
DEUS: a Discrete Event Universal Simulator

Michele Amoretti
Distributed Systems Group

Information Technology
Department

University of Parma (Italy)
amoretti@ce.unipr.it

Matteo Agosti
Distributed Systems Group

Information Technology
Department

University of Parma (Italy)
agosti@ce.unipr.it

Francesco Zanichelli
Distributed Systems Group

Information Technology
Department

University of Parma (Italy)
zanichelli@ce.unipr.it

ABSTRACT

Currently available discrete event simulation tools exhibit
important limitations, either being too specific, or provid-
ing only a partial API and possibly not enough scalability.
In this paper we introduce our novel general purpose sim-
ulator, called DEUS, which aims at becoming one of the
reference tools in the field of complex system simulation.
Its essential Java API provides basic interfaces and classes
for modelling nodes, events and processes characterizing the
structure and dynamics of any complex system. High us-
ability, configurability and memory efficiency are among the
strengths of DEUS, as exemplified in this paper by means
of the simulator of Chord peer-to-peer systems we imple-
mented with minor coding effort.

Categories and Subject Descriptors

I.6 [Simulation and Modeling]; C.2.4 [Computer - Com-

munication Networks]: Distributed Systems; C.4 [Perfor-

mance of Systems]

1. INTRODUCTION
Complex systems are dynamic systems composed of inter-

connected parts that as a whole exhibit one or more prop-
erties that could not be gathered from the properties of the
individual parts. Examples of complex systems are found
in nature, such as ant colonies, human economies, climate,
nervous systems, cells and living things, including human be-
ings, as well within modern energy and telecommunication
infrastructures, ranging from networked embedded systems
to large scale peer-to-peer architectures.

Quantitative approaches to the dynamics of complex sys-
tems have to consider a broad range of concepts, from ana-
lytical tools, statistical methods and computer simulations
to distributed problem solving, learning and adaptation. Very
often closed-form, analytical evaluation is not feasible, thus
simulation remains the only viable evaluation methodology.
Basically every simulation model is a specification of a phys-
ical system in terms of a set of states and events. Hence,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2009 March 2-6, Rome, Italy
Copyright 2009 ICST ISBN 978-963-9799-45-5.

performing a simulation means mimicking the occurrence of
events over time, and recognizing their effects as represented
by states. Future events occurrences induced by states must
be scheduled (i.e. planned). In continuous simulation state
changes occur continuously in time, while in discrete simu-
lation the occurrence of an event is instantaneous and fixed
to a selected point in time. Continuous simulation mod-
els can be converted into discrete models, which are more
easily managed and thus most used. Depending on the char-
acteristics of the system to be simulated, the reliability of
the answer required, and many other factors, either event
driven simulation (in which time jumps from event to event)
or time driven simulation (in which time proceeds at a con-
stant step) may be more appropriate.

The complex systems in which we are interested are char-
acterized by events that are not guaranteed to occur at reg-
ular intervals, and by the lack of a bound on the time step
(i.e. it should not be so small as to make the simulation
run too long, nor so large as to make the number of events
unmanageable). For such highly asynchronous systems it is
more appropriate to adopt an event-driven simulation [17].
For example, consider distributed computing systems based
on the peer-to-peer paradigm, with nodes randomly joining
and leaving, but also emergency rescue and crisis manage-
ment scenarios, where rescuers do not arrive and leave at
regular time intervals.

As we discuss in section 2, currently available discrete
event simulation (DES) tools have many limitations: some
of them are too specific, others have a limited API, others do
not scale well. In this paper we introduce our novel general
purpose tool, called DEUS, which aims at becoming one of
the reference tools in the field of complex system simulation.
The essential Java API of DEUS, which can be downloaded
from the project site [2], allows developers to implement (by
subclassing)

• nodes (i.e. the parts which interact in a complex sys-
tem, leading to emergent behaviors: humans, pets,
cells, robots, intelligent agents, etc.)

• events (e.g. node births/deaths, interactions among
nodes, interactions with the environment, logs, etc.)

• processes (either stochastic or deterministic, constrain-
ing the timeliness of events)

After the discussion of related work, in section 3 we de-
scribe the structure and the features of the DEUS API,
presenting the core package and the first additional pack-
age we implemented in order to support the simulation of

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

a particular kind of complex systems, namely peer-to-peer
systems. In section 4 we illustrate a simulator of the well-
known Chord overlay scheme, that we implemented using
such additional package. We compare its features (coding
requirements, performance) with those of the same peer-to-
peer system developed with another API (specific for P2P
system simulation). Finally, in section 5 we summarize the
contribution of this paper and propose future activity lines.

