2D; Table DR1), while the modern lower 

Amazon contains higher proportions of >1.3 Ga 

zircons derived from the craton (Fig. 1B).

To further explore this observed variability 

in provenance signature between Holocene river 

and Pleistocene submarine fan samples, we ap-

plied a top-down unmixing algorithm (sensu 

Sharman and Johnstone, 2017; after Mason 

et al., 2017; Fildani et al., 2018) to quantify the 

relative contributions of zircons from tributary 

river components (parents) present in compos-

ite (daughter) mixtures, or the lower Amazon 

River and Amazon Fan. We selected published 

DZ samples (Campbell and Allen, 2008; Mapes, 

2009; Pepper et al., 2016) based on their geo-

graphic locations within the Amazon drainage 

basin, with the goal of characterizing broad 

swaths of DZ terranes using modern river sands. 

Results can be viewed in terms of supply from 

the northern Andes, the northern craton (samples 

from the Negro River), and the central Andes 

(Fig. 1A; also see the Data Repository text and 

Table DR3).

Unmixing amalgamated samples from the 

modern lower Amazon River results in large 

proportions of the craton component (67%) and 

moderate proportions of the central Andes com-

ponent (33%) (Table DR4). Unmixing amal ga-

mated samples from the Pleistocene Amazon Fan 

(spanning MIS 6–MIS 2) results in much smaller 

proportions of the craton component (17%) and 
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Figure 1. A: Physiography and simplified detrital zircon (DZ) source terrane map of Amazon 
catchment and submarine fan system, with major fluvial elements of Amazon River system, 
existing onshore DZ sample locations (Campbell and Allen, 2008; Mapes, 2009; Pepper et al., 
2016), and locations of Ocean Drilling Program (ODP) sediment cores used in this study. 
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1GSA Data Repository item 2019206, DR1 (Ocean 
Drilling Program Amazon fan samples); DR2 (Amazon 
detrital zircon data); DR3 (published detrital zircon 
samples used in mixture models); and DR4 (unmixing 
coef�cients for detrital zircon samples from the mod-
ern lower Amazon and Pleistocene Amazon submarine 
fan), is available online at http:// www .geosociety .org 
/datarepository /2019/, or on request from editing@ 
geosociety .org.
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greater proportions of the central Andes com-

ponent (78%), with minor proportions of the 

northern Andes component (5%) (Table DR4).

DISCUSSION

U-Pb DZ ages from the Amazon Fan dem-

onstrate that large tropical river-to-fan systems 

faithfully record their onshore catchment geol-

ogy (Figs. 1A and 2C). Contrary to the expec-

tation that Amazon Fan sediment should re�ect 

the proportions of zircons present in the lower 

Amazon River, our DZ age data and mixing 

models suggest that the Pleistocene submarine 

fan contains higher proportions of northern and 

central Andes–derived sediment than modern 

samples from the lower Amazon River (Fig. 1B).

We hypothesize that more ef�cient transfer 

of northern and central Andean sediment to the 

submarine fan during glacial lowstand is facili-

tated by changes in Amazon River morphology 

driven by falling base level and by Pleistocene 

hydroclimate variability (Fig. 3). The sediment 

trapping capacity of the lower Amazon River 

at high sea level must have been signi�cantly 

reduced during the LGM and previous global 

glacioeustatic lowstands, when incision led to 

increased channel gradients along >1000 km of 

the lower Amazon River (Mertes and Dunne, 

2007), decreased sediment retention in tribu-

tary and main-stem �oodplains, and recycling 

and evacuation of the river valley and coastal 

zone deposits (Fig. 3A). Moreover, enhanced 

precipitation in the Andes relative to the cra-

ton during the LGM (MIS 2) (Baker and Fritz, 

2015) may have led to higher erosion rates and 

increased transport of Andean detritus across the 

continent and ultimately to the submarine fan. 

Age data and mixture model results from MIS 6 

deposits suggest a similar con�guration during 

the penultimate glacioeustatic lowstand. We hy-

pothesize that the signal of cratonic enrichment 

in the lower Amazon during highstands would 
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have been effectively diluted by signi�cantly 

higher proportions of Andean sources during 

lowstands as well as potential thorough mixing 

of grain populations during transport in marine 

turbidity currents, and, thus, would not be de-

tectable in the fan record.

