As an example, let us show the reconstruction of the
three-electrode electrostatic lens from the optimized axial
potential distribution given in Ref. 4. The electrode shapes
and potentials are given in Fig. 1. The axial potential distri-
bution of this system is close to that of the original theoreti-
cal distribution (the maximum discrepancy is 8.3% of the
maximum value of the potential). The calculated value of the
spherical aberration coefficient C,, referred to the object side
and related to the object side focal length £ is C,, /f, = 0.95
as opposed to C,, /f, = 1.02 for the theoretical distribution.
The reconstruction was carried out on a VAX 11/780 com-
puter and required 1.5 s of CPU time.
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Detuned loading in coupled cavity semiconductor lasers—Effect on quantum

noise and dynamics
Kerry Vahala and Amnon Yariv

California Institute of Technology, Pasadena, California 91125
(Received 5 March 1984; accepted for publication 21 May 1984)

We derive the modulation and noise properties of a semiconductor laser consisting of an active
cavity loaded by a passive cavity. The results indicate that under certain conditions the direct
modulation bandwidth can be doubled with simultaneous phase noise reduction as compared to a

conventional laser.

The subject of coupled cavity semiconductor lasers
[e.g., cleaved coupled cavity (C?),' grin rod external coupled
cavity (GRECC)?] has experienced renewed interest as a
means of achieving superior modal selectivity. Very little
effort, however, has been directed toward a fundamental un-
derstanding of the modulation dynamics and quantum noise
properties of these devices. In a conventional semiconductor
laser two important quantities characterize modulation and
phase noise: the relaxation oscillation frequency v, sets the
useful direct modulation bandwidth of the device, and the
linewidth enhancement factor a (or amplitude phase cou-
pling factor) determines both the ratio of FM to AM modu-
lation indices in the output of a directly modulated laser* as
well as the degree to which spectral purity (as determined by
linewidth 4v of the lasing mode) is degraded by amplitude
phase coupling.’~® Analyses given elsewhere>*” have shown
that the conventional (uncoupled) expressions for these
quantities are of the form

vz = [1/27)°)(g'P /7), (1)
a = (20/po)(#'/8'), (2)

where the linewidth and the FM/AM indice ratio are given
by

In these expressions g'( ') is the derivative of gain (resonant
refractive index) with respect to carrier density; P, @, and 7
are the photon density, lasing frequency, and unpumped
photon lifetime of the lasing mode; Avg; is the modified
Schawlow-Townes linewidth formula;’ y,, is the nonreson-
ant contribution to refractive index; and ¢ and p are the
small-signal phase and amplitude variations of the lasing
field. In this letter we will derive the modulation corner fre-
quency and the effective amplitude phase coupling param-
eter of an active cavity/passive cavity compound semicon-
ductor laser. We show that because of physical effects unique
to lasing action in a semiconductor (a strongly detuned gain
spectrum leading to amplitude phase coupling of the lasing
field®) several major improvements in the modulation and
noise performance can be expected to result in a coupled
cavity laser. These include the following simultaneous im-
provements over conventional (uncoupled) lasers: first, en-
hancement of the direct modulation corner frequency vz by
nearly 2X; second, suppression of the FM component of
modulation with respect to the AM component; third, lasing
linewidth reduction (i.e., phase noise reduction). The third
improvement given here has been predicted and observed in
semiconductor lasers subjected to small amounts of optical

4v = Avsi (1 + a7, (3) feedback.'*"2
p/p= —a. (4) The physical mechanism responsible for the aforemen-
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tioned improvements is actually more general than the cou-
pled cavity context under which it is presented here. It in-
volves the introduction of any dispersive loss mechanism
into the laser followed by deliberate detuning of the lasing
frequency away from the loss peak (hence the name “de-
tuned loading”). This more general picture, described in de-
tail elsewhere,'* predicts that the same improvements
should also occur in semiconductor lasers with distributed
feedback. For the purposes of this discussion, however, we
consider a specific model consisting of two cavities (one ac-
tive, one passive), and begin by writing the coupled equations
of motion for the complex field amplitudes in each resona-
tor.

E, =(w,, —1/27,)E, +f.E, (5)

E= (La) - 51;) E+fFE, — L%(%,u(n) + Lg(n))E.

(6)
Neglecting for a moment the coupling terms involving f; and
Jfa Eq. (5) is simply the damped equation of motion for the
mth mode of the passive resonator (w,, and ,, are the fre-
quency and the photon lifetime associated with this mode).
Equation (6) is the driven equation of motion for the lasing
field amplitude E; this field is the result of stimulated emis-
sion into the cavity mode having a passive resonant frequen-
¢y @ and photon lifetime 7. Incomplete spatial overlap of the
lasing mode and the active medium [assumed to be spatially
uniform with gain g(n) and resonant refractive index u(n)
which depend on the carrier density n] is accounted for by
the filling factor I. It is assumed that the field variables are
normalized so that | E |*=Pis an average photon density. For
simplicity, we assume the characteristics of each resonator
are chosen so that only one mode from each resonator cou-
ples well to a single mode from the other resonator (although
the more general situation can be easily accommodated). A
detailed justification of forms (5) and (6), including a discus-
sion of the properties of the coupling rate parameters f, and
/>, will be given in a more comprehensive treatment.'> In
addition to the field equations (5) and (6), it is also necessary
to consider the interaction of the carrier density with the
field. The result of this analysis, however, will be to replace
g, i1', and 7in (1) and (2) with new effective quantities, and
for this reason it is unnecessary to include a carrier density
rate equation in the analysis. It will be seen that the ampli-
tude phase coupling parameter « [typically in the range — 4
to — 6 (Refs. 6, 7)] weighs heavily in determining the size of
these new quantities, leading to several predictions of con-
siderable importance.
As a first step towards solving (5) and (6) we represent
the lasing field amplitude in the active resonator in terms of
slowly varying amplitude and phase components as follows:

E(t)=E,[1 +p(t)]e® ~ . (7)
Using this form, (5) can be integrated to yield

! J—
Em (t) =f1A0eL5tf e[L(wmAw)f 1/27,,.11272)[1 +p(z)]eup(z) dz
(8)

The slowly varying amplitude and phase terms p(f ) and @(¢)
vary on a nanosecond timescale in semiconductor lasers®;
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the lifetime 7,, in (8), however, is typically a few picoseconds
(for small passive resonators). This allows us to expand the
slowly varying quantities appearing in (8) to first order in the
variable (z — z). Performing the integration after this expan-
sion gives

E ([)~ flE(t)
" e — w,,) + 1727,

SEo plt) + it )Je ™+ ! 9)
(U@ - w,) +1/27,,]

This expression allows Eq. (6) to be rewritten in terms of
variables pertaining only to the field amplitude E (z). The
equation which results from this substitution is now linear-
ized about a steady state operating point using (7) and the
following first order Taylor expansions of gain and resonant
refractive index about the operating point,

g(n)=glny) +g'n, (10)
p(n)=plno) + p'ny, (11)
where we take n, as the small-signal carrier density change
about its operating point value n,. The time averaged equa-
tions which in part establish the operating point are (a com-

plete set of operating point equations would also include a
steady state form of the carrier density rate equation)

1 1 y 1

Ighy)=—+——~—v= y 12
g(no) . x4 1, (12)

4 [1 - —L—] =5 13
1447 )

with a tuning parameter given by
6 Esz [(1) — Wy, — fﬁ:u(nO)]’ (14)
Ho

and where y= — 472, f, f, is the coupling strength param-
eter, and A4 is defined in terms of the actual lasing frequency
@ by v=0,, + 4 /27,,. Equation (12) gives the threshold
gain for a lasing eigenfrequency @ and therefore also the
effective loss rate 7' for eigenmodes of the composite cav-
ity. Equation (13) gives the possible lasing eigenfrequencies
(in terms of A ) as a function of the tuning parameter § and the
coupling strength .

The small-signal equations which result from the lin-
earization procedure appear below:

(I+B)p+Bp=1(Ig/2n, (15)

— B+ (1 +Bo)p = — (Tw/ue) 'y, (16)
where

Bi=—2y4/(1+4°%, (17)

Br=— (1 —A2/(1+ 472 (18)
Simple algebraic rearrangement of (15) and (16) yields

p=172)gxn, (19)

@ = — (Lo/po) ppign,. (20)

These equations have the form of the conventional dynamic
equations® [i.e., those found by setting 8, =0 =2, in (15)
and (16)] with new effective differential gain and differential
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FIG. 1. Amplitude phase coupling factor (dashed curve) and square of mo-
dulation corner frequency (solid curve) normalized by their conventional
{uncoupled) values and plotted vs the tuning parameter.

refractive index terms defined as

e 1 + B, 4+ ap, ' (21)
S B 1B
#;ﬁ:1+52_(1/a)ﬁl I. (22)

(148, +B1

The net effect of loading by the passive resonator is to cause
“mixing” of g’ and u', thus creating new effective differential
quantities. To solve for the modulation characteristics of the
loaded laser we can either solve (15), (16}, and a linearized
carrier density rate equation, or equivalently and more sim-
ply, use the new effective quantities defined by (12), (21), and
(22) in the expressions (1) and (2) for the modulation corner
frequency v, and the amplitude phase coupling factor a.
The result is (note: the actual coupled cavity form for the
linewidth 4v is a slightly modified version of (3)'%; (1), (2),
and (4) remain unchanged, however)

1 8«P
Ve ) iaded = —— , (23)
(0 o = o
Qroaded = ‘Zﬂﬂ_fﬁ" (24)
Ho e

(VR )ibaded A0d @joageq , NOTmalized by their unloaded values,
are plotted in Fig. 1 versus the tuning parameter § for
y=0.5and a = — 5.%” The coupling strength ¥ assumed
here is easily achieved with a passive resonator only slightly
larger in optical length than the active resonator.'* Negative
v’s which from (12), are more desirable with regards to main-
taining oscillation near a passive resonance, lead to similar
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results and are achievable in C* devices having appropriate
gap separation.This plot indicates that, under slight detun-
ing, direct modulation bandwidth enhancement of 2 X, FM
suppression, and phase noise reduction are possible simulta-
neously. All of these improvements result from the mixing of
differential quantities mentioned earlier. Specifically, the
fact that |a| is significantly larger than unity permits an en-
hancement of g, at the expense of u'.¢, thus increasing
modulation bandwidth and suppressing FM components of
modulation as well as phase noise (note: the converse is also
possible). In plotting (v )magea We have neglected the 7
dependence so as not to mask the variations of the effective
differential gain. Another interesting prediction of this mod-
el is a region of negative effective differential gain which
appears in the plot as a tuning region of negative (vg ) ugeq-
This is a dynamically unstable region, similar to the region of
negative differential resistance in a tunnel diode or Gunn
device. We will consider this region in greater detail else-
where. !

In conclusion, we have analyzed the modulation and

noise performance of a coupled cavity semiconductor laser
by deriving effective differential quantities. The results sug-
gest that significant improvements in performance over con-
ventional {uncoupled) lasers are possible in detuned configu-
rations of these devices. One improvement, the reduction of
phase noise predicted by this treatment and others,'®'2 has,
in fact, been observed.'?
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