2. RELATED WORKS
An almost complete and frequently updated collection of

modelling and simulation resources on the Internet is the
one maintained by Rizzoli [9]. It is evident that almost every
simulation tool targets a specific class of problems. Only few
of them may be considered general purpose. Among these,
the most advanced, in our opinion, is CD++ [16], which
is a modelling environment that allows to define and exe-
cute DEVS models [17]. The DEVs formalism describes a
real system is described as a composite of submodels, each
of them being behavioral (atomic) and structural (coupled).
Closure under coupling allows coupled models to be inte-
grated into a model hierarchy. Each model is defined by a
time base, inputs, states, output and functions to compute
the next states and outputs. In CD++, each new atomic
model requires the development of a C++ class derived from
Atomic, which is provided by the tool itself. With respect
to our approach, which defines nodes, events and processes,
DEVS and CD++ focus on states and functions that change
states of models. We think that the two approaches are com-
plementary. CD++ is a sound tool and has also a GUI for
the configuration and execution of the models experiments
(otherwise a plain text description should be written). Be-
ing DEUS more recent, it still lacks of many facilities that
will be added in the near future (see section 5).

The same considerations can be made with reference to
OMNeT++ [15], another well-known general purpose dis-
crete event simulation tool, which has been publicly avail-
able since 1997. Like CD++, also OMNeT++ is based on
the concept of simple and compound modules. The user de-
fines the structure of the model (the modules and their in-
terconnection) using a topology description language called
NED. The NED language has an equivalent XML represen-
tation, that is, NED files can be converted to XML and
back without loss of data, including comments. This low-
ers the barrier for programmatic manipulation of NED files,
for example extracting information, refactoring and trans-
forming NED, generating NED from information stored in
other system like SQL databases, and so on. DEUS config-
uration files, that must be directly written in XML, follow
the same principle. OMNeT++ has been used in numerous
domains from queuing network simulations to wireless and
ad-hoc network simulations, from business process simula-
tion to peer-to-peer network, optical switch and storage area
network simulations.

Focusing on modelling and simulation of peer-to-peer sys-
tems, we analyzed different simulators and realized that no
commonly agreed reference architecture exists yet; addition-
ally, only few P2P-related papers report about the simula-
tion environment used to obtain the presented results. The
absence of standards leads to the lack of common analysis
instruments and makes impossible to reproduce and verify
results with different simulators than those used to obtain
the original results.

In order to choose the proper simulation environment to
be used as starting point for the development of a P2P-
specific package based on DEUS, we evaluated different sys-
tems according to a set of criteria similar to those presented
in [8]:

• Simulation Architecture: the operation and the design
of the simulator.

• Usability : how easy the simulator is to learn and use.

• Extensibility : the possibility to modify the standard
behavior of the simulator in order to support specific
protocols.

• Configurability : how easily the simulator can be con-
figured and with which level of detail.

• Scalability : the ability to simulate how a P2P protocol
scales with thousands, or more, nodes.

• Statistics: how much the results are expressive and
easy to manipulate.

• Reusability : the possibility to use the simulation code
to write the real application.

Our reference tool in the last two years has been PeerSim
[7], because of its clear design and scalability. PeerSim is
completely written in Java and offers a well documented API
that enables the simulation of structured and unstructured
networks. It supports both a cyclic model and a discrete
event mode, even though the latter has many unresolved is-
sues (for example it is not possible to associate randomly
scheduled events to randomly chosen nodes). PeerSim en-
ables the implementation of personalized components, such
as the so-called observers that export custom statistical in-
dicators on the simulation results. Simulations can be con-
figured by writing a plain text file, defining scheduling and
parameter values for each component. Developers can eas-
ily access the configuration manager in order to make more
customizations. To improve its configurability, we extended
PeerSim, as we illustrated in a recent work [1].

In general, the most used system for simulating applica-
tion level protocols is ns-2 [13], even if it was originally de-
signed to work at network level. Ns-2 is written in C++ and
uses the object-oriented paradigm. It offers a discrete event
model and an OTcl [12] interpreter as a front-end. However,
as ns-2 models both physical and link substrates with high
level of detail, it is not very scalable, that is the maximum
network size amounts to few hundred nodes. Ns-3 is not an
extension of ns-2, it is a new simulator. The two simulators
are both written in C++ but ns-3 is a new simulator that
does not support the ns-2 APIs. Some models from ns-2
have already been ported from ns-2 to ns-3. In ns-3, sim-
ulation scripts can be written in C++ or in Python. Ns-3
does not have all of the models that ns-2 currently has, but
on the other hand, ns-3 does have new capabilities (such
as handling multiple interfaces on nodes correctly, use of
IP addressing and more alignment with Internet protocols
and designs, more detailed 802.11 models, etc.). Ns-2 mod-
els can usually be ported to ns-3 (a porting guide is under
development).