Studies of the �ne-grained fraction of ter-

rigenous marine sediment support our proposed 

model. Nd and Pb isotopic measurements of 

mud from the Amazon Fan (McDaniel et al., 

1997) and Pb isotopes from the adjacent Ceará 

Rise (Abouchami and Zabel, 2003) suggest 

that �ne terrigenous material is derived mainly 

from Andean highlands. Marine deposits on the 

Ceará Rise display Milankovitch cyclicity, with 

increased Andean inputs during glacioeustatic 

lowstands and increased cratonic inputs dur-

ing glacioeustatic highstands (Abouchami and 

 Zabel, 2003), suggesting a strong link between 

terrestrial climate, spatial patterns of erosion, 

and sediment routing system behavior.

Our DZ data are representative of the sand-

sized fraction of sediment produced within the 

Amazon catchment and transferred to the deep 

-sea during glacial lowstands, and thus our inter-

pretations rely on assumptions of the represen-

tative nature of U-Pb DZ geochronology from 

modern river sands and marine sediment. Grain-

size variations may in�uence DZ age populations 

(Ibañez-Mejia et al., 2018), but amal ga mat ing 

multiple published river samples should smooth 

potential grain-size effects, and turbidite deposits 

sampled from the fan were a consistent grain 

size (dominantly �ne sand). Variable Zr content 

across source terranes or drainage basins (e.g., 

zircon fertility; Moecher and  Samson, 2006) 

would affect calculated proportions of erosion 

versus sediment supply (Amidon et al., 2005; 

Spencer et al., 2018). However, the temporal 

variation in our calculated relative sediment 

loads from distinct source areas in the Amazon 

system cannot be related to fertility, as source ter-

rane fertility does not change temporally. Rather, 

these variations must be the result of changes in 

the proportion of sediment from distinct source 

areas in the Amazon catchment.

New data from the Pleistocene Amazon Fan 

yield similar results to studies in the Indus River 

source-to-sink system, where variable mon-

soonal intensity since the LGM has resulted in 

measurable changes in provenance of sediment 

from cores along the delta and in the submarine 

canyon (Clift et al., 2008; Clift and Giosan, 2014; 

Li et al., 2019). In North America, continental 

ice-sheet dynamics modulated the Pleistocene 

Mississippi River–Missouri River drainage sys-

tem and resulted in major variation of prove-

nance signatures and overall sediment delivery 

to the Mississippi submarine fan (Fildani et al., 

2018; Hessler et al., 2018). Here we note the 

relatively surprising result that the Amazon Fan 

appears to archive a consistent record of glacial 

sea levels and terrestrial hydroclimate of South 

America, rather than the expected sediment mix-

ture present in the lower Amazon today.

CONCLUSIONS

The Pleistocene Amazon Fan archives a 

rec ord of sediment transfer and provenance re-

lated to glacial-interglacial eustatic sea levels 

and the dominant terrestrial hydroclimate of 

South America at multi-millennial time-scales. 

U-Pb detrital zircon geochronology (DZ; N = 

10 samples, n = 1352 grains) from the Pleisto-

cene submarine fan suggest that Andean sedi-

ment was more ef�ciently transferred across the 

South American continent to the deep sea during 

Pleisto cene glacial intervals. This was potentially 

facilitated by South America hydroclimate anti-

phasing: enhanced precipitation and erosion of 

the central Andes during glacial maxima, while 

increased aridity in much of the Amazon Basin 

led to decreased weathering and erosion rates. 

Enhanced Andean sediment loads in the Amazon 

River during glacial lowstands would have coin-

cided with incision and increased channel gra-

dients along the lower 1200 km of the Amazon 

River. The higher proportion of craton-derived 

DZs in the modern lower Amazon River may be 

explained by enhanced precipitation and sedi-

ment production on the craton, and potentially 

more net storage of Andes-derived detritus in 

upstream locations during highstands. Our re-

sults highlight the value of source-to-sink stud-

ies of river to submarine-fan systems that record 

changing and dominant terrestrial conditions.
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