P2PSim [6] is a discrete-event simulator for structured
overlay networks written in C++. P2PSim supports sev-
eral peer-to-peer protocols including the recent Koorde and

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

Kademlia, however the different underlaying network mod-
els are implemented with a rather abstract level of detail.
The lack of documentation makes it hard to extend P2PSim,
whereas its scalability is limited to a maximum of few hun-
dred nodes.

OverlayWeaver [10] is a peer-to-peer overlay construction
tool written in Java, that provides a common API for higher-
level services and a set of routing algorithms like Chord,
Kademlia and Koorde. The toolkit contains a so-called Dis-
tributed Environment Emulator which invokes and hosts
multiple instances of Java applications on a single computer;
due to the threads limits imposed by the Java Virtual Ma-
chine, the scalability is limited to few hundred nodes. Unfor-
tunately the emulator does not provide network statistics,
thus limiting its utilization as a simulator.

PlanetSim [14] is a discrete-event simulator developed in
Java, that offers a layered and modular architecture. Dis-
tributed services in the simulator uses the Common API
for structured overlays enabling the reusability of simula-
tion code to experimentation code running in the Internet.
As for OverlayWeaver, it is not possible to collect statistics
from the simulation outputs. PlanetSim offers a network
layer wrapper which allows to port the simulation code to
real networks like PlanetLab; however, this partial support
for network protocols limits the scalability, making Planet-
Sim able to simulate networks with size in the order of 105

nodes.

3. DEUS API STRUCTURE AND FEATURES
Being DEUS a general purpose simulator, we kept basic

interfaces and classes separated from more specific ones. By
means of subclassing, it is possible to create specific modules
for the simulation of any kind of complex system. Moreover,
we developed a first extension package related to peer-to-
peer resource sharing networks.

The experience we acquired during the development of
other simulation in Java (mainly using ns-2 [13] and Peer-
Sim [7]) showed us how difficult is to manage memory when
it comes to the simulation of systems with a large num-
ber of interacting parts (nodes, if systems are described as
a graph). Java is an extremely powerful language and the
flexibility of its object orientation plus the reflection mech-
anism make it a prolific field upon which build this kind
of project; however the difficulties in managing the garbage
collection mechanism requires a good design in the mem-
ory management. For these reasons, as we describe in more
details later on, DEUS relies on an efficient cloning mech-
anism: the initial process load configuration objects into
memories and new instances of those objects are obtained
through deep cloning. This features allows the deletion of
objects by invoking their class destructor.

3.1 Simulation objects and behavior
The development of DEUS started from the definition

of the basic simulation objects and the design of the con-
figuration procedure, having in mind all the dynamics of
complex systems that one may need to simulate. The goal
was to achieve high flexibility and usability, allowing devel-
opers to specify a section with simulation objects and an-
other one with simulation behavior, maximizing the possi-
bility to reuse components and providing self-validation con-
straints so that the engine could process the configuration
file through reflection and without any further validation.

Simulation objects are events, nodes, resources, while sim-
ulation behavior is managed through processes and engine
objects.

An event represents the base simulation unit, i.e. the
piece of code that is going to be scheduled by the system.
Moreover, as complex systems are made by interacting com-
ponents, we introduced the concept of node, which also cor-
responds to a data structure collector the event could relies
on. Each node can have a set of resources, a structured
way to represent objects the node can share or use through
the event code. The association between events and nodes
is given by process objects that are responsible for event
schedule timing calculation. The engine object puts every-
thing together by linking events that are scheduled at the
beginning of the simulation.

The simulation behavior follows the standard model of dis-
crete event simulations: initialization of system state vari-
ables and clock, scheduling of initial events and, until the
ending condition is true, calculation of next clock time and
processing of the next event in the scheduling queue. How-
ever, few additions have been made to make the model more
flexible. For each event is possible to specify whether its ex-
ecution is one-shot, so that the event will be removed from
the schedule after its completion, or not, so that the event
will be rescheduled according to the timing given by its as-
sociated process. Moreover, each event is provided with a
listening mechanism over the scheduling process so that the
latter will be able to schedule other events, namely refer-
enced events, right after the event’s execution. The ending
condition of the simulator happens once the maximum sim-
ulation time has been reached or the scheduling queue is
empty.

Unlike other simulation frameworks that allow the time
of an event to be specified as an interval, giving the start
time and the end time of each event, DEUS allows only
the specification of the start time. The engine is currently
single-threaded, so it has only one current event, but the par-
allelism in simulation is given by the maintenance of system
state according to the virtual time. In the near future we will
provide support for multi-threaded and network-distributed
simulation engine.

3.2 DEUS core
DEUS has been divided into packages, each one addressing

a specific aspect of the simulation. The root package is

it.unipr.ce.dsg.deus

and contains the following sub-packages:

• core base system components including simulation ob-
ject interfaces, configuration parser and engine;

• schema object model representing the configuration
file;

• util support classes for simulation engine

• impl.event reference implementations of the event ob-
ject;

• impl.node reference implementations of the node ob-
ject;

• impl.resource reference implementations of the re-
source object;

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

Figure 1: Class diagram of DEUS core and impl packages.

• impl.process reference implementations of the pro-
cess object.

In the next subsections we will provide a detailed descrip-
tion of the main classes contained in each package, besides
the scheme and util packages that are just used for sup-
porting features. A class diagram including the core and
impl packages is provided in figure 1.

3.2.1 core package

The Event class represents the simulation object being
scheduled by the Engine. Each event is identified by a con-
figuration id, a set of properties, a flag indicating if the event
should be executed only once, a set of referenced events, a
parent process, the triggering time and a listener to handle
the execution of referenced events. In order to keep the sim-
ulation memory area as small as possible, each event is cre-
ated by cloning the original event obtained from the simula-
tion configuration parser, therefore each implementing class
should provide the code for cloning the event ensuring that
its internal state is consistent, by re-initializing the event
members that do not have to be cloned.

The Node class represents a generic data structure collec-
tor inside the simulation, so the main use is to store, read
and delete information useful for simulation state. Each
node is identified by a configuration id, a set of properties
and a set of resources. Similarly to the Event class there is
the same cloning mechanism to keep the memory require-
ments small for the simulation execution.

The relation between node and event is established with
the NodeEvent class, used to represents all the events which
exist if and only if they are associated with a node; a special
flag is used to specify whether the event maintains the same
associated node during the cloning process.

The Resource class represents a generic resource associ-

ated to a node. The class itself does not provide any method,
is just used to force implementors to use this node/resource
model representation.

The Process class represents the simulation object re-
sponsible to determine the timing of events scheduling. Each
process is identified by a configuration id, a set of properties,
a set of referenced nodes and a set of referenced events.

The Engine class represents the simulation engine of DEUS.
After the configuration file is parsed, the obtained config-
ured simulation objects (nodes, events and processes) are
passed to the Engine that will properly initialize the queue
of events to be run. The simulation is a standard discrete
event simulation where each event has an associated trigger-
ing time, used as a sorting criteria. The events inserted into
the simulation queue are processed individually one after
each other, each time updating the current simulation vir-
tual time. The run method of the engine will process each
event in the event queue until a maximum virtual time is
reached or the queue is empty. In each cycle the first event
of the queue is removed (the one with the lowest triggering
time), the virtual time of the simulation is updated and the
event is executed. If the event has some referenced events,
those will be scheduled right after the event execution, in
the same order used to define them in the configuration file.
If the event is not one-shot and it has a parent process, then
it will be scheduled for a next execution with a triggering
time calculated according to the parent process’ strategy.

The AutomatorParser class is responsible for handling the
simulation configuration file according to the DEUS XML
schema. The configuration can be seen as a set of nodes,
resources, events, processes and engine parameters. This
class handles the configuration of each simulation object and
stores them in a set of array data structures. Each simula-
tion object has a set of base features, plus references to other

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

Figure 2: Class diagram of the p2p package.

simulation objects: nodes can have a set of resources, events
can have a set of referenced events, processes can have ref-
erences to both nodes and events. At the end of the config-
uration file parsing process, this class initializes the Engine
object enabling the simulation execution.

3.2.2 impl.event package

The BirthEvent class represents the birth of a simulated
node. During its execution an instance of the node associ-
ated to the event will be created.

The DeathEvent class represents the death of a simulated
node. During the execution of the event the associated node
will be killed or, in case nothing is specified, a random node
will be chosen instead.

The LogPopulationSizeEvent class is used to simulate a
logging event that stores the number of nodes in the sim-
ulation, each time it is scheduled. It demonstrates that an
event can be really anything, in the context of the complex
system to be simulated.

3.2.3 impl.node package

The BasicNode class is the default implementation of the
node abstract class, without any specific properties. A spe-
cific implementation is provided in the p2p package, which
is described later in the paper.

3.2.4 impl.resource package

The AllocableResource class represents a generic alloca-
ble resource. This kind of resource has a type/amount pair
parameter which must be specified through the configura-
tion file.

The ResourceAdv class represents a resource advertise-
ment, i.e. a document that describes a ConsumableResource

(with a name and an amount), and the interested node.
Once the resource described by a ResourceAdv has been dis-
covered, the owner of the resource should be registered into
the ResourceAdv, and the found flag set to true.

3.2.5 impl.process package

The PeriodicProcess represents a generic periodic pro-
cess. It has a parameter called period that is used to gen-
erate the triggering time. Each time the process receives a
request for generating a new triggering time, it computes it
by adding the period value to the current simulation virtual
time. An extension of this class is provided through the
TwoSpeedsPeriodicProcess class that allows the specifica-
tion of two different periods; the switch between first period
and second period is made using a virtual time threshold.

The PoissonProcess represents a generic Poisson process.
It has one parameter called meanArrivalthat is used to gen-
erate the triggering time. Each time the process receives a
request for generating a new triggering time, it computes it
by adding the current simulation virtual the value of an Ho-
mogeneous Poisson Process with the rate parameter calcu-
lated as 1/meanArrival time. Similarly to the TwoSpeedPe-

riodicProcess, there is the TwoSpeedPoissonProcess class
to provide a Poisson Process that changes its speed after a
virtual time threshold has been reached.

3.3 Extension package for the simulation of
peer-to-peer systems

To simulate a particular kind of complex system, namely
peer-to-peer resource sharing networks, we implemented the

it.unipr.ce.dsg.deus.p2p

package, which contains the following sub-packages:

• node the model of peer.

• event the events characterizing a P2P network;

In the following we provide a detailed description of the
main classes contained in each package. The related class
diagram is illustrated in figure 2.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

3.3.1 node package

The Peer class is an extension of the Node class that rep-
resents the concept of peer in a network. Each peer is iden-
tified by a unique key generated by the engine (in the given
key space) and is characterized by a list of neighbors, peers
with whom it has an active link connection, and a status
regarding peer connection to the network (whether is con-
nected or not). Some methods have been implemented to
manage neighborhood and notification messages.

3.3.2 event package

The SingleConnectionEvent class simulates the connec-
tion event of a peer in the network. The peer can choose
a randomly node to which connect or starts from a well-
known one. An extension of this class is provided through
MultipleRandomConnectionsEvent, allowing the connection
to more than one node, randomly chosen in the network.

The DisconnectionEvent class is used to disconnect a
specific node from the network. Alternatively it can be used
to disconnect a random node from the network.

The LogNodeDegreeEvent class represents a logger that
works out on Peer nodes. It calculates the node degree dis-
tribution for each peer of the network. The results is a list
of degree starting from 1 up to the maximum degree inside
the network; for each degree the number of nodes having it
is computed.

4. IMPLEMENTATION OF A CHORD SIM-

ULATOR WITH DEUS
The simulative approach is becoming the most common

technique to study overlay networks and peer-to-peer appli-
cations. The cost of implementing a solution into a sim-
ulation environment is considerably lower than what is re-
quired to realize a similar experiment on geographical net-
works. Specifically, the number of computational resources
needed is lower and the simulated model can be built to be
more realistic than any other tractable mathematical model.
The use of a simulation environment may enable the de-
tailed evaluation of architectural models and allow for an
high reuse of code when the devised solution will be experi-
mented in the real world.

In the last five years we have been working in the design
and development of peer-to-peer middleware [3], and also
on the simulation of existing or newly created peer-to-peer
protocols [4]. Thus, the decision of creating DEUS was also
driven by the need for a more flexible simulation tool to sup-
port our studies on peer-to-peer architectures. As described
in previous section, Java interfaces and classes that are spe-
cific for peer-to-peer systems have been grouped in packages
that are separated from the core of the tool. In this section
we illustrate how we used these building blocks to implement
the Chord protocol [11]. By using the reflection to auto build
the methods prototype code, the only instructions we had
to write are those related to method implementation. In the
following, when we say that a class has x code lines, we refer
to the x non-automatically generated code lines.

Chord [11] is probably the most known peer-to-peer pro-
tocol based on the Structured Model (SM), which uses Dis-
tributed Hash Tables (DHTs) as infrastructures for building
large scale applications. Data are divided into blocks, each
one identified by a unique key (a hash of the block’s name)
and described by a value (typically a pointer to the block’s

owner). Each peer is assigned a random ID in same space of
data block keys, and it is responsible for storing key/value
pairs for a limited subset of the entire key space.

Given a key (i.e. the identifier of a resource or a service),
the Chord protocol maps the key onto a node (a host or
a process identified by an IP address and a port number).
Chord’s consistent hash function assigns each node and key
an m-bit identifier using a base hash function such as SHA-
1. A node’s identifier is chosen by hashing the node’s IP
address, while a key identifier is produced by hashing the
key. The identifier length m must be large enough to make
the probability of two nodes or keys hashing to the same
identifier negligible. Identifiers are ordered on an identifier
circle modulo 2m. Key k is assigned to the first node whose
identifier is equal or follows the identifier of k. This node is
called the successor node of key k. Figure 4 shows a Chord
ring with m = 4.

Figure 4: An identifier circle consisting of 7 nodes

storing 4 keys. The successor of identifier 2 is the

node with identifier 3, so K2 is located at N3. Simi-

larly for the other 3 keys.

Chord’s basic lookup algorithm, whose description we omit
for space reasons, uses a number of messages which is linear
in the number of nodes. To accelerate lookups, each node n
could maintain a routing table with up to m entries, called
the finger table. The ith entry in the table at node n contains
the identity of the first node s that succeeds n by at least
2i−1 on the identifier circle; i.e. s = successor(n + 2i−1),
where 1 ≤ i ≤ m and all the arithmetic is module 2m.
We call node s the ith finger of node n, and denote by
n.finger[i]. A finger table entry includes both the Chord
identifier and the IP address (and port number) of the rele-
vant node. Figure 5 illustrates the scalable lookup algorithm
based on finger tables. In general, if node n searches for a
key whose ID falls between n and its successor, node n finds
the key in its successor; otherwise, n searches its finger table
for the node n′ whose ID most immediately precedes the one
of the desired key, and then the basic algorithm is executed
starting from n′. It is demonstrated that, with high proba-
bility, the number of nodes that must be contacted to find
a successor in an N -node network is O(log N).

The class diagram in figure 3 emphasizes Chord-specific
classes with green color.
ChordPeer (200 code lines) extends Peer (which is de-

fined in the previously illustrated p2p package), and pro-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

Figure 3: Class diagram of the Chord simulator based on DEUS.

Figure 5: The finger table entries for node N1 and

the path taken by a query from N1, searching for K9
using the scalable lookup algorithm.

vides methods for accessing the finger table: findSucces-

sor, findPredecessor, etc. These methods map one-to-one
with the functionalities defined by the Chord protocol, as it
is presented in [11].
ChordJoinEvent (17 code lines) is an extension of NodeEvent

that implements the procedure that each node must execute
when joining the network, i.e. storing the identifier of the
predecessor and initialize th finger table, and updating fin-
gertables and predecessors’ identifiers of peers that were in
the network when the new node joined.

Each new peer uses a randomly chosen node, among those
already connected, to obtain initial information which are
necessary to initialize its state and complete the procedure
presented above.

There is also ChordDisconnectionEvent (12 code lines),
that manages the disconnection of a peer, also performing
the required adjustments in the finger tables of its predeces-
sor and successor.

Figure 6: Example illustrating the join operation,

including the stabilization procedure.

For each lookup, a ChordLookupEvent (20 code lines) cre-
ated and associated to a destination peer, computed from
the finger table of the search initiator. If the requested key
is not found in the destination, a new ChordLookupEvent is
created and associated to the peer which is the new target of
the propagation, according to the scalable lookup algorithm
described above.

In order to ensure that lookups execute correctly as the set
of participating nodes changes, Chord introduces a stabiliza-
tion protocol that each node should run periodically in the
background and which updates finger tables and successor
pointers. If any sequence of join operations is executed in-
terleaved with stabilization, then at some time after the last
join the successor pointers will form a cycle on all the nodes
in the network. In other words, after some time each node
is able to reach any other node in the network by following
successor pointers. Moreover, if we take a stable network
with N nodes (stable means that all successor and finger
pointers are correct), and another set of up to N nodes joins
the network, then lookups will still take O(log N) time with
high probability.

In our Chord simulator based on DEUS, the stabilization
protocol is implemented by the ChordStabilizeEvent. It

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

required to write just 1 code line, because its run method
simply needs to call the stabilize method of ChordPeer,
whose duty is to ensure that information in each node’s suc-
cessor is always correct, in order to make every network
operation successful. Of course the ChordStabilizeEvent

must be associated to a PeriodicProcess when configuring
the Chord simulation.

The robustness of the Chord protocol relies on the fact
that each node knows its successor. However, this assump-
tion can be compromised if nodes fail. To increase robust-
ness, each Chord node maintains a successor list of size r,
containing the node’s first r successors. If a node’s imme-
diate successor does not respond, the node can query the
second entry in its successor list. If the length of the succes-
sor list is r = Ω(log N), in a network that is initially stable,
and then every node fails with probability 1/2, then with
high probability the procedure to find a successor returns the
closest living successor. We implemented an event, namely
ChordFixFingers (1 code line), which must be scheduled
periodically and corrects errors in fingertables of randomly
chosen ChordPeers (by invoking their fixFingers method).

Finally, we added two logging events:

• LogChordForPajekEvent (5 code lines), which produces
an output file with node connections, in a format that
is suitable for drawing the network topology with Pa-
jek [5].

• LogChordRingStatsEvent (8 code lines), that logs on
a file, for each connected peer, its predecessor, its suc-
cessor and its fingertable.

We compare our Chord simulator based on DEUS with
the publicly available Chord simulator based on Peersim [7].
In the latter, there is a ChordInitializer for the initializa-
tion of peers. The core of the simulator is a large class called
ChordProtocol (300 code lines) which extends EDProtocol

(allowing the class to process incoming messages), and pro-
vides all the functionalities that in our implementation have
been splitted into separated events. Since Peersim requires
that messages among peers are explicitly modeled, there is a
ChordMessage interface and different classes that implement
it.

PeerSim was designed to encourage modular programming
based on objects (building blocks) rather than events. The
general idea of PeerSim is:

1. choose a network size (number of nodes);

2. choose one or more protocols to experiment with and
initialize them;

3. choose one or more Control objects to monitor the
properties the user is interested in and to modify some
parameters during the simulation (e.g., the size of the
network, the internal state of the protocols, etc);

4. run simulations invoking the Simulator class with a
configuration file, that contains the above information.

Moreover, PeerSim supports two simulation models: cycle-
based and event-based.

The simplifying assumptions of the cycle-based model are
the lack of transport layer simulation and the lack of concur-
rency. In other words, nodes communicate with each other
directly, and the nodes are given the control periodically,

in some sequential order, when they can perform arbitrary
actions, such as call methods of other objects and perform
some computations. The event-based model is limited by
the fact that Control objects can be scheduled only peri-
odically or at precise virtual time values, and all nodes are
always involved. Thus, for example, PeerSim hinders the
simulation of network dynamics such as adding and remov-
ing peers, according to some stochastic processes.

On the other side, DEUS allows all this because it is fo-
cused on events, as clearly illustrated by the following con-
figuration file, which refers to a Chord simulation in which
nodes are added according to a Poisson process with average
value of 10t (at the end the network size is N 10000). Peers
are added one by one, and each birth event triggers a join,
stabilize and fixFingers (whose execution times are set
according to the related Poisson or periodic processes). The
whole simulation took 17 minutes on a desktop machine with
Intel Core 2 Duo @ 3GHz and 4GB of RAM.

<!-- *** EVENTS *** -->
<aut:event id="birth"
handler="it.unipr.ce.dsg.deus.impl.event.BirthEvent"
schedulerListener="ChordBirthSchedulerListener">
<aut:events>
<!-- events to be scheduled on created node -->
<aut:reference id="join"/>
<aut:reference id="stabilize"/>
<aut:reference id="fixFingers"/>

</aut:events>
</aut:event>
<aut:event id="join" handler="ChordJoinEvent"
oneShot="true">
<aut:logger level="OFF"/>

</aut:event>
<aut:event id="stabilize"
handler="ChordStabilizeEvent">
<aut:params>
<aut:param name="hasSameAssociatedNode" value="true"/>

</aut:params>
</aut:event>
<aut:event id="fixFingers"
handler="ChordFixFingersEvent">
<aut:params>
<aut:param name="hasSameAssociatedNode" value="true"/>

</aut:params>
</aut:event>
<aut:event id="logPopulationSize"
handler="LogPopulationSizeEvent"/>
<aut:event id="logChordRingStats"
handler="LogChordRingStatsEvent"/>
<aut:event id="logChordForPajek"
handler="LogChordForPajekEvent"/>

<!-- *** NODE SPECIES *** -->
<aut:node id="chordPeer" handler="ChordPeer">

<aut:params>
<aut:param name="fingerTableSize" value="5"/>

</aut:params>
</aut:node>

<!-- *** PROCESSES *** -->
<aut:process id="poisson1" handler="PoissonProcess">
<aut:params>
<aut:param name="meanArrival" value="10"/>

</aut:params>
<aut:nodes>
<aut:reference id="chordPeer"/>

</aut:nodes>
<aut:events>
<aut:reference id="birth"/>

</aut:events>

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

</aut:process>
<aut:process id="poisson2" handler="PoissonProcess">
<aut:params>
<aut:param name="meanArrival" value="0"/>

</aut:params>
<aut:nodes>
<aut:reference id="chordPeer"/>

</aut:nodes>
<aut:events>
<aut:reference id="join"/>

</aut:events>
</aut:process>
<aut:process id="periodic1" handler="PeriodicProcess">
<aut:params>
<aut:param name="period" value="1000"/>

</aut:params>
<aut:events>
<aut:reference id="stabilize"/>
<aut:reference id="fixFingers"/>

</aut:events>
</aut:process>
<aut:process id="periodic2" handler="PeriodicProcess">
<aut:params>
<aut:param name="period" value="10000"/>

</aut:params>
<aut:events>
<aut:reference id="logPopulationSize"/>
<aut:reference id="logChordRingStats"/>
<aut:reference id="logChordForPajek"/>

</aut:events>
</aut:process>

<!-- *** SIMULATION *** -->
<aut:engine maxvt="100000" seed="123456789"
keyspacesize="100000">
<aut:logger level="ALL"/>
<aut:processes>
<aut:reference id="poisson1"/>
<aut:reference id="periodic2"/>

</aut:processes>
</aut:engine>

5. CONCLUSIONS AND FUTURE WORK
In this paper we illustrated a novel discrete event simula-

tion tool, DEUS, which includes a powerful engine, a XML
configuration parser and an extensible Java API for the de-
velopment of complex system simulators. We described the
structure and the main features of the basic packages, and
an additional package supporting the simulation of peer-to-
peer systems.

We presented the capabilities of our tool by showing a
Chord simulator we implemented using the P2P-oriented
extension package for DEUS, and we compared its features
(coding requirements, support for simulation of dynamic sce-
narios, performance) with those of the same peer-to-peer
system simulator developed with the PeerSim API.

Due to its effectiveness and ease of use, DEUS has become
essential for our studies on complex systems, e.g. peer-to-
peer resource sharing and multimedia streaming networks.
In the near future we plan to complete the implementation
of a graphical tool for configuring simulations (including a a
package to support straightforward sensitivity analysis), to
investigate a distributed version of the event execution en-
gine, and to develop new extension packages to support the
simulation of other kinds of complex systems. In particular,
we plan to develop packages for the simulation of robotic
swarms, of emergency rescue scenarios, and of scheduling
algorithms for real-time embedded systems.

6. REFERENCES
[1] M. Agosti, M. Amoretti, F. Zanichelli, and G. Conte.

P2PAM: a Framework for Peer-to-Peer Architectural
Modeling based on PeerSim. In First International
Conference on Simulation Tools and Techniques for
Communications, Networks and Systems (SIMUTools
2008), Marseille, France, March 2008.

[2] M. Amoretti and M. Agosti. DEUS web page.
http://code.google.com/p/deus/, 2008.

[3] M. Amoretti, F. Zanichelli, and G. Conte. SP2A: a
Service-oriented Framework for P2P-based Grids. In
3rd International Workshop on Middleware for Grid
Computing, Co-located with Middleware 2005.,
November 2005.

[4] M. Amoretti, F. Zanichelli, and G. Conte.
Performance Evaluation of Advanced Routing
Algorithms for Unstructured Peer-to-Peer Networks.
In First International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS
2008), Pisa, Italy, October 2006.

[5] V. Batagelj and A. Mrvar. Pajek web page.
http://vlado.fmf.uni-lj.si/pub/networks/pajek/, 2007.

[6] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and
J. Stribling. p2psim: a simulator for peer-to-peer
(p2p) protocols. http://pdos.csail.mit.edu/p2psim/.

[7] M. Jelasity, A. Montresor, G. Jesi, and S. Voulgaris.
PeerSim: A Peer-to-Peer Simulator.
http://peersim.sourceforge.net, 2004.

[8] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai,
I. Wakeman, and D. Chalmers. The state of
peer-to-peer simulators and simulations. Computer
Communication Review, 37(2):95–98, 2007.

[9] A. Rizzoli. A Collection of Modelling and Simulation
Resources on the Internet.
http://www.idsia.ch/ andrea/sim/simtools.html, 2008.

[10] K. Shudo, Y. Tanaka, and S. Sekiguchi. An overlay
construction toolkit.
http://overlayweaver.sourceforge.net.

[11] I. Stoica, R. Morris, D. Liben Nowell, D. Karger,
M. Kaashoek, F. Dabek, and H. Balakrishnan. Chord:
A Scalable Peer-to-peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on
Networking, 11(1), 2003.

[12] The Berkeley Multimedia Research Center. OTcl -
object tcl extensions.
http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl/.

[13] University of California Information Sciences Institute.
NS-2 network simulator.
http://nsnam.isi.edu/nsnam/index.php.

[14] University Rovira i Virgili. Planetsim project.
http://planet.urv.es/trac/planetsim.

[15] A. Varga and R. Hornig. An Overview of the
OMNeT++ Simulation Environment. In First
International Conference on Simulation Tools and
Techniques for Communications, Networks and
Systems (SIMUTools 2008), Marseille, France, March
2008.

[16] G. Wainer. CD++: a toolkit to develop DEVS
models. Software - Practice and Experience,
32(13):1–46, november 2002.

[17] B. Zeigler, T. Kim, and Praehofer H. Theory of
Modeling and Simulation. Academic Press, 2000.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5754
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754

